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On the non-existence of k-mad families
Haim Horowitz and Saharon Shelah
Abstract

Starting from a model with a Laver-indestructible supercompact cardinal x, we
construct a model of ZF + DC,, where there are no s-mad familiesEl

Introduction

The study of the definability and possible non-existence of mad families has a long
tradition, originating with the paper [Ma] of Mathias where it was proven that
mad families can’t be analytic and that there are no mad families in the Solovay
model constructed from a Mahlo cardinal (as always, by "mad families" we refer
to infinite such families). It was later shown by Toernquist that an inaccessible
cardinal suffices for the consistency of this statement ([To]), and it was then shown
by the authors that the non-existence of mad families (in ZF + DC) is actually
equiconsistent with ZFC' ([HwSh:1090]).

The current paper can be seen as a continuation of the line of investigation of
[HwSh:1090], as well as of [HwSh:1145], where the definability of x-mad families
was considered. Recall the following definition:

Definition 1: Let  be an infinite regular cardinal. A family A C [k]" is k-almost
disjoint if |A N B| < k for every A # B € A. A will be called k-maximal almost
disjoint (k-mad) if A is k-almost disjoint and can’t be extended to a larger k-almost
disjoint family.

Assuming the existence of a Laver-indestructible supercompact cardinal k, we con-
structed in [HwSh:1145] a generic extension where k remained supercompact and
there are no ¥1(x) — k—mad families, thus obtaining a higher analog of Mathias’
result.

Our current main goal is to obtain a higher analog of the main result of [HwSh:1090],
i.e. for an uncountable cardinal 8 > Ny, we would like to construct a model of
ZF + DCy where there are no #-mad families. As opposed to [HwSh:1090], we only
achieve this goal assuming the existence of a supercompact cardinal. The main
result of the paper is the following:

Theorem 2: a. Suppose that g < ¢f(f) =0 < c¢f(k) =x < A=A and 0 is a
Laver indestructible supercompact cardinal, then there is a model of ZF + DC., +
"there exist no f-mad families” (note that 6 here has the role of x in the abstract).

b. If we start from a universe V', then the final model V; will have the same cardinals
and same H () as V.

We remark that during the time that the current paper was being reviewed, a
newer result was announced by Chan, Jackson and Trang [CJT], where they show
the non-existence of certain mad families on uncountable cardinals under ADT.
We note that while their result requires a weaker large cardinal assumption, it’s
incompatible with DC,,,. This should be contrasted with our result which provides
us with many high instances of dependent choice.
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Finally, we briefly describe our proof strategy. We shall force with a partial order
P where the conditions themselves are forcing notions (this is somewhat similar
o [Sh:218], [HwSh:1093] and [HwSh:1113], as well as to the recent work of Viale
in [Vi], where a similar approach is applied to the study of generic absoluteness).
Forcing with P will generically introduce the forcing notion Q that will give us the
desired results. More specifically, we shall fix a Laver-indestructible supercompact
cardinal §. The conditions in P will be elements from a suitable H(AT) that are
(< 0)-support iterations along wellfounded partial orders of (< 6)-directed closed
forcing notions satisfying a strong version of #+-cc. Given q1,qz € P, we will have
a1 <p g2 when the iteration given by q; is an “initial segment” (in an adequate
sense) of the iteration given by qs. Forcing with P will introduce a generic iteration
qg¢ given by the union of g € P that belong to the generic set. In the further generic
extension given by qg, we shall consider V3 = HOD(P(0)<*UV) (for an adequate
fixed k). We shall then prove that there are no §-mad families in V4. In order to
prove this fact, we shall consider towards contradiction a condition (qg,po) that

forces a counterexample A, where qp will be “sufficiently closed”. The filter that’s
dual to the ideal generated by A will then be extended to a #-complete ultrafilter
(using the Laver-indestructibility of #), and we shall obtain a contradiction with
the help of an amalgamation argument over qg using a higher analog of Mathias
forcing relative to this ultrafilter.

The rest of the paper will be devoted to the proof of Theorem 2.
Proof of the main result

Definition 3: A. Let K be the class of pairs (q,Uq) that consist of the following
objects with the following properties:

a. U = Uq a well-founded partial order whose elements are ordinals. We let
Ut = U U {oo} where cc is a new element above all elements from U, and for
acUT, welet Ucy ={B €U : B <yal.

b. An iteration (Pg,a,Qqp:a€UT,€U) = (Pn,Qs:a € U™, B € U). We shall
often denote the iteratiom;l itself by q. -

c. qis a (< #)-support iteration, and in addition:

(o) Each Qp is a Pg-name of a forcing notion whose set of elements is an object
X from V.

(B) Given a € U™, p € P, iff p is a function with domain dom(p) € [U<,]<? such
that p(8) is a canonical Pg-name for every 8 € dom(p).

(7) <p, is defined as usual.

(0) If w C U is downward closed (ie. o <y f € w = o € w) and Py, =P, =
Po [ w = {p € P : dom(p) C w}, then P, < Ps

d. In VPs, (@5 satisfies *§ for a fixed limit € < 6, namely, if {p, : o < 61} C Qﬁ

then there is some club E C 07 and a pressing down function f : E — 6% such that
if 01,02 € E, cf(61) = cf(d2) and f(d1) = f(d2), then ps, and ps, have a common
least upper bound.

e. For B € U, the following holds in VFs: If I is a directed partial order of
cardinality < 6 and (ps : s € I) € Qé is <g,-increasing, then {p; : s € I} has a
<q,-least upper bound.

Notational remark: As Ug is implicitly part of the definition of q, we shall often

just write q instead of (q, Ug).
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B. Let <k be the following partial order on K:

q1 <k qq iff the following conditions hold:

a. Uq, C Ug, as partial orders.

b. If Uy, = a < B and € Ug,, then o € Ug,.

c. If w C Ug, is downward closed, then Pq, = Pq, w-

d. If a € Uq,, then Qq, o = Qq,,« (this is well-defined recalling clause (b)).

C. Let K, be the class of U as in (A)(a), and let <,,¢ be the partial order on K, s
defined as in clauses (B)(a) and (B)(b).

We shall now observe some easy basic properties of the objects defined above:

Observation 4: a. If (U, : o < §) is <, p-increasing, then |J U, is a <, f-least
a<d
upper bound for (U, : a < 9).

b. <k is a partial order on K.

c. If gz € K and U; C Ug, is downward closed, then there is a unique q; € K such
that a1 <k q2 and Ug, = U;.

d. If (qa : @ < §) is <g-increasing, then there is a unique qs € K such that
a<d—de <k dqsand Uy, = |J Uqg,-
a<d

e. If Uy, U1,Us € wa, Uy = Uy NUsy and Uy Swf U, (l = 1,2), then there is

a unique U € Ky such that A U <,y U, a € Uiff a € Uy Va € U and
1=1,2

<y=<y, U <y,. We denote this U by U; +y, Us.

f. Ifqo,q1,92 € K, qo <k q (I =1,2) and Uy, = Uq, NUg,, then there is a unique

q € K such that A q; <k q and Uq = Uy, +Uy, Ug,- We shall denote this q by
1=1,2
q1 +q0 q2.

g. If a € US, then Pq, is a (< 6)-complete forcing satisfying +§ (hence 67-cc).
h. Suppose that q € K and Q is a Py .-name of a forcing notion whose universe
is from V, such that the conditions of definitions 3(d) and 3(e) are satisfied, then

there is ¢’ € K such that q <x q', Uy =Uq U {7}, Uy = a <7 for every a € Uq
and Qg ~ = Q. O

Definition 5: The forcing notion P will be defined as follows:

a. The conditions of P are the elements q of K N H(A") such that Uy C AT, and
for every 8 € Ug, Qg is a name for a forcing whose underlying set of conditions is

some Xg C AT,
b. Given qi,q2 € P, P = "q1 < q2” iff q1 <k q2.
c. Given a generic set G C P, we let q¢ = |J{q : q € G}.

Before the next claim, we shall remind the reader of the definition of (< x)-strategic
completeness. Given a forcing P, a condition p € P and an ordinal «, the two-player
game G, (p,P) will consist of @ moves. In the Sth move, player I chooses pg € P
above p and all ¢, (v < B) previously chosen by player II. Player II will respond
with a condition gg € PP above pg. Player I wins the game iff for each 5 < o he
has a legal move. PP is a-strategically complete if player I has a winning strategy
in Go(p,P) for every p € P. Finally, P is (< k)-strategically complete if it’s a-
strategically complete for every a < k.
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Claim 6: a. P is (< r)-strategically complete. Moreover, it’s (< AT)-complete
and (< 6)-directed closed.

b. IFp ’qe € K7, hence IFp "Pq o is (< 0)-directed closed and ft-cc”.

c. Ifd <At cf(d) >0 and (qq : o < ) is <p-increasing, then q := |J q, belongs
a<d

to P and Py = |J Pq,. By 6"-c.c., a is a canonical Pg-name of a member of [¢]°
a<d
iff a is a canonical Pq_ -name of a member of [0]° for some a < 4.

Proof: The claim follows directly from the definitions. The fact that IFp "q¢ € K”

follows from the general fact that if I is a directed set, {q; : t € I} C K and
s <rt—qs <k q¢, then [ J{q; : t € I} is well-defined and belongs to K. This also
shows that P is (< #)-directed closed. O

We shall now define our desired model:

Definition 7: a. In V¥, let Q = Pq, oo-

PxQ
b. Let Vo =V ~.

c. Let Vi be HOD(P(A)~" U V) inside V5.
Claim 8: a. Vi = ZF + DC,.
b. (Ord<f)"* = (Ord<*)"2, hence P(0)"* = P(6)"2.

Proof: We shall prove the first part of clause (b), the rest should be clear. Clearly,
(Ord<r)"» C (Ord<r)"2. Now let n € (Ord”)"2 for some vy < k, then n = 7[G]

for some name 7 of a member of Ord”, where G C P x Q is generic. G = G1 x G3
where G; C P 1~s generic and G2 C Q[G1] is generic. VGorking in V[G1], n/G1 is
a Q[G1]-name. As Q[G4] is 6T -cc, fgr every 8 < + there is a maximal ar?tichain
{p;’i (i< 0} C Q[G:] of conditions that force a value to 1/G1(83). Let {Cs, : i < 6}
be the set corres;)onding values forced by the above condNitions. Let I' = {pg,i, (5, :

B < 7,1 < 6} be the corresponding P-names for the above objects (so we can
regard them as P-names for ordinals). As there are < k such names and P is (< k)-
strategically complete, there is a dense set of q € P that force values to all elements
of I'. Therefore, there is some q € PN G; that forces values to all elements of I’
(and the values forced are necessarily {pgi, (g, : 8 < 7,7 < 0}). It follows that
{pg,i,Cp,i: B <v,i<0}eV. In Vs, there is a function f : v — 6 such that for

every <, n(B) = (a,r(3)- As f € P(0)<" and {pgi, (s : B <v,i <0} €V, it
follows that n € V1. O

Main Claim 9: There are no 6-mad families in V7.
The rest of the paper will be devoted to the proof of Claim 9.

Suppose towards contradiction that there is a §-mad family in V7, so there is some
(qo, po) € IF’*Q forcing this statement about .A where A is a canonical ]P’*(@ name of

a 0- mad famlly definable using ", and " is a canonical IP’*Q name of a parameter (so
n = (( te< e( ), ) where I 7 ( ) < k", each ae is a IP’*Q name of a subset of ¢
;nd I+ ”f € V”) Let Gy C P be generic over V such that qp € Go. In V[Gy], n is a
Py, ,co-name, and by increasing qo, we may assume wlog that pg := po [Go] ENIP’qO,
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x = z[Go] € V, e(x) = e(%)[Go] € k and that each a. (e < €(x)) is a canonical

Pg,-name of a subset of . Given q € P above qg, let Aq be the set of canonical
Py-names a such that (q,po) IFpxg "a € A7, s0 qo < q; < qz = Ay, € Aq,. Note

that if qo < q1, Pg,.00 = "po < p1” and (q1,p1) Ik 7b € [0]?”, then for some (qz, a)
we have q; <p q2, a € Aq, and (q2,po) IF "b Na € [0]°”. By extending any given
q1 € P above q in this way sufficiently many times to add witnesses for madness,

and recalling Claim 6(c), we establish that the set {q1 : qo <p q; and IFpg, VP
is #-mad”} is dense in P above qp.

Now, in Vo, let I = {A C 6 : A is contained in a union of < § members of A}, then T
is a #-complete ideal and 6 ¢ I. Let F be the dual filter of I, then F is §-complete,
and as 6 is supercompact in V5 (recalling that 6 is Laver indestructible and that
PxQ is (< 6)-directed closed), there is a P+ Q-name D such that (qo,po) IFp«g "D

is a f-complete ultrafilter on 6 that extends F', and hence is disjoint to A7 By

Claim 6 and what we observed in the previous paragraph, we may assume wlog that
Qo IFp "Ag, is 6-mad and Dg, := DNP(0)Y ™ is a Py, s-name of an ultrafilter

on 0”.

Given an ultrafilter U on 6, the forcing Q is defined as follows: the conditions of
Qu have the form (u, A) where u € [#]<Y and A € U. the order is defined naturally,
i.e. (Ul,Al) S (UQ,AQ) iff Uy Q Uz, ’U,Q\'U,l Q Al and A2 g Al.

We may assume wlog that Pq, » forces 2¢ = A, hence there is a canonical Pg, oo-
name f of a bijection from Qp onto A. Let Q' be a name for the forcing such that

) ~
Ihpqo ” f is an isomorphism from Qp onto Q7. Let B = Bp be the Qp -name

a0 a0 ap

U{u: (u,A) € G, } 80 by, x0p "B e [0]% is f-almost disjoint to Ag,”. Let
~ap ~agp
B’ be the canonical Py, ~ xQp -name for the image of B under f.

Now observe that there is @' € P such that qo <p q', Uy = Ug, U {7}, @ <u_, 7
for every a € Uqg, and Qg , = Q'. As before, there is q” € P above q' such that
Do Il—pq,,m "Agr is H—madw”. TheNrefore, there is some Py oo-name 1:1 € Ay such
that pg ”_]pq,,‘oo ”é N §' S [0]97 o) il has intersection of size # with every member of
D and é ¢ Aq,”

~qo
Now let (qi,B1,41) = (q”,B’, A) and let (q2, Ba, A2) be an isomorphic copy of

(Q1,B~1,z:11) over qo such that Ug, NUg, = Uy, and qo € P.

Claim 10: Let qq, (q1, B1, A1) and (q2, Ba, A2) be asabove (soqo <x q; (I = 1,2),

Ugp NUqg, = Ugo and A\ Irp, . "A1 € A\ Ag,”) and let G C Py, o be generic
1=1,2 ~ ~

over V, then H—qu,w/gqu%m/g ”AQ \ Al,Al \AQ S [9}9”.

Proof: We shall prove the claim for Ay \ Aj, the other case is similar. Suppose
towards contradiction that (p1,ps2) forces that A; \ Ay C v < 6. For I € {1,2},
let By ={e <0:pWp, oc/c "¢ ¢ A"} € V[G]. By the assumption of the claim,
By € [0]°. By the #-madness of Ao[G] in V[G], there is some Y € Ag[G] such that

5
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[Y N Bs| =6. As py ey, /G "|A1 NY] < 07, there are ¢; and 51 < 0 such that
P1 S q1 € ]qu,oo/G and q1 |hp>quoc/G ”Al ny Q 51”. Let /82 eyYn B2 such that

mazx{y, b1} < B2 (recalling that |Y N Bg| = 6). By the definition of Bs, there is
¢2 € Pg,.00/G above po that forces 7By € Ay”. Therefore, (p1,p2) < (¢1,¢2) €

Pgy,00/G X Pqy 00/G and (q1,¢2) IFp,, . /GxPy, oo/ "Bz € A2\ A1”, a contradiction.
It follows that IFp, _/Gxp,, /¢ "A2 \ Ay € [0]°7. O

Claim 11: Under the assumptions of Claim 10 (recalling that ey, . 7AiM B # )
for every B € Dq,” (I = 1,2)), we have Irp_ _/axp,, /¢ "A1 N A2 € [0]°7.

Proof: Assume towards contradiction that (p1,p2) € Pqy,00/G X Pqy.00/G forces
that AjNAs C v for some v < 6. It’s forced by (p1, p2) that A; C B, (I = 1,2) where

B is as in the proof of the previous claim, hence it’s forced by (p1, p2) that each B;
intersects each member of Dy,. As By, By € V[G], it follows that By, By € Dq,[G].

Therefore, there is some 5 € (B1NBz)\ 7, hence there is q; € Pq, oo/G above p; that
forces "B € A;” (I =1,2). It follows that (p1,p2) < (¢1,¢2) € Pqy,00/G X Pgy.00/G

and (q1,¢2) IFpy, o /GxPgy /c B € A1 N A2”, contradicting the choice of v and
(p1,p2). Tt follows that IFp, __/cxp,, /¢ "A1N Ay € 0]°7. O

Now given qq, (q1,B1, A1) and (qq, B2, A2) as above, let g3 = q1 +¢, d2. Then

qs € P, 41,92 <k q3, and by claims 10 and 11, we get a contradiction. This
completes the proof of Main Claim 9 and hence of Theorem 2. [J

We conclude with the following natural question:

Question: What’s the consistency strength of ZF + DCy + "there are no #-mad
families” for some 6 > Ng?
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