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Abstract. We introduce a forcing for making an ultrafilter extendable to an

ultrafilter which is a relative of P -point. This forcing is related to the original
forcing used in the consistency proof of “there is no nowhere ultratilters”.

This seem not to help to intend to show this give more. We hope to used
it to ....

We prove the consistency of “no α-ultrafilters” for α ≥ 1 a countable ordinal

and (?) no van-Dowen ultrafilter on Q. This continues [She98b] where we prove
the consistency of “there is no NWD (nowhere dense) ultrafilter on N”.

But we first deal with relatives of the forcing from [She98b]; of self interest

in a self contained way.
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2 SAHARON SHELAH
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§3D The other direction, pg. 3(C)
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ωω-ultrafilter u such that ∀v ≤RK u if v is non-principial, then v is a proper
ωω-ultrafilter seem trivial, see xzy.

If u is a proper ωα+ω-ultrafilter, does it follow that there is a proper
ωω-ultrafilter v ≤RK u? ]
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§ 0. Introduction

§ 0(A). 0A.

In [She98b] we prove the consistency of “there is no NWD-ultrafilter on ω” (see
below, non-principal, of course). This answers a question of van Douwen [vD81]
which appears as question 31 of [Bau95]. Baumgartner [Bau95] considering this
question, dealt more generally with J-ultrafilters where:

Definition 0.1. 1) An ultrafilter D, say on ω, is called a J-ultrafilter where J is
an ideal on some set X (to which all singletons belong, to avoid trivialities) when
for every function f : ω → X for some A ∈ D we have f ′′(A) ∈ J .

2) The NWD-ultrafilters are the J-ultrafilters for J = {B ⊆ Q: B is nowhere
dense}, (Q is the set of all rationals1; we may use an equivalent version, see [She98b,
2.4] and here in §3).

3) An ultrafilter D is called a J1
α-ultrafilter for a (countable) ordinal α ≥ 1 when

it is J1
α-ultrafilter where J1

α = {A ⊆ ωα : otp(A) < ωα}, where ωα is the ordinal
exponentiation.

3A) An ultrafilter D is called an α-ultrafilter when it is a J0
α-ultrafilter where

J0
α = {A ⊆ α : otp(A) < α}.

4) A van-Dowen ultrafilter is one on Q such that the family of A ⊆ D dense in
themselves is dense in D.

The non-existence of NWD ultrafilters is also relevant for the consistency of “every
(non-trivial) σ-centered forcing notion adds a Cohen real”, see [BS01].

The most natural approach to a proof of the consistency of “there is no NWD-
ultrafilter” was to generalize the proof of CON(there is no P -point) (see [She82,
Ch.VI,§4] or [She98a, Ch.VI,§4]), but for some time I (and probably others) had
not seen how.

Professor Shelah, you did not tell me where to put the content of page 4A: but
by the referee request in §1, we concentrate on ` = 1 and comment in the end on
` = 2, 3.

We use in [She98b] an idea taken from [She92], which is to replace the given maximal
ideal I on ω by a quotient; moreover, we allow ourselves to change the quotient. In
fact, the forcing here is simpler than the one in [She92]. A related earlier work is
Goldstern Shelah [GS90], it uses a “one real” version of Q1

i from §1.

We similarly may consider the consistency of “no J1
α–ultrafilter” for non-zero α < ω1

(see [Bau95] for discussion of α–ultrafilters). This question and the problems of
preservation of ultrafilters and distinguishing existence properties of ultrafilters
was promised in [She98b] to be dealt with in the subsequent work [S+a]; we try
to deal here with the first and with van-Dowen ultrafilters; the second is still in
preparation (see [S+b] continuing [She]).

We have not try to deal with having different answers to different such α’s.

Discussion 0.2. In §1 we use i ∈ FP1, a forcing parameter. We define Qi := Q`i
for ` = 1 later we deal with ` = 1, 2, 3 and Q4

i . Now ` = 1, 2 are as in [She98b]; for

1Notice the difference between the symbols “Q” and “Q”, the last one will be used to denote
forcing notions.
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4 SAHARON SHELAH

` = 1, a kind of power of [GS90], for ` = 2 a kind of power of [She92]. but by the
referee request we concentrate on ` = 1. Now for ` = 1, all n/Ep behave as in n,
hence ≤⊗n does not work. For ` = 3 we make ≤⊗n work but it is not good enough
for our purpose (no suitable ultrafilter).

In §2 introduce Q4
i , the forcing when use creatures, see [RS99]. The Qi for i ∈ FP3

uf

from there combine the desired properties mentioned above.

How do we prove in [She98b] that by suitable iteration q of Q1
i ’s in VPq there is no

nowhere dense ultrafilter? In the end, i.e. in VPq toward proving “no nowhere dense
ultrafilter” for a candidate D

˜
we try 〈η

˜
n : n < ω〉, so toward contradiction p∗ 


“X
˜
∈ fil(Im) satisfies {η

˜
n : n ∈ X

˜
} is nowhere dense”. Without loss of generality

above p∗ we can read X
˜

promptly, i.e. if n ∈ Ap∗ and f : {xmi : m ∈ Ap∗∩(n+1), i <
h(n)} ⇒ {−1, 1} then p[f ] read (i.e. forces a value to) X

˜
∩ (n + 1) and even p∗

forces un ∩ X
˜
6= ∅ and moreover if n1 < n2 are from A then X

˜
∩ [n1, n2] 6= ∅

and moreover the members of un are not in ∪{m/Ep : m ∈ Ap ∩ (n + 1) and
un ⊆ min(Ap\(n+ 1))}. Then find q above p∗ forcing density.

We continue this in the later section.

In what way is the proof here better than the one in [She98b]? There, proving Q2
i

Q2
i is “nice”, we prove that the “good guy” does not lose in the game. Here prove

that he wins. We intend to use then to get new consistency results.

Question 1: In general we do not know whether, if α is limit, there is a Jωα -
ultrafilter that is not a β-ultrafilter for some β < ωα, even if CH or MA is assumed.
See §3B for solution.

Question 2: It is consistent that there are no P -point but ωω-ultrafilters exists?

Question 3: Assuming CH or MA, does it follow that there exsits an ωω-ultrafilter
u such that ∀v ≤RK u if v is non-principal, then v is a proper ωω-ultraafilter?

Question 4: If u is a proper ωα+ω-ultrafilter, does it follow that there is a proper
ωω-ultrafilter v ≤RK u?]
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§ 1. The basic forcing

§ 1(A). A new version.

In Definition 1.2 below we define the forcing notion Q1
i which was the one used in the

proof of the main result of [She98b, §3], here we shall use the one from §2. Among
the other forcing notions defined later, Q3

i is the closest relative of Q1
i . Various

properties may be easier to check for some relatives but it is more complicated to
define, anyhow unfortunately it does not help concerning ωα-ultrafilters but we feel
are of interest. In [She98b] we have eventually used only Q1

i .

Definition 1.1. Let I be an ideal on ω containing the family [ω]<ℵ0 of finite subsets
of ω.

1) We say that an equivalence relation E is an I–equivalence relation when :

(a) dom(E) ⊆ ω,
(b) ω \ dom(E) ∈ I,
(c) each E-equivalence class belongs to I.

2) For I-equivalence relations E1, E2 we write E1 ≤ E2 if:

(i) dom(E2) ⊆ dom(E1),
(ii) E1 � dom(E2) refines E2,
(iii) dom(E2) is the union of a family of E1-equivalence classes.

3) We say I is a P -c.c.c. ideal when :

(a) I is an ideal on ω containing all the finite subsets
(b) I is a P -ideal, i.e. if An ∈ I for n < ω then for some A ∈ I we have

n < ω ⇒ An ⊆∗ A
(c) P(ω)/I is a c.c.c. Boolean Algebra.

Definition 1.2. 1) Let FP1 be the set of (forcing parameters) i which means it
consists of:

(a) I, an ideal on ω to which all finite subsets of ω belong; let Di = dual(I)
(b) h : ω → ω be a non-decreasing function
(c) h goes to infinity, (if h(n) = n we may omit it).

2) For i ∈ FP1 we define a forcing notion Q1
i intended to add 〈yni : i < h(n), n < ω〉

with yni ∈ {−1, 1}. We use xni as variables.

3) p ∈ Qi if and only if p = (H,E,A) = (Hp, Ep, Ap) and:

(a) E is an I-equivalence relation, so on dom(E) ⊆ ω,
(b) A = {n ∈ dom(E) : n = min(n/E)},
(c) H is a function with range ⊆ {−1, 1} and domain

Bp1 = {xni : i < h(n) ∧ n ∈ ω \ dom(E) or n ∈ dom(E) ∧ i ∈ [h(min(n/E)), h(n))}.

4) For a ⊆ Ap we define Fa = {f : f is a function with domain {xni : i < h(n), n ∈ a}
such that f(xni ) ∈ {−1, 1}}.
5) For a finite set u ⊆ ω we let var(u) := {xni : i < h(n), n ∈ u}.
6) We say that a function f : {xni : i < h(n), n < ω} → {−1, 1} satisfies a condition
p ∈ Qi when:

(a) f(xni ) = Hp(xni ) when xni ∈ B
p
1 ,
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6 SAHARON SHELAH

(b) f(xni ) = (f(x
min(n/Ep)
i )) when ` = 1, n ∈ dom(Ep) and i < h(min(n/Ep))

7) The partial order ≤=≤Q1
is defined by: p ≤ q if and only if:

(α) Ep ≤ Eq, i.e.
• dom(Eq) ⊆ dom(Ep)
• if n ∈ dom(Eq) then n/Ep ⊆ dom(Eq)
• Ep�dom(Eq) refines Eq

(β) every function f : {xni : i < h(n), n < ω)} → {−1, 1} satisfying q satisfies
p.

Proposition 1.3. (Q1
i ,≤Q1

i
) is a partial order.

Remark 1.4. We may reformulate the definition of the partial order ≤Qi
, making

them perhaps more direct. Thus, in particular, if p, q ∈ Q1
i then p ≤Q1

i
q if and

only if the demand (α) of 1.2(7) holds and

(∗) for each xni ∈ B
q
1 :

(i) if xni ∈ B
p
1 then Hq(xni ) = Hp(xni ),

(ii) if n ∈ dom(Ep) \ dom(Eq), i < h(min(n/Ep)) and n /∈ Ap then

Hq(xni ) = Hq(x
min(n/Ep)
i ),

(iii) if n ∈ dom(Eq) \ Ap,min(n/Ep) > min(n/Eq) and h(min(n/Eq)) ≤
i < h(min(n/Ep)) then Hq(xni ) = Hq(x

min(n/Ep)
i ).

One may wonder why we have h in the definition of Q1
i and we do not fix that, e.g.

h(n) = n. The reason is to be able to describe nicely what is the forcing notion Q1
i

above a condition p like. The point is that Q1
i �{q : q ≥ p} is like Q1

i but we replace
I by its quotient by Ep and we change the function h.

More precisely:

Proposition 1.5. Assume that p ∈ Qi, A
p = {nk : k < ω}, where nk < nk+1, h

∗ : ω →
ω is defined by h∗(k) = h(nk),

I∗ =

{
B ⊆ ω :

⋃
k∈B

(nk/E) ∈ I

}
and i(∗) := (I∗, h∗). Then, Q1

i � {q : p ≤Q1
i
q} is isomorphic to Q1

i(∗).

Proof. Natural. �1.5

Definition 1.6. We define a Qi-name η̄
˜

= 〈η
˜
n : n < ω〉 by: η

˜
n is a sequence of

length h(n) of members from {−1, 1}, such that

η
˜
n[GQi

](i) = 1⇔ (∃p ∈ GQi
)(Hp(xni ) = 1 ∧ n < min(Ap)).

[Note that, even if we omit “n < min(Ap)”, if xni ∈ dom(Hp), Hp(xni ) = 1 and
q ≥ p, then Hq(xni ) = 1; remember 1.2(7).]

Proposition 1.7. 1) If n < ω, p ∈ Qi and Ap∩ (n+1) = ∅, (or just n /∈ dom(Ep))
then

p 
 “η
˜
n = 〈Hp(xni ) : i < h(n)〉”.

2) For each n < ω, the set {p ∈ Qi : A
p ∩ (n+ 1) = ∅} is dense in Qi.
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MORE FORCING FOR NO ULTRAFILTERS 1174 7

3) If p ∈ Qi, a ⊆ Ap is finite or at least
⋃
n∈a

(n/Ep) ∈ I, and f ∈ Fa, then for some

unique q which we denote by p[f ], we have:

(a) p ≤ q ∈ Q1
i ,

(b) Eq = Ep �
⋃
{n/Ep : n ∈ A \ a},

(c) for n ∈ a and i < h(n), we have Hq(xni ) is f(xni ).

Proof. Straightforward. �1.7

Definition 1.8. 1) p ≤n q (in Qi) iff p ≤ q and: if k ∈ Ap and |Ap ∩ k| < n then
k ∈ Aq.
2) p ≤∗n q iff p ≤ q and: if k ∈ Ap and |Ap ∩ k| < n then k ∈ Aq and k/Ep = k/Eq.

3) p ≤⊗n q iff p ≤n+1 q and: n > 0⇒ p ≤∗n q and dom(Eq) = dom(Ep).

Proposition 1.9. 1) If p ≤ q,u is a finite initial segment of Ap and Aq ∩ u = ∅,
then for some unique f ∈ Fu we have p ≤ p[f ] ≤ q (where p[f ] is from 1.7(3), so
Aq = Ap \ u).

2) If p ∈ Q1
i and u is a finite initial segment of Ap then:

(∗)1 f ∈ Fu implies p ≤ p[f ] and p[f ] 
 “(∀n ∈ u)(∀i < h(n))(η
˜
n(i) = f(xni ))”,

(∗)2 the set {p[f ] : f ∈ Fu} is predense above p (in Q1
i ).

3) ≤n is a partial order on Qi, and p ≤n+1 q ⇒ p ≤n q. Similarly for <∗n and <⊗n .

Also

(∗)1 p ≤⊗n q ⇒ p ≤∗n q ⇒ p ≤n q ⇒ p ≤ q
(∗)2 p ≤⊗n q ⇒ p ≤n+1 q.

4) If p ∈ Q1
i ,u is a finite initial segment of Ap, |u| = n and f ∈ Fu and p[f ] ≤ q ∈

Qi then for some r ∈ Qi we have p ≤∗n r ≤ q and r[f ] = q.

Proof. 1) Define f ∈ Fu by: f(xni ) is the value of Hq(xni );

2) By 1.7(3) and 1.9(1).

3) Check.

4) First let us define the required condition r in the case ` = 1. So we let
dom(Er) =

⋃
n∈u

(n/Ep) ∪ dom(Eq), Er = {(n1, n2) : n1E
qn2 or for some n ∈ u

we have: {n1, n2} ⊆ (n/Ep)}, Ar = u ∪ Aq (note that if n1E
qn2 then n1 /∈ u).

Next, for xni ∈ Br1 (where Br1 is given by 1.2(3)(c)) we define

Hr(xni ) =


Hq(xni ) if n /∈

⋃
k∈u

k/Ep and xni ∈ dom(Hq),

Hp(xni ) if n ∈
⋃
k∈u

k/Ep and xni ∈ dom(Hp).

It should be clear that r = (Hr, Er, Ar) ∈ Q`i is as required.

�1.9

Corollary 1.10. If p ∈ Q1
i , n < ω and τ

˜
is a Q1

i -name of an ordinal, then there
are u, q and ᾱ = 〈αf : f ∈ Fu〉 such that:

(a) p ≤∗n q ∈ Qi,
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8 SAHARON SHELAH

(b) u = {` ∈ Ap : |` ∩Ap| < n},
(c) for f ∈ Fu we have q[f ] 
 “τ

˜
= αf”,

(d) q 
 “τ
˜
∈ {αf : f ∈ Fu}” (which is a finite set).

Proof. Let k =
∏
`∈u

2h(`). Let {f` : ` < k} enumerate Fu. By induction on ` ≤ k

define r`, αf` such that:

• r0 = p
• r` ≤∗n r`+1 ∈ Q`i
• r[f`]

`+1 
Q`i
“τ
˜

= αf`”.

The induction step is by 1.9(4). Now q = rk and 〈αf : f ∈ Fu〉 are as required.
�1.10

Definition 1.11. Let I be an ideal on ω containing [ω]<ℵ0 and let E be an I-
equivalence relation.

1) We define a game GMI(E) between two players. The game lasts ω moves. Both
players choose I-equivalence relations, where those of player I are denoted by E1

n

and those of player II are denoted by E2
n.

In the n-th move the first player chooses an I-equivalence relation E1
n such that

E1
0 = E, [n > 0 ⇒ E2

n−1 ≤ E1
n], and the second player chooses an I-equivalence

relation E2
n such that E1

n ≤ E2
n. In the end, the second player wins if⋃

{dom(E2
n) \ dom(E1

n+1) : n ∈ ω} ∈ I

(otherwise the first player wins).

2) For a countable elementary submodel N of (H (χ),∈, <∗) such that I, E ∈
N we define a game GMN

I (E) in a similar manner as GMI(E), but we demand
additionally that the relations played by both players are from N (i.e. E1

n, E
2
n ∈ N

for n ∈ ω).

The following propositions 1.12,1.13 are needed in [She98b] for the case Q2
i but not

for Q1
i .

Proposition 1.12. Assume that I is a maximal (non-principal) ideal on ω and E
is an I-equivalence relation. Then the game GMI(E) is not determined. Moreover,
for each countable N ≺ (H (χ),∈, <∗) such that I, E ∈ N the game GMN

I (E) is
not determined.

Proof. Clearly if a player has a winning strategy in GMI(E), then it has one in

GMN
I (E), so fix N. First, assume that player I has a winning strategy stat1, then

we define a strategy stat2 for player II: it choose E2
0 := E (which by 1.10 is equal

to (E1
0)) and ensure that:

(∗) if the play 〈(E1
n, E

2
n) : n < ω〉 is played according to stat2, then 〈(Ě2

n, Ě
2
n) : n <

ω〉 is a play played according to stat1: Ě1
0 = Ě2

0 = E, Ě1
1 = E2

0 , Ě
2
1 =

E1
1 , Ě

2
2 = E1

0 , etc.

Hence player I cannot have a winning strategy.

Now, this is not enough when we fix E, however we actually have proved that player
I has no winning strategy in GMN

T (E′) for every I-equivalence relation E′ ∈ N. So
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MORE FORCING FOR NO ULTRAFILTERS 1174 9

if player II has a winning strategy, let it choose E2
0 , but now as J is a maximal ideal,

we are actually playing GMN
I (E2

0) with the players interchanged, and so player I
wins it, contradiction. �1.12

Proposition 1.13. 1) Let p ∈ Q1
i . Suppose that the first player has no winning

strategy in GMI(E
p) where, of course, I = Ii. Then in the following game, a1

i ,
Player I has no winning strategy:

(A) in the n-th move, Player I chooses a Q1
i -name, τ

˜
n of an ordinal and Player

II chooses pn,un, wn such that: wn is a set of ≤
∏
`∈un

2h(`) ordinals, p ≤

pn ≤∗n pn+1, pn ≤n+1 pn+1, un is a finite initial segment of Apn with n

elements and pn 
 “τ
˜
n ∈ wn”, moreover f ∈ Fun ⇒ p

[f ]
n forces a value to

τ
˜
n

(B) In the end, the second player wins if for some q ≥ p we have
q 
 “(∀n ∈ ω)(τ

˜
n ∈ wn)”.

2) The result of part (1) still holds when we let Player II choose kn < ω and demand
|un| ≤ kn, and in the end Player II wins if lim inf〈kn : n < ω〉 < ω or there is q as
above.

3) Let p ∈ Q1
i and let N be a countable elementary submodel of (H (χ),∈, <∗)

such that p, I, h ∈ N . If the first player has no winning strategy in GMN
I (Ep) then

Player I has no winning strategy in the game like above but with restriction that
τ
˜
n, pn ∈ N .

Proof. 1) As in [She92, 1.11,p.436], but we elaborate.

Let Stp be a strategy for Player I in the game a1
i from 1.13. Our goal is to show

that Stp cannot be a winning strategy. We shall define a strategy St for the first
player in GMI(E

p) during which the first player, on a side, plays a play of the game
a1
i from 1.13, using Stp, with 〈p` : ` < ω〉 and he also chooses 〈q` : ` < ω〉.

Then, as St cannot be a winning strategy in GMI(E
p), in some play in which the

first player uses his strategy St he loses, and then 〈p` : ` < ω〉 will have an upper
bound which shows that Stp is not a winning strategy for player I, as required.

In the n-th move (so E1
` , E

2
` , q`, p`,u`, w` for ` < n are defined), the first player in

addition to choosing E1
n chooses qn, pn,un, such that:

(a) p = p−1 ≤ q0 = p0, pn ∈ Qi, qn ∈ Qi,
(b) pn ≤∗n pn+1 ∈ Qi,
(c) u0 is ∅,
(d) un+1 = un ∪ {min(Aqn+1 \ un)}, so |un+1| = n+ 1,
(e) E1

0 = Ep, E1
n+1 = Epn � (dom(Epn) \

⋃
i∈un

i/Epn),

(f) qn is defined as follows:
(f0) if n = 0 then Eqn = E2

0 ,
(f1) if n > 0 then dom(Eqn) = dom(Epn−1) and xEqny if and only if

either xE2
ny, or for some k ∈ un−1 we have x, y ∈ k/Epn−1 or x, y ∈

(dom(E1
n) \ dom(E2

n)) ∪min(dom(E2
n))/E2

n,
(f2) Hqn is such that pn−1 ≤ qn,

(g) pn ≤∗n qn+1 ≤∗n+1 pn+1, pn ≤n+1 qn+1 (so pn ≤n+1 pn+1),

(h) if f ∈ Fun then p
[f ]
n forces a value to τ

˜
n.
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In the first move, when n = 0, the first player plays E1
0 = Ep (as the rules of

the game require, according to (e)). The second player answers choosing an I-
equivalence relation E2

0 ≥ E1
0 . Now, on a side, Player I starts to play the game of

1.13 using his strategy Stp. The strategy instructs him to play a name τ
˜

0 of an
ordinal. He defines q0 by (f) (so q0 ∈ Q`i is a condition stronger than p and such
that Eq0 = E2

0) and chooses a condition p0 ≥ q0 deciding the value of the name τ
˜

0,
say p0 forces τ

˜
0 = α. He pretends that the second player answered (in the game of

1.13) by: p0, u0 = ∅, w0 = {α}. Next, in the play of GMI(E
p), he plays E1

1 = Ep0

as declared in (e).

Now suppose that we are at the (n + 1)th stage of the play of GMI(E
p), the first

player has played E1
n+1 already and on a side he has played the play of the game

1.13 as defined by (a)–(h) and Stp (so in particular he has defined a condition pn
and E1

n+1 = Epn�(dom(Epn) \
⋃
i∈un

i/Epn) and un is the set of the first n elements

of Apn). The second player plays an I-equivalence relation E2
n+1 ≥ E1

n+1.

Now the first player chooses (on a side, pretending to play in the game of 1.13):
a name τ

˜
n+1 given by the strategy Stp, a condition qn+1 ∈ Q`i determined by (f)

(check that (g) is satisfied), un+1 as in (d) and a condition pn+1 ∈ Q`i satisfying
(g), (h) (the last exists by 1.10). Note that, by (g) and 1.9, the condition pn+1

determines a suitable set wn+1. Thus, Player I pretends that his opponent in the
game of 1.13 played pn+1,un+1, wn+1 and he passes to the actual game GMI(E

p).
Here he plays E1

n+2 defined by (e).

The strategy St described above cannot be a winning one by the assumptions of
the theorem. Consequently, there is a play in GMI(E

p) in which Player I uses St,
but he looses. During the play he constructed a sequence 〈(pn,un, wn) : n ∈ ω〉
of legal moves of Player II in the game of 1.13 against the strategy Stp. Let
Eq = lim

n<ω
Epn (i.e. dom(Eq) =

⋂
n<ω

dom(Epn), xEq y if and only if for every

large enough n, xEpn y) and let Hq(xmi ) be Hpn(xmi ) for any large enough n (it is
eventually constant). It follows from the demand (g) that Eq-equivalence classes
are in I. Moreover, dom(E1

n+1) \ dom(E2
n+1) ⊆ k/Eq, where k is the (n + 1)th

member of Aq.

Therefore ω \ dom(Eq) = ω \
⋂
n∈ω

dom(Epn) ⊆ ω \ dom(Ep0) ∪
⋃
{dom(E2

n) \

dom(E1
n+1) : n ∈ ω} ∈ I (remember, Player I lost in GMI(E

p)). Now it should be

clear that q ∈ Q`i and it is stronger than every pn (even pn ≤∗n q). Hence Player II
wins the corresponding play of 1.13, showing that Stp is not a winning strategy.

2),3) The same proof. �1.13

Definition 1.14. [See [She98a, Ch.VI,2.12,A-F].] 1) A forcing notion P has the
PP-property when:

⊗PP for every η ∈ ωω from VP and a strictly increasing x ∈ ωω ∩V there is a
closed subtree T ⊆ <ωω such that T ∈ V of incompand
(α) η ∈ lim(T ), i.e. (∀n < ω)(η � n ∈ T ),
(β) T ∩ nω is finite for each n < ω,
(γ) for arbitrarily large n there are k, and n < i(0) < j(0) < i(1) <

j(1) < · · · < i(k) < j(k) < ω and for each ` ≤ k, there are m(`) < ω
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and η`,0, . . . , η`,m(`) ∈ T ∩ j(`)ω such that j(`) > x(i(`) + m(`)) and
(∀ν ∈ T ∩ j(k)ω)(∃` ≤ k)(∃m ≤ m(`))(η`,m E ν).

2) We say that a forcing notion P has the strong PP-property when:

⊕sPP for every function g : ω → V from VP there exist a set B ∈ [ω]ℵ0 ∩V and
a sequence 〈wn : n ∈ B〉 ∈ V such that for each n ∈ B, |wn| ≤ n and
g(n) ∈ wn.

Observation 1.15. Of course, if a proper forcing notion has the strong PP-
property then it has the PP-property.

Conclusion 1.16. Assume that for each p ∈ Q1
i and for each countable N ≺

(H (χ),∈, <∗) such that p, I, h ∈ N , the first player has no winning strategy in
GMN

I (Ep) (e.g. if I is a maximal ideal).

Then

(∗) Q`i is proper, α-proper, strongly α-proper for every α < ω1, is ωω-bounding
and it has the PP-property, even the strong PP-property.

By [She98a, Ch.VI,2.12] we know

Theorem 1.17. Suppose that 〈Pi,Qj : j < α, i ≤ α〉 is a countable support iteration
such that 
Pj “Qj is proper and has the PP-property”.

Then Pα has the PP-property.

§ 1(B). Variants of Q1
i .

Those are comments on variants of Q1
i , not used later.

Definition 1.18. For ` = 2, 3, we define Q`i similarly to 1.2(d): if ` = 2, then:

(a) (α) H is a function with domain dom(H) = Bp2 ∪B
p
3 , where

Bp2 = {xmi : m < ω,Ap ∩ (m+ 1) = ∅, i < h(m)} and
Bp3 = {xmi : i < h(m) ∧ m ∈ dom(Ep) \ Ap or m /∈ dom(Ep) but
Ap ∩m 6= ∅, i < h(m)},

(β) for xmi ∈ Bp3 , H(xmi ) is a function in the variables {xnj : (n, j) ∈
wp(m, i)} to {−1, 1}, where wp(m) = wp(m, i) = {(`, j) : ` ∈ Ap ∩m
and j < h(`)}; for n ∈ Ap we stipulate Hp(xni ) = xni

(γ) H � Bp2 is a function to {−1, 1}.
(b) if ` = 2 and n ∈ Dom(Ep), xni ∈ Bp3 , n

∗ = min(n/Ep) < n and ymi ∈
{−1, 1} for m ∈ Ap ∩ n\{n∗}, i < h(m) and znj ∈ {−1, 1} for j < h(n∗),

then for some yn
∗

j ∈ {−1, 1} for j < h(n∗) we have j < h(n∗) ⇒ znj =
(Hp(xnj ))(. . . , ymi , . . .)(m,i)∈wp(n,j)

(c) if ` = 3 then Hp is a function from Bp0 ∪ B
p
1 into {−1, 1} where (Bp1 is as

defined above and) Bp0 = {xni : n ∈ Dom(Ep)\Ap and i < h(min(n/Ep)}.

Definition 1.19. For ` = 1, 2, 3, we say that a function f : {xni : i < h(n), n <
ω} → {−1, 1} satisfies a condition p ∈ Q`i when :

(a) f(xni ) = Hp(xni ) when one of the following occurs:
(α) xni ∈ B

p
1 and ` = 1, 3

(β) xni ∈ B
p
2 and ` = 2,

(b) f(xni ) = Hp(xni )(. . . , f(xmj ), . . .)(m,j)∈wp(n,i) when ` = 2 and xni ∈ B
p
3
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(c) f(xni ) = (f(x
min(n/Ep)
i )) when ` = 1, n ∈ dom(Ep) and i < h(min(n/Ep))

(d) f(xni ) = (Hp(xni ))·(f(x
min(n/Ep)
i )) when ` = 3, xni ∈ B

p
0 , i.e. n ∈ dom(Ep)\Ap

and i < h(min(n/Ep)), i.e. xni ∈ B
p
3 .

We can add to 1.9:

Proposition 1.20. 1) We can in 1.9(4) allow ` ∈ {2, 3}.
2) Let ` = 3. If p ∈ Qi,u = wp ∩ kp(n + 1) and f ∈ Fp,u is rich (see Definition

2.8(4)) and p[f ] ≤ q, then for some r ∈ Q`i we have p <⊗n r ≤ q and r[f ] = q.

3) Define f : {xni : i < h(n) and n ∈ u} → {−1, 1} by: f(xni ) is the value of Hq(xni ).

Proof. 1) If ` = 2 then we define r in a similar manner, but we have to be more
careful defining the function Hr. Thus Er and Ar are defined as above, Br2 , Br3 and
wr(m, i) for xmi ∈ Br3 are given by 1.2(3)(f) and 1.2(3)(d)(β). Note that Br2 = Bp2
and Br3 ⊆ B

p
3 .

Next we define:

if xmi ∈ Br2 then Hr(xmi ) = Hp(xmi ),

if xmi ∈ Br3 , m ∩Ar ⊆ u then Hr(xmi ) = Hp(xmi ),

if xmi ∈ Br3 and min(dom(Eq)) < m then

Hr(xmi )(. . . , xkj , . . .)(k,j)∈wr(m,i) =

Hp(xmi )(xkj ·Hq(xk
′

j′ )(. . . , x
k′′

j′′ , . . .)(k′′,j′′)∈wq(k′,j′)))(k,j)∈wr(m,i),(k′,j′)∈wp(m,i)\wr(m,i).

Note that if (k′, j′) ∈ wp(m, i) \ wr(m, i), xmi ∈ Br3 then k′ ∈ Ap \ (u ∪ Aq) and
wq(k

′, j′) ⊆ wr(m, i).
For ` = 3 similarly and in part (5) we say more.

5) Like the proof of (4). Let n∗ = max(u). Put dom(Er) = dom(Ep) and declare
that n1E

rn2 if one of the following occurs:

(a) for some n ∈ u \ {n∗} we have {n1, n2} ⊆ (n/Ep), or
(b) n1E

q n2 (so n ∈ u⇒ ¬nEpn1), or
(c) {n1, n2} ⊆ B, whereB := n∗/Ep∪

⋃
{m/Ep : m ∈ dom(Ep)\dom(Eq),min(m/Ep) >

n∗}.

We let Ar = u ∪ Aq (in fact Ar is defined from Er). Finally the function Hr is
defined exactly in the same manner as in (4) above:

(d) Hr(xmj ) = Hq(xmj ) when xmj ∈ ω\Dom(Ep) or n := min(m/Ep) < m∧ j ∈
[h(n), h(m))

(e) Hr(xmj ) = Hp(xmj ) if n ∈ ∪{m/Ep : m ∈ u}
(f) Hr(xmj ) = f(xn

∗

j )Hq(xmj ) if m ∈ (n∗/Er)\(n∗/Ep).

�1.20

An addition to corollary 1.10 is:

Corollary 1.21. If ` = 3, then in 1.10(a) we may require p ≤⊗n q ∈ Q`i .

Proof. Similar: just use 1.20, instead of 1.9(4), 1.20(1). �1.21

After 1.13 we can add:
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Proposition 1.22. If in 1.13 we assume ` = 3 and demand pn ≤⊗n pn+1 instead
of pn ≤∗n pn+1 then Player II has a winning strategy.

Proof. Using 1.8A, the second player can find suitable conditions pn (in the game of
1.13) such that pn ≤⊗n+1 pn+1. But note that the partial orders ≤⊗n have the fusion

property, so the sequence 〈pn : n < ω〉 will have an upper bound in Q3
i . �1.22

Remark 1.23. We could have used <⊗n also in [She92].
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§ 2. Creature forcing

§ 2(A). On Q4
i .

We try to combine the good properties of the Q`i ’s from §1 by putting a creature
on finite intervals of Ap defining Qi = Q4

i . Recall that an element of FP1 consists
only of an ideal I and a function h : ω → ω, see 1.2, so no creatures are involved.

Definition 2.1. 1) Let FP2 (forcing parameters) be the set of objects i consisting
of (so I = Ii = I[i], etc.):

(a) I be an ideal on ω to which all finite subsets of ω belong and D = dual(I)
its dual, a filter,

(b) let h : ω → ω be a non-decreasing function,
(c) h goes to infinity,
(d) S̄ = 〈Sk : k < ω〉 is a partition of ω to intervals (each interval is finite

non-empty)
(e) min(Sk+1) = max(Sk) + 1 for every k,; actually follows,
(f) each h�Sk is constant and let h′ : ω → ω be such that n ∈ Sk ⇒ h′(k) =

h(n),

(g) lim infk |Sk|/2h
′(k) =∞,

(h) notation: let Ei = ES̄ = {(m,n) : (∃k)[n,m ∈ Sk]}

2) Let FP3 be the set of i consisting of:

(A) as in part (1)
(B)1 the simple creature version:

(a) CRn := P(Sn),
(b) we let valn : CRn → CRn be the identity,
(c)

∑
(u) = P(u) for u ∈ CRn,

(d) norn(f) incomp norcn(f) = |u|/2h′(k),
(e) norn(f) 〈norn(∅) : n < ω〉 goes to infinity,
(f) Let freen(f) := Sn \ dom(f).

(B)2 full creature version:
(a) 〈 CRn : n < ω〉 where CRn = (CRn, valn,norn,Σn),
(b) the CRn’s are pairwise disjoint, each finite,
(c) valn(c) ∈ func(Sn) for n < ω, c ∈ CRn,
(d) norn(c) ∈ R>0 for c ∈ CRn and 〈norn(∅) : n < ω〉 goes to infinity,
(e) if c ∈ CRn then Σn(c) ⊆ CRn and c ∈ Σn(c),
(f) if d ∈ Σn(c) then valn(d) ⊆ valn(c) and Σn(d) ⊆ Σn(c) for c, d ∈ CRn.

3) We say i ∈ FP3 has the DICH (divide and choose) if

(B)1 (g) for c ∈ CRn, if Sc = S′ ∪ S′′, then for some d ∈ Σn(c) we have
nor(d) ≥ nor(c)− 1 and (Sd ⊆ S′) ∨ (Sd ⊆ S′′).

4) We say that i has the strong DICH property when in addition: (Qi is defined
below):

(h) if p ∈ Qi and B ∈ Di/E
p (i.e. B ∈ Di and (∀n ∈ dom(Ep))(B ∩ (n/Ep) ∈

{∅, n/Ep}) then there is q ∈ Qi above p such that:
• Eq = Ep�dom(Eq),
• if k ∈ wq then nor(cq,k) ≥ nor(cp,k,c)− 1.
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5) For ι = {1, 2, 3}:

(A) let FPιuf be the set of i ∈ FPι such that Di := dual(Ii) := {ω\A : A ∈ Ii} is
an ultrafilter on ω, necessarily non-principal

(B) let FPιcc be the set of i ∈ FPι such that Di = dual(Ii) is a filter on ω such
that the Boolean algebra P(N)/Di satisfies the c.c.c.

(C) let FPιnn be the set of i ∈ FPι; this is just so that we can write “for each
x ∈ {uf, cc,nn} in FPιx we have ... ”.

6) If (∀n)(h′(n) = n) then we may omit h.

7) We say i ∈ FP3 is fast when : if c ∈ CRk,nor(c) ≥ 1 then we can find d̄ = 〈di :
i < k〉 such that:

(a) di ∈ Σk(c) and nor(di) ≥ nor(c)− 1

(b) val(c)\val(di) has at least 2h
′(k) members

(c) 〈val(c)\val(d`) : ` < k〉 are pairwise disjoint.

Remark 2.2. 1) The “i is fast” is used for the bounded game for Qi, see 2.14 below
assuming i ∈ FP3

cc.

2) For i ∈ FP3 alternatively to the assumptions on “i is fast and P(ω)/Ii satisfies
the c.c.c.” used in 2.14 we can use:

(a) if uk ∈ [Sk]≤k for k < ω then ∪{uk : k < ω} ∈ Ii,
(b) if c ∈ CRk,nor(c) ≥ 1 then there is d ∈ Σk(c) such that val(c)\val(d) has

≥ 2h
′(k) elements and nor(d) ≥ nor(c)− 1.

Instead of “fast” and later “rich”, we can change the definition of norm and order
adding:

(c) Qi |=“p ≤ q” iff as before and:

• if k ∈ wq and cp,k 6= cq,k and η ∈ h′(k){1,−1}, then for some m ∈
val(bp,k) \ val(bq,n) we have η = 〈H(xni ) : i < h′(k)〉.

(d) norm′: if nork(c) ≥ 1, then for some d ∈ Σ(c), nork(d) ⊇ nork(c) − 1 and

|val(c) \ val(d)| ≥ 2h
′(k).

3) Is it helpful to allow non-unary Σ (in Definition 2.1(2))? In the terms of [RS99],
this means allowing so called glueing. This mean that CR =

⋃
{CRm,n := m ≤ n}

and c ∈ CRm,n ⇒ val(c) ⊆ func(
⋃
{S` : ` ∈ [m,n)}).

4) The property “i is fast” is crucial; the ultrafilter property (and the stronger one)
presently are not but, they are for definining worthwhile families of ultrafilters.

Claim 2.3. 1) In Definition 2.1(2),(3), clause (B)1 is a special case of clause (B)2.

2) In Definition 2.1, if Sn = {n} for every n and clause (B)1 holds with norn({n}) =
n, then i essentially belongs to FP1. Also every i ∈ FP1 can be interpreted as a
member of FP3 in this way.

3) Any i ∈ FP2 is a special case of FP3.

Proof. Read the definitions. �2.3

Definition 2.4. For i ∈ FP3 we define the forcing notion Qi = Q4
i and some

auxiliary notions as follows:

(A) p ∈ Qi if and only if p = (H,E,A, c̄) = (Hp, Ep, Ap, c̄p) satisfies:

Paper Sh:1174, version 2023-01-21 4. See https://shelah.logic.at/papers/1174/ for possible updates.



16 SAHARON SHELAH

(a) E is an Ii-equivalence relation, so on a set called dom(E) which belongs
to Di hence is ⊆ ω,

(b) A = Ap := {n ∈ dom(E) : n = min(n/E)},
(c) H is a function with range ⊆ {−1, 1} and domain Bp1 = {xni : i <

h(n) ∧ n ∈ (ω \ dom(E)) or n ∈ dom(E) ∧ i ∈ [h(min(n/E)), h(n))},
(d) (α) c̄ = 〈ck : k ∈ w〉

(β) w = wp ⊆ ω is infinite
(γ) ck ∈ CRk

(δ) A = ∪{val(ck) : k ∈ w}
(e) 2∞ = lim supI[i]〈norn(cn) : n ∈ w〉 which means that for every U ∈ Ii,

the set {nork(cp,k) : k ∈ wp\U } is unbounded (in ω).
(B) For a ⊆ ω we define Fa = {f : f is a function with domain {xni : i <

h(n), n ∈ a} such that f(xni ) ∈ {−1, 1}}; let a / wp mean that a is a finite
initial segment of wp; later in 2.8 we shall define fp,a

(C) We say that a function f ∈ Fω satisfies a condition p ∈ Qi when :
(a) f(xni ) = Hp(xni ) when xni ∈ B

p
1

(b) f(xni ) = (f(x
min(n/Ep)
i )) when n ∈ dom(Ep) and i < h(min(n/Ep)).

(D) The partial order ≤=≤Q4
i

is defined by p ≤ q if and only if:

(α) Ep ≤ Eq, i.e.
• dom(Eq) ⊆ dom(Ep)
• if n ∈ dom(Eq) then n/Ep ⊆ dom(Eq)
• Ep�dom(Eq) refines Eq

(β) every function f ∈ Fω satisfying q satisfies p
(γ) wq ⊆ wp and if k ∈ wq, then cq,k ∈ Σk(cp,k).

Proposition 2.5. (Qi,≤Qi
) is a partial order.

Proof. Easy. �2.5

Remark 2.6. One may wonder why we have h in the definition of Qi and we do not
fix that, e.g. h′(n) = n. This is to be able to describe nicely what is the forcing
notion Qi above a condition p. The point is that Qi�{q : q ≥ p} is like Qi but we
replace I by its quotient by Ep and we change the function h.

More precisely:

Claim 2.7. Assume i ∈ FP3 and p ∈ Qi. Then Qj is isomorphic to Qi�{q : q is

≤Qi
-above p} and j ∈ FP3 and j belongs to FP4/FP3

uf/FP3
cc when i does, provided

that:

� j is defined by: letting g0 : wp → ω be increasing and onto ω and g1 : Ap →
ω be increasing and onto ω, we have:
(a) h′j is defined by: if g0(k) = ` so k ∈ wp then h′j(`) = h′i(`)

(b) if g0(k) = ` then
• Sj,` = {g1(n) : n ∈ vali(cp,k)}
• CRj,` = Σi(cp,k),Σj,` = Σi,k�CRj,` and valj(c) = {g1(n) : n ∈

vali(cp,w)}
(c) Ij = {C ⊆ ω : ∪{n/Ep : n ∈ Ap and g1(n) ∈ C} ∈ I}.

2The reader may wonder why Ii does not appear in 2.4(e) The point is that by glueing, i.e.,
increasing

⋃
{m/Ep : m ∈ val(cp,k)} the original

⋃
{m/Ep : n ∈ val(cp,k)} becomes irrelevant.
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Proof. Straightforward (as in 1.5). �2.7

Definition 2.8. 1) We define a Qi-name η̄
˜

= 〈η
˜
n : n < ω〉 by: η

˜
n is a se-

quence of length h(n) of members of {−1, 1} such that η
˜
n[G

˜
Qi

](i) = 1 ⇔ (∃p ∈
G
˜

Qi
)(Hp(xni ) = 1 ∧ xni ∈ B

p
1)).

2) For p ∈ Qi and a ⊆ wp let:

• Fp,a = {f�{xni : n ∈ ∪{(m/Ei) : (∃k ∈ a)(m∈ valch ∈Sk)} ∩ Ap and i <
h(min(n/Ep))} : f satisfies p},
• equivalently {f : f is a function from {xni : n ∈ Ap and n ∈ Sk for some
k ∈ a and i < h(min(n/Ep))} into {1,−1}}.

3) For p ∈ Qi and u ⊆ wp, let Ap,u = dom(f) for every f ∈ Fp,u.

4) We say f ∈ Fp,a is p-rich when a ⊆ wp has a last element and {〈f(xni ) : i <

h′(max(a)〉 : n ∈ Smax(a)∩Ap} is equal to h′(max(a))2, that is, all possibilities occur.

Proposition 2.9. 1) If n < ω,Ap ∩ (n + 1) = ∅ then p 
 “η
˜
n = 〈Hp(xni ) : i <

h(n)〉”.

2) For each n < ω the set {p ∈ Qi : Ap ∩ (n+ 1) = ∅} is dense open in Qi.

3) If p ∈ Qi and a ⊆ wp is finite or at least b = ∪{n/Ep : n ∈ (
⋃
k∈a

Sk) ∩ Ap} ∈ I,

and f ∈ Fp,b then for some unique q which we denote by p[f ], we have:

(a) p ≤ q ∈ Qi,
(b) Eq = Ep �

⋃
{n/Ep : n ∈ Ap \ b},

(c) for n ∈ b, k ∈ n/Ep, i < h(n) we have Hq(xni ) is f(xni )
(d) k ∈ wq\a⇒ cq,k = cp,k.

4) For every p ∈ Qi there is q ∈ Qi above p such that:

⊕q the sequence 〈nork(cq,k) : k ∈ wq〉 is increasing and k ∈ wp \ {min(wp)} ⇒
nor(cpk) > k + |Fp,wp∩k| and dom(Eq) = dom(Ep).

5) Moreover, if p ∈ Qi,u ⊆ wp is a finite initial segment of wp and 〈nor(cp,`) : ` ∈ u〉
is increasing and nor(cp, max(u)) ≥ 1, then for some q ∈ Q1

i we have p ≤⊗|u| q, see

Definition 2.10(3) below and ⊕q above holds.

Proof. 1), 2), 3) Easy.

4) We choose ki ∈ Ap by induction on i < ω such that:

• k0 = min(wp),
• i > 0⇒ nor(cp,ki) > k + |Fp,{kj : j<i}|.

Now, choose q such that:

(∗) (a) dom(Eq) = dom(Ep),
(b) Aq =

⋃
{val(cp,ki) : i < ω},

(c) cq,ki = cp,ki ,
(d)

⋃
{m/Eq : m ∈ val(cp,ki) =

⋃
{m/Ep : (∃k ∈ [ki, ki+1))[m ∈ val(cp,k)]}},

(e) p ≤ q.

5) Similarly. �2.9

Definition 2.10. 0) For p ∈ Qi and n < ω let kp(n) = k(n, p) be the minimal k
(actually unique k) such that:
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(a) k ∈ wp
(b) |k ∩ wp| = n

1) p ≤n q (in Qi) iff :

(a) p ≤ q
(b) if k ∈ wp ∩ kp(n) then k ∈ wq and cq,k = cp,k.

2) p ≤∗n q iff p ≤n q and:

(∗) if k ∈ wp∩kp(n), then not only k ∈ wq, cq,k = cp,k but also m ∈ val(cq,k)⇒
m/Ep = m/Eq.

3) p ≤⊗n q iff p ≤n+1 q and: n > 0⇒ p ≤∗n q and dom(Eq) = dom(Ep).

Proposition 2.11. 1) If p ≤ q,u is an initial segment of wp and wq ∩u = ∅, then
for some unique f ∈ Fp,u we have p ≤ p[f ] ≤ q (where p[f ] is defined in 2.9(3)).

2) If p ∈ Qi and u / wp, i.e. is a finite initial segment of wp then :

(∗)1 f ∈ Fp,u implies p ≤ p[f ] and p[f ] 
 “(∀n ∈ u)(∀i < h(n))(η
˜
n(i) = f(xni ))”,

(∗)2 the set {p[f ] : f ∈ Fp,u} is predense above p (in Qi).

3) ≤n is a partial order on Qi, and p ≤n+1 q ⇒ p ≤n q. Similarly for <∗n and <⊗n .

Also

(∗)1 p ≤⊗n q ⇒ p ≤∗n q ⇒ p ≤n q ⇒ p ≤ q
(∗)2 p ≤⊗n q ⇒ p ≤n+1 q.

4) If p ∈ Qi,u = wp ∩ kp(n) and f ∈ Fp,u and p[f ] ≤ q ∈ Qi then for some r ∈ Qi

we have p ≤∗n r ≤ q and r[f ] = q.

5) If p ∈ Qi,u = wp ∩ kp(n + 1) and f ∈ Fp,u is rich (see Definition 2.8(4)) and

p[f ] ≤ q, then for some r ∈ Q`i we have p <⊗n r ≤ q and r[f ] = q.

Proof. 1) Define f : {xni : i < h(n) and n ∈ u} → {−1, 1} by: f(xni ) is the value of
Hq(xni ).

2) By 2.9(3) for (∗)1 and direct inspection for (∗)2.

3) Check.

4) We define r ∈ Qi by: wr = u ∪ wq,dom(Er) = ∪{(n/Ep) : n ∈ Sk ∩ Ap
for some k ∈ u} ∪ dom(Eq), Er = {(n1, n2) : n1E

qn2 or some k ∈ u satisfies
min(n1/E

p) = min(n2/E
p) ∈ Sk ∩Ap}, Ar = ∪{Sk ∩Ap : k ∈ u} ∪Aq

Next, we define cr,k for k ∈ wr by:

• cr,k = cp,k if k ∈ u
• cr,k = cq,k if k ∈ wq.

Lastly, for xni ∈ Br1 (where Br1 is defined in 1.2(1)(e)) we define

Hr(xni ) =


Hq(xni ), if n /∈

⋃
k∈u

k/Ep and xni ∈ dom(Hq),

Hp(xni ), if n ∈
⋃
k∈u

k/Ep and xni ∈ dom(Hp).

It should be clear that r = (Hr, Er, Ar, c̄r) ∈ Qi is as required.
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5) We choose n(η) ∈ val(cp,max(u)) for η ∈ h′(max(u))2 such that η = 〈f(x
n(η)
i ) : i <

h(max(u))〉; note that there is such n(η) ∈ val(cp,max(u)) because f is p-rich, see
Definition 2.8(4). Now we define r.

Put dom(Er) = dom(Ep) and declare that X is an Er-equivalence class iff (at
least) one of the following occurs:

(a) for some m ∈ val(cp` ) and ` ∈ u \ {max(u)} we have X = (m/Ep)
(b) X = m/Eq for some m ∈ Aq
(c) X = m/Ep for some m ∈ val(cp,kp(n)) which /∈ {n(η) : η ∈ h′(max(u))2}
(d) for some η ∈ h′(max(u))2, X is equal to Xη := (n(η)/Ep) ∪

⋃
{m/Ep : m ∈

Ap\u and m /∈ Dom(Eq) and 〈Hq(xni ) : i < h′(max(u))〉 = η}.

We let Ar = u ∪ Aq (in fact Ar is defined from Er). Finally the function Hr is
defined naturally:

(∗) Hr(xmj ) = Hq(xmj ) when m ∈ ω\Dom(Er) or m ∈ Dom(Er) ∧ m′ :=
min(m/Er) < m ∧ j ∈ [h(m′), h(m)).

The reader may wonder: how come Hp does not appear in the definition of Hr?
The answer is that Hp ⊆ Hq. �2.11

Corollary 2.12. If p ∈ Qi, n < ω and τ
˜

is a Qi-name of an ordinal, then there
are u, q and ᾱ = 〈αf : f ∈ Fp,u〉 such that:

(a) p ≤∗n q ∈ Qi,
(b) u = wp ∩ kp(n)

(c) for f ∈ Fp,u we have q[f ] 
 “τ
˜

= αf”,
(d) q 
 “τ

˜
∈ {αf : f ∈ Fu}” (which is a finite set).

Proof. Let k =
∏
`∈u

2h(`)·|S`|. Let {f` : ` < k} enumerate Fu. By induction on ` ≤ k

define r`, αf` such that:

r0 = p, r` ≤∗n r`+1 ∈ Qi, r
[f`]
`+1 
Qi

“τ
˜

= αf`”.

The induction step is by 2.11(4). Notice that q[f`] 
 “τ
˜

= αf`” since r
[f`]
`+1 ≤ q[f`].

Now q = rk and 〈αf : f ∈ Fu〉 are as required. �2.12

Corollary 2.13. As in 2.12 but replacing (a)-(d) there by:

(a) p ≤⊗n q ∈ Qi

(b) u = wp ∩ kp(n+ 1)

(c) if f ∈ Fp,u is p-rich then q[f ] 
 “τ
˜

= αf”, see 2.9(3)

(d) q 
Qi
“if {η

˜
n : n ∈ val(cp,kn(p))} = k(n,p)2 then q 
 “τ

˜
∈ {αf : f ∈ Fp,u is

p-rich}.

Proof. Similarly to the proof of 2.12 using 2.11(5) instead of 2.11(4). A major point
(instead P(ω)/Ir |=, we can assume less). �2.13

Claim 2.14. 1) Assume i ∈ FP3
cc is fast (see part (7) of 2.1; alternatively see

2.2(2) and i ∈ FP3).

The COM player has a winning strategy in the bounding game abd
Qi,p

for p ∈ Qi

recalling:
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(a) a play lasts ω-moves,
(b) in the n-th move.

• INC chooses a Qi-name τ
˜
n of an ordinal3,

• then the COM player chooses a finite set Un of ordinals
(c) in the end the COM player wins iff there is q ∈ Qi above p forcing τ

˜
n ∈ Un

for every n.

2) This is true even for the game abe
Qi,p

defined similarly but we change clause (b)
to:

(b)′ in the n-th move
• first, the COM player chooses m•n
• second, the INC player chooses a Qi-name τ

˜
n of an ordinal

• third, the COM player chooses a set Un of ≤ m•n ordinals

3) This is true even for the game aQi,p
defined similarly but we change clause (b)

to:

(b)′′ in the n-th move
(α) first, the COM player chooses m•n
(β) second, the INC player chooses `•n
(γ) third, they play a subgame with `•n moves, in the `-th move

•1 the INC player chooses a Qi-name τ
˜
n,` of an ordinal

•2 then, the COM player chooses a set Un,` of ≤ m•n ordinals.

4) Moreover, Qi is strongly bounding (see [She, 4.1] or 2.17 below).

5) If Q is a forcing notion as in part (3) or (4), then 
Q‘every no-where dense
subset of Q (the rationals) is included in an old such set).

Proof. 1), 2) Follows by part (3).

3) Since if p ≤Qi
q, then a winning strategy for COM is aQi,qis also a winning

strategy in aQi,p, we may assume without loss of generality, that p0 = p(0) = p
be as in q in 2.9(4),(5). Now on the side, COM chooses in the n-th move also
〈pn,` : ` ≤ `•n〉, pn+1 = p(n+ 1), kn = k(n) such that:

(∗)1
n (a) pn ∈ Qi is above p and 〈nor(cpn,n) : k ∈ wp〉 is increasing

(b) if n = m+ 1 then pm <⊗kn pn and km < kn
(c) pn+1 
 “if 〈η

˜
m : m ∈ Sk(n)∩Apn〉 is pn-rich then ` < `•n ⇒ τ

˜
n,` ∈ Un,`”

(d) pn = pn,0 ≤⊗n pn,1 ≤⊗n . . . <⊗n pn,`•n = pn+1

(e) pn,`+1 
 “τ
˜
n,` ∈ Un,`”

(f) pn is as q is in 2.9(4),(5)
(g) hpn(`) = k` for ` < n
(h) p0 = p and k0 = min(wp).

Why is it possible? That is, why is it a legal strategy for COM?

In the n-th move so pn is well defined, let k•n = sup{nor(cp,`) : ` ∈ wp(n)∩kpn(ki+1)
for every i < n} + 1. Let kn be min(wp0) = min(wp) when n = 0, otherwise let
k = kn > kpn(n) be from wpn such that k ≥ kn ∧ k ∈ wpn ⇒ nor(cpn,k) ≥ k•n + 2
and kn > sup{k` : ` < n}.

3Can use just “of and old element“.
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Let p•n be such that pn ≤⊗n p•n, w
p•n ∩ kn = {k` : ` < n} and wp

•
n\kn = wpn\kn

and cp•n,k = cpn,k for k ∈ wp
•
n , clearly exists. Let u = {k` : ` ≤ n} so u / wp

•
n

and for parts (2),(3) let m•n = |Fpn,un | be the move of COM. For parts (1),(2)
after INC choose τ

˜
n let pn+1 ∈ Qi be as in 2.13 for the triple (p•n, kn, τ

˜
n). For part

(3), pn, kn are well defined and we choose pn,0 = p•n and (pn,`+1,Un,`) such that
pn,` ≤⊗n pn,`+1 and pn,`+1 
Qi

“τ
˜
n,` ∈ Un,`” by 2.13.

Why this is a winning strategy? So assume 〈(kn, pn) : n < ω〉 and (for part
(1),(2)) 〈(τ

˜
n,Un) : n < ω〉 and (for parts (2),(3)) 〈mn : n < ω〉 and (for part (3))

〈τ
˜
n,`,Un,` : ` < `•n〉 were chosen. Let q = lim〈pn : n < ω〉 ∈ Qi be naturally

defined. Clearly p, pn ≤Qi
q for n < ω.

Now we use “i is fast”, consider cpn,kn = cq,kn and choose mn,η,ι ∈ val(cpn,kn) for

η ∈ h′(k(n))2, ι < kn and dιn ∈ Σn(cpn,kn) such that:

• nor(dιn) ≥ n+ 1

• val(dιn) is disjoint to {mn,η,ι : η ∈ h′(k)2}
• for each ι < kn the sequence 〈mn,η,ι : η ∈ h′(k(n))2〉 is without repetition
• 〈val(cιn)\val(dιn) : ι < kn〉 are pairwise disjoint.

For ν ∈
∏
n
kn, let A•ν = Dom(Eq)\(∪{m/Eq: for some n,m ∈ val(d

ν(n)
n )}). Clearly

we can find Λ ⊆
∏
n
kn of cardinality 2ℵ0 such that ν 6= ρ ∈ Λ ⇒ |{n : ν(n) =

ρ(n)}| < ℵ0.

Also 〈Dom(q)\A•ν : ν ∈ Λ〉 has pairwise finite intersection so as i ∈ FP3
uf or just

i ∈ FP3
cc, for some ν ∈ A,A•ν = ω mod Ii.

Now we can define r as desired:

(∗) (a) dom(Er) = A•ν
(b) Er = Eq�A•ν
(c) wr = wq

(d) cr,m is

• d
ν(k)
kn

if m = kn, n > 0
• cq,m otherwise

(e) Hr extends Hq

(f) if n < ω, k = kn, η ∈ h′(k(n))2,m = mn,η,ν(n) and ` ∈ m/Eq then

〈Hr(x`i) : i < h(kn)〉 = η.

Now check. �2.14

Conclusion 2.15. Assume i ∈ FP3
cc is fast (see 2.1(7), alternatively use 2.2(2)).

1) Then Qi is bounding (i.e. 
 “every f ∈ ωω is ≤ g for some g ∈ (ωω)V”). Hence
this holds, in particular, whenever i ∈ FP3

uf , i is fast.

2) Moreover, Qi has the PP-property (even the strong one) see [She98a, Ch.VI,2.12]
or Definition f50 below.

3) Each of the properties from part (1) and (2) is preserved by CS iteration.

Proof. 1) By 2.14(1).

2) By 2.14(2).
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3) For bounding by [She98a, Ch.V], for the PP-property by [She98a, Ch.VI,2.12A-
F] �2.15

Claim 2.16. Let an ideal I ⊇ [ω]<ℵ0 on ω be given.

1) For any function h′ : N→ N going to infinity, if n̄ = 〈nk : k < ω〉 satisfies n0 = 0

and nk+1 − nk > 2h
′(k)k, then letting Sk = [nk, nk+1), there is i ∈ FP4 which is

fast.

2) If dual(I) is an ultrafilter then some i as above has the uf-property, i.e., belongs
to FP4.

3) With stronger bound on nk+1,we can demand that every (CRk, Σk) has bigness
(see [RS99]) which means: if cf ∈ CRn, val(c) = u1 ∩ U2 then for d ∈ Σn(c) and
ι ∈ {1, 2} we have that nor(d) ≥ nor(c)− 1 and val(d) ⊆ uι.

Proof. As, ignoring the numerical bounds but are not important here, part (3)
implies that (1), (2) we do elaborate in their proof.

1) We use 2.1(2)(B)1 and we define nork : P−(Sk) by nork(X) = b|X|/2h′(k)c.
Now check.

2) We use 2.1(B)1 choosing:

(∗) ifX ⊆ Sk then nork(X) = blog2(nork,0(X))c where nork,0(X) = b|X|/2h′(k)c
the use of log2 is to help prove “the uf property”. Easy to check.

3) For k < ω we define CRn as follows:

(∗)1 (a) c ∈ CRk iff c ⊆ S(k)2 is not empty
(b) for c ∈ CRk let val(c) = {n ∈ Sk: for some η, ν ∈ c we have η(n) 6=

ν(n)}
(c) for c ∈ CRk let nork(c) = 1

(k+1)·2h′(k) log2(log2(|c|))
(d) Σn(c) = {d ∈ CRn : d ⊆ c}

(∗)2 CRk is as required in Definition 2.1.

[Why? Easy.]

(∗)3 CRk has bigness.

[Why? Obvious by the definitions.]

(∗)4 CRk has the uf-property.

[Why? Assume c ∈ CRk,nork(c) ≥ 1. For S ⊆ Sk let mc,S = max{|{ρ ∈ c : ρ ⊇
ν}| : ν ∈ S(k)\S{−1, 1}} hence,

(∗)4.1 Why S = u ∪ v ⇒ |c| ≤ |mc,u| × |mc,v|?

(∗)4.2 if u ⊆ w ⊆ Sk, then mc,u ≤ mc,v

[Why? if v ∈ (Sk\u){1,−1} witness mc,u ≥ m, then v � (sk \ w) witness mc,w ≥ m].

(∗)4.3 to prove (∗)4.1 without loss of generality, u ∩ v = ∅.

(∗)4.3 let O := {−1, 1}, (Professor Shelah, I do this so that the equations do not
exceed the margin of the page. If you don’t like it, I can split it into several
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more lines.) then

|c| = |{(η, ν) : η ∈ uO, ν ∈ vO ∧ η ∪ ν ∈ c}|
= incompη∈uO|{ν ∈ uO : (η, ν) ∈ c}|
= |{η ∈ uC : (∃ν ∈ vO)(η ∪ ν ∈ c)}|× max

η∈uO
|{ν ∈ uO : η ∪ ν ∈ c}|

≤ mc,u ×mc,u

So if h : S → {0, 1}, then for some ι < 2 we have |cι| ≥
√
c where cι = {ρ ∈ S(k)2 :

ρ ⊇ νι} where vι : {n ∈ Sk : h(n) = ι} → {−1, 1} is chosen such that |cι| is
maximal. Now compute.]

(∗)5 CRk is fast.

[Why? Assume c ∈ CRk and nork(c) ≥ 1.

Now we try to choose (n`, ι`, c`) by induction on ` < m = k · 2h′(k)

(∗)5.1 (a) c` = {η ∈ c: if k < ` then η(nk) = ι`}
(b) n` ∈ valk(c)\{nj : j < `}
(c) |c`| ≥ |c| · 2−`.

Now as nork(c) ≥ 1, clearly |c| ≥ 2m hence valk(c) ≥ m, so we can carry the
induction. For ι < k we let dι = d = ck−h′(k) and for each ` < k let 〈mη,` : η ∈
h′(k)2〉 list {nj : j ∈ [2h

′(k)`, 2h
′(k)(`+ 1))}.

Lastly, nork(dι) = nork(cm) ≥ 1
(k+1)·2h′(k) log2(log2(|c| · 2−m) ≥ nork(c)− 1.

(∗)6 if nork(c) ≥ 1 then for some partition u1, u2 of Sk and c1, c2 ∈ Σ(c), we
have val(cι) ⊆ uι,nork(cι) ≥ nork(c)− 1.

[Why? We can find a maximal u ⊆ Sk such that |Pc,u| ≤
√
|c|, so u $ Sk. Let

n ∈ Sk\u hence |Pc,u| ≤
√
|c| < |Pc,u∪{n}| ≤ |Pc,u| · 2 ≤ 2

√
|c|, so

• |Pc,u| ∈ [
√
|c|, 2

√
|c|).

Let v = S\u. By (∗)4.1,

• |Pc,v| ≥ [
√
c.]

�2.16

Definition 2.17. 1) For a forcing notion Q and p ∈ Q we define asb = asb
p =

asb
p (Q) = asb

Q,p, the strong bounding game between the null player NU and the
bounding player BND as follows:

(a) a play last ω moves and
(b) in the n-th move:

(α) first the NU player gives a (non-empty) tree Tn with ω levels and no
maximal node and a Q-name F

˜
n of a function with domain Tn such

that η ∈ Tn ⇒ p 
Q “F
˜
n(η) ∈ sucTn(η)”

(β) then BND player chooses ηn ∈ Tn

(c) in the end, the BND player wins the play 〈Tn, ηn : n < ω〉 iff there is q ∈ Q
above p forcing that “(∀n < ω)(∃k < level(ηn))(F

˜
n(ηn�k) ≤Tn ηn ∧ k is

even)” where ηn�k is the unique ν ≤Tn ηn of level k.

Paper Sh:1174, version 2023-01-21 4. See https://shelah.logic.at/papers/1174/ for possible updates.



24 SAHARON SHELAH

2) Omitting p means NU chooses it in his first move.

3) A forcing notion Q is strongly bounding if for every condition p ∈ Q player BND
has a winning strategy in the game asb

Q,p.

Conclusion 2.18. Assume that for each p ∈ Qi the first player has no winning
strategy in asb

p (Qi), see 2.17 (e.g. if I is a maximal ideal).

Then

(∗) Qi is proper, α-proper, strongly α-proper for every α < ω1, is ωω-bounding
and it has the PP-property, even the strong PP-property.

§ 2(B). On Q5
i .

We suggest a relative of Q4
i , the creature are more complicated but in the proof of

COM winning the games for Q5
i we do not need incomp assumption on i. We just

indicate the difference.

Convention 2.19. When we say “as in a place in §2” we mean replacing Q4
i by

Q5
i , FP3 by FP4 (and if it is a claim, also the proof is similar).

Definition 2.20. 1) For a set S and m < ω such that |S| is divisible by 3 let valS,m
be the set of f such that:

(α) f is a function from {xni : n ∈ Sk and i < h′(k)},
(β) Range(f) ⊆ {−1, 1},
(γ) for every η ∈ m{−1, 1} the following set has exactly |S|/2m members:

{s ∈ S : 〈f(xni ) : i < m〉 = η}.

2) Let FP3 be the set of i such that:

(A) as in 2.1(1) replacing clause (g) by:
(g)′ |Sn| is divisible by 2n and ∞ = lim inf〈|Sn|/2n : n < ω〉.

(B)1 the simple creature version:
(a) c ∈ CRn iff c incomp (k,m, S, F, val,nor) = (kc,mc, Sc, Fc, valc,norc),

we may write val(c), etc.
(α) m ≤ h‘(k),
(β) S ⊆ Sk and |S| is divisible by 2h‘(k),
(γ) F is a functions from valS,m into valSk,h′(k),
(δ) if η ∈ valS,m, then η ⊆ F (η),
(ε) val(c) = Range(F ),
(ζ) norc = log2(15/2n).

(C) cg ∈ Σ(c) when:
(α) c, d ∈ CRk,
(β) Sd ⊆ Sc,
(γ) md ≤ mc,
δ vald ⊆ valc.

(B)2 full creature version:
(a) 〈CRn : n < ω〉 where CRn = (CRn, valn,norn,Σn),
(b) the CRn’s are pairwise disjoint, each finite,
(c) valn(c) = val(d) for some c from (B)1, so Sc,mc are Sd and md respec-

tively, c ∈ CRn,
(d) norn(c) ∈ R>0 for c ∈ CRn and 〈norn(∅) : n < ω〉 goes to infinity,
(e) if c ∈ CRn then Σn(cg) ⊆ CRn and c ∈ Σn(c),
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(f) if c ∈ Σn(c) then valn(d) ⊆ valn(c) and Σn(c) ⊆ Σn(c), hence Sd ⊆ Sc

and md ≤ mc for c, d ∈ CRn.

3) - 7) As in 2.1.

Definition 2.21. As in 2.3.

Definition 2.22. For i ∈ FP4 we define the forcing notion Q5
i as follows:

(A) p ∈ Q5
i if, and only if, p = (H,E,A, c̄) = (Ho, Ep, Ap, c̄p) satisfies:

(a) E is an Ii-equivalence relation, so on a set called dom(E) which belongs
to Di hence is ⊆ ω,

(b) A = Ap := {n ∈ dom(E) : n = min(E/E)},
(c) H is a function with range ⊆ {−1, 1} and domain

Bp0 = {xni : i < h(n) ∧ n ∈ (ω \ dom(E))},
(d)-(e) as in 2.4(A),

(C) We say that a function f ∈ Fω satisfies a condition p ∈ Qi when:
(a) f(xni ) = Hp(xni ) when xni ∈ B

p
0 ,

(b) if k ∈ ω, then f � {xni : n ∈ Sk, i < h′(k)} = Fcp,k(f � {xni : n ∈
Scp,k, i < mcp,k}).

(D) As in 2.4(D).

Claim 2.23. As in 2.5

Claim 2.24. As in 2.7.

Definition 2.25. 1), 2), 3) as in 2.8.

Proposition 2.26. As in 2.9.

Definition 2.27. As in 2.10.

Proposition 2.28. 1) - 4) As in incomp.

5) If p ∈ Q5
i , u = wp ∩ kp(n + 1), nor(cp,max()) ≥ 1 and f ∈ Fp,u and p[f ] ≤ q

then, for some r ∈ Qi we have p ≤⊗n r ≤ q and r[f ] = q.

Proof. 1) - 4) As in 2.9.

Similar recalling our definitions. �2.28

Corollary 2.29. As in 2.12, but:

(b)′ u = wp ∩ kp(n+ 1) and norcp,maxu ≥ 1.

Corollary 2.30. As in 2.13.

Claim 2.31. Assume i ∈ FP4 is fast. Then:

1) The COM player has a winning strategy in the bounding game abd
Qi,p

for p ∈ Q5
i

recalling clauses (a), (b), (c) of 2.14.

2) - 5) Also as in 2.14.

Proof. As in 2.14 recalling our definitions. �2.31

Conclusion 2.32. Assume i ∈ FP4.

1), 2), 3) As in 2.15.

Claim 2.33. As in 2.16.
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§ 3. On no α-ultrafilter

Recall (and we shall use freely).

Definition 3.1. For ordinals α, β, let their natural sum α⊕ β, defined as follows:

α⊕ β := min{γ : if u, v ⊆ Ord, otp(u) = α and otp(v) = β, then otp(u ∪ v) ⊆ γ}.

It is well-founded.

Fact 3.2. The following condition on the ordinal α∗, are equivalent:

(a) α∗ = ωα for some ordinal α (recall that, ω0 = 1).
(b) (∀β, γ < α∗)(β + γ < α∗).
(c) (∀β, γ < α∗)(β ⊕ γ < α∗).

§ 3(A). Covering countable sets of ordinals.

In the April version, we try to replace J1
α by an ideal on a suitable well-founded

sub-tree of ω>ω, there was a problem which I think is overcomed.

This equivalence seem to be of interest, but have not looked at what I wrote again.

Then there was a problem in the proof that the iteration works. DEBT.

Here we restart still has to preserve the basic properties of J1
α.

The following may help in iteration proving it suffice to deal one iterand when we
try “no J1

α-ultra-filter”.

Claim 3.3. If α < ωV1
1 , u ∈ V2 is a subset of α, then for some v ∈ V1 such that

u ⊆ α and otp(w) = otp(v), when either (A) or (B), where:

(A) V1 = V, V2 = VP, P is a proper bounding forcing (i.e., every f ∈ (ωω)V[P]

is bounded by some g ∈ (ωω)V2 .)
(B) V1 is a transitive class of V2, both models of ZFC, (V1,V2) is bounding

and [[ω2]ℵ0 ]V1 is cofinal in V2.

Proof. We prove this by induction on otp(u):

Case 1: otp(u) is finite.

This case is trivial.

Case 2: otp(u) is additively descomposable, i.e., otp(u) = β1 + β2, where β1, β2 <
otp(u).

Let α∗ be the β1-th member of u and let u1 := u∩α1, u2 := u \ b1, so otp(u1) = β1

and otp(u2) = β2.

By the hypothesis induction, for ` = 1, 2, there is v` ∈ V1 such that u` ⊆ v` ⊆ α1

andotp(v`) = β`.

Let v = (v1∩α1)∪(v2\α1) ∈ V1. Clearly v ∈ V1 and v ⊆ otp(v) = β1+β2 = otp(u),
so we are done.

Case 3: opt(u) is additively indescomposable (that is, no case 2).

So δ := otp(u) is a limit ordinal and without loss of generality, sup(u) = α. If α = δ,
let ν = δ so, without loss of generality, α < δ, and by the induction hypothesis it is
enough to prove

(∗)3 there is v ∈ V1 such that u ⊆ v ⊆ δ, otp(v) < δ.
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In V1, let 〈βm : n < ω〉 be increasing with limit α such that β0 = 0.

Now,

(1) Without loss of generality, one of the following occurs:
(a) α < β1 and α · ω < δ, but nincomp = 0,
(b) β1 is additively indescomposable and otp(v ∩ [βn, βn+1)]) < β1 for

n < incomp.

[Why? If α ·ω < δ omitting finitely many βn-s are get clause (a). Otherwise, letting
β be minimal such that β · ω = δ, we have that β is additively indescomposable,
and as otp(n) = α < δ, there is n(∗) such that

• n ≥ n(∗)⇒ otp(u ∩ [βn, βn+1]) < β.

]

But clearly it suffice to deal with incomp = u \ βn(∗). As without loss of generality
βincomp = β we are done proving ....

By properness (if (A), or use (B)) and the induction hypothesis, we have:

(∗)1 there is a list 〈vn,` : n, ` < ω〉 ∈ V1 such that:
(a) vn,` ⊆ [βn, βn+1] has order type < β1,
(b)

∧
n<ω

(∨
`<ω [u ∩ [βn, βn+1) ⊆ vn,`] ∧ otp(vn,`) = otp(u ∩ [βn, βn+1))

)
By bounding,

(∗)4 there is some f ∈ ω(ω \ {u}), such that n < ω ⇒
∨
`<f(m) u ∩ [βn, βn+1].

For any n < ω, let vn :=
⋃
{vn,` : ` < f(n)} ∈ V1. By Theorem 3.1 and Theorem 3.2,

we have that otp(vn) < β1. Similarly,
∧
k<ω otp(

⋃
n<k vn) < δ = otp(u). Now, let

v :=
⋃
n<ω vn, so v ∈ V1, v ⊆ α and otp(v) ≤ otp(u) because

∧
n<ω(v ∩ βn C v).

�3.3

§ 3(B). Proof of CON(no nowhere dense ultrafilters).

Hypothesis 3.4. 1) We assume that 2ℵ0 = ℵ1 and λ = λℵ1 (e.g. λ = ℵ2).

2) Qi mean Q4
i , i ∈ FP3 (see §2A)

Remark 3.5. We like to have also “2ℵ0 arbitrary large”. We may in 3.6 have Q
˜
α-s

of different forcing notions, similar enough to the incomp Qi.

Definition 3.6. Let Q3
γ be the set of q that consists of:

(a) 〈Pα, Q
˜
β : α ≤ γ, β < γ is a countable-support iteration,

(b) η
˜
β is a generic of Qη,

(c) ū = 〈uα : α < λ〉, where for any α < λ, uα ∈ [α]≤ℵ1 , and β ∈ uα ⇒ uβ ⊆
uα,

(d) D
˜
α is a Pα-name, computable from η̄

˜
�uα, of a non-principal ultrafilter on

ω in V[η
˜
�uα],

(e) Q
˜
α = Q

˜
i(α) in V[η̄

˜
�uα] with i(α) ∈ FP3 and D

˜
i(α) = α

˜
. [One can just

demand Q
˜
α has some properties: the games from 2.14 or 2.31,

(f) γ = lg(q) and Pq = Pγ .

Definition 3.7. 1) If q ∈ Q3
λ, we say u ⊆ lg(q) is ūq-closed, when β ∈ u implies

uβ ⊆ u.
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2) If u ⊆ lg(q), we define Pu := {p ∈ P : dom(p) ⊆ α and each p(β) is a Borel
function of η̄

˜
� for some countable v ⊆ uβ}.

Claim 3.8. For q ∈ Q3
γ ,

1) (a) Pα is proper,
(b) P is ℵ2-cc,
(c) Pα has continuous reading of names.

2) P∗ := {p ∈ P : if α ∈ dom(p), then p(α) = B(η̄
˜
� (dom(p) ∩ uα), for some Borel

function B from V}.
3) If u ⊆ γ is q̄-closed, then Pu l P.

Proof. 1) As in §2, by fusion, see Theorem 2.14.

2), 3) As of old. �3.8

Claim 3.9. 1) Any i ∈ FP3, Qi satisfies: every no-where dense subset of (ω>2,C)
(e.g. the rationals) is included in an old one.

2) Moreover, this holds for CS iteration of Qi-s.

3) Even for Pq, when q ∈ Q3
λ.

4) There is q ∈ Q3
λ such that:

(a) if D
˜

is a Pq-name of an ultrafilter, then for some ūq-closed, u ∈ [λ]ℵ1 ,

Pq“D′ = D

˜
∩V[η̄

˜
�u] is definable in (hence belongs to) V[η̄

˜
�u]”,

(b) if (D
˜
, D
˜
′) is as above, then for some α, (u,D

˜
′) = (uα,D

˜
α

).

5) If λ = ℵ2 and ♦(Sℵ2ℵ1 ), then without loss of generality,
∧
α uq,α = α.

Proof. 1) Easy by §2.

2) See [She98a, Ch. 6, pg. 305, 2.15D], which says: for CS iteration 〈Pi,Q
˜
j : i ≤

α, j < α〉, if �Pi“Q
˜
i is proper and any new open dense subset of ω>ω includes an

old one”, then Pα is proper and any dense open subset A ∈ VP of ω>ω includes a
dense open subset A ∈ V of ω>ω.

3) Similarly by f4(5).

4) Easy by book-keeping.

5) Easy by ♦(Sℵ2ℵ1 ). �3.9

Claim 3.10. Assume i ∈ FP3
uf , G ⊆ Qi is generic over V, h = hi and the generic

is η
˜

= 〈ν
˜
` : ` < ω〉, ν` ∈ h(`){1,−1}.

If A ⊆ (ω>{1,−1},C) is no-where-dense and p ∈ Qi, then for some q, we have that:

(a) Qi |= p ≤ q,
(b) Cq,B = ∅ mod D, where Cq,B := {n < ω : if η ∈ h(n){−1, 1} and (i ∈ [min(n/Eq), h(n))⇒ η(i) = Bq(xni ))

then (∀ν ∈ ω>{−1, 1})(η E ν ⇒ ν /∈ A)}.

Proof. For every η ∈ ω>{−1, 1} choose νη such that η C νη ∈ ω>{−1, 1} and
¬(∃ρ)(νη E ρ ∈ X). Hence,

(∗)1 for every n < ω there are J>n(n) and ρn ∈ [n,j(n)]{−1, 1} such that: if η ∈
n{−1, 2} and ηaρn E % ∈ ω>{−1, 1} ⇒ % /∈ X.
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We next define a function g : mp → wp as follows:

(∗)2 if k ∈ wp, then g(k) is the maximal m ∈ wp ∪{0} such that: if m > 0, then
m < k and g(n) < h′(k).

Easily,

(∗)3 we can find ki ∈ wp increasing with i such that:
(a) if k ∈ wp \ ki+1, then g(k) > ki,
(b)

⋃
{val(cp,ki) : i < ω} belong to Ii.

Now we define q = (H,E,A, c̄) ∈ Q4
i .

(∗)4 (a) w = {ki : i < ω},
(b) A =

⋃
{val(cp,ki) : i < ω},

(c) E is defined as follows: if n ∈ A so n ∈ val(cp,ki) then n/E is:
(α) n/Ep if n > min(val(cp, ki)),
(β) (n/Ep) ∪ {val(cp,k) : k ∈ wp ∩ (ki+1, ki+1)}.

(d) cki = cp,ki ,
(e) H is defined as follows:

(α) H(xni ) = Hp(xni ) when xn2 ∈ dom(Hp),
(β) H(xnj ) = ρh′(ki)(j) when k ∈ wp∧(k,i , k+1) and j ∈ [h′(ki), h

′(k)],
(γ) H(xnj ) = 0 if for some k ∈ wp ∩ k0 and n ∈ val(cp,incomp) and

j < h‘(k).

Easily,

(∗)5 (a) q ∈ Qi,
(b) p ≤Qi

q,
(c) q 
“if n ∈ dom(Eq \

⋃
{Ski : i < ω}), then η

˜
n /∈ X.

As
⋃
{Ski : i < ω} ∈ Ii we are done. �3.10

Claim 3.11. If q is as in 3.9(4) (so q exits), then in VPq there is no nowhere-dense
ultrafilter D on ω (and naturally VPq |= “2ℵ0 = λ”).

Proof. Towards contradiction, suppose that 
P“D
˜

is a nowhere dense ultrafilter
on ω”. By the assumption on q, there is α < λ such that 
P“D

˜
α ⊆ D

˜
α”. Now,

the generic η
˜
α = 〈ν

˜
α,n : n < ω〉, where ν

˜
α,n ∈ h(n){1,−1} is a function from ω

to ω{−1, 1}, hence some p1 ∈ Pq forces “Y
˜

= {ν
˜
α,n : n ∈ A

˜
} is nowhere dense in

ω>{−1, 1} and A
˜
∈ D

˜
”.

By 3.9(1), (2), (3), know that 
“there is a nowhere dense X ⊆ ω>{−1, 1} from V
including Y

˜
”. So for some such X and p2 ≥ p1, p2 
“Y

˜
⊆ X” and, without loss of

generality, p2 ∈ P′q.
As Y

˜
is a Puα∪{α}-name and Puα∪{α} l Pq, we get p2 � 
P“〈n : ν

˜
α,n ∈ X〉 is not

disjoint to any A ∈ D
˜
α (a Pnα -name).

This contradicts 3.10. �3.11

So we are done proving the promised consistency, an alternative to [She98b].

§ 3(C). Existence of Jωα-ultrafilters from P -points.

Maybe see later for more on trees (maybe some exists).
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Choice 3.12. Let T5 :=
⋃
{T5,α : α ∈ [1, ω1)} and level(t) = α when t ∈ T5,α,

where

Definition 3.13. For α < ω1, define T5,α as the set of t = (T , h, f) such that:

(a) T is a well founded subtree of ω>ω,
(b) f : max(T )→ ωα is an isomorphism from (maxT,<lex) onto (ωα, <),
(c) if η ∈ inn(T ) = T \max(T ), then n < ω ⇒ ηa〈n〉 ∈ T ,
(d) h : T → α+ 1 satisfies that η C ν ∈ T ⇒ h(η) > h(ν).

(we may write ht(n) or h(n, t.)
(e) h(〈 〉) = α, h(n) = 0⇔ η ∈ max(T ),
(f) if η ∈ inn(T ) and h(η) = β + 1, then (∀n < ω)(h(ηa〈n〉)) = β,
(g) if η ∈ inn(T ) and h(n) = δ is a limit ordinal, then 〈h(η)a〈n〉 : n < ω〉 is an

increasing sequence of ordinals with limit δ.

Fact 3.14. 1) If α ∈ [1, ω1), then T5,α 6= ∅.
2) If α ∈ [1, ω1), (T , h, f) ∈ T5 and η ∈ T , then f maps max(T ≤n) to a set of
ordinals of order type ωh(α), where T [≥η] := T [≤ η] := {ν ∈ Tα : η E ν}.

Definition 3.15. 1) For t = (T , h, f) ∈ T5, let nf(t) := {D̄ : D̄ = 〈Dη : η ∈ inn(T),
where Dη is a non-principal ultra-filter on ω}.
2) For D̄ ∈ nf(t), let ĒD̄ = 〈ED̄,η : η ∈ Tα〉 be defined by defining ED,η by induction

on hα(η) such that, it is an ultrafilter on max(T [≥η]) and

(a) if h(η) = 0, then ED̄,η is the principal ultrafilter on h(η),

(b) if h(η) > 0, then ED̄,η =
∑
Dη
〈ED̄,ηa〈n〉 : n < ω〉, that is, {A ⊆ max(T [≥η]) : {n <

ω : A ∩ T [≥ηa〈n〉] ∈ ED̄,ηa〈n〉} ∈ Dn}.

Claim 3.16. 1) Assume t ∈ T5, η ∈ inn(Tt), D̄ ∈ nf(T ) and A ∈ ED̄,η, then

otp(f ′′t (A)) = ωht(η) .

2) So ED̄,η is not a J1
ht[η]-ultrafilter.

Proof. Should be clear. �3.16

Claim 3.17. 1) Assume D ∈ β(N) \N is a P -point. If f : ω → Ord, then for some
A ∈ D, either f ′′(A) has order type ω or 1 (i.e., constant).

2) D is a P -point iff D is a Jων -ultrafilter.

Proof. 1) Let A ∈ D be such that β = otp(f ′′(A)) is minimal. As D is an ultrafilter
necessarily is a limit ordinal moreover additively indescomposable (i.e. α1, α2 <
β ⇒ α1 + α2 < β). If β = 1, we are done, so assume not.

Hence, β = ωα for some α, so letting β = f ′′(A), there is an increasing sequence
〈αn : n < ω〉 of members of B, which is unbounded in sup(B). Clearly, for any
n < ω, An := {k ∈ A : f(k) ≥ αn} belongs to D and

⋂
n<ω An = ∅. As D is a

P -point, for some A∗ ∈ D and we km < ω for n < k, have A∗ ⊆ A and A∗ \Am ⊆
km < ω, so it is finite, without loss of generality, kn is increasing with n. Therefore,
B∗ := f ′′(A∗) is a subset of B, hence of

⋃
n<ω βn. Also, for each n < ω, we have

that B∗ ∩ βn ⊆ {f(i) : i ∈ A∗, f(i) < βn}, hence it is finite.

So, we are done.

2) Should be clear. �3.17
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Claim 3.18. Assume t ∈ T5, η ∈ inn(Tt), D̄ ∈ nf(T ) and every Dη is a P -point.
If f : max(Tt[≥ η]) → Ord, then for some A ∈ ED̄,η, we have that otp(f ′′(A)) ≤
ωh(η,t).

Proof. We prove this by induction on α = ht(η). As η ∈ inn(Tt), we have α ∈
[1, ω1). If α = 1, this holds by 3.17, so assume α > 1. For any n < ω, choose
An ∈ ED̄,ηa〈n〉 and βn = otp(f ′′(An)) is minimal, so again it is an ordinal power

of ω (including ω0 = 1).

Now, for any n < ω, let γn := sup(f ′′(An)). We can also demand on An:

(∗)1 if m < n and βm < βn, then f ′′(An) ∩ γm = ∅.

(∗)2 if β ∈ {βn : n < ω} and uβ = {n < ω : βn = β} is infinite, let 〈ε(n, β) : n <
ω〉 be increasing with limit β, and demand:
• if βn = β, then f ′′(An) ∩ ε(n, β) = ∅, for any n < ω.

Also, as Dη is a P -point, we have that

(∗)3 there is A ∈ Dη such that {βn : n ∈ A} satisfies either n ∈ A ⇒ ℵ0 >
|{k ∈ A : βk = βn}| or {βn : n ∈ A} is a singleton.

Recalling “natural sum of ordinals” we know:

⊗ if n < ω, otp(A`) < ωα for ` < n, then otp
(⋃

`<nAn
)
< ωα.

The rest should be clear. �3.18

Conclusion 3.19. If there is a P -point, then for every α ∈ [1, ω1), there is D such
that:

(∗) (a) D ∈ β(N) \ N,
(b) there is a function f : ω → ωα such that A ∈ D implies that otp(f ′′(A)) =

ωα (so D is not Jωα-ultrafilter),
(c) if f : ω → Ord, then for some A ∈ D, otp(f(A)) ≤ ωα (so D is Jωγ -

ultrafilter γ ∈ (α, ω1)),
(d) if 1 ≤ β < α, then there is a function f : ω → ωβ such that A ∈ D ⇒

otp(f ′′(A)) = ωβ .

Proof. Let t ∈ T3,α, which exists by virtue of 3.14(1) and choose D̄ = 〈Dη : η ∈
inn(Tt)〉, such that each Dη is a P -point, which clearly exists. As Dη is an ultrafilter
on max(Tt) and max(Tt) = ℵ0, up to renaming, clause (a) holds.

Now, clause (b) holds by 3.16.

Clause (c) holds by 3.18. �3.19

Remark 3.20. 1) This solve (if phrased correctly). In general, we do not know
whether, if α is limit, there is a Jωα -ultrafilter that is not a β-ultrafilter for some
β < ωα, even if CH or MA is assumed. We shall consider under weaker assumptions.

2) Starting with a Jωα -ultrafilter (instead of a P -point), equivalently Jω2-ultrafilter).
We get such result, well sort out elaborate, if you recommend.

Discussion 3.21. 1) Claim 3.24 seem to became obsolete by 3.19.

2) We may work out how the existence of ωα ultra-filter implies other. DEBT.
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§ 3(D). The other direction: a try.

Definition 3.22. 1) For α ∈ [1, ω1), let T6 is the set of T such for some % = rt(T ),
the root and,

(a) T ⊆ {ν ∈ ω>ω : η E ν},
(b) % ∈ T,
(c) if %E ρE ν and ν ∈ T , then ρ ∈ T ,
(d) T is well founded, i.e., no infinite branches.

1A) We may use the tree Tα, and as in [She, 4.7 = k12], prove by quoting but see
later.

2) We define rkT : T → Ord by (and rk(T ) = rk(rt(T ))), rkT (ν) is the minimal
α such that:

(a) ρ ∈ sucT (ν)⇒ rkT (ρ) ⊆ α,
(b) {n < ω : rkT (νa〈n〉) ≥ α} is finite.

3) isp(T ) := {η ∈ T : sucT (η) is infinite}.
4) Let ≤6:= {(T1,T2) : T1 ⊇ T2 are from T6, max(T1) ⊇ max(T2) and rk(T1) =
rk(T2)}.
5) Let otp(T ) := otp(max(T ), <lex).

6) We say that T has uniqueness, if η ∈ T ⇒ |sucT (η)| ∈ {0, 1, ω}.

Claim 3.23. Assume T ∈ T6 and c : isp(T ) → 2. Then there are T1,T2 such
that:

(a) T ≤6 T` for ` = 1, 2,
(b) c � isp(T`) is constantly ` (e.g. isp(T`) = 0),
(c) T` has uniqueness,
(d) rk(T ) ≤ rk(T1)⊕ rk(T2), where ⊕ is the natural sum (see 3.1).

Proof. We prove this by induction on α = rk(T ):

Case α = 0: obvious.

Case α > 0:

Let η := rt(T ). Without loss of generality, we can assume that 〈n〉 ∈ T ⇒
rkT (ηa〈n〉) > 0 (otherwise, let ν ∈ T be C-minimal such that rkT (ν) = rk(T )
and rt(T )[≥ ν]).

Let ᾱ = 〈αn : n < ω〉 be such that either for some β, αβ + 1,
∧
n<ω αn = β or ᾱ is

increasing with limit α.

Let u := {η : ηa〈n〉 ∈ T }, so it is infinite. If rk(T ) = β + 1, so without loss of
generality, (∀n ∈ u)(rkT (ηa〈n〉) = β), so if n ∈ u, then rkT (ηa〈n〉) = β.

On the other hand, if rk(T ) = δ limit, without loss of generality 〈rkT (ηa〈n〉) : n ∈
u〉 is increasing and rkT (ηa〈n〉) = βn.

For each n ∈ u, let Tn := T [≥ ηa〈n〉], so there are (Tn,1,Tn,2) by induction
hypothesis for βn. As we can replace η by any infinite set, without loss of generality,
for ` = 1, 2, we have that:

(∗) 〈rk(Tn,f ) : n ∈ u〉 is constant or increasing.

The rest should be clear. �Theorem 3.23
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Claim 3.24. [seem obsolete as above more is done] Assume CH. Let α < ω1 be a
limit ordinal. Then there is D ∈ β(N) \ N such that:

(a) for any ordinal β ∈ [ω, ω1), D is a Jωβ -ultrafilter iff β ≥ α,
(b) if g : ω → ω1, then for some A ∈ D, g′′(A) has order type 1, ω, ω2 or ωα.

Proof. For transparency, we shall construct an ultrafilter D on α(∗) = α∗ = ωα

such that:

(∗)1 A ⊆ α∗ ∧ otp(A)<α∗ ⇒ A ∈ D.

(∗)2 Let 〈αn = α(n) : n < ω〉 be increasing with limit α and αn(n) = ωα(n).

(∗)3 (a) AP = {A ⊆ α∗ : otp(A) = α∗, A has no limit members (nec?)}
(b) ≤AP is the following partial order on AP: A ≤AP B iff A,B ∈ AP and

A \B is bounded.

(∗)4 if 〈An : n < ω〉 is ≤AP-increasing, then it has an upper bound (used when
2ℵ0 = ℵ1).

[Why? Choose by induction a bounded subset Bn of
⋂
`<ω A` of order type ≥ αm(∗)

such that min(Bn) > sup(
⋃
{B` : ` < n}). Easy to do and B =

⋃
{Bn : n < ω} is as

required.]

(∗)5 if A1 ∈ AB and f : A1 → {0, 1}, then for some A2, we have that:
•1 A2 ⊆ A1,
•2 A2 ∈ AP, i.e., otp(A2) = α∗,
•3 f �A2 is constant.

[Why? As α is a limit ordinal, ωα is additively indescomposable, and also under
natural sums.]

(∗)6 β 6= α, α < β < ω1 (yes! 2 6= β), A1 ∈ AP and g : A1 → ωβ , then for some
A2, we have that:
• A2 ⊆ A1,
• otp(A2) = α∗(= ωα),
• otp(g′′(A2)) < ωβ .

[Why? If β > α, then this holds by §3C, see xyz. If β < α, then this holds by a
claim below r · r.]

(∗)7 Assume CH. There is an ultrafilter as promised.

[Why? Let 〈gε : ε < ω1〉 lists the set of functions from α∗ into ω1. We choose Aε by
induction on ε < ω1 such that:

(a) Aε ∈ AP,
(b) if ζ < ε, then Aζ ≤AP Aε,
(c) if ε = ζ + 1, then g′′ζ (Aε) has order type ∈ {1, ω, ω2, ωα}.

Why can carry the induction?

For ε = 0, let Aε := α∗.

When ε is a limit ordinal, use (∗)4.

For ε = ζ+1, let Aε be a subset of Aζ of order type α∗ such that g′′ζ (Aε) has minimal
order type. By α∗ being indescomposable under natural sums, e.g., ordinal sums,
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otp(g′′ζ (Aε)) is of the form ωγ for some 0 ≤ γ < ω1 (for γ = 0, this is one). By

Theorem 3.31 below, γ is as required in (∗)5.]

By (∗)1-(∗)7, we are done proving Theorem 3.24. �3.24

Discussion 3.25. 1) What about MA + 2ℵ0 > ℵ1?

2) Note that, if 〈αn : n < ω〉 is increasing with limit α and α0 = 0, then D con-
structed as in 3.24 such that D/〈αn+1 \αn : n < ω〉 is a P -point, so 3.40 below does
no apply.

Convention 3.26. (for the rest of §3D).

1) α a is countable ordinal.

2) α∗ = α(∗) = ωα.

3) αn(∗) = αn ??.

4) 2 < β < α.

5) β∗ = β(∗) = ωβ .

Definition 3.27. 1) S7,α,β be the set of pairs s = (T , g) = (Ts, gs) such that:

(a) T ∈ TG,α has uniqueness (so, rts, sucT(η) are rts, sucs(η) respectively)
similarly in (2)),

(b) rk(T ) = α,
(c) g : min(T )→ ω1,
(d) rang(g) has order type ωβ ,
(f) uη := uT ,η = {k < ω : ηa〈k〉 ∈ T }.

2) Let T8,α,β be the set of triples r = (T, g, h) = (Tr, gr, hr) such that:

(a) T ∈ T6 has uniqueness, so ur, sucr(η), ur,η as above,
(b) h : T → β + 1,
(c) if η ∈ inn(T ), then g0(η) = min(g′′(sucT (η′))) and g(η) = g1(η) =

sup(g′′(sucT (η))),
(d) if η ∈ T , then otp(g′′(max(T )[≥ η])) = ωh(η),
(e) if η ∈ inn(T ), then

(α) 〈g(ηa〈n〉) : n ∈ un〉 is constant or increasing,
(β) if it increasing, then:

•1 if n < m are from uη, then g1(ηa〈m〉) < g0(η)a〈n〉,
•2 if it constant, then 〈g0(ν) : ν ∈ sucT (η)〉 is increasing with limit

g1(η).
(f) if η ∈ inn(T ), then:

(α) 〈h(ηa〈n〉) : n ∈ un〉 is constant or increasing,
(β) if it is increasing, then h(η) = sup{h(ν) : ν ∈ sucT (η)} and 〈g(ηa〈n〉) : n ∈

un〉 is increasing,
(γ) if it is constantly ζ, then h(η) = ζ + 1.

Claim 3.28. If (T, g) ∈ T7,α,β , then for some r we have that:

(a) r ∈ S8,α,β ,
(b) T ≤ Tr,
(c) gr(max(Tr)) = g � max(T ).

Proof. We prove it by induction on rk(T ) (as in §3C). �3.28
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Claim 3.29. If r ∈ T8,α,β , then:

(a) otp(gr(Tr)) is additively indescomposable and ≤ ωh(tr(Tr)),
(b) if η ∈ Tr, then otp(gr(max(Tr[≥ η]))) is additively indescomposable and
≤ ωh(η,r)

Proof. By induction on rk(η, Tr). �3.29

We need:

Claim 3.30. If r ∈ T8,α,β and γ < α, then there is T such that:

�r,T (a) Tr ⊆ T (so rk(T ) = rk(Tr)),
(b) otp(gr(max(T )))⊕ h(rtT ) ≥ γ,
(c) otp(gr(max(T ))) = ω2,
(d) gr(max(T )) is unbounded in gr(max)(Tr).

Proof. We try to prove it by induction on rk(Tr).

If β = 2, then we can let r1 = 2, so without loss of generality, β > incomp.

Now for every ν ∈ sucT (rkT ) we can apply the induction hypothesis to rν = r[ν] =
r[≥ ν] naturally defined and it belongs to T8,g(ν),h(ν) (maybe replace claim?), so
by the induction hypothesis, there is some Tν such that �r[ν],T holds.

We shall use T =
⋃
{Tν : ν ∈ sucr(rkT )} ∪ {rkT }.

Now, we consider several cases:

Case 1: 〈gr(ν) : ν ∈ sucT (η)〉 is constant.

The main point is why gr(max(T )) has order type ⊆ ωβ , e.g., for every γ <
gr(rkr), (gr(max(T ))) ∩ γ has order type < ωβ , which holds by the natural sum.

Case 2:not case 1, but 〈gr(ν) : ν ∈ sucr(rkr)〉 is increasing. So,

(∗) (a) if m < n are in uT1,rk(r), then

sup(g(max(T [≥rt(r)a〈m〉]))) < min(g(min(T [≥rt(r)a〈n〉]))),

(b) if ν ∈ sucr(rkr), then hr(ν) < hr(ν) clearly we are done.

�3.30

Claim 3.31. If α < ω1 is a limit ordinal and A1 ⊆ ωα has order type ωα and
β∗ < ωα and g∗ : A1 → β, then for some A2 ⊆ A1 of order type ωα we have
otp(A2) ∈ {1, ω, ω2}.

Proof. Without loss of generality we can assume that:

(∗) A ⊆ A1 and otp()A) = ωα ⇒ otp(A) = β∗.

Hence, β∗ = ωβ , β < α for some β.

Let t (see §3C) be such that:

(∗)6 (a) t ∈ T5,α,
(b) rk(Tt) = 〈 〉,
(c) pt is an isomorphism from (max(Tt), <lex) onto ωα.

Now, we use 3.28 and 3.29. �3.31
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§ 3(E). Relatives of nowhere dense ultrafilters.

Definition 3.32. Let h : ω → (ω\{0}), limn(h(n)) =∞, k = 〈kn : n < ω〉, kn > 0
and:

1) Let,

• Sh,k,n := Sk,n =
∏
`<h(n) k`,

• S := Sk := Sh,k :=
⋃
n<ω Sh,k,n,

• A := Ak := Ah,k :=
∏
n<ω Sk,n.

2) We say S ⊆ Sk is 0-small, when for some ν ∈ Ak we have:

(∗) for every m < ω, for all but finitely many η ∈ S we have that

|{` < lg(η) : η(`) = ν(`)}| ≤ m.

3) S ⊆ Sk is 1-small, when above m = 1.

4) S ⊆ Sk is 2-small when there is some F such that:

(a) dom(F ) =
⋃
n<ω

(∏
`<n k`

)
,

(b) F (η) < klg(η),
(c) as above in “0-small” replacing η(`) = ν(`) by η(`) = F (η � `).

5) S ⊆ Sk is 3-small mean combining (4) and (3).

6) Let J ιk is the family of subsets of Sk which are ι-small S ⊆ Sk (this is a semi-ideal;
that is, A ⊆∗ B ⊆ Sk ∩B ∈ J ⇒ A ∈ J).

7) Let IdJ
ι

k the ideal that J ιk generates.

8) Let We define J ιk,F where F ⊆
∏
n<ω kn similarly, but:

(∗) for ι = 0, 2 instead of ν ∈
∏
` k` we have Ω ⊆

∏
` k` (closed without loss of

generality) such that ...

Definition 3.33. 1) D is a semi-filter on ω iff D ⊆ P(ω), ω ∈ D, A ⊆∗ B ∧ A ⊆
ω ∧B ∈ D ⇒ A ∈ D.
2) A filter D on ω is a J-filter when (J is a semi-filter, here on ω and): for every
f : ω → ω for some A ∈ D we have f ′′(A) = {f(n) : n ∈ A} ∈ J.

Observation 3.34. For an ultrafilter D, D is J ιk-ultrafilter iff it is a J ιk-filter and
is a ultrafilter.

Definition 3.35. 1) J ⊆ P(ω) is a semi-ideal when A ⊆ B ∈ J ⇒ A ∈ J.

Definition 3.36. Let D a non-principal ultrafilter on ω. Then,

1) If D is J ιk-ultrafilter, then D is a nowhere dense ultrafilter.

2) The natural implication among the {J ιk : ι,k} holds.

Claim 3.37. We can forces “there is no J0
k1

-ultrafilter but, there is a J0
k2

-ultrafilter”.

Remark 3.38. 1) See Goldstern-Shelah [GS93], Kellner - Shelah [KS09], [KS12] for
the exsitence of a J0

k2
-ultrafilter and §3 (or like [She98b]) for the “no J0

k4
-ultrafilter”.

Fill?

Proof. As in §2B. Details? �3.38
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§ 3(F). Further comments.

Claim 3.39. Let D be an ultrafilter as constructed in [She]. Then D is a Van-
Douwen ultrafilter (see end of [She98b]).

Proof. Debt. �3.39

Claim 3.40. Assume D ∈ β(N) \ N and no D′ ≤RK D is a a P -point. Then for
every n ≥ 1, D is not a J(ωn)-ultrafilter.

Proof. By induction on n < ω, for all D-s (or D/E.) For n = 1, f = idω is a
witness. For n = k + 1 ≥ 1, there is a partition Ā = 〈An : n < ω〉 to infinite sets
such that (∀A ∈ D)(∃∞n < ω)(An ∩ A is infinite) because D is not a P -point. By
the induction hypothesis, there is hg : ω → ωk, a witness for “D/Ā is not J(ωk)-
ultrafilter”. Now define h : ω → ωn by: if i ∈ An, then h(i) := ωh0(n) + i. Finally,
check. �3.40

Claim 3.41. The forcing Qi from §2, add a set A
˜
⊆ ω which divide every old

A ⊆ [ω]ℵ0 .

Proof. Let A
˜

:= {n < ω :
∏
{ηm(0) : m ≤ n} = 1}. �3.41
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