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1. Introduction

This research forms part of the study of cardinal characteristics of the continuum. For a general overview
of cardinal characteristics, see [4], [14, chapter 9] and [17] as well as [1]. Based on the well-known cardinal
characteristics

e s:=min{|S]|SC[w]¥ and VX € [w]¥ IS € S:|XNS|=|X S| =Ny} (the splitting number),

e t:=min{|R| | RC[w]* and 2 X € [w]* VRER: |[RNX|=|R~ X| =Ny} (the reaping number), and

e i:=min{|Z| |Z C w]*,YAUB € FIn(Z): |Ngea ANNpesw ~ B)| =Ng and T is maximal with this
property} (the independence number),

we were inspired to define specialised variants of these (all of them related in some way to asymptotic
density, in particular asymptotic density 1/2) and obtained a number of bounds and consistency results for
them.

We use the standard notation; in addition to s, t and i mentioned above, we will refer to a few other
well-known cardinal characteristics.

Given an ideal Z on some base set X, we can define four cardinal characteristics:

o the additivity number add(Z) := min{|A| | A C Z and |JA ¢ 7},

e the covering number cov(Z) := min{|A| | ACZ and |JA = X},

o the uniformity number non(Z) := min{|Y| |Y C X and Y ¢ 7}, and

o the cofinality cof(Z) := min{|A| | ACZ andVBeZ3JAc A: BC A}

In particular, we will refer to these cardinal characteristics for

o the ideal N':= {A C 2% | A\(A) = 0} of Lebesgue null sets and

e theideal M:={ACw* | A=), ., A, and Vn < w: A, nowhere dense} of meagre sets.

necw

Finally, we will refer to two more cardinal characteristics:

e b:=min{|B||BCw*and Vg ew®” 3 f € B: f £* g} (the unbounding number) and
e 0:=min{|D| | D Cw¥andVgew” If € D:g<* f} (the dominating number).

We will use the following concept in a few of the proofs:

Definition 1.1. A chopped real is a pair (z,II) where x € 2 and II is an interval partition of w. We say a
real y € 2 matches (z,1I1) if y[; = «[; for infinitely many I € II.

We note that the set Match(z,IT) of all reals matching (x,IT) is a comeagre set (see [4, Theorem 5.2]).

We remark that we will not rigidly distinguish between a real r in 2 and the set R := r~!(1), or
conversely, between a subset of w and its characteristic function.

The paper is structured as follows. In section 2, we introduce and work on several cardinal characteristics
related to s. In section 3, we introduce and work on cardinal characteristics mostly related to v and i, and we
prove a few more results on possible values of one of them (i1/,) in section 4. The final section 5 summarises
the open questions.
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2. Characteristics related to s

Recall the following concepts from number theory.
Definition 2.1. For X € [w]* and 0 < n < w, define the initial density (of X up to n) as

XNl

dn(X) : -

and the lower and upper density of X as

d(X) :=liminf(d,(X)) and d(X):=limsup(d,(X)),

- n—0o0 n— 00

respectively. In case of convergence of d,,(X), call

d(X) = lim (d, (X))
the asymptotic density or just the density of X.
We define four relations on [w]¥ x [w]¥ and their associated cardinal characteristics.
Definition 2.2. Let S, X € [w]¥. We define the following relations:

o S bisects X in the limit (or just S bisects X), written as S |1/, X, if

L lSnXnan o da(SnX) 1

o For 0 <e < 1/2, S e-almost bisects X, written as S |1/, X, if for all but finitely many n < w we have

SNXnn| _du(S0X) (11
X0nl | do(X) 2 ©37°)

o S weakly bisects X, written as S |”;‘;2 X, if for any € > 0, for infinitely many n < w we have

ISNXNn| d,(SNX) (1 1 >
== S 5 2 .

= —e,-+¢
XNl (X *
e S cofinally bisects X, written as S |‘f/°2 X, if for infinitely many n < w we have

SNXNn|  d(SNX) 1 .
Xn| | dJ(X) 2

Definition 2.3. We say a family S of infinite sets is

bisecting (in the limit)
e-almost bisecting
weakly bisecting

cofinally bisecting



Sh:1150

4 J. Brendle et al. / Annals of Pure and Applied Logic 174 (2023) 103303

Fig. 1. The zFc-provable and/or consistent inequalities between s1/,, $1/,4¢, 5’1“;2, 5?/92 and other well-known cardinal characteristics,

where a — b means “a < b, consistently a < b” and a --+ b means “a < b, possibly a = b".

if for each X € [w]* there is some S € S such that

S bisects X (in the limit)
S e-almost bisects X

S weakly bisects X

S cofinally bisects X

and denote the least cardinality of such a family by $1/,, 51/54¢, 5?}2, 5?;’2, respectively.
Theorem 2.4. The relations shown in Fig. 1 hold.

Proof. Recall that it is known that s < non(M) and s < non(N) (see e.g. [4, Theorem 5.19]) as well as
§ < (see e.g. [14, Theorem 9.4] or [4, Theorem 3.3]).

s <51, <87 A cofinally bisecting real is a weakly bisecting real (being equal to 1/2 infinitely often
implies entering an arbitrary e-neighbourhood of 1/2 infinitely often), and a weakly bisecting real is a splitting
real (if a real X does not split another real Y, the relative initial density of X in Y, that is

dp(XNY)
dn(Y) 7

tends to either 0 or 1 and hence cannot be close to 1/2 infinitely often). Hence a family witnessing the value
of 5‘1)72 gives an upper bound for the value of 5}‘?2 (and analogously for s < 5”;‘}2).

5 < S1/54¢ < 51750 The first claim follows since an e-almost bisecting real is a splitting real by the fact
that finite sets have density 0 and cofinite sets have density 1, and hence if X does not split Y, the relative
initial densities of X and w~ X in Y tend to 0 and 1, respectively (or vice versa). The second claim follows
since a bisecting real is an e-almost bisecting real by definition.

cov(M) < s1/,4.: Given a family S witnessing the value of s1/,.., take S € S.

We inductively define a chopped real (S,II) based on S as follows: Let the first interval of the partition
IT be Iy = [0,min(S)]. Now, for any n € w, given m, := max(I,), choose m,4+1 minimal such that
In41 = [my + 1,mpy1] contains (n - my,) + 1 elements of S.

Now, any real X matching this chopped real is not e-almost bisected by S. Indeed, whenever such an X
is equal to S on one of the intervals I,,, we have

A, (SNX) [SOXN(mp_1+ 1)+ (n—1)my_1+1
dm, (X) X0 (mp1 +D]+(n—1Dmy_q +1
(n—1Dmp_1+1 _(n=1)my 1 +1
T g+l —Dmy 1 +1 nem,g +2
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(n—1)mp_q n—1_n-2
> >

Tne-Mmp_1+Mpu-1 N+l n
As e < 1/2, for sufficiently large n we get 1 — 2/n > 1/2 4+ £, and since such an X is equal to S on I,, for
infinitely many n € w, S does not e-almost bisect X in the limit.

Now, the family M := Match(S, (In)necw) is a comeagre set. The family F(S) of all reals which are
e-almost bisected by S is a meagre set (since E(S) C [w]* ~ M and hence its complement is a superset of
a comeagre set), and {E(S) | S € S} is a 2¥-covering consisting of meagre sets.

5}‘;2 < s1/,: A bisecting real is a weakly splitting real — for the relative density to converge to /2, it has
to eventually be arbitrarily close to 1/2, and hence also within an arbitrary e-neighbourhood of 1/2 infinitely
often. The same argument using the families witnessing the cardinal characteristics holds.

57, < non(M): For a given X € [w]?, we show that the set B(X) of reals cofinally bisecting X (contains
and hence) is a comeagre set. For any F' ¢ M, F'N B(X) is non-empty, hence it contains a real cofinally
bisecting X.

Given X as above, we define a chopped real (R,II) as follows: Let fx: w — X be the ascending enu-
meration of X. For all n € w, define intervals J,, := [fx(3"), fx(3""!)) and let I consist of the intervals
Iy :=[0, fx (1)) and, for all n € w, I, 41 := J2,, U Jap11. Define R C X such that for each n € w,

RNJdy, =2 and RN Jopy1 = XN Japgr -

Suppose the real Ry matches (R,II) and is equal to R on I,,1. Let k := max(J2,) + 1 = min(Ja,+1) and
£ :=max(Jop+1) + 1 = min(Jo,12) = max(l,41) + 1 = min(I,42). Then we have:

dk(RoﬁX) 1 dz(RoﬂX) 2
AL A g q (| AdllA) L
d(x) -3 ™ d(X) -3’
and
dy(Ro N X)
di(X)

is monotone increasing for k < ¢ < £. But this implies the existence of some ¢ with k <t < £ such that

di(RonX) 1

di(X) 2’

by the following argument: Let ¢ be maximal such that

Assume towards a contradiction that the inequality is strict; this implies that

|Ro N X Nt < [1xntl/2] — 1
XNt — | Xnt

but then

dt+1(RonX) < I—‘th|/2~|
dipr(X) T XN+

1
<77
-2

contradicting the maximality of ¢t. Hence Ry cofinally bisects X.
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The set of all reals matching (R, II) is comeagre, as required to finish the proof above.

5‘1’72 < 9: Let D be a dominating family. Without loss of generality assume that every member g of D is

“ and let fx be its enumeration. Pick a gx =: g from

strictly increasing and satisfies g(0) > 0. Let X € [w]
D that dominates fx and define G: w — w by G(n) := g+t (0) for every n < w. Then, for sufficiently

large n,
G(n) < fx(G(n)) < g(G(n)) = G(n+1).

Hence (for sufficiently large n) every interval [G(n),G(n + 1)) contains at least one element of X and at
most G(n+ 1) — G(n) many. Now iteratively define a function I': w — w by I'(0) := 0, I'(1) := G(0) = ¢(0)
and T'(n + 1) := G(X;_o'(k)) = G(E,) and consider the interval partition with partition boundaries
(D(n) | n < w); for sufficiently large n, every interval

n—1

I, :

(D(k)), G (X (0(H)))

k=0

(), T(n+ 1)) = |G

(]

o

~— >
i

:[G(zn,lm(zn,l +1))U...U [G(En,1 +T(n) — 1), G(Snr + F(n)))
contains at least I'(n) many elements of X and at most I'(n + 1) — I'(n) many of them.

Let Yx be the real defined as the union of every even interval, i.e. the intervals I, = [T'(2k),T(2k + 1)).
We now show that Yx cofinally bisects X. The number of elements of X which are in any interval I, is
at least as large as the lower boundary of I,, and Yx is defined to alternate between consecutive intervals.
Consider the consecutive intervals I, and Isgy1. By definition of Yy, at the endpoint of interval Iy, we
have

X N Yy ND(2k+1)]
X NT(2k + 1))

> 1‘
27

conversely, at the endpoint of interval Ioxy1, we have (also by definition of Yx, as Is;11 is disjoint from Yyx)

| X NYx NT(2k + 2)| - 1
| X NT(2k + 2)] 2

This means that at some point between the endpoints of Iy, and 41, the relative initial density has to
cross over from >1/2 to <1/2. An easy proof by contradiction shows that going from >1/2 to <1/2 in a single
step is impossible. Hence the relative initial density of Yx in X is 1/2 infinitely often.

s77, < non(N): Given some X € [w]” with enumerating function fx and a Lebesgue-random set S (i.e.
such that Vn < w: Pr[n € S| = 1/2), the function g(n) := |X N SN fx(n)| — »/2 defines a balanced random
walk with step size 1/2, since

+12  fx(n) €S,

g(n+1) —g(n) =
—12 fx(n) & 5.

From probability theory we know that for almost all S, g(n) will be 0 infinitely often. Equivalently, almost

surely,

l_ X NSNfx(n)
n 2 n

will be 1/2 infinitely often.
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In other words, for any X € [w]“, the set of all S not cofinally bisecting X is a null set. By contraposition,
for any X € [w]¥, any non-null set contains a set S that cofinally bisects X.

S1/; < non(N): Let X € [w]* and F ¢ N. Enumerating X =: {z¢, z1, 22, ...}, we define functions fx ,
and fx as follows:

0 z,¢Y
fxm: w* —={0,1}: Y — ¢
1 z,€Y
k
Y
Fx: W] = [0,1]: Y —s limpg o0 M if the limit exists
0 otherwise

It is clear that A(f)}ln({l})) = 1/2. Hence, the fx , are identically distributed random variables on the
probability space [w]“ with probability measure the Lebesgue measure A. Moreover, they are independent
and have finite variance. By the law of large numbers it follows that fx is almost surely equal to 1/2, in
other words A(fx'({1/2})) = 1. This means that with

Sx i ={Y € [w | fx(Y) =1/2} ={Y € [W]* | Y [1, X},

we have that A(Sx) = 1 and hence Sx ¢ N. Hence FNSx # @ and there is some S € F such that S |/, X.
Since all this holds for any X € [w], we have s1/, < non(N).

Con(non(M) < si/5+c) and Con(sS), < $1/24c): This is implied by the consistency of non(M) <
cov(M) as witnessed by the Cohen model.

Con(s3], < non(M)), Con(sy;, <) and Con(ssy, < non(AN)): In the Cohen model, we have Ry =
s = 557, = non(M) < non(N) = d; and in the random model, we have R; = s27, =9 < non(M).

Con(cov(M) < s < s1/,): In the Mathias model, we have cov(M) < s = 2% see [14, Theorem 26.14]
for Con(cov(M) < b = 2%0) and [4, Theorem 6.9] for b < s. |

Finally, we remark that b is incomparable with all of our newly defined cardinal characteristics. This is
because in the Blass—Shelah model [9], s is strictly above b and so are all of our characteristics; and in the
Laver model, non(N) is strictly below b and so are all of our characteristics.

3. Characteristics related to v and i
We define a second set of properties more closely related to i, although s does reappear in this section.
Definition 3.1. A set X € [w]* is moderate if d(X) > 0 as well as d(X) < 1.!

Definition 3.2. A family Z. C [w]¥ is statistically independent or x-independent if for any set X € 7, we
have that X is moderate and for any finite subfamily £ C 7., the following holds:

lim (dn(ﬂEEfE)> -1

n— 00 HEeSdn(E)

In the case of convergence of dn(ﬂ Bee E) for any finite subfamily £ C Z,, this simplifies to asking for
0 < d(X) <1 to hold for all X € Z, and

1 Actually, it would suffice to demand d(X) > 0 as well as d(X) < 1, though one would have to modify a few of the subsequent
proofs.
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[[aE =da( () E)
Ecé& Ecé&

to hold for any finite subfamily € C Z,.
We denote the least cardinality of a maximal x-independent family by i..

Recall that a family Z of subsets of w is called independent if for any disjoint finite subfamilies A, B C Z,
the set

() An () (w~B)

AeA BeB

is infinite. Generalising this notion leads to the following definitions (which are more obviously related to
the classical i):

Definition 3.3. Let p € (0,1). A family 7, C [w]* is p-independent if for any disjoint finite subfamilies
A, B C I, the following holds:

d(ﬂ An ﬂ<w\B>> = Al (1- ),
AcA BeB

which simplifies to = 1/2M1+1Bl in the case of p = 1/2. This definition is equivalent to demanding that for
any finite 4 C Z,, the following holds:

(0

We denote the least cardinality of a maximal p-independent family by i,.

Recalling the definition of v as the least cardinality of a family R C [w] such that no S € [w]“ splits
every R € R, we naturally arrive at the following definition:

Definition 3.4. A family R/, C [w]® is /2-reaping if there is no S € [w]“ bisecting all R € R./,. We denote
the least cardinality of a 1/2-reaping family by ti/,.

Given the above, the natural question is: Can we define t, analogously? Consider the following definition:

Definition 3.5. A family R. C [w]¥ is statistically reaping or x-reaping if

X
A S € [w]” moderate such that VX € R,: nh_)néo <%> =1.

We denote the least cardinality of a *-reaping family by ..

The motivation for this is as follows: Considering the analogous definitions for v, we might call a family
7 of infinite and coinfinite sets mazimal quasi-independent if there is no X such that for all Y € 7 we have
that X splits Y and X splits w N\ Y (i.e. X and Y are independent for all Y € 7). It is obvious that a
reaping family is also maximal quasi-independent; the converse can easily be derived by taking a maximal
quasi-independent family and saturating it (without increasing its size) by adding the complements of all
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cov(M)

Fig. 2. The zrc-provable and/or consistent inequalities between i/, i«, t15, t«, 51/5, 5.« and other well-known cardinal characteristics,

where a — b means “a < b, consistently a < b” and a --+ b means “a < b, possibly a = b”.

its sets, resulting in a reaping family. By this train of thought, it makes sense to take Definition 3.5 as the
defining property of a *-reaping family.
Dualising the definition of *-reaping leads to the following, final definitions:

Definition 3.6. Let S, X € [w]* with S moderate. We say that S statistically splits X or S *-splits X, written
as S |, X, if

dm (s ) =

Definition 3.7. A family S, C [w]¥ is statistically splitting or *-splitting if
VX €[w]” 3S €S, moderate: S |. X.
We denote the least cardinality of a *-splitting family by s..
Theorem 3.8. The relations shown in Fig. 2 hold.
Proof. cov(N) < ti/, and s, < non(N): Both proofs are analogous to the proof of s1/, < non(N\).
For the first claim, let R./, be a family witnessing the value of ti/,. By the argument for s/, < non(N)
in the proof of Theorem 2.4, the family

{[w]* NSr | R € R}

is a covering of V. (Recall that [w]* \ Sg € N for R € Ruy,.)
For the second claim, let X € [w]* and F' ¢ N. As seen above, letting

SX = {Y S [w]“’ | Y ‘1/2 X},
we have that A(Sx) = 1 and hence Sx ¢ A. Moreover, this is true in particular for X = w and
Sw =AY € [W* | Y [y w} = {Y € [w]* [ d(Y) = V/2}.

Since then F'N Sx NS, # @, there is some S € I such that S |1, X and d(S) = 1/2, which implies S |. X.
Since all this is true for any X € [w]*, we have s, < non(N).
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ti, < v, Let R, be a x-reaping family and let R/, := R.U{w}; clearly, |R1/,| = |R«|. Now, any S which
bisects all R € Ry, also #-splits all R € R, — this follows from the fact that S [./, w implies d(S) = 1/2, and
hence for any R € R, we now have
d, (SN R) d,(SNR) 1

0n(S) dn(R) ~ du(R)  dn(S) "

since S |1/, R implies that the first factor converges to 1/2, while d(S5) = /2 implies that the second factor
converges to 2.

t1/, < non(M): Since the set of all reals bisected by a fixed real S is a meagre set (by the argument for
cov(M) < s1/,1.), a non-meagre set contains some real not bisected by S and hence is /2-reaping.

t, < non(M): This is analogous to the proof of t1/, < non(M), since the set of all reals *-split by a fixed
moderate real S is a meagre set, as well. To see this, iteratively define a chopped real based on S as follows:
Letting fs be the increasing enumeration of S, define an interval partition by defining Iy := [0, fs(1)] and
defining I,,41 such that it contains 2" - max(I,,) elements of S. The sets matching this chopped real form a
comeagre set which consists of reals X not #-split by S: As the matching intervals grow longer and longer,
dzfﬁ;};) above 1 —1/2 2 which implies that % cannot converge to 1 as d,(S) does not
converge to 1 by the moderacy of S.

they “pull”

cov(M) < s,: This is analogous to the proof of cov(M) < $1/,4. by the same argument as in the proof
of v, < non(M).

s < s,: Let S, be a family witnessing the value of s, and let X € [w]“ be arbitrary. We will prove
by contradiction that there must be some S € S, splitting X. Suppose not, that is, suppose that for any
S € 8., either (a) SN X is finite or (b) X ~\ S is finite. In case (a), we use the fact that S is moderate to
see that d,,(S) must eventually be bounded from below by some &, and the fact that S N X is finite to see
that |S N X Nnl| is bounded by some k*. Letting k,, := | X N n|, this eventually yields

dn, (SN X) k" [n k*
< = — 0.
dp(S) - dn(X) T e-knfn  e-ky
Similarly, in case (b) we use the moderacy of S to see that d,,(.S) is eventually bounded from above by some
1—0, and the fact that X \ S is finite to see that |SN X Nn| is bounded from below by k,, — k* for some k*.
(This bound simply states that after some finite aberrations, S contains all elements of X.) Taken together,
we eventually have

do(SNX) __(ka=Hn
dn(S) - dn(X) = (1 =6) - kn/n
1 k*

1
= — =1
=0 (=0)k 1-0 '7°¢

for some € > 0. In summary, for all S € S, we have that .S does not *-split X, and hence S, could not have
been a witness for the value of s,.

t,. < t: In the previous proof, we have already shown that *-splitting implies splitting; this in turn proves
t. <t

v, < iiy; and v, < i,: For the first claim, let 7./, be a maximal !/2-independent family. Define

R :z{ﬂ A

AcA

AgL/z} .

2 The strict argument for this claim is analogous to the proof of cov(M) < 51,4, in Theorem 2.4.
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Then R/, is a 1/2-reaping family, since the existence of an S € [w]“ bisecting each R € Ry, (in the limit)
would contradict the maximality of Zi/,.

The proof of the second claim is analogous: Take all finite tuples of sets in the witness Z, of the value
of i, and collect their intersections in a family R,; this family must then be x-reaping, because a set S
x-splitting each R € R, would violate the maximality of Z,, and thus R, witnesses t, < i,.

i, < 2% and i, < 2%o: For i,, consider the collection Z, of all p-independent families. Now, Z, has finite
character, i.e. for each I C 2%, I belongs to 1, iff every finite subset of I belongs to Z,. Hence we can
apply Tukey’s lemma and see that Z, has a maximal element with respect to inclusion. Therefore, i, is well
defined and hence i, < 2% The proof for i, is analogous.

Con(r. < t): This follows from Con(non(M) < cov(M)), but we also have an explicit proof of this.

We will show that Cohen forcing does not increase t, due to the ground model reals remaining *-reaping;
we already know that Cohen forcing increases v, proving our consistency statement.

Let X be a C-name for a moderate real. We will construct a ground model real Y such that for any
q € C, we can find r < ¢ such that r IF X)(*Y.

Now pick an enumeration (p; | k& < w) of C which enumerates each element infinitely often. In the
following argument, for each k < w, let Ly := 3", .

e For k=0, we find g9 < pg, £p > 2 and Ay C [0, ¢y) such that gy decides X%v qo IF X[eo = Ap and such
that |Ag| > 1, |[0,40) ~ Ap| > 1, and at least one of these two inequalities is an equality.
e For 0 < k < w, we find ¢ < pg, & < w and Ay C [Lg_1, Lx) such that ¢ decides X[Lk, qr Ik

XLy 1np) = Ay and such that |Ag| > 3Lg_1, |[Lk—1,Lk) ~ Ax| > 3Lg_1, and at least one of these
inequalities is an equality.

Define Y piecewise by Y[, | 1,y = [Lg—1, L)~ Ag. Assume X x-splits Y; then there must be some ¢ € C
forcing this. In particular, this means that ¢ forces that for any ¢ > 0, there is some m. < w such that for

any j > me,
M > 1 — €.
d;j(X) - d;(Y)

Pick some sufficiently small ¢, say € := 2/9, strengthen ¢ to decide the value of ms/,, and find n < w such
that p, = q and L,, > mzy,. Letting I,, := |A,| and Oy, := £, — I,, ¢, < q forces

. L,
dp (XNY) < L
Ly,
. ]n
dLn(X) Z fna
O

Without loss of generality, O,, = 3L,,_1 and I,, = 3L,,_1 + A for some A < w. Then g, forces

Ln_1

dp,(XNY)  _ 75t Lniln _ Lu-a(Taor + 00 + 1)
dr, (X)-dp, (V) = Cpf= On1, Onl,
Ly 1(7TLn_1 +A) 7L, 1+ A

T 3Lp1(3Lp_1+A) 3-(3Ln_1+A)

which is strictly decreasing in A and is 7/9 for A = 0. This contradicts the assumption on ¢, proving that
X does not #-split Y in VC.
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Hence assuming CH in the ground model and forcing with C, for some A > Ry with A = AR gives us
VO EnL =N <l=t=c

Con(ri, < non(M)) and Con(r. < non(M)): This follows from Con(t < non(M)), see [I, Model
7.5.9].

Con(s < s4): Just like Con(r, < t), this follows from Con(non(M) < cov(M)), but once more, we also
have an explicit proof of this.

We will show that Cohen forcing increases s, due to the Cohen real not being *-split by any real from
the ground model; we already know that Cohen forcing keeps s small, proving our consistency statement.

The proof uses the same technique as the one for s < s,: Given some moderate X € [w]* NV, with
moderacy in the sense of d(X) = 1 — 2¢ and d,,(X) < 1 — ¢ for all n > ng for some ng, we will show that
the assumption that there is a condition forcing X | C, i.e. that X =-splits the Cohen real, leads to a
contradiction.

So suppose that there were some p € C such that p IF X |« C'; more specifically, suppose that for some
ni, even p - % < 1+ 6 for all n > nq, where 6 := 15125.
We now define ¢ < p as follows: Let ny be large enough such that

2 |p|

Bt e 2P k) m)

3
|X N lpl,n2)| 2

this is possible due to the moderacy of X (which implies X is infinite). Let k := max(ng,n1,ns) and
q =P~ XxI[p|,k). that is, extend p by the next k — |p| values of the characteristic function of X. Then we
have

d (X NC) 1 dp(XNn0O)

dk(X)dk(C) 1—¢ dk<0)

by the moderacy of X and by k > ng. By our choice of ¢, we have

d(XNC) _|XnCnkl _[Cnk—lpl _, ol

I+ - : : - —
T T (©) Ok = |Gkl O K|
b
[C O lpl, k)l [ X N {lpl, k)] 2
with the first inequality being an equality in the “worst case” of X[, =0 and (p = q[),| =) C’[Ipl =1 and
the final inequality following from k > mny. This implies that
de(XNC 1-
il ﬁC)' > 8/2=1+5,
dp(X) - di(C)  1—€
contradicting (since k > n1) the original assumption on p.
Con(cov(M) < s < s.): Follows as in the proof of Con(cov(M) < 5 < 51,).
Con(ry, < i1/,) and Con(r, < i.): See Lemma 3.9 and Corollary 3.13 below.
Con(iy, < 2%0): This follows from Lemma 3.16 below. O

Lemma 3.9. Con(ti/, < ii,).

We will prove the following: Assume CH in the ground model and let A > u > Ny be regular cardinals
with A = A", Then there is a forcing extension satisfying add(N) = cof (V) = v, = p and ¢ = i1y, = A.

For the proof, we shall use the method of templates, originally due to the fifth author [16]. More explicitly,
our model is the model from [5, Proposition 4.7], that is, the original template model with localisation forcing
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instead of Hechler forcing. While we try to be as self-contained as possible and — in particular — provide
the combinatorial argument in full detail below, we cannot repeat all basic lemmata of the technique and
therefore assume some knowledge of the method. We recommend that the reader unfamiliar with templates
works with either the survey paper [5] or, preferably, the more recent [8].

Given a linear order (L,<p) and x € L, let L, = {y € L | y <p z} be the initial segment determined
by x.

Definition 3.10 (/S, Definition 21], see also [5, p. 8]). A template is a pair (L,Z) with T = {Z, | x € L} such
that (L, <p) is a linear order, Z, C P(L,) for all z € L, and

(1) Z, contains all singletons and is closed under unions and intersections,

(2) 7, C I, for z <1, y, and

(3) T := UyerZe U {L} is well-founded with respect to inclusion, as witnessed by the depth function
dpr: Z — Ord.

If AC Land x € L, we define Z,,[ 4, := {BNA| B € T}, the trace of T, on A, and let Z| , = {Z,[ 4 | x € A}.
Note that (A,Z],) is a template as well.

Next recall (see [5, p. 27]) that localisation forcing LOC consists of pairs (o, ¢) € ([w]<¥)<% X ([w]<¥)*
such that, letting n := |o|, we have that |o(i)| < i for all i < n and |p(¢)| < n for all i. The order is given by
(1,0) < (o,0) ifn:=|7| >m:=|o|, 7 D0, p(j) C7(j) for all m < j < n and p(j) C ¢(j) for all j. LOC
generically adds a slalom, that is, a function ¢: w — [w]<¥ with |¢(n)| < n for all n, which localises all
ground model reals, which means that for all f € w* from the ground model and almost all n, f(n) € ¢(n).
By Bartoszyniski’s characterisation of add(N) and cof(N) [1], any iteration adding a cofinal sequence of
length p of LOC-generic reals, where p is uncountable regular, will force add(N') = cof (N) = p.

Since LOC is a correctness-preserving o-linked forcing notion, it can be iterated along a template, see [7]
(see also [8, Definition and Theorem 23]). This means that given a template (L,Z) and a set A C L, we can
define the partial order P[4 by producing P[5 for B € Z], by recursion on deFA in such a way that P [z
completely embeds into P[4 for any B C A C L. “Successor” steps of the iteration are two-step iterations
of the form P, = P[g % LOC while in “limit” steps, we take direct limits. See, again, the statement and
the proof of [8, Definition and Theorem 23] for details. The whole iteration, P[;, is still ccc by [8, Lemma
24]. The proof that LOC is correctness-preserving — and thus fits into this framework — is exactly like the
corresponding proof for Hechler forcing [8, Lemma 28].°

We finally recall the definition of the concrete template (L, Z) we are using here (see [8, between Lemmata
28 and 29] or [5, p. 20]). Let p and A be cardinals. As usual, A\* denotes (a disjoint copy of) A with the
reverse ordering. Elements of A will be called positive and elements of A\* negative. Choose a partition
N =Ugycw, S¢ such that each S is coinitial in A*.

Definition 3.11. The linear order L consists of non-empty finite sequences x such that z(0) € g and z(n) €
A*U A for n > 0. The order is naturally given by x < y if

o either x C y and y(|z|) € A,

e or y C zand z(|y|) € \*,

or z(0) < y(0),

or, letting n := min{m | z(m) # y(m)} > 0, z(n) < y(n) in the natural ordering of A* U \.

3 For an alternative explanation as to why LOC can be iterated along a template, see [5, Lemma 4.4].
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It is immediate that this is indeed a linear order. We identify sequences of length one with their range
so that p C L is cofinal.

We write v* for the element of A\* corresponding to v € A\. We also define abs(z) € A for any z € AU A*
by abs(z) = z for z € X and z = abs(z)* for z € \*.

We call z € L relevant if |z| > 3 is odd, z(n) is negative for odd n and positive for even n, z(|z| —1) < wy,
and whenever n < m are even such that z(n),z(m) < wy, then there are 8 < « such that z(n — 1) € S¢
and z(m — 1) € SP. For relevant x, set J, = [2)z)—1,2), the interval of nodes between z[|,_; and z in the
ordering of L. Notice that if z < y are relevant, then either J, NJ, = @ or J, C J, (in which case we also

have |y| < |af, 21,1 =yl -1 and 2(ly[ = 1) <y(ly[ - 1)).

Definition 3.12. For « € L, let Z, consist of finite unions (1) of L,, where o < z and « € p, (2) of J,,, where
y < x is relevant, and (3) of @ and singletons.

Then (L,Z) (with T = {Z, | € L})) is indeed a template ([8, Lemma 29], see also [5, Lemma 3.2]).
Note that, ordered by inclusion, L is a tree of countable height. Countable subtrees A, B C L are called
isomorphic if there is a bijection ¢ = ¢4 p: A — B such that for all z,y € A and all n € w,

o lp()] = |z,

o o)l = e(zl,),

oz <yiff p(z) <ely),

o x(n) is positive iff ¢(x)(n) is positive, and
e omaps Z|, toZ]p.

Since the trace of Z on any countable set is countable, there are at most ¢ many isomorphism types of trees.
Note that, in view of the last two clauses, if A and B are isomorphic, then so are P[4 and P[5, since the
partial order only depends on the structure of the template. If only the first four clauses hold, we call the

trees weakly isomorphic.

Proof of Lemma 3.9. We closely follow [8, Theorem 30], but provide all the details.

Take the template (L,Z) introduced above. Let P = P, be the iteration of localisation forcing along
this template, that is, for each € L we have a copy of LOC as an iterand (see, again, [8, Definition and
Theorem 23] for details). It is well-known (see the proof of [8, Theorem 30]) that |P| = A = X and that P
thus forces ¢ < .

Also, letting qz.Sa (for @ < ) be the P-name for the localisation generic added at stage «, we see that the
$o form a cofinal sequence of length p of LOC-generic reals. This is the case because L, € Z, and therefore
bo is LOC-generic over the P| 1..-extension. As remarked above, this implies add(N) = cof (M) = p.* Since
we know that add(N) < cov(N) < t1y, < non(M) < cof(N), we also have ti/, = p.

We thus only have to show that i1/, > A. Since v, < i1/, in zZFC, we already know i1, > p. Thus let A
be a name for a 1/2-independent family of size <A and >p, say A = {A* | @ < K} where kK > wq - 2 is an
ordinal (chosen this way for later pruning arguments). By [8, Lemma 25], there are countable B C L such
that the A® are P| go-names. More explicitly, letting {p5 i I m € w} (for i € w) be maximal antichains and
{k%; € {0,1} | i,n € w} be such that p%; IF i € A iff kI, = 1 and p%; IF i ¢ A iff kS, = 0, we have
acr BY, we see that | B < \.
By cH and the A-system lemma, we may also assume that {B* | & < wa} is a A-system with root R and
that there is a tree T' C (wi Uwi)<*¥ such that

{5 i li,n € w} CPlga. We may also assume all B* are trees. Letting B :=

4 For an alternative explanation, see [5, Lemma 4.6].
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e any B? is weakly isomorphic to T,

e Yap: B*— B is an isomorphism of trees (as defined above) fixing R,

+ the induced isomorphism ¥qs,5: P[ga — P[gs maps py ; to pﬁyi,

 there are numbers k,, ; such that k%i =k, ; for all o < wo, and

o there is some 0y < w; such that whenever a < wp, € B, j odd and z(j) € \*, then z(j) € S? for
some 0 < 6.

By rigidity, we then have g, = Lp;lﬁ and @y = ©8,y © Pa,3, and similarly for the ¥, g. Further note that
the third and fourth clauses immediately imply that 1, g also maps the name A to AP.

For a < way, write B* = {z% | s € T'}. This means in particular that |s| = |z¢|, that s(n) is positive iff
“(n) is positive, and that ¢, g(z%) = 2f. Let S C T be the subtree corresponding to the root R, that is,
s € Siff 2¢ € R for any o < wa. So, for a # B, v& = 27 iff s € S. List the immediate successors of S in T

as {t, [n>1},ie {t, |n > 1} ={t € T\ S| t[,_1 € S}. For a < B < wy, define

xT

nif abs(zg (|ta] — 1)) > abs(z), (|t.| — 1))
F({e,B}) = (if such an n exists and is minimal with this property),
0 otherwise.

Note that, by well-foundedness of the ordinals, for every n > 1, any subset of ws homogeneous in colour n
must be finite. Hence, by the Erdés-Rado theorem, we obtain a subset of size w; homogeneous in colour
0 and may as well assume that w; itself is 0-homogeneous.” Using further pruning arguments, we may
additionally suppose that if s € S and (¢,€) € (wi)? U (wy)? with abs(¢) < abs(¢) and s7(,s7¢ € T\ S
(so s7¢ =1, and s"& = t,,, for some n # m > 1), then for all o < 8 < wy,

() abs(zg-(|s])) < abs(foC(|s|)), all abs(zg- . (|s[)) are larger than wq, and
— either abs(xfﬂc(|s|)) < abs(zg-,(|s])) (which is the case
when sup,, ., abs(zg-(|s])) < supq«,, abs(zg-,(]s]))),
— or abs(zg-(|s])) < abs(xfﬁgﬂs\)) (which is the case

when Supq ., abs(@®(|s])) = sup, <., abs(z2-(|s]))).

We can additionally assume that for s € S and (¢,€) € (w7)? U (w1)? with abs(¢) < abs(¢) and s™( €
T,s7¢6 €T\ S, if either s(¢ € S or the first case of (x) holds, then

(1) supqcy, abs(zg-c(s])) < e < abs(x2A§(|s|)) for some € = g5—¢.

(Note that this € depends on s and &, but not on ¢.) Define 2% € L by recursion on the length of s € T, as
follows: If s € S, then let 2% := z% for any o < w; (in particular, |2%| = |2¢]| = |s|). If s € S and s™( ¢ S,
we will have |25 .| = [s7(| + 2. First, let 7 -(|s[) be the limit of the x5 -(|s[) (so it is either the sup or
the inf, depending on whether ¢ is positive or negative). Next, find v < A with v > w; and v* € S% such
that for all s and ¢, and all y € B with y[ 541 = 25~ [|s41, we have abs(y(|s| + 1)) < 7. It is clear that
such a 7 exists because A\ > | B] is regular.

(ox) If ¢ (and 2§ _(]s)) is positive, let z§_(|s| + 1) := 4", and if ( is negative, let 2§ .(|s| + 1) := 1.

5 Erdés-Rado in the form (2*)T — ((2¥)T, (w1)w)? actually gives a 0-homogeneous set of size wo and this is needed to guarantee
that we can assume the abs(zZ-.(|s|)) to be larger than wi in () below, but in the end we will use only the first w1 many.
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To complete the definition of 7., define

o (|5 +2) = 4 Lol ifIs[>0,
s7¢ +2n+1 if [s| =0and ¢ =&+ n with £ limit or £ = 0.

Finally, for the remaining ¢ € T, stipulate again that |zf| = |[t| + 2, find s C ¢ with s € S maximal, let
T s 43 1= Th—yg) and 27 (J +2) == x9(j) for j > |s|.

Let B* := {z% | s € T'}. Notice that B, though very tree-like, is not a tree like the B®. For o < wy, define
Yokt BY = B" by gk (22) := 2% for s € T. We proceed to show that P|z. and P [z« are isomorphic by
the map 9, induced by @q, ., which almost maps Z[ga to Z] g~ (in the sense explained below). It suffices
to consider the case o = 0 as P[ga = P[po. Clearly, ¢ = o is order-preserving, and it is sufficient to
figure out the effect of ¢ and its inverse on the L, and the J,.

First fix 8 and consider Lg. We claim that there is 3y < 3 such that p(Lg, N BY) = Lg, N B* = Lz N B*.
To see this, let 5/ > 8 be minimal with 8 € {z%(0) : s € T'} (if there is no such 5’ the claim follows trivially).
If B/ = 2%(0) for some s € S with |s| = 1 and there is no ¢t € T'~\. S with |t| = 1 and z{(0) = ', then
29(0) = B as well, and it is easy to see that ¢(Lg N B%) = Lz N B so that By = 8 works.® If 8/ = 2%(0)
for some s € T . S with |s| = 1, then 2%(0) < ' for any such s. In case 8’ = 3, we see by (%) that
¢©(Lg N B%) = Lg N B* again holds so that we can take 3y = . So assume < (. Then the existence of
Bo (below all such 29(0)) is guaranteed by (t) (with & = e(¢y where £ is minimal such that (§) € T\ S and
7 (0) = ).

Now consider the case when ¢(Lg, NB®) = Lg,NB* = LgNB*, yet o(LgNB°) ¢ Lg. For any s € T with
29 € Lg, but 2 ¢ Lg, we must have 2£(0) > 8 > 29(0) > By and 2%(0) = sup, ., #3(0). In particular, for
all such s, 2%(0) must have the same value, namely 8’ from the previous paragraph. Moreover, (1) = v*
and 2%(2) = £+ 2n + 1 < wy, where s(0) = £ + n with £ limit or 0. If, for some s € T, 22(0) = 3, let
n = £+2n+1, where 5(0) = £+n with & limit or 0. If there is no such s and £+n = sup {s(0)+1 | 22(0) < 8},
¢ limit or 0, let n = £ + 2n. Then we see that Lz N BY is mapped to (Lg U J,) N B* via ¢, where |z| = 3,
xz(0) = p’, (1) = v*, and z(2) = n (note that this z is indeed relevant).

Next assume z is relevant and consider J,. Assume that J,NBY # &. Then there must be s € T such that
|s| = [z]—1and ) = z[|,_;. In case s € S, we have 2§ = z{ and J,NB? is mapped to J,NB* via ¢ because,
by (), we must have y € R for any y € B® with |y| = |z, Yljzj—1 = 2% and y(jz| — 1) < 2(|z] — 1) < wy.
In case s € T'\. S, let jo < |s| be maximal with s[; € S. Define y by [y| := |z| + 2, Yy —
y(ly| — 1) = z(|z| — 1) and note that .J, N B® gets mapped to J, N B* via ¢ provided we can show that

1 = % and

y is relevant. In case jo > 0, this follows because, whenever x0(j) > w; where j > jg is even, then also
a5(j +2) = 2(j) > w1, and, if jo is even, we additionally have z%(jo) = sup,,,, 5 (jo) > w1 while, if jo
is odd, we additionally have x%(jo + 1) = v > w;. In case jo = 0, this is true because 2%(1) € S% and 0y is
larger than all the 6 for which z%(j) € SY where j > 1 is odd.

On the other hand, assume J, N B" # &. If there is s € S with |s| = |z[ -1 and 2§ = z[},_;, we conclude
as in the previous paragraph that ¢ maps J, N B to J, N B*. So suppose there is no such s € 5. First,
assume [z| > 5, let s € T'\ S with |s| = [2| — 3 and z§ = x[;_;, and let jo < |s| maximal with s[; € 5.
Let y be such that [y = 2| =2, y[), 1 = 29, and y(|y| — 1) = z(|z| — 1), and check that ¢ maps J, N B? to
Jx N B" as in the previous paragraph. Finally, assume || = 3. Then there is a 8 < x(0) such that for any
s € T~ S with 2% € J, N B*, we have 2%(0) < 3, and we see that »~! maps J, N B* into Lg N B°. This
is the only case where the templates Z|go and Z|g. are not identified via ¢, for p=!(J, N B*) need not
belong to Z|go. However, note that only big sets in the template matter for the definition of the iteration,
and since ¢~ 1(J, N B®) C Lz N BY, it is easy to see that we can conclude that P|zo = P| 5., as witnessed
by %o . (For a more formal argument, see [5, Lemma 1.7].)

6 As pointed out to us by the referee, it is possible that there are s € S and t € T\ S with |s| = |t| = 1 and z%(0) = 2§ (0) = B'.
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As mentioned already, this means that 1, . is an isomorphism between P|gz. and P|g., and we can
define A* as the Ya,x-image of A* (where o < wy is arbitrary). More explicitly, pri = Yas(py ), and
pi i€ A% iff k=1 and pf,; Ibi ¢ A% iff &, ; = 0.

Now assume F' C & is finite. By construction (this is straightforward by our pruning arguments, noting
in particular that for all but countably many o < wi, we have B* NJgcp B C R and using (»*)), we see
that there is an o < wy such that B*UUgzcp Bf and B*U User B? are order-isomorphic via the mapping
¢’ fixing nodes of Jge o B# and sending the z¢ to the corresponding 2% via ¢, . (in fact, this is also true for
all but countably many «). Also, by the properties of ¢, . explained in the previous paragraphs and the fact
that ¢’ is the identity outside of the domain of ¢, x, ¢’ almost maps IrBauU%F gs to IFBNUuBGF pgs in the
sense explained above. Thus the induced map 1': P rB“UUﬁep s — P FBNUU[:IEF ps is an isomorphism fixing
the names A? for 8 € F and mapping the name A® to the name A*. Since P forces that {A” | 8 € {a} UF}
is 1/2-independent, this is actually forced by P BoUWyep BP by complete embeddability. By isomorphism,
P rB”UUgep ps forces that {A? | B € {x} U F} is 1/2-independent, and therefore so does IP. Since this holds
for every finite F' C k, P actually forces that {A? | 8 € k + 1} is 1/2-independent, and thus that A is not
maximal, and thus the proof is complete.

We note that this last paragraph is the main difference from the original proof in [8, Theorem 30]. O

We remark that the construction in [6] can be modified analogously to show that i1/, can have countable
cofinality; see Theorem 4.15 in the subsequent section.

Corollary 3.13. Con(t, < i4).

Proof. Replacing the name for a 1/2-independent family A with the name for a *independent family, the
same proof as in Lemma 3.9 shows the analogous result. O

For the final proof of this section, we will require two combinatorial lemmata.

Lemma 3.14. If R, S C w are disjoint finite sets of sizes v and s, respectively, s = c-r for some ¢ > 1,
g€ (0,1) and AC R, B C S such that

for some € > 0, then

Proof. Since

we have the lower bound

|JAUB| _s-(¢g—¢) s-(¢g—¢) q-—c¢

|[RUS| r—+s s-Yeds 141
1 1
> (g2 (1- 1) 2q-e 1.
c c

For the upper bound, we get
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|AU B - r+s-(g+e)  s-Yets-(qg+e)

|[RUS| r+s s-Ye+s
q+€+1/c 1
=—— < —-. O
1+ 1 _q+6+c

Lemma 3.15. If R,.S Cw,0<r <1, e>0 and m < £ are such that

|[RNm| |SNm| |SNY|
) ) 6
m m l

(r—e,r+e)

then

[(RNm)U (SN [m, )|
14

€(r—3e,r+3¢).

Proof. Suppose this were false for some ¢* > m; then without loss of generality,

[(RNm)U(SN[m,Ler))

T >r+ 3e.
Since
|R N m]
L <r+e,
m
we get
SN [m,l*
[50im, &) >r 43— m(rJrz—:).
r* £*
But then
|S Nm|
—_— > —
m
implies
Sniex SN u(@sn *
| |:|( m)U (50 [m, ))|>@(r—s)+r+3sf@(r+s)
2m
:T+3€—€—*'€ZT+€,
which is a contradiction. O

Lemma 3.16. Con(ii, < cov(M)) and thus Con(iy, < i).

Proof. The proof is analogous to the classical proof of Con(X; = a < 2%) (see e.g. [14, Proposition 18.5]).

Assume CH in the ground model and let A > Ny with A = ARo We force with the A-Cohen forcing poset
Cy; letting G be a Cy-generic filter, it is clear that V[G] F cov(M) = i = 2% = \. We will now show
V[G] F i1, = Ry by constructing a maximal 1/2-independent family A in the ground model such that A
remains maximal 1/2-independent in V[G]. By the usual arguments, it suffices to consider what happens to
a countably infinite 1/2-independent family when forcing with just C := (2<% C).

Let Ag := {A, C [w]® | n < w} be such a family. Fix (in the ground model) an enumeration {(pa, Xa) |
w < a < wi} of all pairs (p, X) such that p € C and X is a nice name for a subset of w.” In particular, this

7 The reason the index set of the enumeration is [w,w1) instead of [0,wq) is just to make the notation more convenient.
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means that for any (2, p1), (72, p2) € X, either p; = py or p; L po. Note that since V £ CH, there are just X;
many nice names for subsets of w in V.

We now construct A from Ay iteratively as follows: Let w < o < w; and assume we have already defined
sets Ag C w for all 8 < a. Below, we will construct A, C w such that the following two properties hold:

(i) The family {As | 8 < a} is 1/2-independent.
(ii) If po IF [ Xa| = Vo A “{Ag | B < a} U{X,} is I/2-independent”, then for all m < w, the set D2, := {q €
C|3n>m:qlk A, N[27, 271 = X, N [27,2"T1)} is dense below pq.

We first show that the A := {43 | 8 < w1} constructed this way is a maximal 1/2-independent family in
VC. Clearly, A is 1/2-independent, so only maximality could fail. Suppose it were not maximal; then there
is a condition p and a nice name X for a subset of w such that p I- “AU{X} is 1/2-independent”. Let a be

such that (p, X) = (pa, Xo) and let € > 0 be sufficiently small (e.g. € < 1/16). We can then find ¢ < p,, and
m < w such that

4 4

|Aa N XN (1

1
—E,——|—8> for all £ > 2™ (*1)

(because p,, forces that {A,, X} is 1/2-independent) and

|Aa N [27, 271
2n

1
>§—€foralln2m.

Now by the density of D% below p,, we can find r < ¢ and some n > m such that r I A, N [2"7, 2"+ =
X, N[27,2"*). But this implies that

n |AaﬂXaﬁ2n+1‘ 1 |AaﬁXam2n| N 1 |AaﬂXaﬂ[2",2"+1)|
" gn+1 2 on 2 on
s—g 1lo—g 3 1
> D) B 7§7€>1+€’

which contradicts (7).

We finally have to show that we can find such an A, satisfying (i) and (ii) for any w < a < w;. We
only have to consider those a such that X, satisfies the assumption in property (i), since finding an A,
with property (i) is straightforward. Enumerate {4z | 8 < a} as {B,, | n < w}. For n < w and any partial
function f: n — {—1,1}, we let

B = () B/,
i€dom(f)
where B} := B; and B !'.= w . B;. We further pick some strictly decreasing sequence of real numbers
(0n, | n < w) with dg := 3 and lim,,,0c 0, = 0 and let (g, | n < w) be some sequence enumerating all

conditions below p,, infinitely often. We will now construct, by induction on n < w, conditions r,, < ¢, < ¢n,
a strictly increasing sequence of natural numbers (k, | n < w) and initial segments Z,, = A, N2 of A,
such that for all n < w and all partial functions f: n — {—1,1}, the following four statements will hold
(with F':= | dom(f)| + 1)

(R1)

|Bf 0 Z, N2k (B \ Z,) N2k 1 6, 1 6,
Ok ) 9kn €\oF ~ = )
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IBf nX,n¢ |(Bf < X,) N/ 1 6, 1 4,
2) ¢, I+ —_n -,
for all £ with 25» < ¢,
B/ N Zpia N l] |[(BY N Znga) N/ 1 1
(R3) 7 , i € | 37 — On 57 + 0

for all £ with 2F» < ¢ < 2F»+1 and
(RA) 7y IF Zpyr N [2Fn, 28n11) = X, 0 [26n | 2Kni1),

It is clear that (R1)—(R4) taken together for all n < w imply that A, :=|J
and (ii).

For n =0, let ko := 0, ¢{ := qo and Z, := &; then (R1) and (R2) hold vacuously by our choice of dg, and
there is nothing to show yet for (R3) and (R4).

Now assume that we have obtained k,, ¢}, < g, and Z,, such that (R1) and (R2) hold for n; we will
construct 7, < ¢, knt1, @41 < @ny1 and Z,4q such that (R3) and (R4) hold for n and such that
(R1) and (R2) hold for n 4 1. We first find ¢;,,; < gn41 and k;, > k,, such that for all partial functions
fin+1—{-1,1}, we have that (with F := |dom(f)| + 1)

Z,, is as required by (i)

new

/ H_ _—
I+ i : ] oF ~ T3 '9F T 3

IBf N X, Nt |(Bf < X,) N/ . ( 1 Sy 1 5n+1>
for all ¢ > 2Fn (hence satisfying (R2) for n + 1); this is possible since the assumption in property (ii) is true.
Next we find r,, < ¢/, and a sufficiently large k,, .1 > k!, such that for all partial functions f: n4+1 — {—1,1},
we have that (still with F':= |dom(f)| + 1)

T IF i ; Ser i oF ~ g 'oF 6 (*2)

|Bf 0 X, N2kt [(Bf N X,) N 2knt] ( 1 Gpyr 1 6n+1>
and that r,, decides X,N2¥+1; in particular, let X,, C [2Fn 2kn+1) be such that 7, IF Xaﬂ[2’“" ,2kn+1) = X
All this is also possible since the assumption in property (ii) is true. Let Z,,+1 := Z,, U X,,.

Now, (R4) holds for n by definition of Z,, 1. Let W be such that r,, IF X,N2+1 = W. Apply Lemma 3.15
to R:=B'nZ,or B\ Z, S:=B' nWor Bf <\ W, r:=1/2F ¢ :=6uf3, m := 2" and any ¢ with
2Fn < ¢ < 2Fn+1 to see that (R3) for n follows from (R1) and (R2) for n and our choice of Z,,,1. Finally,
apply Lemma 3.14 to R := 2k =y § 1= [2kn 2Fnt1) g = 2knt1 — 2kn ¢ = 2Fnti=kn _ 1 g = 1/27 and
g =: 9n+1/6 to see that (R1) for n + 1 follows from (%), (R4) for n and the choice of k41 sufficiently large
as to guarantee 1/c < dn+1/6.

By the usual arguments, our construction implies that .4 remains maximal 1/2-independent in Ve O

4. More on i1/,

We describe a forcing for adding a maximal 1/2-independent family generically with a product-style forcing
(like Hechler’s forcing for adding a mad family [15]). This gives an alternative proof of the consistency of
i1/, < ¢, while also showing that there can be (consistently) simultaneously maximal 1/2-independent families
of many different sizes and that cf(i./,) = w is consistent. We note in this context that the consistency of
cf(i) = w is a well-known open problem.

Definition 4.1. Fix an uncountable cardinal k. We define the forcing P = P,; as follows. Conditions are of
the form p = (FP,n?,aP, eP) such that

(C1) FP C k is finite,
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(C2) n? € w,

(C3) a? = (ak, CnP | a € FP),

(C4) eP: 2<F" 5 Q% (where 2=F” denotes the partial functions from FP to 2) is such that e?(f) < £P(g)
whenever f C g,

(C5) for all f € 2=F" we have

M fa)=1 @& NN (a)=o(n? N ab)] B 1 - el (f)
np 2/ dom(f)] 8 '’
and
(C6) we have
920"
< —_
np 8’

where ¢? := eP(@) = min{e?(f) | f € 25"}

The order is given by ¢ < p if

eP(f) > () forallf62<Fp and

(D1)

(D2)

(D3) a? = aq Nn? for all « € FP,

(D4)

(D5) for all i with n? <i < nf and all f € 2<F" we have

=

|ﬂf(o¢)—1(imag¢)mﬂf(a)—o(i\agz)‘ 1
- — _ P
Sraem(py| <€ (f)-

i
We first need to check we can extend conditions arbitrarily.

Definition 4.2. Given a condition p and FE C k, we define the restriction p’ = plg of p to E by

(i) F¥ = FP O E,

(ii) nP = nP,

(iii) a2 = a? for a € F?', and
(iv) e =eP| [y -

It is easy to see that p’ € P and that p < p'. Also, for f € 2=F" let

ﬂ ab N ﬂ (n? < ab).

fla)=1 f(a)=0

Lemma 4.3 (extendibility lemma). Letp € P, E C k,p' = plp, m € w, ande: 2" — Q withe(f) < e(g)
whenever f C g and e(f) < eP(f) for all f € 257", Assume ¢’ < p' is such that F9 C E. Then there is a
condition g € P with ¢ <p, q<¢, F1 = FPUFq n? >m, and

o 21(f) = min{e(f), 7 ()} for all f € 257,
o 1(f) =e(f) for all f € 25F"  25F"
o eU(f)=e9(f) for all f e 25F" < 25F" | and
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o €9(f) > 16 for all other f € 2=F",

Proof. Let F := F1 := F7 U FP. Define ¢4: 2<F — Q7 as stipulated in the statement of the lemma.
Finally, let n := n9 > max{m,n? } be so large that

! . . . .
e n—n is divisible by 2/¥1,
7
q q
. nT < %, and
217 e
<%

n

Note that the last item immediately guarantees (C6). We produce the required extension in two steps. The
main point is to prove (D5) for ¢ < p and ¢ < ¢’ and condition (C5) for g € P.

In the first step we extend to n? . This step is only necessary if E # @ and n? > n?. Let {ay | £ € |[FP~E|}
enumerate FP . E. For each f € QFP/, let ¢f := b;{l ~ bfc = b;{l ~ nP. Note that the ¢y are pairwise disjoint,
that their union is the interval [n?,n¢") and that in case F?" = @, we have ¢y = [n?,n?).

Let {cs(j) | j € my} be the increasing enumeration of ¢;. For each ¢ € |FP \ E| and each f € ZFP,, define

jemsn 2k, 2k + 2@)} : (3)
k

ag,Ney:= {cf(j)

Thus a, N [n?, nq/) is the disjoint union of the sets ag, N cy. We need to see that (D5) is satisfied for all 4
with n? <i < n? and all g € 2<F". Hence we fix such i and g. We may assume that dom(g) ¢ E (otherwise,
(D5) holds by ¢’ < p'). We will only show that

lin bg| 1
7 92| dom(g)|

+€P(9);

the second inequality is analoggus.
Let f=glp = glpr €257 hence f C g. By (C5) for p and f, we know that

1 2 (f)
P p. —
b > m <2Idom(f)| 8 ) :

p~pd |
n ﬂbf‘f

and by (D5) for ¢’ < ¢ and f,

' 1
. g . » ]
‘zﬁbf‘<z <72d0m(f) + ¢ (f)),
thus

i—nh 9i-er(f)
<gldem(nl T T8

([np, i) N b

For f' € 27" with f C f’ we have, by (*3),

1

. FP\E
§W~|Zﬂcjw|+2l ~El

P Al | — s a
[n ,z)ﬂbf,ug‘ = ‘zﬂcf/ Nbg,

FP\E

Indeed, if 7 is such that i Ncp = {cp(j) | j € m}, where m < my is divisible by 2/F"~Fl  then the partition
in (x3) yields that the set on the left-hand side has size exactly m -|i N ¢yr|. Therefore, for other 4,
the error is at most 2/¥">Fl and the inequality follows.
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Since [nP,4) N bY is the disjoint union of the [n?,i) N b%, , and [n?,i) N b;{/ is the disjoint union of the
iNcyr, we see that

el = 3 Jwnin,
fCrrear?
1 / |
oldom(g)~E| ) , |FP' dom(f)| . o| FP\E]|
= 2l dom(g)~E]| Z lincy|+2 9
fCrrear”
1 ’
ST de N 1 q |F?|
< Sdom(g)~E| ‘[”p’l)ﬂbf ‘ +2

9ldom(g)] * g .92ldom(g)~E|
and thus, by (C5) for p and g and (C6) for p, and using that g strictly extends f,

i N b _ [nP N b N |[n?,4) N b

i L e el .o 1 1o .
eP(g € € -eP(g
SQam@ Ty T 16 T8 Sdm@l T g

as required.

We now extend from n? to n = n? Let {a; | £ € |Fp |} enumerate F?'. Next let / = min{|F?
FP'||F9 < F¥|}. Let {agemr 1 £ < (} enumerate the next £ many elements of F?~ F? = FP~ E, and let
{anpirqymr 1 £ < (} enumerate the next # many elements of F4' ~ F?". Finally let {ay | |F¥'|+2( < ¢ < |F|}
enumerate the remaining elements of F. Define

ag, N ne,n) = U[nq/ 4+ 20 g n? 4 20 | 4 20 (*5)
k

for ¢ < |F|. First, we need to show (D5) for all i with n¢ < i < n and all g € 255" U 2<F" Fix such i and

g. Without loss of generality, we may assume g € 2577, (For g € 2=F" the proof is the same.) Again, we
only show the inequality
i 0 b 1
i 9| dom(g)|

+(g).

By (*5) and the choice of the sequence of the «y, we have

’
q
n P
221F7,

i_
q q
‘[” 1) NG ‘ = ldom(g)]

Thus, by (x4) for nd’, we have
i N b _ [n? N b N [[n?,4) N b

1 7-eP(g)  22F7I 1
Sodom@ T g T 5 < gldom(y)]

+€P(g),

as required.
Finally, we need to show condition (C5) for ¢ and g € 2=F. Since n — n? is divisible by 2171 it is easy
to see that
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q/
’ n—n
q Dl —
‘[ ) 9 9| dom(g)|
Thus
’ p ’ ’
1 n —nd <|bg|< 1 n—n? nd
2| dom(g)| n — n — 2ldom(g)| n n’
’
. . . nd e
and the required inequality follows from “— < . |

Corollary 4.4. Let p € P and m € w. Then there is a condition ¢ € P with ¢ < p and n? > m. Furthermore,
we may require F4 = FP and €9 = P.

Proof. Apply Lemma 4.3 with E = @ (so p’ = ¢ is a trivial condition®) and ¢ = &?. O
Corollary 4.5. Let p € P and a € k. Then there is a condition q € P with ¢ < p and a € F1.

Proof. We may assume « ¢ FP. Apply Lemma 4.3 with E = {a} (so p’ is a trivial condition) and arbitrary
¢ with F¢' = E = {a}. O

Corollary 4.6. Let p € P and e: 257" — Q1 with e(f) < e(g) whenever f C g. Then there is a condition
q € P with q < p such that €1(f) < e(f) for all f € 2=F",

Proof. Apply Lemma 4.3 with E = & (so p’ = ¢’ is a trivial condition). O

Lemma 4.7 (compatibility lemma). Assume p,q € P are such that n? = n?, a? = a? for all o € FP N F,

and P [o<rrnrry = €¥]9<Frarry. Then p and q are compatible.

Proof. Apply Lemma 4.3 with p =p, E = F?, m = nP, and € = ¢P. Note that ¢’ = ¢ satisfies the necessary
assumptions. O

Corollary 4.8 (ccc). P satisfies Knaster’s condition (and thus is ccc) and therefore preserves cardinals.
Proof. This follows from a A-system argument together with Lemma 4.7. O
Definition 4.9. For X C k, let Px be the collection of conditions p € P, with F? C X.

Corollary 4.10 (complete embeddability). For any X C k, Px completely embeds into P.

Proof. By Lemma 4.3, p’ = p|y € Px is a reduction of p € P,. O

Note that since P, is countable, it is forcing-equivalent to Cohen forcing C,,, and P,,, is forcing-equivalent
to the partial order C,, adding w; many Cohen reals, by Corollary 4.10 and well-known arguments (see
e.g. [2, Theorem 3.2])."

Let G be P-generic over V. For a < &k, let A, = [J{a& | p € G}. By the corollaries of Lemma 4.3
(Corollary 4.4, Corollary 4.5 and Corollary 4.6), we immediately see:

8 The forcing P does not contain a single trivial condition because there are many conditions with empty FP, but with different
n? and &P (). However, all these trivial conditions are identified with the maximal element in the complete Boolean algebra
associated with P.

9 For k > w1, it is easy to see that C, still completely embeds into P, (this also follows from [2, Theorem 4.8], because P, is
semi-Cohen), but not forcing-equivalent to P, any more.
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Corollary 4.11. {A, | o < Kk} is a 1/2-independent family.

Next, combining the basic idea of Hechler’s classical work [15] with the combinatorics of Lemma 4.3, we
have:

Lemma 4.12 (mazimality). {Aq | @ < K} is a mazimal 1/2-independent family. Moreover, for any ccc forcing
Q inV, {As | a < K} is still mazimal in the P x Q-generic extension.

Proof. Let B be a P x Q-name for an infinite and coinfinite subset of w. For each i € w, let M; be a maximal
antichain of conditions deciding i € B. By Corollary 4.8, each M; is at most countable because the product
of a ccc forcing and a forcing satisfying Knaster’s condition is ccc. Thus we can find a countable X C &
such that F? C X for all (p,p) € U, M;. Let § € k \ X. Clearly, it suffices to show:

Claim. Assume (po,po) € P x Q forces that B is 1/2-independent from all A, for a € X. Then (po, po)
forces that for all k, there is an £ > k such that

|€ N B N A5| S §
i 8’
(Note that, analogously, we can show that (po, po) forces that for all k there is an ¢ > k such that

N BN Ag| 1
14 8’
and in fact, it is not difficult to see that an elaboration of the argument shows that (po, po) forces d(BNAg) =
0 and d(B N Ag) = 1/2.)
Fix (p,p) < (po,po) in P x Q and k. We need to find ¢ > k and (r,7) < (p,p) forcing the required

statement. We may assume nP > k and 8 € FP. We may also assume that for fy with dom(fy) = {8} and
f(B) =1 e (fo) < Vo
Let p’ = ply. For f € 25F" V18} with B € dom(f), let C'f denote the P x Q-name

ﬂ Ay N ﬂ (w~ Ay) N BI®

aFp, aFB,
fla)=1 f(a)=0

where B! = B and BY = w ~ B. By assumption on B, we may find (¢’,q) < (p/,p) with F? C X and
k' > nP such that

inC 1 ()

o g <F*'u{p},
(@ DIFVizk Vfe2 N ordom(N1| < 16

(*6)

We may assume n? > k',

Now apply Lemma 4.3 with p, E = X, m = k/, ¢ = € and ¢ to obtain ¢ such that ¢ < p, ¢ < ¢,
F4 = F7 UFP gi(f) = eP(f) for all f e 25F"  25F” and 9(f) > 16 for all f whose domain is not
contained in either FP or F7. Let ¢ = 4l xugpy- We may assume ¢’ = qlx = ¢"[ x.

Let £ > 8n9. We may find (r',7) < (¢, q) with F”" C X such that (+',7) decides BN ¢. By Corollary 4.4,

we may also assume

92(IF[+1) o (#7)
— <= *
n’ 8 ’
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and n™ > (. Next, let (s/,5) < (,7) with F*" C X such that (s’,5) decides B N n"". We now define a
condition 7"’ € P with "/ <7’ and r” < ¢” as follows:

« F'=F"U{B}=F"UF",

" ’

e n” =n",
o a =dl foraeF", ag” Nn? = af, and, forﬂnq <i<n,ic ag, iff (s/,5) I-i € B, and
o &l epm =", (f) =7 (f) for f € 257" with 8 € dom(f), and " (f) > 16 for all remaining f.

We need to check that 7’/ is indeed a condition and r” < ¢”. (+"” <’ then follows trivially.)

We first check (D5) for 7 < ¢”. Fix i with n? <i <n"". Also let f € 9<F” U{8} with B € dom(f). (There
is nothing to show for other f, because they either belong to QSFT, or they satisfy 5T”(f) > 16.)

We will show only

inoy | 1
< raempy "),

1

since the other inequality is analogous. By assumption on (¢, ¢) and (s, 5), we know

] . L e
/ q q . —
(s',5) I- [nT N Cy| > n (Qdom(f)l 16 )

and

L 1 e’ (f)
(s',38) IF ’Zﬂcf’<l'(2|dom(f)|+ 16 )

Therefore

it o) i)
gldom(Nl T 16 T 16

(s',5)IF |[n9, ) N Cy| <
By the definition of ag”, we now see that

it i) i)
Sodem T 16 T 16

][nq, iy oy’

On the other hand, by (C5) for ¢ and f,

" 1 Ep(f)
q T — q q .,
n ﬁbf = ‘bf‘ <n <2|dom(f) + 8 )
Hence
inby
‘ ! 1 n? 3-eP(f) eP(f) 1 )
v < 92| dom(f)] + 16 16 < 9| dom(f)] +e7(f),

as required for (D5). Furthermore, using n” > 8nd, the previous formula with i = n" gives

7", 7"//
AL IS SN0
nr’ 2| dom(f)] 8
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as required for (C5). On the other hand, since |F™"| = |[F"'| + 1, (C6) is an immediate consequence of (#7).

Finally, apply Lemma 4.3 with p=¢, E = X U{B}, p' =¢’, m =¥, e =% and ¢’ =" to obtain r with
r < g, 7 < 7. In particular, we have r < p, and since < "/, (r,7) forces that [n?,¢) N B = [n9,£) N Ag.
Now note that

(', 7) I [ 0 B < n? (1 i Ep(fo)>

2 16
and
= : 1 e”(fo)
(r’,r)H—’EﬂB|>€-<§— 6 )
Therefore

C—nt 0-eP(fy)
2 8

(r,7) I |[n9,0) N B| = |[n%, ¢) n BN Ag| >

and hence, using ¢ > 8n? and €P(fy) < /2,

)‘F|€ﬂBﬂAﬁ‘>€—nq7€p(fo) 7 1 3
{ 20 8 16 16 8

(r,7
as required. O
Thus we obtain:

Theorem 4.13. Let x be an uncountable cardinal. There is a generic extension with a mazimal 1/2-independent
family of size k.

Using a finite support product of forcings P, together with an argument due to Blass ([3, Theorem 9]),
we see:

Theorem 4.14. Let V be a model of ZFC and GCH. In V', let C be a closed set of uncountable cardinals with
Ny €C, kel for Ny <k <|C| and AT € C for A € C with cf()\) = w.

Then there is a ccc poset Q forcing ¢ = max(C) and, in the generic extension, there is a mazimal
L/2-independent family of size k if and only if K € C.

Proof. We force with the finite support product of the P, for x € C. Then by Lemma 4.12, there is a
maximal 1/2-independent family of size k for each x € C. The argument that there is no maximal 1/2-
independent family of size x for each k ¢ C' is exactly like the corresponding argument in [3, Theorem 9]
(see [10, Theorem 3.2] for a similar argument). O

Embedding the partial order P (for A of countable cofinality) into the template framework as in [6], we
see:

Theorem 4.15. Assume CH and let A be a singular cardinal of countable cofinality. Then there is a forcing
extension satisfying i1/, = . In particular, i1/, = N, is consistent.

Roughly speaking, this can be proved by replacing Hechler forcing by localisation forcing (as in the proof
of Lemma 3.9) and Hechler’s poset for adding a mad family of size A\ by the poset Py in the framework
of [6]. Since many of the details are as in the latter article, we refrain from repeating the fifteen-page-long
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proof and only point out the differences. We ask the reader to have [6] (and, as for the proof of Lemma 3.9,
the recent [8]) at hand.

Assume the linear order (L, <r) is the disjoint union of the sets LP**¢ and Li**.!" The intention is that
LP™4 denotes the coordinates for generically adding a maximal 1/2-independent family A with the forcing of
Definition 4.1 and L*" is the set of coordinates for the LOC-iterands exactly as in the proof of Lemma 3.9.
The LOC-generic with index 2 € L'**" will be generic over members of A with index y < z, y € LP™, but
not over the others. To this end, we call a set A C L closed iff for all z € A and y < z with y € LP™9d, y
also belongs to A. For arbitrary A C L, its closure is defined by cl(A4) := AU, LPd We adapt the
definition of “template” (Definition 3.10) to this context as follows:

Definition 4.16 (see [6, pp. 2635-2636]). A template is a pair (L,Z) with L = LP*4 U Li** and T = {Z, |
x € L'*"}) such that (L, <p) is a linear order, Z, C P(L,) consists of closed sets for z € Li* and

(1) Z, contains LP™9 as well as cl({y}) for all y € Li*" and is closed under unions and intersections,
(2) Z, €I, for x < y, and
(3) Zlpiter := Upepiter Lo [ piver U{L""} is well-founded with respect to inclusion, as witnessed by the depth

function dpz, : I piver = Ord.

Liter

If ACL and v € L*", we define Z,[, = {BNA|Be€Z,)}andlet Z| 4 = {Z,[4 | v € AN Li*r}.

The depth function can easily be extended to all of 7 := (¢ piver Zo U{L} by dpz(4) = dpz; ., (AN Liter)
for A € Z. This means a set has depth 0 iff it is a subset of LP™9. We can now recursively define the iteration,
exactly as in [8, Definition and Theorem 23], with the added twist that the basic step is not the trivial forcing
but the forcing adding the maximal 1/2-independent family. For closed A C L define P[4, basically as in [6,

Definition, pp. 2636-2637]:

e dp(A) = 0. This means A C LP™4, Then P[4 = P4 in the sense of Definition 4.9 with the only change
that A is an arbitrary set and not necessarily a set of ordinals.

e dp(A) > 0. PJ, consists of all finite partial functions p with domain contained in A such that p[;prea €
P gnzerea and, letting 2 = max(dom(p) N L'*T), there is B € T, 4 such that p|4~; € P|p and p(z) is
a P | g-name for a condition in LOC.
The ordering on P[4 is given by ¢ <p;, p iff dom(q) 2 dom(p), ¢l pprea <p, .4 PlLeroa, and, letting
@ = max(dom(g) N L'*T), there is B € Z,| 4 such that p[4~z ,ql sz, € Pl and
— either z ¢ dom(p) and gl 4nz, <Pi, Planc, )
- or x € dom(p), ¢l anr, <P, Planr,, and p(z) and ¢(z) are P|g-names for conditions in LOC such

that gl anz, IFp1, ¢(7) <poc P(T).

As remarked in both [6] and [8], to see that this definition works, one actually has to prove a number of facts
along the iteration including complete embeddability. Most of this does not depend on the particular forcing
notions iterated, but only on the template structure, and thus the arguments of [6] carry over; however,
there is one place in the proof of complete embeddability ([6, Main Lemma 1.1]) where the iterands matter,
and we therefore state the lemma and point out the changes.'!

Lemma 4.17. Let B € T and A C B be closed. Then Pz is a partial order, P[4 C Pz and even P[4, <P [ 5.
More explicitly, any p € P[5 has a canonical reduction pg = po(p, 4, B) € P[4 such that

10 pprod and Lit* are called Lymag and Liech in [6], respectively.
11 An alternative approach would be to redo [8, Definition and Theorem 23] in a framework with LP™9. This is more general, but
also involves more work. Therefore we stick to [6].
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(1) dom(po) = dom(p) N 4,
(2) oPo = 0P for all x € dom(pgy) N L*" and po(x) = p(z) for all x € dom(pgy) N LP4,

and such that, whenever D € T, B,C C D, C closed, CNB = A, and qo € P [, extends py, then there is
q € Plp extending both qo and p.

Recall here that for € dom(p) N L*", p(x) = (0F, @) is a P| z-name for a condition in LOC for some
B € I,lg, and we may assume that pl 5 decides the first coordinate (because it is finite), that is, o2 is not
a name.

Proof. We conduct recursion induction on dp(B) = . Work with [6, Main Lemma 1.1] at hand. The parts
referring to the template (and this is most of the proof) are exactly as in that proof, so we will not repeat
them. However, since LOC is different from D, the construction of the canonical projection ¢F° of @P
(bottom half of p. 2638 in [6]) has to be changed, as follows:

We are given p € P[5 and = max(dom(p) N Li*"). There is B € Z, | 5 such that p = plpar, € Pl and
¢P is a P [ z-name. Letting A= ANDB, wesee A€ T,[,. By induction hypothesis, P 1 <Plzand p has a
reduction pg = po(p, A, B) € P| ;. We may assume z € A, for otherwise, there is nothing to show (Case 2

in [6]).
Work with the ¢cBa’s B; = r.0.(Pl;) and B = r.0.(P[3). Let n := |o2|. Thus p IF |@E(:)] < n for all
i. Consider a partial function 7 such that dom(7) = [n,m) for some m = m, > n and 7(i) € [w]<" for

all i € dom(7), and let b, = [Vi € dom(7): ¢P(i) = 7(¢)] N p. Notice that for fixed m > n, the b, with
m, = m form a maximal antichain below p. Let aX be the product of py and the projection of b, to B .
Then Y {a* | m; = m} = py for m > n. Define a, by recursion on m, > n as follows: a, = py for m, =n
(note that 7 is the empty function in this case). Let {u; | j € w} list [w]=". For 7 with m = m, > n let
ar =arp, (@7 N2, arp, ~(u;)) Where k is unique such that 7(m — 1) = uy. It is easy to see that for
fixed m > n, the a,; with m, = m form a maximal antichain below py. Therefore they canonically define a
P s-name L such that po IFp; , [££0 ()] < n for all ¢."?

The main property of this name is that for all o € ([w]<¥)<* with |o(i)] < ¢ for ¢ € |o| and o2 C o,
al, = >{ar | m; = |o| and 7(i) C o(i) for all ¢ with n < i < |o|} is a reduction of b, = > {b; | m, =
|o| and 7(i) C o(4) for all ¢ with n < i < |o|}.

The rest of the argument can now be completed as in [6]. When defining the stronger condition ¢ on
coordinates from LP™ (see the two cases on pp. 2639-2640 in [6]), use Lemma 4.3. O

The whole forcing P |, is ccc [6, Lemma 1.2], and if p is regular uncountable, u C Li** is cofinal in L,
and L, € Z, for all @ € p, then P|; forces add(N) = cof(N) = p (this is like [6, Proposition 1.6] and
exactly as in the third paragraph of the proof of Lemma 3.9).

Lemma 4.18. Assume L has uncountable cofinality and LP™¢ is cofinal in L. Then P|; adds a mazimal
L/a-independent family.

Proof. This is analogous to [6, Proposition 1.7]. However, since Pyproa is a much more complicated forcing
than the forcing adding a mad family, the proof is more complex and the combinatorial and computational
details are much more like the proof of Lemma 4.12 above. We provide an outline, explaining in detail how
to adapt the latter proof to the present context.

Let A = {A, | # € LP™} be the generic !/2-independent family added by P[}poa (Which completely
embeds into P|;). See between Corollary 4.10 and Corollary 4.11 for the definition. We need to check

2 Notice that the values of ¢P (and ¢P°) at i < n are irrelevant for the definition of the partial order, and that is why we omitted
them here; one may actually assume that the domain of these functions is [n,w).
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maximality, so let B be a P[;-name for an infinite and coinfinite subset of w. By [6, Lemma 1.4] (cf.
[8, Lemma 25]), there is a countable set C' C L such that B is a P(cy-name. Since L has uncountable
cofinality and LP™9 is cofinal in L, there is € LP*4 such that cl(C) C L,. Therefore B is a P| L, -hame.

Claim. Assume pg € P[; forces that B is L/2-independent from all Ay fory € LP*Y. Then py forces that for
all k, there is an £ > k such that

WNBNA,| 3
S

Fix p < po in P|; and k. We need to find ¢ > k and 7 < p in P[; forcing the required statement. Let
P = Plr,upeod. Now redo the proof of Lemma 4.12 with p instead of (p,p) (and similarly ¢, 7, ... instead
of (q,q), (r,7), ...). Furthermore, let p = p[proa, p' = Plpproa and p=ply (and similarly for ¢, r, ...). p
plays the role of (p/,p) and = and LP™4 play the roles of 8 and X, respectively. Choices for other items are
exactly like in Lemma 4.12.

As before, first find ¢ < p in P[; and &’ such that ¢ forces the statement in (). From Lemma 4.3
we obtain again ¢ extending both ¢ = [ p0a and p in P[ypea. This gives us ¢ in P[y | rproa such that
qlporoa = g and [ piver = [ picer. Also let ¢” = ql gy

Next, fix £ and find # < ¢ in P [, deciding B¢, and then § < # deciding B N n" (where 1’ = [ proa ).
Define r” < 7/, ¢" in P[}proa (x} 88 before. The proof that this is indeed a condition extending ¢” carries
over verbatim. Thus we can again apply Lemma 4.3 to obtain r extending both r” and ¢ in P [ prea. We

then see that 7 € P[;  pproa, defined by 7 poroa := 1 and 7| pier 1= 7 Liter, forces the required statement.
In the last step (note that this is different from the proof of Lemma 4.12), we define 7 € P[; by
Flp, uperea := 7 and 7(y) := p(y) for y € dom(p) N (L** \ L,). Clearly 7 < p, 7 is as required. O

We next recall the definition of the template we are using here [6, Definition, p. 2643]. Assume Ay > N, is
regular and A > A is a singular cardinal of countable cofinality, say A = [J,, A, with A, regular, equal to ARo
and strictly increasing. Also suppose s < )\, for k < \,. For each n, choose a partition \* = S
such that each Sy is coinitial in A};. Also assume S5 N A}, = S5 for m < n.

a<wi

Definition 4.19 (c¢f. Definition 3.11). Elements of L are non-empty finite sequences x such that

. .’L’(O) € Ao,
o z(n) € XS UM, for 0 <n < |z| —1, and
e in case |z| > 2,
— if z(|z| — 2) is positive, then z(|z| —1) € [, _; U A,
— and if z(|z| — 2) is negative, then z(|z| — 1) € A* U Az _1.

Let x € Li* if |z| = 1 or z(Jz| — 1) € Afzj—1 U Alz|—1; otherwise = € LPd. The order on L is naturally
given by = < y if

o either x 2 y and y(|z|) is positive,
e or y 2z and x(|y|) is negative,
o or, letting n := min{m | z(m) # y(m)}, x(n) < y(n) in the natural ordering of A\* U A.

Clearly, this is a linear ordering. Identify sequences of length one with their ranges so that A is cofinal
in L. “Relevant” members of Li**" are defined exactly as before, between Definition 3.11 and Definition 3.12
(see also [6, p. 2643]).
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Definition 4.20 (c¢f. Definition 3.12). For x € L*", let T, consist of finite unions of

e L, where o <z and o € g,

o cl(Jy) where y < z is relevant,
o cl({y}) where y € Li*" and

. Lprod.

Then (L,Z) with Z = {Z, | € L"*'} is indeed a template [6, Lemma 2.1].

Proof of Theorem 4.15. Take the template (L,Z) introduced above and let P = P[,. By the properties of
L, we see that P forces add(N) = cof(N) = A\¢ (see the comment immediately preceding Lemma 4.18)
and that it adds a maximal !/2-independent family of size A by Lemma 4.18. Thus ti/, = Ao < i1, < A
(cf. [6, Corollary 2.2]). Therefore it suffices to show that there are no maximal 1/2-independent families of
size k with A\g < k < A. This is done by an isomorphism-of-names argument; since this argument does not
depend on the individual forcings, but only on the structure of the template, it works exactly as in the
corresponding proof in [6, Section 3]. Only the very end of this proof needs to be changed, in a way similar
to how the proof of [8, Theorem 30] was changed in Lemma 3.9. We provide the details of this last step and
request the reader again to have [6] at hand.

In the last paragraph of that proof of the latter (p. 2648), we know by construction that whenever
F C k is finite, we can find o < w; such that B® U UﬂeF Bf and B~ U UﬁeF B? are weakly isomorphic
and such that
this mapping identifies cofinal subsets of the traces of Z on the two sets (in fact, this is true for all but

via the mapping fixing nodes of Uﬂe P B? and sending the z” to the corresponding z¢,

countably many «). This weak isomorphism canonically extends to a weak isomorphism of C* U BeF cP
and C* UJgep CF, which in burn means that P FCKUUBQF e and Ploayyy,_, s are isomorphic [6, Lemma
3.2] by a mapping sending A" to A%. Since {A” | 8 € {a} U F} is forced to be 1/2-independent (by
Ploauy,., os), {AP | B € {k}UF} is forced to be 1/2-independent (by the isomorphic P lemil e p c#)- This

completes the proof of the non-maximality of a family A of size &. m|

For a similar argument, cf. [12]. Note that since cov(N) is a lower bound of i./,, it is clear (and much
easier to prove) that i1/, can be a singular cardinal of uncountable cofinality (in the appropriate random
model).

5. Open questions

While we have shown that several of our newly defined cardinal characteristics are, in fact, new, there
are still a number of open questions.

Question A. We summarise the open questions related to Fig. 1:

(Q1) Does Con(s:/, < non(N)) hold or is s/, = non(N)?

(Q2) Does Con(d < 51751, < 51/,) hold or is 51/, < 0? (If it is the latter, we already know Con(si/, < 0) by
Con(non(N) < 0).)**

(Q3) Which of the following statements are true?

Con(s <si),) or s=sj,

13 Since the writing of this paper, the consistency of ? < 51/,4c as well as of the dual b > vi/,4. has been proved independently

by Farkas, Klausner and Lischka and by Valderrama.
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Con(s)), <si,) or sy, =sy,
Con(ﬁl/szE < 51/2) Or  Si/p4. = 51/5
(Q4) Given £ > ¢’ and an e-almost bisecting family, can one (finitarily) modify it to get an &’-almost
bisecting family of equal size? (If yes, then s./,4. is independent of e. If not, then inf.¢c (g 1/2) §1/54c
and sup.¢(g,1/5) 5172+ Might be interesting characteristics, as well.)

(Q5) Can characteristics in the upper row of the diagram consistently be smaller than ones in the lower
row? Specifically, which of the following statements are true?

Con(si/4. < 5%‘}2) Or  Si/pc > 81,
Con(sijpte <515,)  OF  Sipte > 57,

Con(si, <si,) or Sy, > sy,
Question B. We summarise the open questions related to Fig. 2:

Is it consistent that i, < 280?

Which relations between i: o5 bx and i are true or consistent?
Are there any smaller upper bounds for i1/, and i,?

Which relations between 51/ and s, are true or consistent?

0000
0
N AR AN AN

) Which of the following statements are true?

Con(cov(N) <ti,) or cov(N) =1y,
Con(ty, <t.) or tiy, =1

Con(s, <non(N)) or s, =non(N)

We suspect that (Q6) might be provable (via Con(i. < i)) using the same idea as in Lemma 3.16. In
an earlier draft of this paper, we had a somewhat convoluted creature forcing argument (with the help
of some probabilistic sleight of hand) intended to prove Con(si, < non(N)), which unfortunately turned
out to be incorrect. It seems plausible that such a creature forcing construction might be able to prove
the intended result, after all; if an analogous probabilistic argument can be reproduced for s,, a similar
approach might also work to answer the third part of (Q10) and prove Con(s, < non(N)). Finally, since it
is not too difficult to ensure that a creature forcing poset keeps cov(N') small (compare [11, Lemma 5.4.2]
or [13, Lemma 7.8]), a clever creature forcing construction might be able to answer the first part of (Q10)
and prove Con(cov(N) < t1),).

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that
could have appeared to influence the work reported in this paper.

References

[1] Tomek Bartoszyriski, Haim Judah, Set Theory: On the Structure of the Real Line, A K Peters, Wellesley, MA, 1995.

[2] Bohuslav Balcar, Thomas Jech, Jindfich Zapletal, Semi-Cohen Boolean algebras, Ann. Pure Appl. Log. 87 (3) (1997)
187-208, https://doi.org/10.1016/S0168-0072(97)00009-2, arXiv:MATH/9506208 [math.LO].

[3] Andreas Blass, Simple cardinal characteristics of the continuum, in: Judah Haim (Ed.), Set Theory of the Reals, in: Israel
Mathematics Conference Proceedings, vol. 6, Gelbart Research Institute for Mathematical Sciences, Bar-Ilan University,

Ramat-Gan, 1993, pp. 63-90, arXiv:math.L.LO/9405202.


http://refhub.elsevier.com/S0168-0072(23)00060-X/bibDDD70BBAF5BE05E1E9CADED444C03095s1
https://doi.org/10.1016/S0168-0072(97)00009-2
http://refhub.elsevier.com/S0168-0072(23)00060-X/bibEA27B4AF00CE1C3FD20731B5919BE6EDs1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bibEA27B4AF00CE1C3FD20731B5919BE6EDs1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bibEA27B4AF00CE1C3FD20731B5919BE6EDs1

Sh:1150

J. Brendle et al. / Annals of Pure and Applied Logic 174 (2023) 103303 33

[4] Andreas Blass, Combinatorial cardinal characteristics of the continuum, in: Matthew Foreman, Akihiro Kanamori (Eds.),
Handbook of Set Theory, Springer, Dordrecht, 2010, pp. 395-489, also available at http://www.math.lsa.umich.edu/
~ablass/hbk.pdf.

[5] Jorg Brendle, Mad Families and Iteration Theory, Logic and Algebra, Contemp. Math., vol. 302, Amer. Math. Soc.,
Providence, RI, 2002, pp. 1-31.

[6] Jorg Brendle, The almost-disjointness number may have countable cofinality, Trans. Am. Math. Soc. 355 (7) (2003)
2633-2649, https://doi.org/10.1090/S0002-9947-03-03271-9.

[7] Jorg Brendle, Templates and iterations: Luminy 2002 lecture notes, in: RIMS Kokyuroku 1423 Forcing Method and Large
Cardinal Axioms, 2005, pp. 1-12, HDL: 2433/47211.

[8] Jorg Brendle, Modern forcing techniques related to finite support iteration: ultrapowers, templates, and submodels, arXiv:
2101.11494 [math.LO].

[9] Andreas Blass, Saharon Shelah, There may be simple Py, and Py,-points and the Rudin-Keisler ordering may be downward
directed, Ann. Pure Appl. Log. 33 (1987) 213-243, https://doi.org/10.1016,/0168-0072(87)90082-0.

[10] Jorg Brendle, Otmar Spinas, Yi Zhang, Uniformity of the meager ideal and maximal cofinitary groups, J. Algebra 232 (1)
(2000) 209-225, https://doi.org/10.1006/JABR.2000.8396, also available at https://core.ac.uk/download/pdf/82709895.
pdf.

[11] Arthur Fischer, Martin Goldstern, Jakob Kellner, Saharon Shelah, Creature forcing and five cardinal characteristics in
Cichont’s diagram, Arch. Math. Log. 56 (7-8) (2017) 1045-1103, https://doi.org/10.1007/S00153-017-0553-8, arXiv:1402.
0367 [math.LO].

[12] Vera Fischer, Asger Térnquist, Template iterations and maximal cofinitary groups, Fundam. Math. 230 (2015) 205-236,
https://doi.org/10.4064/FM230-3-1, arXiv:1310.3245 [math.LO].

[13] Martin Goldstern, Lukas Daniel Klausner, Cichoni’s diagram and localisation cardinals, Arch. Math. Log. 60 (3-4) (2021)
343-411, S00153-020-00746-3, arXiv:1808.01921 [math.LO].

[14] Lorenz J. Halbeisen, Combinatorial Set Theory: With a Gentle Introduction to Forcing, Springer Monographs in Mathe-
matics, Springer, London, 2 2017.

[15] Stephen H. Hechler, Short complete sequences in BN\N and small maximal almost-disjoint families, Gen. Topol. Appl.
2 (3) (1972) 139-149, https://doi.org/10.1016,/0016-660X(72)90001-3.

[16] Saharon Shelah, Two cardinal invariants of the continuum (9 < a) and FS linearly iterated forcing, Acta Math. 192 (671)
(2004) 187223, https://doi.org/10.1007/BF02392740.

[17] Jerry E. Vaughan, Small uncountable cardinals and topology, in: Jan van Mill, George M. Reed (Eds.), Open Prob-
lems in Topology, North-Holland, Amsterdam, 1990, pp. 195-218, available at https://pdfs.semanticscholar.org/9065/
6lale45b49a2ab816e088ffd33279c05a3ba.pdf.


http://www.math.lsa.umich.edu/~ablass/hbk.pdf
http://www.math.lsa.umich.edu/~ablass/hbk.pdf
http://refhub.elsevier.com/S0168-0072(23)00060-X/bib8207F46DA6A4930E45BFEEC3E16964DDs1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bib8207F46DA6A4930E45BFEEC3E16964DDs1
https://doi.org/10.1090/S0002-9947-03-03271-9
http://refhub.elsevier.com/S0168-0072(23)00060-X/bibA9BDF48974F638928F4167AD02B61FEDs1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bibA9BDF48974F638928F4167AD02B61FEDs1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bib6E0E351E29B38BD3A9731BDEB26A6F11s1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bib6E0E351E29B38BD3A9731BDEB26A6F11s1
https://doi.org/10.1016/0168-0072(87)90082-0
https://doi.org/10.1006/JABR.2000.8396
https://core.ac.uk/download/pdf/82709895.pdf
https://core.ac.uk/download/pdf/82709895.pdf
https://doi.org/10.1007/S00153-017-0553-8
https://doi.org/10.4064/FM230-3-1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bib7555B4F0C30FF860F6D579C79E3FA8E1s1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bib7555B4F0C30FF860F6D579C79E3FA8E1s1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bibBD403275C8D24BBC19EB1D248EB0F0D2s1
http://refhub.elsevier.com/S0168-0072(23)00060-X/bibBD403275C8D24BBC19EB1D248EB0F0D2s1
https://doi.org/10.1016/0016-660X(72)90001-3
https://doi.org/10.1007/BF02392740
https://pdfs.semanticscholar.org/9065/61a1e45b49a2ab816e088ffd33279c05a3ba.pdf
https://pdfs.semanticscholar.org/9065/61a1e45b49a2ab816e088ffd33279c05a3ba.pdf

	Halfway new cardinal characteristics
	1 Introduction
	2 Characteristics related to s
	3 Characteristics related to r and i
	4 More on i1/2
	5 Open questions
	Declaration of competing interest
	References


