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LARGE TURING INDEPENDENT SETS

ASHUTOSH KUMAR AND SAHARON SHELAH

(Communicated by Vera Fischer)

ABSTRACT. For a set of reals X and 1 < n < w, define X to be n-Turing
independent iff the Turing join of any n reals in X does not compute another
real in X. X is Turing independent iff it is n-Turing independent for every n.
We show the following: (1) There is a non-meager Turing independent set. (2)
The statement “Every set of reals of size continuum has a Turing independent
subset of size continuum” is independent of ZFC plus the negation of CH.
(3) The statement “Every non-meager set of reals has a non-meager n-Turing
independent subset” holds in ZFC for n = 1 and is independent of ZFC for
n > 2 (assuming the consistency of a measurable cardinal). We also show the
measure analogue of (3).

1. INTRODUCTION

Let X C 2¥ and 1 < n < w. We say that X is n-Turing independent iff for
every F € [X]=" and y € X \ F, the Turing join of F does not compute y. X is
Turing independent iff it is n-Turing independent for every n > 1. In [8], Sacks
constructed a Turing independent set of reals of size continuum. One can also
construct a Turing independent perfect set X C 2¢ by forcing with finite trees (see
Lemma 7.1 in [6]). These constructions do not make use of the axiom of choice and
therefore cannot produce a non-meager/non-null Turing independent set of reals.
This follows from the following.

Fact 1.1. Suppose X C 2v.

(a) If X is non-null and is Lebesgue measurable, then there are x # y in X
such that {k < w : z(k) # y(k)} is finite.

(b) If X is non-meager and has the Baire property, then there are x # vy in X
such that {k < w : x(k) # y(k)} is finite.

In Section 2] we construct a non-meager Turing independent set. The construc-
tion works in ZF + “There exists a non-principal ultrafilter on w”.

Theorem 1.2. There exists a non-meager Turing independent set of reals.

The next two sections deal with questions of the following type: Given a “large”
X C 2% must there exist a “large” Turing independent Y C X? In Section [3 we
show the following.
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Theorem 1.3. The following is independent of ZFC plus the negation of CH. Every
set of reals of size continuum has a Turing independent subset of size continuum.

In Section [l using some facts from [2L[7] about effective randomness/genericity,
we prove the following.

Theorem 1.4. For every non-meager (resp. non-null) X C 2, there exists a
non-meager (resp. non-null) Y C X such that Y is 1-Turing independent.

Finally, we show that getting large 2-Turing independent subsets may not be
possible.

Theorem 1.5. Let n > 2. Each of the following statements is consistent relative
to ZFC and its negation is consistent relative to ZFC plus there is a measurable
cardinal.

(a) For every non-meager X C 2“ there exists a non-meager Y C X such that
Y is n-Turing independent.

(b) For every non-null X C 2%, there exists a non-null Y C X such that'Y is
n-Turing independent.

Notation. For F' = {x¢,2,...,2,-1} C 2%, the join of F, denoted @, _,, T, is the
real y € 2% satisfying y(nj + k) = zx(j) for every k < n and n,j < w. (P, : e < w)
is an effective listing of all Turing functionals. Given y € 2“ and k < w, we write
®Y(k) = n iff the eth Turing functional with oracle y converges on input & and
outputs n. We write ®¥(k) # n iff either ®Y(k) diverges or it converges to a value
different from n. If the oracle use of the computation “®¥(k) = n” is included in an
initial segment o =< y, then we also write ®7(k) = n. For x,y € 2, define Y = x
iff (Vk < w)(®Y(k) = n). So z <p y iff for some e < w, Y = x. For o € 2<%,
define [o] = {z € 2¥ : 0 C z}. p denotes the standard product measure on 2%.
For Y C X C 2¢ we say that Y is everywhere non-meager (resp. has full outer
measure) in X iff for every Borel B C 2, if BN X is non-meager (resp. non-null),
then BNY # (). Coheny is the poset consisting of all finite partial functions from
X to 2 ordered by reverse inclusion.

2. A NON-MEAGER TURING INDEPENDENT SET

Throughout this section, unless stated otherwise, we work in ZF. Although one
cannot show in ZF that the meager ideal is a o-ideal, this doesn’t affect the argu-
ment below.

Definition 2.1. Let 77 = (n; : kK < N) be a finite sequence of members of 2<%.
Define Split,(7) to be the statement: For every (zj : k < N) where each n, C zy, €
2%, there exists j € dom(ny) such that X (j) # nn(j) where X = @, _ 5 =&

Observe that if ¢ = (o : Kk < N), 7 = (7 : kK < N), for each k < N, o C 7%
and Split, () holds, then Split,(7) also holds.
Lemma 2.2 (ZF). Supposee <w, N > 1 and p = {pi : k < N) is a finite sequence

of members of 2<“. Then there exists ] = (n : k < N) such that for every k < N,
pr C i and Split, () holds.

Proof. Let j, = min(w \ dom(py)). First suppose there exists (y; : & < N) such
that the following hold.

(a) For every k < N, p C yi € 2.
(b) @Y (j,) converges and outputs i < 2 where Y = Pron Yk
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In this case, fix such (y; : kK < N) and i, define ny = pn U {(jx,1 —¢)} and
choose np C yx for k < N such that @, _ . contains the use of the computation

o7 (j)-
If there is no such (y; : k < N), then define n, = pi for each £k < N and
nn = pN U{(jx,0)}. Tt is clear that 77 = (ng : k < N) satisfies Split, (7). O

Lemma 2.3 (ZF). For each n < w there exist k and [ satisfying t(n,k, f) where
t(n, k, f) says the following: n < k < w, f : "2 — ™2 and for every sequence
(pr : k < N) of pairwise distinct members of 2 (where N > 1) and for every e < n,
Split,(77) holds where 7 = (p;. f(pr) : kK < N).

Proof. Easily follows by repeatedly applying Lemma O

Fix a recursive well-ordering < of
F=A{(k,f): k<wand (In < k)(f: "2 — F2)},

Definition 2.4. Using Lemmal[2.3] define (k,, : n < w) and (F, : n < w) as follows.
For each n < w, (kn, Fy,) is the <-least member of F such that f(n, k,, F,) holds.
Define the function F' by dom(F) = 2<% and for every o € 2<¢, F(0) = F|,(0).
Define K : w — w by K(0) =0 and K(n +1) = kg(y)-

Note that (k, : n < w), (F, : n < w), K and F are all definable without
parameters.

Lemma 2.5 (ZF). Let U be a non-principal ultrafiter on w. Let C be the set of
all pairs (m,x) where m = (my, : k < w) is a strictly increasing sequence in w
with mg = 0 and x € 2¥. Then there exists a function H : C — 2“ such that the
following hold.
(1) H is definable from U.
(2) For every (m,z) € C, if H(m,x) =y, then there are infinitely many k < w
such that y | [myg, myy1) = [ [mg, mei1).
(3) For every y € range(H), {n <w: F(y | K(n)) Cy} € U. Here K, F are
as in Definition 2.4l

Proof. Fix (m,z) € C. Define (n(j) : j < w) as follows.
(i) n(0) =0.
(ii) n(j +1) = K(n(j)) + mpj)+1 + 1.
Note that (n(j) : j < w) is a strictly increasing sequence in w such that for each
J <w, both K(n(j)) and my, ;)4 are strictly less than n(j +1).
Fix r, < 3, such that

UtlnG)n( +1):j=r. (mod 3)} €U.

Inductively construct y € 2¢ such that for every j < w, if j =, (mod 3), then the
following hold.

(a) n(j) <n<n(j+1) = F(y [ K(n))=yl[K(n),K(n+1)).

(b) [ Mgty Magr2)+1) = Y [ [MnGr2)s Mag+2)+1)-

Since K(n(j + 1)) < n(j +2) < myr2) < Mpgr2)41 < n(j + 3), there is
no conflict among the two clauses. Define H(m,z) = y. Observe that clause (a)
guarantees that {n <w: F(y [ K(n)) C y} € U while clause (b) ensures that there
are infinitely many k& < w such that y | [mg,mgy1) = x | [mg, mer1). It is also
clear that H is definable from U. ]
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The following is well-known (for example, see Theorem 2.2.4 in [I]). The proof
given there works in ZF.

Lemma 2.6 (ZF). For every meager W C 2%, there exist (my, : k < w) and x € 2%
such that the following hold.
(1) mo =0, my’s are strictly increasing in w.
(ii) For every y € W, for all but finitely many k < w, there exists n €
[mg, mgt1) such that x(n) # y(n).

Proof of Theorem [L2l We work in ZF + “There exists a non-principal ultrafilter
on w”. Fix a non-principal ultrafilter & on w. Let H : C — 2¥ be as in Lemma
Put Y = range(H). By Lemma 2.6 Y is non-meager so it suffices to show
that Y is Turing independent. Suppose not and fix N > 1 and pairwise distinct

members Yo, Y1, ..., yn of Y such that the join of {yo,y1,...yn—1} computes yy.
Put X = @, _y yr and choose e < w such that for every j < w, X (5) = yn(j)-
Define

T={n<w:Vk<N)(F(yr | K(n)) Cyg)}-
Then T € U. Since y;’s are pairwise distinct, we can find n € T such that e < n
and (y, | K(n): k < N) has pairwise distinct members in 25 Define 7 = (y |
K(n+1):k<N). Since n € T, for each k < N, we must have

ye [ K(n+1) = (yx [ K(n)” F(n)(yr [ K(n)).
By Lemma 23] it follows that Split.(7) holds. But this contradicts ®X = yy. O
It is unclear how to adapt this argument for the case of measure.

Question 2.7. Must there exist a Turing independent non-null set of reals?

3. LARGE TURING INDEPENDENT SUBSETS: CARDINALITY

Given X C 2¢, can we find a Turing independent subset of X which has the
same cardinality as X7 Since X could be a <p-chain of size w;, we should assume
we < |X| < ¢. Theorem Bl implies that a positive answer is consistent with
arbitrarily large continuum.

Theorem 3.1. Assume V |= GCH. Let P be the forcing for adding k Cohen reals
where wy < k = kN0, Then the following hold in V.
(1) c=k.
(2) For every wy < A < ¢ and X € [2¥]* there exists Y € [X]* such that for
every n > 1 and B : (2¥)™ — 2 where B is a Borel function coded in V,
Y is B-independent which means the following: For every xq, ..., Tp_1 in
Y, B(l‘o, RPN ,In_l) ¢ Y \ {IQ, NN 7l‘n_1}.
(3) For every wa < X\ < ¢ and X € [2¢]* there exists Y € [X]|* such that Y is
Turing independent.

A similar result holds in the random real model. The proof is similar to the one
we give below for the Cohen case. Note that, in Theorem Bl Clause (3) follows
from Clause (2).

Proof. Let ¢ : kK — 2 be the Cohen,-generic sequence added by P. A standard
name counting argument shows that Vic] E ¢ = k. Fix we < A < k and assume
Vi) E X = {za : @ < A} consists of pairwise distinct members of 2¥. Since
V |= ¢ = w1 < A, by thinning out X, we can assume that for every n > 1 and a
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Borel function B : (2¥)" — 2 coded in V', whenever 8 < A and «o, ..., a1 < 3,
we have B(Zay, - -3 Ta,_,) # 3. WLOG, let us assume that the empty condition
forces this.

For each av < A and i < w, choose a maximal antichain A, ; of conditions in
P deciding 4,(i). WLOG, each A,; € [P|*. Let (pain : n < w) be a one-
one listing of A, ;. Let eq, < 2 be such that pyin IF o(i) = €q,in. Define
W = U{dom(pa.in) : i,n < w}. So W, € [x]%0.

Case 1. X is singular. Let p = cf(\) < A. Fix a strictly increasing sequence
(\j 1 j < p) cofinal in A such that p < \g and each A\; = 7" for some § < A. For
each j < u, using GCH plus the A-system lemma (Theorem 1.6, Chapter II in [5]),
choose T; C [A;, \j41) such that |T;| = \j11 and (W, : a € T}) forms a A-system
with root R;. Put R = J{R; : j < pu} and note that |R| < p. For each j < p, the
set of a € T} for which (W, \ R;) N R # 0 has size < p1. By throwing these away, we
can assume that for every a € T}, (W, \ R;) N R = (). By inductively thinning out
T;’s once more, we can also assume that for every ¢ < j in p, « € T; and 3 € T},
(W \ i) 0 (W \ By) = 0.

For each j < p, choose S; € [T}]*+1 such that the names {#, : o € S;} are
pairwise isomorphic in the following sense.

(i) otp(W4) = «; does not depend on a € S;. Let hy : v; — W, be the unique
order isomorphism.
(ii) hy'[R;] = A; does not depend on « € S;.
(iii) For every i,n < w, €;,n = €q,i;n and Pipn = Da,in © he do not depend on
(A Sj.

Such Sj’s exist as V = c=wi < \j =cf(};). Put Y = {2z, : (Ij < p)(a € S;)}
and note that Y € [X]*.

We claim that Y is as required. Suppose not and towards a contradiction, fix
n > 1, B: (2¥)"™ — 2“ where B is a Borel function coded in V' and pairwise
distinct yo, Y1, - .-, Yn in Y such that B(yo,...,¥n—1) = yn. For each 0 < m < n,
fix j(m) < p and a(m) € Sy such that y,, = r4(y). Fix p € P such that p -
B(:%a(o), ey f%a(n—l)) = ia(n)- Choose 3 € Sj(’ﬂ) such that 8 ¢ {a(m): 0 <m <n}
and (W3\ Rj(»))Ndom(p) = 0. Let 7 : & — & be such that 7 [ W) : Wo(n) = Wp
and 7 [ Wp : Wz — W) are order preserving bijections and 7 [ (k\ (Wq(,)UW3))
is the identity. Recall that W (,,) N W5 = Rj(,,) and note that m | R;(,) is also the
identity by Clause (ii) above. Define 7 : P — P by #(q) = r iff dom(r) = w[dom(q)]
and ¢(a) = r(w(a)). Then 7 is an automorphism of P. Note that for each 0 < m <
n, ™ [ Wa(m) is the identity and so #1(Zq(m)) = Ta(m). Furthermore, by Clauses
(i)-(iii) above, 7t(Zq(n)) = T5. Therefore 7(p) IF B(Za(0y - - s La(n—1)) = 3. Now
by the choice of 3, it is easy to see that p and w(p) are compatible. Letting
pe = pUT(p), we get py Ik B(Za(0), -+ s Lam—1)) = Ta(n) = L3. But the empty
condition forces that z,(,) # ¥ which is a contradiction.

Case 2. X is regular. If X\ is not the successor of a limit cardinal of countable
cofinality, then we can apply the A-system lemma and proceed as in Case 1 — In
fact, we can find S € [A]* such that (W, : a € S) is a A-system and the names
(T4 : a € S) are pairwise isomorphic. To deal with the other case, we will use the
following.

Lemma 3.2. Suppose A is regular uncountable and vy is an infinite ordinal such
that Do(|y]) < A. Let f = (fa : @ < A) be a sequence of pairwise distinct injective
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functions from ~ to ordinals. Then there exists S C X stationary in A such that the
following holds. For every k < n < w and a strictly increasing sequence & = (o :
j < n) of members of S, there exists B = (B; : 7 < n) such that each the following
hold.

(1) For every j <k, B; = .

(2) Bn < [3@_1 << Br+1 < min(S) < ayg.

(3) @ and B are f-similar which means the following: For every j,m < n and

1,82 <7,

fo;(61) = fa,.(&2) = [f5,(&1) = f5..(&2):

Proof. WLOG, we can assume that each fo : v — A. Put p = (2")*. Then
p < Da(ly]) < A Set x = (J5(A\))* and fix a continuously increasing chain N' =
(N, @ @ < A) of elementary submodels of (H,, €, <,) such that f € N, H,, €N
and for every a < A, [No| < A, Ny N A€ Xand N | (a+1) € Noy1. Put Sy =
{6 <X:cf(0) =u} and S; = {§ € Sp : (Vo < 0)(range(fo) C 6) and Ns N A = §}.
Note that 57 is stationary in A. For each § € S, define

Js={uC~vy:fsue N5}

Observe that each Js is an ideal on . For each § € Sy, define g(d) to be the least
a < § such that for every u € Js, f5 | u € Ny. Since cf(8) = pu > 211, ¢(6) is
well-defined. Using Fodor’s lemma, choose S C S; stationary in A such that g [ S
is constant. Since Ja(]y|) < A, we can also assume that Js; = J, does not depend
on § € S. Put o, = min(S). We will show that S is as required.

Fix n > 1. By induction on n — k, we’ll show that for every strictly increasing
sequence & = {a; : j < n) of members of S, there exists 8 = (3; : j < n) such that
Clauses (1)—(3) above hold. If k = n, then this is trivial so assume 0 < k < n. By
inductive hypothesis, we can fix 7 such that the following hold.

(A) For every j <k+1,n; =qj.

(B) M <Mp-1 <+ < Mgz < Qe
(C) a and 7 are f-similar.
Define B,,, = ny, for m # k 4+ 1. It suffices to find fi1 < ay strictly above Biyo

such that @ and 3 are f-similar.
For each m # k + 1, define

Um = {g <7 fOék+1 (g) € range(fﬁm)}'

We claim that each w,, € Jy and fo, , [ um € N... To see this, using the fact
that each f, is injective, define Ay, : Uy, — v by b (§) = & iff fo, ., (§) = f5,.(§).
Since Hy+ € Nayyys We get by € No,y . Now fg € Nayy, (as B < agy1),
S0 fapir | Um = fa,, © hm € Ny,,,. It follows that u,, € Jo, ., = J.. That
faris | Um € Ny, follows from the fact that g [ S takes a constant value below a,.
Let wy, = range(fa, ., [ Um)-

Define U = [J{um : m # k+1} and W = U{range(fa,,, [ um):m # k+1} and
note that wu,,, w,,U and W are all in N,,. Let X be the set of § € Sy such that
0 > PBr42 and (a) + (b) + (c) below hold.

(b
(a) (Ym #k+1)(fs [ um —fak+1 [ Um).

(b) (Vm # k+1)(VE € v\ um)(fs(§) ¢ wn).

(c) (Vm >k +1)(VE € v\ um)(f5(§) & range(fs,,))-
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Then X is definable in H, with parameter from N,,. So X € N,,. Furthermore,
since § = a1 € X \ N,,, it follows that X is unbounded in .

Let 0, € X Na,. Suppose m # k41 and &;,& < v are such that f,, (&) =
Jom (52) Since 7] and @ are f-similar, we get fl)ék+l (51) = f77k+1 (51) = [ (&) It
also follows that &; € up,. Since 6, € X, fs5,(§1) = fauy, (§1). Therefore f5, (§1) =
fi, (€2).

Now assume that fo, ., (§1) # fa,, (&2). Put fa,, (§2) = 7. Furthermore, suppose
n € range(fa,,,). Choose &3 such that fo,, (§&3) = fa,.(§2) = n. Repeating
the above argument, we get f5, (§3) = fg,, (§2). Since fs, is injective, it follows
that fs5,(§&1) # fs,.(§2). Next, suppose 1 ¢ range(fa,.,). If m > k41 and
§1 € um, then by Clause (a), fs, (§1) = fa,,.(§1). As @ and 7 are f-similar, we
also have fo, ., (§1) # fs,.(§2) and therefore fs (£1) # f5,,(&2). If m >k +1 and
& & U, then Clause (c) implies that fs5, (§1) # fa,,(&2). Finally, if m < k + 1,
then showing fs (&1) # fg,,(§2) = fa,, (&2) boils down to showing the following:
For every m < k+ 1, we have range(fs,) Nrange(fa,,) C range(fa,,,) Nrange(fa,,)-

Construct ((Y;, W;) : i < ~T) as follows.

(i) Yo = {Bm : m > k + 1}, Y;’s are continuously increasing and Y; \ Yy €
[X]S2M.
(i) W; = W uU{range(fs) : 0 € Y;}. Recall that W = (J{range(fa,,, | um) :
m#k+1}.
(iii) For each 6; € X \ Y}, there exists 02 € Y;11 \ Y; such that for every £ < ~
(a) f5,(8) e W, <= [5,(§) € W, and
(b) f5,(&) € Wi = [5,(€) = [5,(E)-

Note that Clause (iii) requires us to add at most 217l ordinals to Yji; \ Y;.
Furthermore, the construction is definable in (#,, €, <) since we can use the well-
ordering <, to choose least witnesses for Clause (iii). So ((Y;, W;) :i <~) € N, .

We claim that for each i < 4T, Y; and therefore W; are subsets of N,,,. As
(Y, W) i < vt) € Ny, and vF +1 C H, C N,,, each Y; € N,,. Since
Vi| < 2Pl < pand H,, C N, it also follows that Y; C A, .

Choose i, < v such that for every m < k + 1,

range(fa,, ) N U W; C range(fa,,) N W;,

i<yt

Using Clause (iii) above with d; = agi1, get duw = 02 € Vi 41 \ Vi, satisfying
(a)+(b) there. Suppose m < k+ 1 and 7 € range(fs,,) Nrange(f,,,). Fix £ <~
such that f5,, (€) =n. Note that n € W;,. So by Clause (iii)(a)+(b), we must have
N = f5.,(&) = fars.(§). Hence n € range(fa, ,) Nrange(fa,,). It follows that for
every m < k + 1, range(fs,,) Nrange(fa,,) C range(fa,,,) Nrange(fa,,). So we can
take Bg+1 = dx«. This concludes the proof of Lemma 32 O

Let us return to Case2land assume that A is the successor of a singular cardinality
of countable cofinality. Since V' = A = cf(\) > ¢ = wy, we can assume that
{Zs : @ < A} consists of pairwise isomorphic names. Fix v, < w; such that
otp(Wy) = . For o < A, let fo : v« — W, be the unique order preserving
bijection. Using GCH we can apply Lemma with v =7, and f = (fo : a < \)
to get S C X satisfying the conclusion there. Let us check that {z, : o € S} is
as required. Towards a contradiction, fix n > 1, a Borel function B : (2¥)" — 2¥
codedin V, ap < a1 < -+ < ap, in S and k < n (kK = n is not possible) such
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that B(yo,y1,--,Yn—1) = Ta, where {y; : j < n —1} = {x,; : j # k}. Since
permuting the inputs of B gives rise to another Borel function, we can assume that
B(Zag, -+ Tay_1sTag,is > Ta,_y) = Ta,. Choose 3 such that Clauses (1)~(3) of
Lemma [3:2 hold. Since & and j3 are f-similar, we can choose a bijection 7 : A\ — A
satisfying fo, = mofs, for every j < n. Now we repeat the automorphism argument.
Put d = cor and let 2, be the evaluation of &, via d. Then z, = z,,, form <k
and z, =z, for k <m < n. Hence B(Zags s Tap_1s Ty, 1o Tp,) = Tay-
So for some p € P with p C d, plbp B(Zags---sTay_1sL8usrs---»L8,) = Lo, Which
is impossible since ag > max{f; : j # k}. This completes the proof of Theorem

5.1 O

Next, we would like to show that it is consistent that CH fails and there exists
X C 2% such that | X| = ¢ and X does not even have an infinite Turing independent
subset. For this, we will make use of certain locally countable upper semi-lattices
described below.

Definition 3.3. Let (P, <) be a poset.

(1) P is locally countable iff for every z € P, {y € P: y < x} is countable.

(2) P is an upper semi-lattice iff every finite F' C IP has a <-least upper bound
(called the join of F).

(3) Suppose P is an upper semi-lattice. We say that X C P is independent in
P iff for every finite F C X and y € X \ F, the join of F is not <-above y.

Note that the Turing degrees form a locally countable upper semi-lattice with
respect to Turing reduction <g.

Definition 3.4. Suppose 1 < n < w, § and k are uncountable cardinals, 6 is regular
and k > 0. Let f: [k]" — [k]<? be such that a C f(a) for every a € [r]".

(i) Define Wy = {a C £ : n < |a] < Xo}. For each a € Wy, let cl¢(a) be the
C-least subset of x that contains a and is closed under f. Since 6 is regular
uncountable, |clf(a)| < 6.

(ii) Define the preorder <; on Wy by: a <; b iff a C cl;(b).

(iii) Define the equivalence relation Ef on Wy by aEsb iff clf(a) = cly(b). Let
W7 be the set of Ey-equivalence classes in Wy. Clearly, [W}| =k as each
E-equivalence class has size < . For a € Wy, let [a] € W} denote the
E-equivalence class of a.

(iv) For [a], [b] € W7, define [a] < [0] iff @ <; b. Then (W}, =<y) is a poset in
which each element has < 6 predecessors.

We say that (W}, <) is the upper semi-lattice associated with (n, 0, s, f). That

(W7, =) is an upper semi-lattice is justified by the following.

Claim 3.5. For every [a], [b] € W7, [a U b] is the <-least upper bound of [a], [b] in
w*.

Proof. It is clear that [a U b] is an upper bound. Suppose ¢ € Wy and a <; ¢ and
b<fc. Then a C cly(c) and b C cls(c) so aUb C cly(c). Hence [a UDb] <y [c]. So
[a U b] is the least upper bound. O

Lemma 3.6 (Kuratowski). Suppose 6 is an infinite cardinal, k < w and = 07,
Then, there exists I : [k]*1 — [k]<Y such that for every a € [k]**1, a C F(a),
and whenever a € [k]<N0 such that |a| > k + 1, there exists b € [a]**1 such that
a C F(b).
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Proof. By induction on k. If k = 0, then F : [0]' — [0]<? defined by F({a}) = a+1
works. Next assume that the result holds for k. Put x = 1% and fix a witnessing
function F : [k]*1 — [k]<?. For each o < k™, fix an injection h, : @ — k. For
a € [kT]**! and max(a) < a < K, define

H(aU{a}) ={§ < a:ha(§) € F(halal)} U{a}.

It is easy to check that H : [x1]+2 — [k+]<? is as required. O

Lemma 3.7. Suppose 0 is regular uncountable and k < w. Then, there exists an
upper semi-lattice (P, =) such that for each p € P, [{q € P:q < p}| <6, |P| = 6
and there is no S € [P)**2 such that S is independent in P.

Proof. Put k = 61k, Using Lemma 3.6 fix F : [k]*™! — [k]<? such that for
every a € [k]**!, a C F(a), and whenever a € [k]<% such that |a|] > k + 1,
there exists b € [a]**! such that a C F(b). Let (P, <) = (W}, <r) be the upper
semi-lattice associated with (k + 1,0, k, F) as defined in Definition B4l Towards
a contradiction, suppose S = {[a,] : 1 < n < k+ 2} C W is independent in
(Wi, <F). Let a = H{an : 1 <n <k+2}. Then |a] > k+1as |a,| > k+1
for every n. Choose b € [a]**! such that @ C F(b). Since |b| = k + 1, we can find
1<j<k+2suchthat b C J{an:1<n<k+2n+#j} It follows that [a;] is
=<p-below the join of {[a,]: 1 <n < k+2,n # j}: Contradiction. O

In a private communication with the first author, A. Andretta and R. Carroy
asked if every locally countable upper semi-lattice of size ¢ > w; must have an
independent subset of size continuum. Corollary shows that the answer is
negative.

Corollary 3.8. Suppose 2 < n < w. There exists a locally countable upper semi-
lattice (P, <) of size wy, such that there is no independent subset of P of size n+ 1.

Proof. Apply Lemma 3.7 with 6 = w;. O

Proof of Theorem [L3l The consistency of the statement follows from Theorem [B.11
For the other direction, it suffices to show, for example, that under Martin’s axiom
(MA) plus ¢ = w3, there exists X € [2¥]¢ such that X has no Turing independent
subset of size 6. Assume MA plus ¢ = ws. In [I0], it was shown that under MA,
every locally countable upper semi-lattice of size continuum embeds into the Turing
degrees. Using Corollary B8 fix a locally countable upper semi-lattice (P, <) of
size ws which has no independent subset of size 6. Let X C 2 be the range of an
upper semi-lattice embedding of P into the Turing degrees. Then | X| = ¢ = w5 and
since the embedding preserves joins, X has no Turing independent subset of size
6. |

4. LARGE TURING INDEPENDENT SUBSETS: MEASURE AND CATEGORY

We first show that under Martin’s axiom, every non-meager (resp. non-null) set
of reals has a non-meager (resp. non-null) Turing independent subset.

Lemma 4.1 (Sacks). Suppose x,y € 2 and x is not computable from y. Then
{ze2¥:x<py® 2z}

s both meager and null.
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Proof. Suppose not and fix a Turing functional ® and a non-meager (resp. non-null)
Borel B C 2% such that

z2€ B = Y9 = 1.

Choose o € 2<% such that B is comeager in [o] (resp. has relative measure > 0.9
in [o]). We’ll show that x is computable from y which is a contradiction.

If B is comeager in [o], then on input k, search for some 7 € 2<“ such that o < 7
and ®WITDS7 (k) converges to say s. Then x(k) = s since B N [r] # 0.

Next suppose (B N [o]) > 0.94([o]). On input k, search for s < 2 and a finite
list 79, 71, ..., T € 2<% such that each 7; extends o, ®W/7D®7 (k) = s and the
measure of [ J{[r;] : i < n} is > 0.9u([o]). Then z(k) = s since BN [r;] # O for
some i < n. To see that this search succeeds, choose a compact K C BN [o] with
w(K) > 0.9u([o]). For each v € K, fix p = p(v) € 2<“ such that ¢ < p < v and
dWIPD®P (k) converges to x(k). As K is compact, there is a finite {v; : i <n} C K
such that {[p(v;)] : 4 < n} covers K. So we can take 7, = p(v;). O

Note that it also follows that if = is not computable, then {z € 2* : © <p z} is
both meager and null.

Lemma 4.2. Assume Martin’s axiom. Then every non-meager (resp. non-null)
set of reals has an everywhere non-meager (resp. full outer measure) Turing inde-
pendent subset.

Proof. First assume that X C 2“ is non-meager. By throwing away a countable
subset of X, we can assume that no real in X in computable. It suffices to construct
a Turing independent Y C X such that for every Borel A C 2¢, if AN X is non-
meager, then ANY # (. Let (A, : a < ¢) list every Borel subset of 2* whose
intersection with X is non-meager. Inductively choose (z, : a < ¢) such that for
each a < ¢,

(a) 2o € Ay N X and
(b) for every finite F' C {zg : § < a}, the set {z4} U F is Turing independent.

Note that for every nonempty finite ' C {zg: 8 < a} and z € 2¥ if {} UF is
not Turing independent then either z is computable from the join of F' or for some
y € F, y is computable from the join of {z} U (F'\ {y}). By Lemma [.T] the set of
such x’s is meager. As there are fewer than continuum many finite subsets of «,
under Martin’s axiom, the union of all of these meager sets cannot cover A,NX. So
we can choose z,’s satisfying (a) and (b). Hence Y = {x, : @ < ¢} is as required.
The proof for the case when X C 2¢ is non-null is identical. We just replace meager
by null everywhere. O

Recall that = € 2% is n-generic iff for every X0-set S C 2<%, there exists k < w
such that either = [ k € S or no extension of z [ kisin S. z € 2¥ is n-random iff for
every uniformly %0-sequence (Uy, : k < w) of open sets in 2¢ with u(U,,) < 27", x is
not in the null set (,,_, Un. For z € 2, the relativized notions “x is n-generic over
2" and “z is n-random over z” are obtained by replacing “X%” by “%Y in 2”. For
the proof of Theorem [[.5] we’ll need the following facts about effective randomness
and genericity.

Fact 4.3 ([2]). Suppose x,y,z € 2%, x is 1-generic over z and y <r xz. Ify is
2-generic, then y is also 1-generic over z.
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Fact 4.4 ([7]). Suppose x,y,z € 2%, x is l-random over z and y <p x. Ify is
1-random, then y is also 1-random over z.

Facts 3] and 4] imply the following — See Lemma 3.11 in [I1].

Lemma 4.5 ([II]). Suppose Y is a meager (resp. null) set of 2-generic (resp.
1-random) reals. Then the set of reals that compute some member of Y is meager
(resp. null).

Proof. Since Y is meager (resp. null), we can fix z € 2* such that no real in Y is
1-generic (resp. l-random) over z. Let W be the set of reals that compute some
member of Y. Towards a contradiction, suppose that W is non-meager (resp. non-
null). Choose x € W such that z is 1-generic (resp. l-random) over z. Choose
y € Y such that y <7 z. By Fact @3] (resp. {4, it follows that y is 1-generic
(1-random) over z which is impossible. O

Proof of Theorem [LL4l First suppose that X C 2% is non-meager. By throwing
away a meager subset of X, we can assume that each real in X is 2-generic. Towards
a contradiction, assume that every 1-Turing independent subset of X is meager.
Call § C X good iff no two distinct reals in S compute the same real in X. Let YV
be a maximal good subset of X. For eache <w,let W, ={r € X : 3y € Y)(®Y =
x)}. Observe that each W, is 1-Turing independent and hence meager. It follows
that W = |J{W, : e < w} is meager. Let T be the set of all reals that compute
some member of W. By Lemma [£F] it follows that T is also meager. We claim
that X C T and therefore we get a contradiction. To see this, suppose x € X \ T
Since Y C W C T, we must have z ¢ Y. Since Y is a maximal good subset of X,
there exist y € Y and w € X such that both  and y compute w. But w € W and
hence x € T which is false. A similar argument works for measure. O

Definition 4.6. Let x,; be the statement: There exists a non-meager X C 2% such
that the graph of every function from X to X is meager in 2% x 2.

Definition 4.7. Let x5 be the statement: There exists a non-null X C 2 such
that the graph of every function from X to X is null in 2% x 2¢.

In [3], starting with a measurable cardinal, Komjath constructed a ccc forcing P
such that V¥ |= x,. In [9], starting with a measurable cardinal, Shelah constructed
a ccc forcing P such that VF = xy.

Lemma 4.8 ([3]). Suppose X C 2% is non-meager (resp. non-null) and the graph
of every function from X to X is meager (null) in 2 x2¥. Put A = X?. Then A is
non-meager (resp. non-null) in 2¥ x 2¥ and for every non-meager (resp. non-null)
B C A, there are xg # x1 and yo # y1 in X such that (zo,yo0), (o, y1), (z1,y0) are
all in B.

Proof. 1t is clear that A is non-meager (resp. non-null) in 2¥ x 2¥. Suppose
B C A satisfies: There do not exist zg # x7 and yp # y; in X such that
(20,Y0), (To,y1), (£1,9y0) are all in B. Let By be the set of those (z,y) € B for
which there does not exist iy’ # y such that (z,y’) € B. Let By be the set of those
(z,y) € B for which there does not exist 2’ # x such that (z',y) € B. It is clear
that B = BoUB;. Now observe that xps (resp. %) implies that each one of By, By
is meager (resp. null). Hence B is also meager (resp. null). (]
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Proof of Theorem [LLAl The consistency of the two statements follows from Lemma
For the consistency of the negations, first note that, instead of 2%, we can
work in 2% x 2¢ since the function (z,y) — x @ y preserves all the relevant notions
between 2% x 2¥ and 2“. It suffices to show that *p; (resp. *p) implies that there
is a non-meager (resp. non-null) A C 2% x 2¢ such that for every non-meager (resp.
non-null) B C X, there are pairwise distinct a,b, ¢ in B such that a <7 b@® ¢. But
this is obvious by Lemma [£.8 a

In [], it was shown that it is consistent that there is a non-meager set X C R
such that for every non-meager Y C X, there are a < b < ¢ < d in Y such that
a—b=c—d. It follows that one does not need a measurable cardinal in the proof
of the independence of the statement in Theorem [[5[a) for n > 3.

Question 4.9. Can we prove the consistency of “There exists a non-meager set
of reals which has no 2-Turing independent non-meager subset” without assuming
the consistency of large cardinals? What about the consistency of “There exists a
non-null set of reals which has no n-Turing independent non-null subset” for n > 27
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