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1. Introduction

Maximal almost disjoint families and their relatives have been studied by set theorists for decades. As 
the construction of such families is typically being done using the axiom of choice, questions about their 
definability naturally arise. The definability of mad families was investigated by Mathias who proved the 
following:

Theorem ([7]). There are no analytic mad families.

The possibility of the non-existence of mad families was investigated by the authors in [3] where the fol-
lowing was proved (earlier such results were proven by Mathias and Toernquist using Mahlo and inaccessible 
cardinals, respectively):

Theorem ([3]). ZF + DC + “There are no mad families” is equiconsistent with ZFC.
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In this paper we shall study maximal eventually different families in ωω. Recall that f, g ∈ ωω are 
eventually different if f(n) �= g(n) for large enough n. A family F ⊆ ωω is a maximal eventually family if 
the members of F are pairwise eventually different, and F is maximal with respect to this property. Our 
main goal is to construct in ZF a Borel maximal eventually different family, thus answering a question 
asked by several set theorists (see for example [1], [6] and [15]) and showing that the analog for the above 
theorems is not true for maximal eventually different families.

Before embarking on the proof of our main result, we shall briefly overview some relevant previous results, 
as well as newer results that were established after the first appearance of this paper online. In a classical 
paper of Miller [8], it was shown that coanalytic mad families exist in L. This result was obtained together 
with Kunen, and the same argument establishes the existence of a coanalytic MED family in L. Miller’s 
technique was further extended by Vidnyanszky in [16] establishing the existence of coanalytic instances in 
L of many other maximal sets of reals. Later work then established some combinatorial constraints that an 
analytic MED family must satisfy. An eventually different family F ⊆ ωω is called κ-maximal if for each 
{fα : α < κ} ⊆ ωω, there exists g ∈ F such that, for every α < κ, either g ∩ fα is infinite or fα is in the 
ideal on ω × ω generated by F . Kastermans, Steprans and Zhang showed in [6] that no analytic eventually 
different family can be ℵ0-maximal. This was later improved by Raghavan in [10], who showed that analytic 
eventually different families can’t be 2-maximal. It was also shown in the same paper that if F ⊆ ωω is 
an analytic eventually different family, then the set of A ⊆ ω for which there exists f ∈ ωA such that f is 
eventually different to all members of F contains a copy of ∅ ×FIN . Finally, following the proof of the main 
result in the current paper, Schrittesser improved our result obtaining a lightface Π0

1 MED family ([11] and 
[12]). It should also be noted that the closely related line of research regarding the definability of maximal 
cofinitary groups has followed a quite parallel line of developments. Gao and Zhang showed in [2] that in 
L there exists a coanalytic set of permutations which generates a maximal cofinitary group. This was later 
improved by Kastermans in [5], where he established the existence of a coanalytic maximal cofinitary group 
in L. Analogously to the main result of this paper, a breakthrough was achieved in [4], where we established 
the existence of a Borel maximal cofinitary group in ZF . Our result was then improved by Schrittesser in 
[13] and Mejak-Schrittesser in [9], culminating in the construction of a Σ0

2 maximal cofinitary group. For a 
detailed overview of this area of research, we refer the reader to [14].

2. The proof

Theorem 1 (ZF ). There exists a Borel MED family.

Observe that the notion of a Borel MED family can be defined for AB whenever |A| = ℵ0 = |B|, and 
it’s enough to prove that for some A and B of cardinality ℵ0, there is a Borel MED family in AB (with the 
natural Polish topology).

Definition and Claim 2. a. Let T∗ = 2<ω.
b. F∗ = {f : f is a function from 2<ω to H(ℵ0)}.
c. For n < ω let F∗

n = {f � 2<n : f ∈ F∗}.
d. For f, g ∈ F∗ let eq(f, g) = {ρ : f(ρ) = g(ρ)} and dif(f, g) = 2<ω \ eq(f, g).
e. Let EDF = {F ⊆ F∗ : (∀f �= g ∈ F)(|eq(f, g)| < ℵ0)}.
f. Let MEDF = {F ∈ EDF : F be maximal}.
g. Let B : F∗ → 2ω be an injective continuous function.
h. Let F1 : F∗ → F∗ be defined as F1(f)(ρ) = f � 2<lg(ρ).
i. Let G0 = {F1(f) : f ∈ F∗}.
j. Let G1 be the set of g ∈ F∗ such that for some f ∈ F∗, dif(g, F1(f)) is infinite and satisfies:
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1. (∀n)(|{ρ : B(f) � n � ρ ∧ ρ ∈ dif(g, F1(f))}| < ℵ0).
2. For every ρ ∈ 2<ω, if ρ ≤ B(f) then there exists at most one ν such that ρ ≤ ν ∈ dif(g, F1(f)) and 

ν ∩ B(f) = ρ.
k. For g ∈ G1, let fg be the unique f as in clause (j). We shall prove that fg is indeed unique, and can 

be Borel-computed from f .
l. For g ∈ G1 and fg as above, let wg = dif(g, F1(fg)).
m. Let G2 be the set of g ∈ G1 satisfying (1) and (2) where:
1. g � wg = fg � wg.
2. (∀ρ ∈ wg)(g(ρ) /∈ F∗

lg(ρ)) or (∀ρ �= ν ∈ wg)(g(ρ) ∈ F∗
lg(ρ) ∧ g(ρ) � g(ν)).

Proof (of clause (k)). Given g ∈ G1, let X1(g) = {ρ ∈ T∗ : g(ρ) ∈ F∗
lg(ρ)}. Let X2(g) = {ρ ∈ T∗ :

(∀ν1, ν2)(ρ ≤ ν1 ≤ ν2 → ν1, ν2 ∈ X1(g) ∧ g(ν1) ⊆ g(ν2))}, X3(g) = {ρ ∈ T∗ : |{ν : ρ ≤ ν ∈ T∗, ν /∈ X2(g)}| <
ℵ0} and X4(g) = {ρ ∈ X3(g): there are no incompatible ν1 and ν2 such that ρ ≤ ν1, ν2 ∈ T∗ and νl /∈ X2(g)
(l = 1, 2)}. As g ∈ G1, there is f as in clause (j).

We shall now prove that if ρ � B(f) then ρ ∈ X3(g) and moreover, ρ ∈ X4(g): By the definition of G1, 
Λn := {ν ∈ T∗ : B(f) � n � ν, g(ν) �= F1(f)(ν)} is finite for every n < ω. Now let ρ ∈ T∗ such that ρ � B(f)
and choose a minimal n such that B(f) � n � ρ. For every ρ ≤ ν ∈ T∗, if ν /∈ Λn then g(ν) = F1(f)(ν), 
therefore, ρ ≤ ν1 ≤ ν2 ∈ T∗ ∧ ν1, ν2 /∈ Λn → g(ν1) = F1(f)(ν1) ⊆ F1(f)(ν2) = g(ν2). It follows that 
ρ ∈ X3(g), moreover, by 2(j)(2), ρ ∈ X4(g): There is at most one ν such that ρ ≤ ν and ν ∈ dif(g, F1(f)). 
For every ρ ≤ ν′ which is not ≤ ν, g(ν′) = f � 2<lg(ν′), hence ν′ ∈ X2(g). It follows that ρ ∈ X4(g).

Therefore, for every n, |{ρ ∈ T∗ : lg(ρ) = n, ρ /∈ X4(g)}| ≤ 1. Note that Xi(g) (i = 1, 2, 3, 4) can be 
simply computed.

Note that by 2(j)(2), for every ρ ∈ 2<ω there exists ρ′ ∈ eq(g, F1(f)) above it, hence, if ρ ∈ X2(g) then 
ρ ∈ eq(g, F1(f)). Now suppose that ν1 �= ν2 ∈ 2n ∩ dif(g, F1(f)). If ν1 ∩ ν2 � B(f), then ν1 ∩ ν2 ∈ X4(g), 
contradicting the fact that ν1, ν2 /∈ X2(g) are incomparable. If ν1 ∩ B(f) = ν2 ∩ B(f) = ν1 ∩ ν2, then we 
get a contradiction to 2(j)(2). The only possibility left is that ν1 ∩ ν2 ≤ B(f) but ν1 ∩B(f) �= ν(2) ∩B(f), 
so wlog ν1 ∩B(f) < ν2 ∩B(f). Therefore, there are at most n elements ν ∈ 2n such that ν ∈ dif(g, F1(f)). 
As 2n−1 > n for 3 ≤ n, we have established the following:

(∗) If 3 ≤ n, then for most ν ∈ 2n, g(ν) = f � 2<n.
It follows that if g ∈ G1 then fg is uniquely determined, and there exists a Borel function B′ : F∗ → F∗

such that g ∈ G1 → B′(g) = fg. �
Claim 3. 1. If g1, g2 ∈ G2 and fg1 �= fg2 , then:

a. eq(g1, g2) is finite.
b. wg1 ∩ wg2 is finite.
c. eq(g2, F1(fg1)) is finite.
2. If g1 ∈ G2, f0 ∈ F∗ and fg1 �= f0, then eq(g1, F1(f0)) is finite.

Proof. 1. As B is injective, B(fg1) �= B(fg2), therefore ρ := B(fg1) ∩B(fg2) ∈ 2<ω and WLOG ρ̂(l) ≤ B(fgl). 
By the definition of G1, {ν ∈ wgl : ρ̂(l) � ν} is finite for l = 1, 2, therefore wfg1

∩ wfg2
is finite, which 

proves clause (b). Now let n∗ be such that fg1 � 2<n∗ �= fg2 � 2<n∗ . If ν ∈ 2<ω \ wg1 \ wg2 \ 2≤n∗ , 
then gl(ν) = F1(fgl)(ν) (l = 1, 2) by the definition of wgl . By the choice of n∗ and the definition of F1, 
F1(fg1)(ν) �= F2(fg2)(ν), so g1(ν) �= g2(ν). Note that |{ν ∈ wg2 : g2(ν) = F1(fg1)(ν)}| ≤ 1: By the definition 
of G2, either g2(ν) /∈ F∗

lg(ν) for every ν ∈ wg2 (in this case, the above set is empty by the definition of F1) or 
{g2(ν) : ν ∈ wg2} are pairwise incomparable with respect to inclusion, and then as {F1(fg1)(ν) : ν ∈ wg2}
form a chain, the above set has cardinality ≤ 1. Suppose now that ν ∈ wg2 \ wg1 , then g1(ν) = F1(fg1)(ν), 
and by the above claim, there is at most one ν ∈ wg2 \ wg1 such that g1(ν) = g2(ν). Similarly, there is 



4 H. Horowitz, S. Shelah / Annals of Pure and Applied Logic 175 (2024) 103334

Sh:1089
at most one ν ∈ wg1 \ wg2 such that g1(ν) = g2(ν). Therefore, eq(g1, g2) is finite, which proves clause (a). 
Clause (c) follows from (2).

2. By the definition of G2, either g1(ν) /∈ F∗
lg(ν) for every ν ∈ wg1 (and therefore wg1 ∩eq(g1, F1(f0)) = ∅), 

or {g1(ν) : ν ∈ wg1} are pairwise incomparable (and then |wg1 ∩ eq(g1, F1(f0))| ≤ 1). If ν /∈ wg1 is long 
enough, then g1(ν) = F1(fg1)(ν) = fg1 � 2<lg(ν) �= f0 � 2<lg(ν) = F1(f0)(ν). Together we get the desired 
conclusion. �
Definition 4. Let H3 = {f ∈ F∗: there is g ∈ G2 such that fg = f}.

Definition 5. Given a formula ψ(x), we say that the truth value TV (ψ(f)) (f ∈ F∗) is Borel-computable if 
there exists a Borel function F : F∗ → {0, 1} such that TV (ψ(f)) = true iff F (f) = 1.

The theorem will follow from the following claim together with Claim 8:

Claim 6. There is a Borel function F ∗
3 such that Dom(F ∗

3 ) = F∗, f ∈ H3 ⇐⇒ F ∗
3 (f) ∈ G2 and fF∗

3 (f) = f

when f ∈ H3. As a consequence, H3 is Borel.

Definition 7. Let G4 := {F ∗
3 (f) : f ∈ H3} ∪ {F1(f) : f ∈ F∗ \H3}.

Claim 8. a. G4 is Borel and G4 ⊆ G0 ∪G2 (and G2 ⊆ G1).
b. G4 ∈ EDF .
c. G4 ∈ MEDF .

Proof of Claim 8. a. The second part of the claim is obvious. As for the first part, first observe that f ∈ G4
iff TV1(f) = true or TV2(f) = true where:

1. TV1(f) = true iff f ∈ G0 and F−1
1 (f) /∈ H3 (where G0 was defined in 2(i)).

2. TV2(f) = true iff B′(f) ∈ H3 and f = F ∗
3 (B′(f)) (where B′ is the Borel function from Claim 2(k), 

which is defined in the end of the proof of the claim).
Next observe that TV1(f) is Borel-computable: It’s easy to see that G0 is closed and F−1

1 is continuous 
on G0. As H3 is Borel, we’re done.

TV2(f) is Borel-computable as well, as H3 and all of the functions involved are Borel. It follows that G4
is Borel.

b. Suppose that g1 �= g2 ∈ G4 as witnessed by fg1 = f1 and fg2 = f2. Clearly, f1 = f2 is impossible, 
as then, if f1 ∈ H3 then f2 ∈ H3, hence g1 = F ∗

3 (f1) = F ∗
3 (f2) = g2, and similarly, if f1, f2 /∈ H3, then 

g1 = F1(f1) = F1(f2) = g2. Therefore, f1 �= f2. If f1, f2 ∈ H3 then g1, g2 ∈ G2 and by Claim 3(1), eq(g1, g2)
is finite. If f1, f2 /∈ H3, then g1 = F1(f1), g2 = F1(f2), and by the definition of F1, eq(g1, g2) is finite. If 
f1 ∈ H3 and f2 /∈ H3 or vice versa, then eq(g1, g2) is finite by 3(2).

c. Let f ∈ F∗, we shall find g ∈ G4 such that eq(f, g) is infinite. Denote B(f) (from 2(g)) by ηf . If f ∈ H3
then g = F ∗

3 (f) ∈ G4 is well-defined. By the definition of G2 and F ∗
3 , g � wg = f � wg. By the definition of 

G2, wg is infinite. Therefore, we may assume that f /∈ H3.
Case I: For every n there is ν such that ηf � n ≤ ν ∈ 2<ω and f(ν) /∈ F∗

lg(ν). In this case, choose the 
<∗-least witness νn for every n. There is an infinite set A ⊆ ω such that (lg(νn ∩ ηf ) : n ∈ A) is strictly 
increasing. Let g = (f � {νn : n ∈ A}) ∪ (F1(f) � (2<ω \ A)), it’s straightforward to verify that g ∈ G2 (by 
the first possibility in Definition 2(m)(2)) and f = fg, which is a contradiction.

Case II: Case I fails, but there are A ∈ [ω]ω and ν̄ = (νn : n ∈ A) such that ηf � n ≤ νn, lg(νn ∩ ηf ) = n

and (f(νn) : n ∈ A) are pairwise incomparable. In this case, we shall derive a contradiction as in the 
previous case (using the second possibility in Definition 2(m)(2)). Note that if n exemplifies the failure of 
case I, then as (f(νm) : n ≤ m ∈ A) are pairwise incomparable, there is at most one n ≤ m ∈ A such that 
f(νm) = F1(f)(νm). If n ≤ n∗ and f(νm) �= F1(f)(νm) for every n∗ ≤ m ∈ A, then we define g as in the 
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previous case, with {νm : n∗ ≤ m ∈ A} here instead of {νn : n ∈ A} there, and we get a contradiction 
similarly.

Case III: ¬Case I∧¬Case II. We shall prove the following statement:
(∗) There are n∗, k∗ and f0, ..., fk∗ ∈ F∗ such that ηf � n∗ ≤ ν → f(ν) ∈ {f0 � 2<lg(ν), ..., fk∗−1 � 2<lg(ν)}.
In order to prove (∗), assume that it fails and we shall derive a contradiction to the assumptions of case 

III.
Let n1 witness the failure of case I, we choose by induction on k a triple (η̄k, Ak, fk) such that:
a. η̄k = (ηk,n : n1 ≤ n ∈ Ak).
b. ηf � n ≤ ηk,n but ηf � (n + 1) � ηk,n.
c. f(ηk,n) /∈ {fl � 2<lg(ηk,n) : l < k}.
d. Ak ⊆ ω is infinite and (f(ηk,n) : n1 ≤ n ∈ Ak) is ⊆-increasing.
e. fk ∈ F∗ and fk = ∪

n1≤n
f(ηk,n).

Why can we carry the induction? At stage k, let A1
k = {n : n1 ≤ n and there is ηk,n satisfying (b)+(c)}. 

If A1
k is finite, then letting n∗ = max(A1

k) +1, (n∗, k−1, f0, ..., fk−1) are as required in the above statement 
(∗), contradicting the assumption that (∗) fails. If A1

k is infinite, we can choose for every n ∈ A1
k an ηk,n

satisfying (b)+(c) (for example, by taking the <∗-minimal such sequence), by Ramsey’s theorem there is an 
infinite Ak ⊆ A1

k such that (f(ηk,n) : n ∈ Ak) is either ⊆-increasing, ⊆-decreasing or pairwise incomparable 
(note that we don’t need any form of the axiom of choice here, as we can carry the argument in a model of 
the form L[X]). If the elements of {f(ηk,n) : k ∈ An} are pairwise incomparable, let w = {ηk,n : n ∈ Ak}
and g = (f � w) ∪ (F1(f) � (2<ω \ w)). It’s straightforward to verify that g ∈ G2 and fg = f (note that 
by the pairwise incomparability of the f(ηk,n)s, there is at most one ηk,n for which f(ηk,n) = F1(f)(ηk,n)). 
Therefore, f ∈ H3, contradicting our assumption. By the choice of n1, the sequence (f(ηk,n) : n ∈ Ak)
can’t be ⊆-decreasing, therefore, it’s ⊆-increasing. Let fk = ∪{f(ηk,n) : n ∈ Ak}, then fk ∈ F∗ and 
n ∈ Ak → f(ηk,n) = F1(fk)(ηk,n), so we’ve carried the induction.

We shall now get a contradiction by showing that the assumptions of case II hold: Note that k1 �= k2 →
fk1 �= fk2 (by clauses (c) and (e)). Let B0 = ω, choose l0 such that f0 � 2≤l0 �= f1 � 2≤l0 . Therefore, 
there are h0 ∈ {0, 1} and an infinite set B1 ⊆ ω \ {0, 1} such that ∧

k∈B1
fk � 2≤l0 �= fh0 � 2≤l0 . Now choose 

i1,0 �= i1,1 ∈ B1 and l1 such that fi1,0 � 2≤l1 �= fi1,1 � 2≤l1 . As before, there are h1 ∈ {0, 1} and an infinite 
set B2 ⊆ B1 \ (i1,0 + i1,1) such that ∧

k∈B2
fk � 2≤l1 �= fi1,h1

� 2≤l1 . We continue as above and obtain the sets 
B = {h0 < i1,h1 < i2,h2 < ...}, (Bn : n < ω), ((im,0, im,1) : m < ω) and (lm : m < ω). For every k ∈ B, if 
k = im,hm

, choose nk ∈ Ak such that max{lm, nk−1} < nk and let νnk
= ηk,nk

and A = {nk : k ∈ B}. It’s 
now easy to verify that A and (νnk

: k ∈ B) satisfy the assumptions of case II, but we shall elaborate: We 
shall prove that f(νk1) = f(ηk1,nk1

) = fk1 � 2≤lg(ηk1,nk1
) and f(νk2) = f(ηk2,nk2

) = fk2 � 2≤lg(ηk2,nk2
) are 

incomparable for k1 �= k2 ∈ B. Suppose that k1 = im,hm
and k2 = ij,hj

and wlog m < j, then fk1 � 2≤lm �=
fk2 � 2≤lm , therefore fk1 � 2≤lg(ηk1,nk1

) �= fk2 � 2≤lg(ηk1,nk1
) and fk1 � 2≤lg(ηk2,nk2

) �= fk2 � 2≤lg(ηk2,nk2
), and 

therefore f(νk1) and f(νk2) are incomparable. This completes the proof of (∗).
Now let n∗, k∗, f0, ..., fk∗−1 be as in (∗), then for every n ≥ n1, there is ln < k∗ such that the set 

Yn = {ρ ∈ 2<ω : ηf � n ≤ ρ, ηf (n) �= ρ(n) and f(ρ) = F1(fln)(ρ)} is infinite. Choose l∗ < k∗ such that 
B = {n : n1 ≤ n, ln = l∗} is infinite.

Subcase I: fl∗ /∈ H3. If n ∈ B and ρ ∈ Yn, then f(ρ) = F1(fln)(ρ) = F1(fl∗)(ρ), therefore, eq(f, F1(fl∗))
is infinite. As fl∗ /∈ H3, F1(fl∗) ∈ G4 (by the definition of G4). Therefore, we’ve found g ∈ G4 such that 
eq(f, g) is infinite and we’re done.

Subcase II: fl∗ ∈ H3. For each n ∈ B, Yn is infinite, therefore we can find ρn ∈ Yn \ wF∗
3 (fl∗ ) (by the 

definition of G2, {ρ ∈ wF∗
3 (fl∗ ) : ρ ∩ηf = ηf � n} is finite, and as Yn ⊆ {ρ ∈ 2<ω : ρ ∩ηf = ηf � n} is infinite, 

there is ρn as required).
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As fl∗ ∈ H3, fl∗ = fg for some g ∈ G2, and F ∗
3 (fl∗) = g, hence F ∗

3 (fl∗)(ρn) = g(ρn) = F1(fl∗)(ρn) =
f(ρn) (the equalities follow from the definitions of F1, F ∗

3 and Yn, and the assumption that ρn /∈ wF∗
3 (fl∗ )). 

Therefore, eq(F ∗
3 (fl∗), f) is infinite, and by the definition of G4, F ∗

3 (fl∗) ∈ G4 so we’re done. �
Proof of Claim 6. For f ∈ F∗, let ηf = B(f) and let TV∗(f) be the truth value of the statement:

(∗) For every n < ω there exists ν ∈ 2<ω such that ηf � n ≤ ν and f(ν) /∈ F∗
lg(ν).

Note that TV∗(f) is Borel-computable and so are the truth values TV2,k,i(f) and TV3,j(f) (to be defined 
later), therefore, it suffices to define F ∗

3 separately for each combination of truth values.
Case I: TV∗(f) = true. In this case, we shall prove that f ∈ H3 and define F ∗

3 (f):
Let Af be the set of n for which there is ν ∈ 2<ω such that ν ∩ ηf = ηf � n and f(ν) /∈ F∗

lg(ν). By the 
assumption, Af is infinite.

For each n ∈ Af , let νf,n be a sequence for which (∗) is true, such that:
1. lg(νf,n) is minimal.
2. νf,n is <∗-minimal among the sequence satisfying (1) (where <∗ is the lexicographic ordering).
Let wf = {νf,n : n ∈ Af} and let F ∗

3 (f) = f � wf ∪F1(f) � (2<ω \wf ). It’s straightforward to verify that 
F ∗

3 (f) ∈ G2 and that fF∗
3 (f) = f , therefore f ∈ H3.

Case II: TV∗(f) = false. We can compute m(f) = min{m: If ηf � m ≤ ν ∈ 2<ω then f(ν) ∈ F∗
lg(ν)}. 

Let TV2,k,i(f) be the truth value of the following statement:
(∗)2,k,i There exist k and f0, ..., fk−1 ∈ F∗ such that for every ν ∈ 2<ω, ηf � i ≤ ν → f(ν) ∈ {F1(fl)(ν) :

l < k}.
By compactness, (∗)2,k,i holds iff for every finite u ⊆ {ν : ηf � i ≤ ν ∈ 2<ω} there exist f0, ..., fk−1 as 

above with domain 2<lg(u)+1 where lg(u) = max{lg(ν) : ν ∈ u}. Therefore, TV2,k,i(f) is Borel-computable. 
Note that there is no essential use of the axiom of choice in the compactness argument, as we can argue in 
an appropriate L[X].

Note that if TV2,k,i(f) = true for some k and i, then f /∈ H3: Let f0, ..., fk−1 be as in (∗)2,k,i and suppose 
towards contradiction that there exists g ∈ G2 such that f = fg. Let (νn : n ∈ A) list wg, then one of the 
two possibilities in 2(m)(2) holds. As TV∗(f) = false, the first possibility of 2(m)(2) fails. Suppose that the 
second possibility holds. By 2(j)(1), for every n ∈ A \ i there is m(n) ∈ A \ i such that B(f) � n ≤ νm(n). As 
TV2,k,i(f) = true, for every such n ∈ A \ i, there exists l < k such that f(νm(n)) = F1(fl)(νm(n)). Therefore, 
for some l∗ < k, the set B := {n ∈ A \ i : f(νm(n)) = F1(fl∗)(νm(n))} is infinite. It follows that the elements 
of (f(νm(n)) : n ∈ B) = (g(νm(n)) : n ∈ B) are pairwise comparable, contradicting the second possibility of 
2(m)(2). It follows that f /∈ H3. If TV2,k,i(f) = true for some k, i, we let F ∗

3 (f) = f0 where f0(ν) is defined 
as the constant function 0 whose domain is 2<lg(ν). It’s easy to see that f0 /∈ G2.

From now on, we assume that TV∗(f) = false and ∧
k,i
TV2,k,i(f) = false. As in the proof of Claim 8(c) 

(case III), we shall choose by induction Ak, hk and η̄k = (ηk,n : n1 ≤ n ∈ Ak) (where n1 = m(f) is 
witnessing the failure of the statement of case I in the proof of 8(c), and hk here stand for fk there) such 
that:

a. Ak ⊆ ω is infinite.
b. ηf � n ≤ ηk,n and ηf � (n + 1) � ηk,n.
c. (f(ηk,n) : n1 ≤ n ∈ Ak) is ⊆-increasing.
d. hk = ∪

n∈Ak

f(ηk,n) ∈ F∗.
e. f(ηk,n) /∈ {F1(hl)(ηk,n) : l < k}.
Moreover, the objects will be computed in a Borel way, The only non-trivial point is the application of 

Ramsey’s theorem in the construction of Ak from A1
k (i.e. why can we Borel-compute an infinite homogeneous 

set?): Given a function R : [ω]2 → {0, 1}, we shall Borel-compute an infinite homogeneous set (we shall 
write R(m, k) for R({m, k}) where m < k). Define ρn ∈ 2n by induction on n such that:

a. ρn ≤ ρn+1.
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b. For infinitely many k < ω, R(m, k) = ρn+1(n) for every m < n + 1. Let An be the set of these k’s.
c. An+1 ⊆ An.
d. ρn+1(n) = 0 if possible (i.e. if the above requirements are satisfied).
The sequence (ρn : n < ω) can be Borel-computed. Now choose ni ∈ ω by induction such that:
a. ni < ni+1.
b. ni is the minimal k ∈ Ani−1 such that ∧

j<i
nj < k and R(nj , k) = ρnj+1(nj) (this is possible by the 

choice of the ρns).
So (ni : i < ω) is Borel-computable as well. If i1 < i2 < i3 then R(ni1 , ni2) = ρni1+1(ni1) = R(ni1 , ni3). 

Let i(∗) ∈ {0, 1} be the minimal such that {i : R(ni, ni+1) = i(∗)} is infinite (this is Borel-computable 

as well). Finally, the set {ni : R(ni, ni+1) = i(∗)} is a Borel-computable infinite homogeneous set. This 
completes the argument on the induction.

Let TV3,j(f) be the truth value of the following statement (which is Borel-computable):
(∗)3,j The set {hk � 2<j : k < ω} is infinite.
Case I: ∨

j<ω
TV3,j(f) = true. In this case we can Borel compute F ∗

3 (f) witnessing that f ∈ H3. Let jf be 

the minimal j such that TV3,j(f) = true (this is Borel-computable) and let B = {k : jf < k, hk � 2<jf /∈
{hl � 2<jf : l < k}}, this set is infinite by our assumption. We choose nk ∈ Ak \ jf by induction on k ∈ B

such that k < k′ → nk < nk′ . Let wf = {ηk,nk
: k ∈ B} and let F ∗

3 (f) = f � wf ∪ (F1(f) � 2<ω \ wf ). 
It’s easy to check that F ∗

3 (f) ∈ G2 is witnessed by f (hence f ∈ H3): If there are k �= k′ ∈ B such 

that F ∗
3 (f)(ηk,nk

) = F1(f)(ηk,nk
) and F ∗

3 (f)(ηk′,nk′ ) = F1(f)(ηk′,nk′ ), then f(ηk,nk
) = hk � 2<lg(ηk,nk

) and 

f(ηk′,nk′ ) = hk′ � 2<lg(ηk′,n
k′ ) are comparable, contradicting the definition of B. It’s easy to check that the 

other requirements in the definition of G2 are satisfied as well.
Case II: ∧

j<ω
TV3,j(f) = false. We can Borel-compute a set B ∈ [ω]ω such that (hj : k ∈ B) converges to 

some h∗ ∈ F∗: Let B0 = B1 = ω. As TV3,2(f) = false, there exists k(2) > 2 such that for infinitely many k, 
hk(2) � 2<2 = hk � 2<2. Choose k(2) to be the minimal number with the above property and let B2 = {k ∈
B1 : k > k(2) and hk(2) � 2<2 = hk � 2<2}. As TV3,3(f) = false, there is a minimal k(3) ∈ B2 such that 
hk(3) � 2<3 = hk � 2<3 for infinitely many k ∈ B2, let B3 = {k ∈ B2 : k > k(3) and hk(3) � 2<3 = hk � 2<3}. 
We now continue the construction by induction, and obtain the set B = {k(2) < k(3) < k(4) < ...}. Now 

let h∗ = ∪
n<ω

hk(n) � 2<n, it’s easy to see that B and h∗ are as required. Note that as l �= k → hl �= hk (by 

the definition of the hks), there is at most one k such that hk = h∗.
We can Borel-compute (ki, ni, mi) by induction on i such that:
1. ki ∈ B is increasing with i.
2. m(f) ≤ ni ∈ Aki

is increasing with i.
3. mi = lg(ηki,ni

).
4. f(ηki,ni

) � h∗.
5. If j < i then f(ηki,ni

) � 2<mj ⊆ h∗.
The induction step: Suppose that we’ve carried the induction up to i and let j = i − 1. Let mi(∗) =

max{ml : l < i}. As lim
n∈B

hn = h∗, for every n ∈ B large enough (say, n∗ ≤ n for some n∗) we have 

hn � 2<mi(∗) ⊆ h∗. Let ki ∈ B be the first such n above kj such that, in addition, hki
�= h∗ (recall that there 

is at most one n for which hn = h∗). Recall that hki
= ∪

m(f)≤n∈Aki

f(ηki,n), and for n1 = m(f) ≤ n ∈ Aki

large enough, hki
� 2<n � h∗ (otherwise, hki

= h∗, which is a contradiction).
Let ni ∈ Aki

\ n1 be the first such n above nj , and let mi = lg(ηki,ni
), so we have carried the induction 

successfully. Now let wf = {ηki,ni
: i < ω} and let F ∗

3 (f) = f � wf ∪ (F1(f) � 2<ω \ wf ). It’s easy to check 

that F ∗
3 (f) ∈ G2 as witnessed by f , which belongs to H3. �
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