
ANNALES UNIV. SCI. BUDAPEST., SECT. MATH. 65 (2022), 69–130

BLACK BOXES

By
SAHARON SHELAH

(Received December 30, 2022
Revised April 24, 2023)

Abstract. We shall deal comprehensively with Black Boxes, the intention being
that provably in ZFC we have a sequence of guesses of extra structure on small subsets,
where the guesses are pairwise “almost disjoint;” by this we mean they have quite little
interaction, and are far apart but together are “dense”. We first deal with the simplest case,
where the existence comes from winning a game by just writing down the opponent’s
moves. We show how it helps when instead of orders we have trees with boundedly many
levels, having freedom in the last. After this we quite systematically look at existence of
black boxes, and make connection to non-saturation of natural ideals and diamonds on
them.

1. Introduction

The non-structure theorems we have discussed in [17] usually rest on some
freedom on finite sequences and on a kind of order. When our freedom is related
to infinite sequences, and to trees, our work is sometimes harder. In particular,

For versions up to 2019, the author thanks Alice Leonhardt for the beautiful typing. In the
latest version, the author thanks an individual who wishes to remain anonymous for generously
funding typing services, and thanks Matt Grimes for the careful and beautiful typing. For their
partial support of this research, the author would like to thank: an NSF-BSF 2021 grant with M.
Malliaris, NSF 2051825, BSF 3013005232 (2021/10-2026/09); and for various grants from the
BSF (United States Israel Binational Foundation), the Israel Academy of Sciences and the NSF
via Rutgers University. This paper is number 309 in the author’s publication list.

This is a revised version of [35, Ch.III,§4,§5]; it has existed (and been occasionally revised) for
many years. It was mostly ready in the early nineties, and was made public to some extent. This
was written as Chapter IV of the book [51], which hopefully will materialize some day, but in
the meantime it is [10]. The intention was to have [16] (revising [30]) for Ch.I, [2] for Ch.II, [17]
for Ch.III, [10] for Ch.IV, [19] for Ch.V, [8] for Ch.VI, [11] for Ch.VII, [15] (a revision of [29])
for Ch.VIII, [12] for the appendix, and probably [46], [13], [14], and [18]. References like [10,
3.26 = L6.12] means that 6.12 is the label of Lemma 4.26 in [10].

The reader should note that the version in my website is usually more up-to-date than the one
in the mathematical archive.
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we may consider, for 𝜆 ≥ 𝜒, 𝜒 regular, and 𝜑 = 𝜑(𝑥0, . . . , 𝑥𝛼, . . .)𝛼<𝜒 in a
vocabulary 𝜏:

(∗) For any 𝐼 ⊆ 𝜒≥𝜆 we have a 𝜏-model 𝑀𝐼 and sequences 𝑎̄𝜂 (for 𝜂 ∈ 𝜒>𝜆),
where

[𝜂 ◁ 𝜈 ⇒ 𝑎̄𝜂 ≠ 𝑎̄𝜈], ℓ𝑔(𝑎̄𝜂) = ℓ𝑔(𝑥ℓ𝑔 (𝜂) ),
such that for 𝜂 ∈ 𝜒𝜆 we have:

𝑀𝐼 |= 𝜑(. . . , 𝑎̄𝜂↾𝛼, . . .)𝛼<𝜒 if and only if 𝜂 ∈ 𝐼 .
(Usually, 𝑀𝐼 is to some extent “simply defined” from 𝐼). Of course, if we do
not ask more from 𝑀𝐼 , we can get nowhere: we certainly restrict its cardinality
and/or usually demand it is 𝜑-representable1 in (a variant of) M𝜇,𝜅 (𝐼) (for
suitable 𝜇, 𝜅). Certainly for 𝑇 un-superstable we have such a formula 𝜑:

𝜑(. . . , 𝑎̄𝜂↾𝑛, . . .) =
(
∃𝑥

) ∧
𝑛

𝜑𝑛 (𝑥, 𝑎̄𝜂↾𝑛).

There are many natural examples.
Formulated in terms of the existence of 𝐼 for which our favorite “anti-

isomorphism” player has a winning strategy, we proved this in 1969/70 (in
proofs of lower bounds of ¤I(𝜆, 𝑇1, 𝑇), 𝑇 un-superstable), but it was shortly
superseded. However, eventually the method was used in one of the cases
in [24, Ch.VIII,§2] — for strong limit singular [24, Ch.VIII,2.6], which comes
from [20]. It was developed in [27], [28] for constructing Abelian groups with
prescribed endomorphism groups. See further a representation of one of the
results here in Eklof–Mekler [4], [5] a version which was developed for a proof
of the existence of an Abelian (torsion-free ℵ1-free) group 𝐺 with

𝐺∗∗∗ = 𝐺∗ ⊕ 𝐴
(
𝐺∗ B Hom(𝐺,Z)

)
in a work by Mekler and Shelah. A preliminary version of this paper appeared
in [35, Ch.III,§4,§5], but §3 here was just almost ready and §4 (on partitions of
stationary sets and ♦𝐷) was written up as a letter to Foreman in the late nineties.

The saturation of ideals was continued much later in Gitik–Shelah [48] and
more recently in [49] and Asgarzadeh–Golshani–Shelah [1].

1see Definition [17, 2.7 = Lf4] clauses (c),(d).
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2. The easy black box and an easy application

In this section we do not try to get the strongest results, but just provide
some examples (e.g. we do not present the results when 𝜆 = 𝜆𝜒 is replaced by
𝜆 = 𝜆<𝜒). By the proof of [24, Ch.VIII,2.5] (see later for a complete proof):

Theorem 2.1. Suppose that

(∗) (𝑎) 𝜆 = 𝜆𝜒

(𝑏) 𝜏 is a vocabulary and 𝜑 = 𝜑(𝑥0, 𝑥1, . . . , 𝑥𝛼 . . .)𝛼<𝜒 is a formula in
L (𝜏) for some logic L .

(𝑐)𝜏,𝜑 For any 𝐼 such that 𝜒>𝜆 ⊆ 𝐼 ⊆ 𝜒≥𝜆, we have a 𝜏-model 𝑀𝐼 and
sequences 𝑎̄𝜂 (for 𝜂 ∈ 𝜒>𝜆), where

[𝜂 ◁ 𝜈 ⇒ 𝑎̄𝜂 ≠ 𝑎̄𝜈], ℓ𝑔(𝑎̄𝜂) = ℓ𝑔(𝑥ℓ𝑔 (𝜂) ),
such that for 𝜂 ∈ 𝜒𝜆 we have:

𝑀𝐼 |= 𝜑(. . . , 𝑎̄𝜂↾𝛼, . . .)𝛼<𝜒 if and only if 𝜂 ∈ 𝐼 .
(𝑐) ∥𝑀𝐼 ∥ = 𝜆 for every 𝐼 satisfying 𝜒>𝜆 ⊆ 𝐼 ⊆ 𝜒≤𝜆, and ℓ𝑔(𝑎̄𝜂) ≤ 𝜒

or just 𝜆ℓ𝑔 (𝑎̄𝜂 ) = 𝜆.

Then (using 𝜒>𝜆 ⊆ 𝐼 ⊆ 𝜒≥𝜆):
(1) There is no model 𝑀 of cardinality 𝜆 into which every 𝑀𝐼 can be

(±𝜑)-embedded (i.e., by a function preserving 𝜑 and ¬𝜑).
(2) For any 𝑀𝑖 (for 𝑖 < 𝜆), ∥𝑀𝑖 ∥ ≤ 𝜆, for some 𝐼 satisfying 𝜒>𝜆 ⊆ 𝐼 ⊆ 𝜒≥𝜆,

the model 𝑀𝐼 cannot be (±𝜑)-embedded into any 𝑀𝑖 .

Example 2.2. Consider the class of Boolean algebras and the formula

𝜑(. . . , 𝑥𝑛, . . .) B
(⋃
𝑛

𝑥𝑛

)
= 1

(i.e., there is no 𝑥 ≠ 0 such that 𝑥 ∩ 𝑥𝑛 = 0 for each 𝑛).
For 𝜔>𝜆 ⊆ 𝐼 ⊆ 𝜔≥𝜆, let 𝑀𝐼 be the Boolean algebra generated freely by 𝑥𝜂

(for 𝜂 ∈ 𝐼) except the relations: for 𝜂 ∈ 𝐼, if 𝑛 < ℓ𝑔(𝜂) = 𝜔 then 𝑥𝜂 ∩ 𝑥𝜂↾𝑛 = 0.
So2 ∥𝑀𝐼 ∥ = |𝐼 | ∈ [𝜆, 𝜆ℵ0] and in𝑀𝐼 for 𝜂 ∈ 𝜔𝜆we have:𝑀𝐼 |= “

(⋃
𝑛
𝑥𝜂↾𝑛

)
=

= 1” if and only if 𝜂 ∉ 𝐼 (work a little in Boolean algebras).

2With more work, we can demand that 𝑀𝐼 satisfies the c.c.c.
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So

Conclusion 2.3. If 𝜆 = 𝜆ℵ0 , then there is no Boolean algebra B of cardinality
𝜆 universal under 𝜎-embeddings (i.e., ones preserving countable unions).

Remark 2.4. This is from [24, Ch.VIII,Ex.2.5,pg.464].

Proof of the Theorem 2.1. First we recall the simple black box (and a variant)
in 2.5, 2.6 below:

The Simple B.B. Lemma 2.5. There are functions 𝑓𝜂 (for 𝜂 ∈ 𝜒𝜆) such that:

(𝑖) Dom( 𝑓𝜂) = {𝜂 ↾ 𝛼 : 𝛼 < 𝜒},
(𝑖𝑖) Rang( 𝑓𝜂) ⊆ 𝜆,
(𝑖𝑖𝑖) If 𝑓 : 𝜒>𝜆 → 𝜆, then for some 𝜂 ∈ 𝜒𝜆 we have 𝑓𝜂 ⊆ 𝑓 .

Proof. For 𝜂 ∈ 𝜒𝜆, let 𝑓𝜂 be the function (with domain {𝜂 ↾ 𝛼 : 𝛼 < 𝜒}) such
that

𝑓𝜂 (𝜂 ↾ 𝛼) = 𝜂(𝛼).
So ⟨ 𝑓𝜂 : 𝜂 ∈ 𝜒𝜆⟩ is well defined. Properties (i) and (ii) are straightforward, so let
us prove (iii). Let 𝑓 : 𝜒>𝜆 → 𝜆. We define 𝜂𝛼 = ⟨𝛽𝑖 : 𝑖 < 𝛼⟩ by induction on 𝛼.

For 𝛼 = 0 or 𝛼 limit — no problem.
For 𝛼 + 1: let 𝛽𝛼 be the ordinal such that 𝛽𝛼 = 𝑓 (𝜂𝛼).
So 𝜂 B ⟨𝛽𝑖 : 𝑖 < 𝜒⟩ is as required.

Fact 2.6. In 2.5:
(1) We can replace the range of 𝑓 , 𝑓𝜂 by any fixed set of power 𝜆.
(2) We can replace the domains of 𝑓 , 𝑓𝜂 by {𝑎̄𝜂 : 𝜂 ∈ 𝜒>𝜆}, {𝑎̄𝜂↾𝛼 : 𝛼 < 𝜒},

respectively, as long as
𝛼 < 𝛽 < 𝜒 ∧ 𝜂 ∈ 𝜒𝜆 ⇒ 𝑎̄𝜂↾𝛼 ≠ 𝑎̄𝜂↾𝛽 .

Remark 2.7. We can present it as a game. (As in the book [24, Ch.VIII,2.5]).

Continuation of the proof of Theorem 2.1.

It suffices to prove 2.1(2). Without loss of generality ⟨|𝑀𝑖 | : 𝑖 < 𝜆⟩ are
pairwise disjoint. Now we use 2.6; for the domain we use ⟨𝑎̄𝜂 : 𝜂 ∈ 𝜒>𝜆⟩ from
the assumption of 2.1, and for the range:

⋃
𝑖<𝜆

𝜒≥ |𝑀𝑖 | (it has cardinality ≤ 𝜆 as

∥𝑀𝑖 ∥ ≤ 𝜆 = 𝜆𝜒).
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We define
𝐼 = (𝜒>𝜆) ∪

{
𝜂 ∈ 𝜒𝜆 : for some 𝑖 < 𝜆,Rang( 𝑓𝜂) is a set of sequences

from |𝑀𝑖 | and 𝑀𝑖 |= ¬𝜑(. . . , 𝑓𝜂 (𝑎̄𝜂↾𝛼), . . .)𝛼<𝜒
}
.

Look at 𝑀𝐼 . It suffices to show:
⊗ There is no (±𝜑)-embedding of 𝑀𝐼 into 𝑀𝑖 for 𝑖 < 𝜆.

Why does ⊗ hold?
If 𝑓 : 𝑀𝐼 → 𝑀𝑖 is a (±𝜑)-embedding, then by Fact 2.6, for some 𝜂 ∈ 𝜒𝜆 we

have
𝑓 ↾ {𝑎̄𝜂↾𝛼 : 𝛼 < 𝜒} = 𝑓𝜂 .

By the choice of 𝑓 ,
𝑀𝐼 |= 𝜑

[
. . . , 𝑎̄𝜂↾𝛼, . . .

]
𝛼<𝜒

⇐⇒ 𝑀𝑖 |= 𝜑
[
. . . , 𝑓 (𝑎̄𝜂↾𝛼), . . .

]
𝛼<𝜒

,

but by the choice of 𝐼 and 𝑀𝐼 we have
𝑀𝐼 |= 𝜑

[
. . . , 𝑎̄𝜂↾𝛼, . . .

]
𝛼<𝜒

⇐⇒ 𝑀𝑖 |= ¬𝜑
[
. . . , 𝑓𝜂 (𝑎̄𝜂↾𝛼), . . .

]
𝛼<𝜒

.

This is a contradiction, as by the choice of 𝜂,∧
𝛼<𝜒

𝑓 (𝑎̄𝜂↾𝛼) = 𝑓𝜂 (𝑎̄𝜂↾𝛼).

Discussion 2.8. We may be interested whether, in 2.1, when 𝜆+ < 2𝜆 we may
(1) in 2.1(1), allow ∥𝑀 ∥ = 𝜆+, and/or
(2) get ≥ 𝜆++ non-isomorphic models of the form 𝑀𝐼 , assuming 2𝜆 > 𝜆+.

The following lemma shows that we cannot prove those better statements in
ZFC, though (see 2.11) in some universes of set theory we can. So this requires
(elementary) knowledge of forcing, but is not used later. It is here just to justify
the limitations of what we can prove, and the reader can skip it.

Lemma 2.9. Suppose that in the universe V we have 𝜅 < 𝜆 = cf (𝜆) = 𝜆<𝜆,
(∀𝜆1 < 𝜆)

[
(𝜆1)𝜅 < 𝜆

]
, and 𝜆 < 𝜇 = 𝜇𝜆.

Then, for some notion forcing P:

(𝑎) P is 𝜆-complete and satisfies the 𝜆+-c.c., and |P| = 𝜇, ⊩P “2𝜆 = 𝜇” (so
forcing with P collapses no cardinals, changes no cofinalities, adds no
new sequences of ordinals of length < 𝜆, and ⊩P “𝜆<𝜆 = 𝜆”).

(𝑏) We can find 𝜑, 𝑀𝐼 (for 𝜅>𝜆 ⊆ 𝐼 ⊆ 𝜅≥𝜆) as in 2.1(∗), so with ∥𝑀𝐼 ∥ = 𝜆,
(𝜏-models with |𝜏 | = 𝜅 for simplicity) such that:
⊕ There are, up to isomorphism, exactly 𝜆+ models of the form 𝑀𝐼

(for 𝜅>𝜆 ⊆ 𝐼 ⊆ 𝜆≥𝜆).
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(𝑐) In (b), there is a model 𝑀 such that ∥𝑀 ∥ = 𝜆+ and every model 𝑀𝐼 can
be (±𝜑)-embedded into 𝑀 .

Remark 2.10. (1) 𝑀𝐼 is essentially (𝐼+,◁): the addition of level predicates is
immaterial, where 𝐼+ extends 𝐼 “nicely” so that we can let 𝑎𝜂 = 𝜂 for 𝜂 ∈ 𝐼.

(2) Clearly clause (c) also shows that weakening ∥𝑀 ∥ = 𝜆, even when
𝜆+ < 2𝜆, may make 2.1 false.

(3) In the proof of Lemma 2.9, the class of models isomorphic to some 𝑁∗
𝑗

with 𝑗 < 𝜆+ is not so nice. But the following class of models, which is reasonably
well defined, will fail to satisfy the statement in 2.1(2) (in VP).

⊞ 𝑁 ∈ 𝐾 iff
(a) 𝑁 is a 𝜏-model.
(b) For some ordinal 𝛼 and 𝑆 ⊆ 𝜅𝛼, 𝑁 is isomorphic to 𝑁𝐼 [ 𝛿 ] , where

𝐼 = {𝜂 ↾ 𝜁 : 𝜂 ∈ 𝑆, 𝜁 ≤ 𝜅} and 𝑁𝐼 [ 𝛿 ] is defined as in the proof
below.

Proof of Lemma 2.9. Let 𝜏 = {𝑅𝜁 : 𝜁 ≤ 𝜅} ∪ {<} with 𝑅𝜁 being a monadic
predicate, and < being a binary predicate. For a set 𝐼, 𝜅>𝜆 ⊆ 𝐼 ⊆ 𝜅≥𝜆 let 𝑁𝐼 be
the 𝜏-model:

|𝑁𝐼 | = 𝐼, 𝑅
𝑁𝐼

𝜁
= 𝐼 ∩ 𝜁𝜆, < 𝑁𝐼 = {(𝜂, 𝜈) : 𝜂, 𝜈 ∈ 𝐼, 𝜂 ◁ 𝜈},

and
𝜑(. . . , 𝑥𝜁 , . . .)𝜁 <𝜅 =

∧
𝜁 <𝜉<𝜅

(
𝑥𝜁 < 𝑥𝜉 ∧ 𝑅𝜁 (𝑥𝜁 )

)
∧ (∃𝑦)

[
𝑅𝜅 (𝑦) ∧

∧
𝜁 <𝜅

𝑥𝜁 < 𝑦
]
.

Now we define the forcing notion P. It is P𝜆+ , where〈
P𝑖 ,Q˜ 𝑗 : 𝑖 ≤ 𝜆+, 𝑗 < 𝜆+〉

is an iteration with support < 𝜆, of 𝜆-complete forcing notions, where Q˜ 𝑗 is
defined as follows.

For 𝑗 = 0 we add 𝜇 many Cohen subsets to 𝜆:
Q0 = { 𝑓 : 𝑓 is a partial function from 𝜇 to {0, 1}, |Dom( 𝑓 ) | < 𝜆},

the order is the inclusion.
For 𝑗 > 0, we define Q˜ 𝑗 in VP 𝑗 . Let

〈
𝐼 ( 𝑗 , 𝛼) : 𝛼 < 𝛼( 𝑗)

〉
list, without

repetition, all sets 𝐼 ∈ VP 𝑗 such that 𝜅>𝜆 ⊆ 𝐼 ⊆ 𝜅≥𝜆. (Note that the interpretation
of 𝜅≥𝜆 does not change from V to VP 𝑗 (as 𝜅 < 𝜆), but the family of such 𝐼-s
increases.)
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Now

Q˜ 𝑗 =

{
𝑓 : 𝑓 = ⟨ 𝑓𝛼 : 𝛼 < 𝛼( 𝑗)⟩, 𝑓𝛼 is a partial isomorphism

from 𝑁𝐼 ( 𝑗 ,𝛼) into 𝑁 (𝜅≥𝜆) ,

𝑤( 𝑓 ) B {𝛼 : 𝑓𝛼 ≠ ∅} has cardinality < 𝜆,

Dom( 𝑓𝛼) has the form
⋃
𝛽<𝛾

𝜅≥𝛽 ∩ 𝑁𝐼 ( 𝑗 ,𝛼) for some 𝛾 < 𝜆;

and if 𝛼1, 𝛼2 < 𝛼( 𝑗) and 𝜂1, 𝜂2 ∈ 𝜅𝜆, and for every 𝜁 < 𝜅
𝑓𝛼1 (𝜂1 ↾ 𝜁), 𝑓𝛼2 (𝜂2 ↾ 𝜁) are well-defined and equal, then

𝜂1 ∈ 𝐼 ( 𝑗 , 𝛼1) ⇔ 𝜂2 ∈ 𝐼 ( 𝑗 , 𝛼2)
}
.

The order is:
𝑓 1 ≤ 𝑓 2 if and only if

(
∀𝛼 < 𝛼( 𝑗)

) [
𝑓 1
𝛼 ⊆ 𝑓 2

𝛼

]
and

for all 𝛼 < 𝛽 < 𝛼( 𝑗), 𝑓 1
𝛼 ≠ ∅ ∧ 𝑓 1

𝛽 ≠ ∅ implies

Rang( 𝑓 2
𝛼) ∩ Rang( 𝑓 2

𝛽 ) = Rang( 𝑓 1
𝛼) ∩ Rang( 𝑓 1

𝛽 ).
Then, Q˜ 𝑗 is 𝜆-complete and it satisfies the ‘∗𝜔

𝜆
’ version of 𝜆+-c.c. from [23]3,

hence each P 𝑗 satisfies the 𝜆+-c.c. (by [23]).
Now the P 𝑗+1-name 𝐼

˜ 𝑗
(interpreting it in VP 𝑗+1 , we get 𝐼∗

𝑗
) is:

𝐼∗𝑗 =
𝜅>𝜆 ∪

{
𝜂 ∈ 𝜅𝜆 : for some 𝑓 ∈ 𝐺˜Q 𝑗

, 𝛼 < 𝛼( 𝑗), and 𝜈 ∈ 𝑁𝐼 ( 𝑗 ,𝛼) ,
we have ℓ𝑔(𝜈) = 𝜅 and 𝑓𝛼 (𝜈) = 𝜂

}
.

This defines also 𝑓
𝑗
𝛼 : 𝐼 ( 𝑗 , 𝛼) → 𝐼∗

𝑗
, which is forced to be a (±𝜑)-embedding

and also just an embedding.
So now we shall define, for every 𝐼 such that 𝜅>𝜆 ⊆ 𝐼 ⊆ 𝜅≥𝜆, a 𝜏-model 𝑀𝐼 :

clearly 𝐼 belongs to some VP 𝑗 . Let 𝑗 = 𝑗 (𝐼) be the first such 𝑗 , and let 𝛼 = 𝛼(𝐼)
be such that 𝐼 = 𝐼 ( 𝑗 , 𝛼). Let 𝑀𝐼 ( 𝑗 ,𝛼) = 𝑁𝐼∗

𝑗
(and 𝑎𝜌 = 𝑓

𝑗
𝛼 (𝜌) for 𝜌 ∈ 𝐼 ( 𝑗 , 𝛼)).

We leave the details to the reader.

On the other hand, consistently we may easily have a better result.

Lemma 2.11. Suppose that, in the universe V,

𝜆 = cf (𝜆) = 𝜆𝜅 = 𝜆<𝜆, 𝜆 < 𝜇 = 𝜇𝜆.

For some forcing notion P:

3See more in [45], and much later in [50].
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(𝑎) P is as in 2.9.
(𝑏) In VP, assume that

• 𝜑 and the function 𝐼 ↦→
(
𝑀𝐼 , ⟨𝑎̄𝐼𝜂 : 𝜂 ∈ 𝜅>𝜆⟩

)
are as required in

clauses (a),(b),(c) of (∗) of 2.1,
• 𝜁 (∗) < 𝜇,
• each 𝑁𝜁 (for 𝜁 < 𝜁 (∗)) is a model in the relevant vocabulary,
• ∑
𝜁 <𝜁 (∗)

∥𝑁𝜁 ∥𝜅 < 𝜇 (If the vocabulary is of cardinality < 𝜆 and

each predicate or relation symbol has finite arity, then requiring just∑{
∥𝑁𝜁 ∥ : 𝜁 < 𝜁 (∗)

}
< 𝜇 will suffice.)

Then for some 𝐼, the model 𝑀𝐼 cannot be (±𝜑)-embedded into any 𝑁𝜁 .
(𝑐) Assume 𝜇1 = cf (𝜇1), 𝜆 < 𝜇1 ≤ 𝜇 and V |= (∀𝜒 < 𝜇1) [𝜒𝜆 < 𝜇1]. Then

in VP, if ⟨𝑀𝐼𝑖 : 𝑖 < 𝜇1⟩ are pairwise non-isomorphic, 𝜅>𝜆 ⊆ 𝐼𝑖 ⊆ 𝜅≥𝜆,
and 𝑀𝐼𝑖 , 𝑎̄

𝑖
𝜂 (for 𝜂 ∈ 𝐼𝑖) are as in 2.1(∗), then 𝑀𝐼𝑖 is not embeddable

into 𝑀𝐼 𝑗 for some 𝑖 ≠ 𝑗 .
(𝑑) In VP we can find a sequence ⟨𝐼𝜁 : 𝜁 < 𝜇⟩ (with 𝜅>𝜆 ⊆ 𝐼𝜁 ⊆ 𝜅≥𝜆) such

that no 𝑀𝐼𝜁 is (±𝜑)-embeddable into another.

Proof. P is Q0 from the proof of 2.9. Let F be the generic function that is⋃{ 𝑓 : 𝑓 ∈ 𝐺˜Q0}: clearly it is a function from 𝜇 to {0, 1}. Now clause (a) is
trivial.

Next, concerning clause (b), we are given
〈
𝑁𝜁 : 𝜁 < 𝜁 (∗)

〉
. Clearly for some

𝐴 ∈ V of size smaller than 𝜇, we have 𝐴 ⊆ 𝜇. To compute the isomorphism
types of 𝑁𝜁 for 𝜁 < 𝜁 (∗), it is enough to know F ↾ 𝐴. We can force by
{ 𝑓 ∈ Q0 : Dom( 𝑓 ) ⊆ 𝐴}, then f ↾ 𝐵 for any 𝐵 ⊆ 𝜆 \ 𝐴 of cardinality 𝜆 (from
V) gives us an 𝐼 as required.

To prove clause (c) use a Δ-system argument for the names of various 𝑀𝐼 -s,
and similarly for (d).

3. An application for many models in 𝜆

Discussion 3.1. Next we consider the following:
Assume 𝜆 is regular, (∀𝜇 < 𝜆) [𝜇<𝜒 < 𝜆]. Let U𝛼 (for 𝛼 < 𝜆) be pairwise

disjoint stationary subsets of {𝛿 < 𝜆 : cf (𝛿) = 𝜒}.
For 𝐴 ⊆ 𝜆, let

U𝐴 =
⋃
𝑖∈𝐴

U𝑖 .
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We want to define 𝐼𝐴 such that 𝜒>𝜆 ⊆ 𝐼𝐴 ⊆ 𝜒≥𝜆 and
𝐴 ⊈ 𝐵 ⇒ 𝑀𝐼𝐴 � 𝑀𝐼𝐵 .

We choose
〈
⟨𝑀 𝑖

𝐼𝐴
: 𝑖 < 𝜆⟩ : 𝐴 ⊆ 𝜆

〉
with 𝑀𝐼𝐴 =

⋃
𝑖<𝜆

𝑀 𝑖
𝐼𝐴

, ∥𝑀 𝑖
𝐼𝐴
∥ < 𝜆, 𝑀 𝑖

𝐼𝐴

increasing continuous.
Of course, we have to strengthen the restrictions on 𝑀𝐼 . For 𝜂 ∈ 𝐼𝐴 ∩ 𝜒𝜆,

let 𝛿(𝜂) B ⋃{𝜂(𝑖) + 1: 𝑖 < 𝜒}. We are specially interested in 𝜂 which are
strictly increasing converging to some 𝛿(𝜂) ∈ U𝐴; we shall put only such 𝜂-s
in 𝐼𝐴. The decision whether 𝜂 ∈ 𝐼𝐴 will be done by induction on 𝛿(𝜂) for
all sets 𝐴. Arriving to 𝜂, we assume we know quite a lot on the isomorphism
𝑓 : 𝑀𝐼𝐴 → 𝑀𝐼𝐵 : specifically, we know

𝑓 ↾
⋃
𝛼<𝜒

𝑎̄𝜂↾𝛼,

which we are trying to “kill”. We can assume 𝛿(𝜂) ∉ U𝐵 and 𝛿 belongs to a thin
enough club of 𝜆, and using all this information we can “compute” what to do.

(Note: though this is the typical case, we do not always follow it.)

Notation 3.2. (1) For an ordinal 𝛼 and a regular 𝜃 ≥ ℵ0, let H<𝜃 (𝛼) be the
smallest set 𝑌 such that:

(i) 𝑖 ∈ 𝑌 for 𝑖 < 𝛼,
(ii) 𝑥 ∈ 𝑌 for 𝑥 ⊆ 𝑌 of cardinality < 𝜃.
(2) We can agree that M𝜆,𝜃 (𝛼) from [17, 2.1=Lf2] is interpretable in

(H<𝜃 (𝛼), ∈) when 𝛼 ≥ 𝜆, and in particular its universe is a definable subset of
H<𝜃 (𝛼), and also 𝑅 is defined to be:

𝑅 =

{(
𝜎∗, ⟨𝑡𝑖 : 𝑖 < 𝛾𝑥⟩, 𝑥

)
: 𝑥 ∈ M𝜆,𝜃 (𝜃>𝛼), 𝜎∗ is a 𝜏𝜆,𝜅 -term,

𝜃 ≤ 𝜆 ≤ 𝛼, and 𝑥 = 𝜎∗(⟨𝑡𝑖 : 𝑖 < 𝛾𝑥⟩)
}
.

Similarly for M𝜆,𝜃 (𝐼), where 𝐼 ⊆ 𝜅>𝜆 is interpretable in (H<𝜒 (𝜆∗), ∈) if
𝜆 ≤ 𝜆∗, 𝜃 ≤ 𝜒, and 𝜅 ≤ 𝜒.

The main theorem of this section (see [17, 1.4(1)=La11]) is:

Theorem 3.3. ¤𝐼 ¤𝐸±𝜑 (𝜆, 𝐾) = 2𝜆, provided that:

(𝑎) 𝜆 = 𝜆𝜒

(𝑏) 𝜑 = 𝜑(. . . , 𝑥𝛼, . . .)𝛼<𝜒 is a formula in the vocabulary 𝜏𝐾 .
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(𝑐) For every 𝐼 such that 𝜒>𝜆 ⊆ 𝐼 ⊆ 𝜒≥𝜆, we have a model 𝑀𝐼 ∈ 𝐾𝜆, a
function 𝑓𝐼 , and 𝑎̄𝜂 ∈ 𝜒≥ |𝑀𝐼 | for 𝜂 ∈ 𝜒>𝜆 with ℓ𝑔(𝑎̄𝜂) = ℓ𝑔(𝑥ℓ𝑔 (𝜂) )
such that:
(𝛼) For 𝜂 ∈ 𝜒𝜆 we have 𝑀𝐼 |= 𝜑(. . . , 𝑎̄𝜂↾𝛼, . . .) if and only if 𝜂 ∈ 𝐼.
(𝛽) 𝑓𝐼 : 𝑀𝐼 → M𝜇,𝜅 (𝐼), where 𝜇 ≤ 𝜆 and 𝜅 = 𝜒+.
(𝛾) If 𝑏̄𝛼 ∈ 𝑀𝐼 is such that ℓ𝑔(𝑥𝛼) = ℓ𝑔(𝑏̄𝛼) for 𝛼 < 𝜒 and 𝑓𝐼 (𝑏̄𝛼) =

= 𝜎̄𝛼 (𝑡𝛼) then:
• The truth value of𝑀𝐼 |= 𝜑[. . . , 𝑏̄𝛼, . . .]𝛼<𝜒 can be computed

from ⟨𝜎̄𝛼 : 𝛼 < 𝜒⟩ and ⟨𝑡𝛼 : 𝛼 < 𝜒⟩ (not just its quantifier-
free type in 𝐼) and from the truth values of statements of the
form(
∃𝜈 ∈ 𝐼 ∩ 𝜒𝜆

) [∧
𝑖<𝜒

𝜈 ↾ 𝜖𝑖 = 𝑡𝛽𝑖 (𝛾𝑖) ↾ 𝜖𝑖
]

for 𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖 , 𝜖𝑖 < 𝜒 (i.e., in a way not depending on 𝐼 or 𝑓𝐼 ).
[We can weaken this.]

We shall first prove 3.3 under stronger assumptions.

Fact 3.4. Suppose
(∗) 𝜆 = 𝜆2𝜒 (so cf (𝜆) > 𝜒) and 𝜒 ≥ 𝜅.
Then there are

{
(𝑀𝛼, 𝜂𝛼) : 𝛼 < 𝛼(∗)

}
such that:

(i) For every model 𝑀 with universe H<𝜒+ (𝜆) such that |𝜏(𝑀) | ≤ 𝜒 (and,
e.g., 𝜏 ⊆ H<𝜒+ (𝜆)), for some 𝛼, we have 𝑀𝛼 ≺ 𝑀 .

(ii) 𝜂𝛼 ∈ 𝜒𝜆, (∀𝑖 < 𝜒) [𝜂𝛼 ↾ 𝑖 ∈ 𝑀𝛼], 𝜂𝛼 ∉ 𝑀𝛼, and 𝛼 ≠ 𝛽 ⇒ 𝜂𝛼 ≠ 𝜂𝛽 .
(iii) For every 𝛽 < 𝛼 < 𝛼(∗) we have {𝜂𝛼 ↾ 𝑖 : 𝑖 < 𝜒} ⊈ 𝑀𝛽 .
(iv) For 𝛽 < 𝛼, if {𝜂𝛽 ↾ 𝑖 : 𝑖 < 𝜒} ⊆ 𝑀𝛼 then |𝑀𝛽 | ⊆ |𝑀𝛼 |.
(v) ∥𝑀𝛼∥ = 𝜒.

Proof. By 4.20 + 4.21 below, with 𝜆, 2𝜒, 𝜒 here standing for 𝜆, 𝜒(∗), 𝜃 there.

Proof of 3.3 from the Conclusion of 3.4.

Without loss of generality, the universe of 𝑀𝐼 is 𝜆 in 3.3.
We shall define, for every 𝐴 ⊆ 𝜆, a set 𝐼 [𝐴] satisfying 𝜒>𝜆 ⊆ 𝐼 [𝐴] ⊆ 𝜒≥𝜆;

moreover,
𝐼 [𝐴] \ 𝜒>𝜆 ⊆

{
𝜂𝛼 : 𝛼 < 𝛼(∗)

}
.

For 𝛼 < 𝛼(∗), let U𝛼 =
{
𝜂 ∈ 𝜒𝜆 : {𝜂 ↾ 𝑖 : 𝑖 < 𝜒} ⊆ 𝑀𝛼

}
. We shall define,

for every 𝐴 ⊆ 𝜆, the set 𝐼 [𝐴] ∩ U𝛼 by induction on 𝛼 so that on the one hand,
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those restrictions are compatible (i.e. in the end we can still define I[A] for each
𝐴 ⊆ 𝜆), and on the other hand they guarantee the non-(±𝜑)-embeddability.

For each 𝛼, we argue as follows. Essentially, we decide whether 𝜂𝛼 ∈ 𝐼 [𝐴],
assuming that 𝑀𝛼 correctly “guesses” both a function 𝑔 : 𝑀𝐼1 → 𝑀𝐼2 (where
𝐼ℓ = 𝐼 [𝐴ℓ]) and the set 𝐴ℓ ∩ 𝑀𝛼 for ℓ = 1, 2, and we make our decision to
prevent this.

Case I. There are distinct subsets 𝐴1, 𝐴2 of 𝜆 and 𝐼1, 𝐼2 satisfying 𝜒>𝜆 ⊆ 𝐼ℓ ⊆
⊆ 𝜒≥𝜆, a (±𝜑)-embedding 𝑔 of 𝑀𝐼1 into 𝑀𝐼2 , and

𝑀𝛼 ≺
(
H<𝜒+ (𝜆), ∈, 𝑅, 𝐴1, 𝐴2, 𝐼1, 𝐼2, 𝑀𝐼1 , 𝑀𝐼2 , 𝑓𝐼1 , 𝑓𝐼2 , 𝑔

)
,

where

𝑅 =

{{
(0, 𝜎𝑥 , 𝑥), (1 + 𝑖, 𝑡𝑥𝑖 , 𝑥)

}
: 𝑖 < 𝑖𝑥 and 𝑥 has the form 𝜎𝑥 (⟨𝑡𝑥𝑖 : 𝑖 < 𝑖𝑥⟩)

}
(we choose for each 𝑥 a unique such term 𝜎), 𝐼2∩U𝛼 ⊆ 𝐼2∩ ( ⋃

𝛽<𝛼

U𝛽), and 𝐼1, 𝐼2

satisfy the restrictions we already have imposed on 𝐼 [𝐴1], 𝐼 [𝐴2] respectively,
for each 𝛽 < 𝛼. Computing the truth value of 𝑀𝐼2 |= 𝜑[. . . , 𝑓 (𝑎̄𝜂𝛼↾𝑖), . . .]𝑖<𝜒
according to clause 3.3(d) (assuming 𝐼2 ∩ U 𝛼 ⊆ ⋃

𝛽<𝛼

U 𝛽), we get t𝛼.

Then we restrict:
(i) If 𝐵 ⊆ 𝜆 and 𝐵 ∩ |𝑀𝛼 | = 𝐴2 ∩ |𝑀𝛼 | then 𝐼 [𝐵] ∩

(
U 𝛼 \ ⋃

𝛽<𝛼

U 𝛽
)
= ∅.

(ii) If 𝐵 ⊆ 𝜆, 𝐵 ∩ |𝑀𝛼 | = 𝐴1 ∩ |𝑀𝛼 |, and t𝛼 is true, then

𝐼 [𝐵] ∩
(
U 𝛼 \

⋃
𝛽<𝛼

U 𝛽
)
= ∅

or just 𝜂𝛼 ∉ 𝐼 [𝐵].
(iii) If 𝐵 ⊆ 𝜆, 𝐵 ∩ |𝑀𝛼 | = 𝐴1 ∩ |𝑀𝛼 |, and t𝛼 is false, then

𝐼 [𝐵] ∩
(
U 𝛼 \

⋃
𝛽<𝛼

U 𝛽
)
= {𝜂𝛼}

or just 𝜂𝛼 ∈ 𝐼 [𝐵].

Case II. Not Case I.
No restriction is imposed.

The point of this is the two facts below, which should be clear.

Fact 3.5. The choice of 𝐴1, 𝐴2, 𝐼1, 𝐼2, 𝑔 is immaterial (any two candidates lead
to the same decision).

Sh:309



80

Proof. Use clause (d) of 3.3.

Fact 3.6. The 𝑀𝐼 [𝐴] (for 𝐴 ⊆ 𝜆) are pairwise non-isomorphic. Moreover, for
𝐴 ≠ 𝐵 ⊆ 𝜆 there is no (±𝜑)-embedding of 𝑀𝐼 [𝐴] into 𝑀𝐼 [𝐵] .

Proof. By the choice of the 𝐼 [𝐴]-s and 3.4(i).

∗ ∗ ∗
Still, the assumption of 3.4 is too strong: it does not cover all the desirable

cases, though it covers many of them. However, a statement weaker than the
conclusion of 3.4 holds under weaker cardinality restrictions and the proof of
3.3 above works using it, thus we will finish the proof of 3.3.

Fact 3.7. Suppose 𝜆 = 𝜆𝜒.
Then there are

{
(𝑀𝛼, 𝐴𝛼1 , 𝐴

𝛼
2 , 𝜂

𝛼) : 𝛼 < 𝛼(∗)
}

such that:
(∗) (i) For every model 𝑀 with universe H<𝜒+ (𝜆) such that |𝜏(𝑀) | ≤ 𝜒

and 𝜏(𝑀) ⊆ H<𝜒∗ (𝜆) (with arity of relations and functions finite)
and sets 𝐴1 ≠ 𝐴2 ⊆ 𝜆, for some 𝛼 < 𝛼(∗), we have

(𝑀𝛼, 𝐴𝛼1 , 𝐴
𝛼
2 ) ≺ (𝑀, 𝐴1, 𝐴2).

(ii) 𝜂𝛼 ∈ 𝜒𝜆, {𝜂𝛼 ↾ 𝑖 : 𝑖 < 𝜒} ⊆ |𝑀𝛼 |, 𝜂𝛼 ∉ 𝑀𝛼, and 𝛼 ≠ 𝛽 ⇒ 𝜂𝛼 ≠

≠ 𝜂𝛽 .
(iii) For every 𝛽 < 𝛼(∗), if {𝜂𝛼 ↾ 𝑖 : 𝑖 < 𝜒} ⊆ 𝑀𝛽 , then 𝛼 < 𝛽 + 2𝜒.

Furthermore, 𝛼 + 2𝜒 = 𝛽 + 2𝜒 implies 𝐴𝛼1 ∩ |𝑀𝛼 | ≠ 𝐴
𝛽

2 ∩ |𝑀𝛼 |.
(iv) For every 𝛽 < 𝛼, if {𝜂𝛽 ↾ 𝑖 : 𝑖 < 𝜒} ⊆ 𝑀𝛼, then |𝑀𝛽 | ⊆ |𝑀𝛼 |.
(v) ∥𝑀𝛼∥ = 𝜒.

Proof. See 4.46.

Proof of Theorem 3.3. Should be clear. We act as in the proof of 3.3 from
the conclusion of 3.4 but now we have to use the “or just” version in (ii),(iii)
there.

Conclusion 3.8. (1) If 𝑇 ⊆ 𝑇1 are complete first order theories, 𝑇 is in the
vocabulary 𝜏, 𝜅 = cf (𝜅) < 𝜅(𝑇) (hence 𝑇 is un-superstable), and 𝜆 = 𝜆ℵ0 ≥ |𝑇1 |,
then ¤I𝜏 (𝜆, 𝑇1) = 2𝜆. (For more on ¤I𝜏 , see [17].)

(2) Assume 𝜅 = cf (𝜅), Φ is proper and almost nice for 𝐾 𝜅tr (see [17, 1.7]),
𝜎̄𝑖 (𝑖 ≤ 𝜅) is a finite sequence of terms, 𝜏 ⊆ 𝜏Φ, 𝜑𝑖 (𝑥, 𝑦̄) is first order in L [𝜏],
and for 𝜈 ∈ 𝑖𝜆, 𝜂 ∈ 𝜅𝜆, 𝜈 ◁ 𝜂 we have that

EM(𝜅𝜆,Φ) |= 𝜑𝑖
(
𝜎̄𝜅𝑖 (𝑥𝜂), 𝜎̄𝑖+1(𝑥𝜂ˆ⟨𝛼⟩)

)
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holds if and only if 𝛼 = 𝜂(𝑖). Then��{𝐸𝑀𝜏 (𝑆,Φ)/∼= : 𝜅>𝜆 ⊆ 𝑆 ⊆ 𝜅≥𝜆
}�� = 2𝜆.

Proof. (1) By [17, 1.10] there is a templateΦwhich is proper for𝐾 𝜅tr , as required
in part (2).

(2) By 3.3.

Discussion 3.9. What about Theorem 3.3 in the case we assume only 𝜆 = 𝜆<𝜒?
There is some information in [24, Ch.VIII,§2].

Of course, concerning un-superstable 𝑇 , that is 3.8, more is done there: the
assumption is just 𝜆 > |𝑇 |.

Claim 3.10. In 3.3, we can restrict ourselves to 𝐼 such that 𝐼0
𝜆,𝜒

⊆ 𝐼 ⊆ 𝜒≥𝜆,
where

𝐼0
𝜆,𝜒 = 𝜒>𝜆 ∪ {𝜂 ∈ 𝜒𝜆 : 𝜂(𝑖) = 0 for every 𝑖 < 𝜒 large enough}.

Proof. By renaming.

4. Black boxes

We try to give comprehensive treatment of black boxes: quite a few few of
them are useful in some contexts and some parts are redone here, as explained
in §0,§1.

Note that “omitting countable types” is a very useful device for building
models of cardinality ℵ0 and ℵ1. The generalization to models of higher car-
dinality, 𝜆 or 𝜆+, usually requires us to increase the cardinality of the types to
𝜆, and even so we may encounter problems (see [15] and background there).
Note that we do not look mainly at the omitting type theorem per se, but at its
applications.

Jensen defined square and proved existence in L: in Facts 4.1–4.8, we deal
with slightly weaker related principles which can be proved in ZFC. E.g. for 𝜆
regular > ℵ1, {𝛿 < 𝜆+ : cf (𝛿) < 𝜆} is the union of 𝜆 sets, each has square (as
defined there). You can skip them in first reading — particularly 4.1 (and later
take the references on faith).

Then we deal with black boxes. In 4.12 we give the simplest case: 𝜆 regular
> ℵ0, 𝜆 = 𝜆<𝜒 (∗) . (Really, 𝜆<𝜃 = 𝜆<𝜒 (∗) is almost the same.) In 4.12 we also
assume “𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜃} is a good stationary set”. In 4.16 we weaken
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this demand such that enough sets 𝑆 as required exist (provably in ZFC!). The
strength of the cardinality hypothesis (𝜆 = 𝜆<𝜒 (∗) , 𝜆<𝜃 = 𝜆<𝜒 (∗) , 𝜆𝜃 = 𝜆<𝜒 (∗) )
vary the conclusion. In 4.14–4.17 we prepare the ground for replacing “𝜆 regular”
by “cf (𝜆) ≥ 𝜒(∗)”, which is done in 4.18.

As we noted in §2, it is much nicer to deal with (𝑀𝛽
, 𝜂𝛽), this is the first

time we deal with 𝜂𝛽 , i.e., for no 𝛼 < 𝛽,

{𝜂𝛽 ↾ 𝑖 : 𝑖 < 𝜃} ⊆
⋃
𝑖<𝜃

𝑀𝛼
𝑖 .

In 4.20, 4.21 (parallel to 4.12, 4.18, respectively) we guarantee this, at the price
of strengthening 𝜆<𝜃 = 𝜆<𝜒 (∗) to

𝜆<𝜃 = 𝜆𝜒 (1) , 𝜒(1) = 𝜒(∗) + (<𝜒(∗)) 𝜃 .
Later, in 4.46, we draw the conclusion necessary for section 2 (in its proof the
function ℎ, which may look redundant, plays the major role). This (as well as
4.20, 4.21) exemplifies how those principles are self propagating — better ones
follow from the old variant (possibly with other parameters).

In 4.22–4.27 we deal with the black boxes when 𝜃 (the length of the game)
is ℵ0. We use a generalization of the Δ-system lemma for trees and partition
theorems on trees.4 We get several versions of the black box — as the cardinality
restriction becomes more severe, we get a stronger principle.

It would be better if we can use, for a strong limit 𝜅 > ℵ0 = cf (𝜅),

𝜅ℵ0 = sup
{
𝜆 : for some 𝜅𝑛 < 𝜅 and uniform ultrafilter

𝐷 on 𝜔, cf
(∏
𝑛<𝜔

𝜅𝑛/𝐷
)
= 𝜆

}
.

We know this for the uncountable cofinality case (see [32] or [40]), but then
there are other obstacles. Now [39] gives a partial remedy, but lately by [41]
there are many such cardinals.

In 4.41, 4.42 we deal with the case cf (𝜆) ≤ 𝜃. Note that cf
(
𝜆<𝜒 (∗)

)
≥ 𝜒(∗)

is always true, so you may wonder: why wouldn’t we replace 𝜆 by 𝜆<𝜒 (∗)? This is
true in many applications: but is not true, for example, when we want to construct
structures with density character 𝜆.

4See Rubin–Shelah [7, §4], [26, Ch.XI] = [44, Ch.XI], [12, 1.10=L1.7], [12, 1.16=L1.15] and
the proof of 4.24 here; see history there, and 4.6.
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Several times, we use results quoted from [8, §2], but there are no depen-
dency loops. The pcf results quoted here are gathered in [12, §3], so we will
refer to it throughout in addition to quoting the original place.

We end with various remarks and exercises.

4.1. On stationary sets

Fact 4.1. (1) If 𝜇𝜒 = 𝜇 < 𝜆 ≤ 2𝜇, 𝜒 and 𝜆 are regular uncountable cardinals,
and 𝑆 ⊆ {𝛿 < 𝜆 : cf(𝛿) = 𝜒} is a stationary set, then there are a stationary set
𝑊 ⊆ 𝜒 and functions ℎ𝑎, ℎ𝑏 : 𝜆 → 𝜇 and ⟨𝑆𝜁 : 0 < 𝜁 < 𝜆⟩ such that:
(a) 𝑆𝜁 ⊆ 𝑆 is stationary.
(b) 𝜉 ≠ 𝜁 ⇒ 𝑆𝜉 ∩ 𝑆𝜁 = ∅
(c) If 𝛿 ∈ 𝑆𝜉 , then for some increasing continuous sequence ⟨𝛼𝑖 : 𝑖 < 𝜒⟩ we have

𝛿 =
⋃
𝑖<𝜒

𝛼𝑖 , ℎ𝑏 (𝛼𝑖) = 𝑖, ℎ𝑎 (𝛼𝑖) ∈ {𝜉, 0}, and the set {𝑖 < 𝜒 : ℎ𝑎 (𝛼𝑖) = 𝜉} is

stationary (in fact, it is𝑊).
(2) If in (1), a sequence ⟨𝐶𝛿 : 𝛿 < 𝜆, cf (𝛿) ≤ 𝜒⟩ satisfying

(∀𝛼 ∈ 𝐶𝛿)
[
𝛼 limit ⇒ 𝛼 = sup(𝛼 ∩ 𝐶𝛿)

]
is given, where 𝐶𝛿 is a closed unbounded subset of 𝛿 of order type cf (𝛿), then
in the conclusion we can get also 𝑆∗ and ⟨𝐶∗

𝛿
: 𝛿 ∈ 𝑆∗⟩ such that in addition to

(a)–(c), we have:
(c)′ In (c), we add 𝐶𝛿 = {𝛼𝑖 : 𝑖 < 𝜒}.
(d)

⋃
0<𝜉<𝜆

𝑆𝜉 ⊆ 𝑆∗ ⊆ ⋃
0<𝜉<𝜆

𝑆𝜉 ∪ {𝛿 < 𝜆 : cf (𝛿) < 𝜒}

(e) 𝑊 ⊆ 𝜒 is (> ℵ0)-closed and stationary in cofinality ℵ0, which means:
(𝑖) If 𝑖 < 𝜒 is a limit ordinal such that 𝑖 = sup(𝑖 ∩𝑊) has cofinality

> ℵ0 then 𝑖 ∈ 𝑊 .
(𝑖𝑖) {𝑖 ∈ 𝑊 : cf (𝑖) = ℵ0} is a stationary5 subset of 𝜒.

(f) for 𝛿 ∈ ⋃
0<𝜉<𝜆

𝑆𝜉 we have

𝐶∗
𝛿 = {𝛼 ∈ 𝐶𝛿 : otp(𝛼 ∩ 𝐶𝛿) = sup(𝑊 ∩ otp(𝛼 ∩ 𝐶𝛿))}

(g) 𝐶∗
𝛿

is a club of 𝛿 included in 𝐶𝛿 for 𝛿 ∈ 𝑆∗, and if 𝛿(1) ∈ 𝐶∗
𝛿
,

𝛿 ∈ 𝑆∗, 𝛿 ∈ ⋃
0<𝜁<𝜆

𝑆𝜁 , 𝛿(1) = sup(𝛿(1) ∩ 𝐶∗
𝛿
), and cf (𝛿(1)) > ℵ0

then 𝐶∗
𝛿 (1) ⊆ 𝐶

∗
𝛿
,

(h) If 𝐶 is a closed unbounded subset of 𝜆 and 0 < 𝜉 < 𝜆 then the set
{𝛿 ∈ 𝑆𝜉 : 𝐶∗

𝛿
⊆ 𝐶} is stationary.

5We can add ‘∉ 𝐼’ if 𝐼 is any normal ideal on {𝑖 < 𝜒 : cf (𝑖) = ℵ0}.
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Proof. (1) We can find {⟨ℎ1
𝜉
, ℎ2
𝜉
⟩ : 𝜉 < 𝜇} such that:

(1) For every 𝜉 we have ℎ1
𝜉

: 𝜆 → 𝜇 and ℎ2
𝜉

: 𝜆 → 𝜇.
(2) If 𝐴 ⊆ 𝜆, |𝐴| ≤ 𝜒, and ℎ1, ℎ2 : 𝐴 → 𝜇 then for some 𝜉, ℎ1

𝜉
↾ 𝐴 = ℎ1

and ℎ2
𝜉
↾ 𝐴 = ℎ2.

This holds by Engelking–Karlowicz [3].6
(2) For 𝛼 < 𝜆, let𝐶•

𝛼 be a closed unbounded subset of 𝛼 of order type cf (𝛼).
Now for each 𝜉 < 𝜇 and for 𝑎 ⊆ 𝜒 stationary, we ask whether for every 𝑖 < 𝜆,
for some 𝑗 < 𝜆, we have

(∗) 𝜉 ,𝑎
𝑖, 𝑗

The following subset of 𝜆 is stationary:

𝑆
𝜉 ,𝑎

𝑖, 𝑗
=
{
𝛿 ∈ 𝑆 : (i) if 𝛼 ∈ 𝐶𝛿 , otp(𝛼 ∩ 𝐶𝛿) ∉ 𝑎 then ℎ1

𝜉 (𝛼) = 0,

(ii) if 𝛼 ∈ 𝐶𝛿 , otp(𝛼 ∩ 𝐶𝛿) ∈ 𝑎 then the ℎ1
𝜉 (𝛼)-th

member of 𝐶𝛼 belongs to [𝑖, 𝑗),
(iii) if 𝛼 ∈ 𝐶𝛿 then ℎ2

𝜉 (𝛼) = otp(𝛼 ∩ 𝐶𝛿)}

Subfact 4.2. For some 𝜉 < 𝜇 and a stationary set 𝑎 ⊆ 𝜒, for every 𝑖 < 𝜆, for
some 𝑗 ∈ (𝑖, 𝜆), the statement (∗) 𝜉 ,𝑎

𝑖, 𝑗
holds.

Proof. If not, then for every 𝜉 < 𝜇 and a stationary 𝑎 ⊆ 𝜒, for some 𝑖 =

= 𝑖(𝜉, 𝑎) < 𝜆, for every 𝑗 such that 𝑖(𝜉, 𝑎) < 𝑗 < 𝜆, there is a closed unbounded
subset 𝐶 (𝜉, 𝑎, 𝑖, 𝑗) of 𝜆 disjoint from 𝑆

𝜉 ,𝑎

𝑖, 𝑗
.

Let
𝑖(∗) =

⋃{
𝑖(𝜉, 𝑎) + 𝜔 : 𝜉 < 𝜇 and 𝑎 ⊆ 𝜒 is stationary

}
.

Clearly 𝑖(∗) < 𝜆.
For 𝑖(∗) ≤ 𝑗 < 𝜆, let

𝐶 ( 𝑗) =
⋂{

𝐶 (𝜉, 𝑎, 𝑖(𝜉, 𝑎), 𝑗) : 𝑎 ⊆ 𝜒 is stationary and 𝜉 < 𝜇
}
∩
(
𝑖(∗) + 𝜔, 𝜆

)
.

Clearly it is a closed unbounded subset of 𝜆.
Let

𝐶∗ =
{
𝛿 < 𝜆 : 𝛿 > 𝑖(∗) and (∀ 𝑗 < 𝛿)

[
𝛿 ∈ 𝐶 ( 𝑗)

]}
.

So 𝐶∗ is a closed unbounded subset of 𝜆 as well. Let 𝐶+ be the set of
accumulation points of 𝐶∗. Choose 𝛿(∗) ∈ 𝐶+ ∩ 𝑆, and we shall define

ℎ1 : 𝐶𝛿 (∗) → 𝜇, ℎ2 : 𝐶𝛿 (∗) → 𝜇.

6See for example [36, AP]; on history see e.g. [43, §5]
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For 𝛼 ∈ 𝐶𝛿 (∗) , let ℎ0(𝛼) be:

min
{
𝛾 ∈ (0, 𝜒) : the 𝛾th member of 𝐶•

𝛼 is > 𝑖(∗)
}

if 𝛼 = sup(𝐶𝛿 (∗) ∩ 𝛼) > 𝑖(∗), and zero otherwise. Clearly the set

{𝛼 ∈ 𝐶𝛿 (∗) : ℎ0(𝛼) = 0}
is not stationary. Now we can define 𝑔 : 𝐶𝛿 (∗) → 𝛿(∗) by:

𝑔(𝛼) is the ℎ0(𝛼)th member of 𝐶𝛼.
Note that 𝑔 is pressing down and {𝛼 ∈ 𝐶𝛿 (∗) : 𝑔(𝛼) ≤ 𝑖(∗)} is not stationary.
So (by the variant of Fodor’s Lemma speaking on an ordinal of uncountable
cofinality) for some 𝑗 < sup(𝐶𝛿 (∗) ) = 𝛿(∗), the set

𝑎 B {𝛼 ∈ 𝐶𝛿 (∗) ∩ 𝐶∗ : 𝑖(∗) < 𝑔(𝛼) < 𝑗}
is a stationary subset of 𝛿(∗). Let ℎ1 : 𝐶𝛿 (∗) → 𝜇 be

ℎ1(𝛼) =
{

0 if otp(𝛼 ∩ 𝐶•
𝛿
) ∉ 𝑎

ℎ0(𝛼) if otp(𝛼 ∩ 𝐶•
𝛿
) ∈ 𝑎.

Let ℎ2 : 𝐶𝛿 (∗) → 𝜇 be ℎ2(𝛼) = otp(𝛼∩𝐶𝛿 (∗) ). By the choice of ⟨(ℎ1
𝜉
, ℎ2
𝜉
) : 𝜉 <

< 𝜇⟩, for some 𝜉 we have ℎ1
𝜉
↾ 𝐶𝛿 (∗) = ℎ1 and ℎ2

𝜉
↾ 𝐶𝛿 (∗) = ℎ2. Easily,

𝛿(∗) ∈ 𝑆 𝜉 ,𝑎
𝑖, 𝑗

which is disjoint to 𝐶 (𝜉, 𝑎, 𝑖(∗), 𝑗), contradicting 𝛿(∗) ∈ 𝐶∗ by the
definition of 𝐶 ( 𝑗) and 𝐶∗.

So we have proved Subfact 4.2.

Continuing the proof of 4.1

Having chosen 𝜉 and 𝑎, we define an ordinal 𝑖(𝜁) < 𝜆 by induction on 𝜁 < 𝜆
such that ⟨𝑖(𝜁) : 𝜁 < 𝜆⟩ is increasing continuous, 𝑖(0) = 0, and (∗) 𝜉 ,𝑎

𝑖 (𝜁 ) ,𝑖 (𝜁+1)
holds.

Now, for 𝛼 < 𝜆 we define ℎ𝑎 (𝛼) as follows: it is 𝜁 if ℎ1
𝜉
(𝛼) > 0 and the

ℎ1
𝜉
(𝛼)th member of𝐶•

𝛼 belongs to
[
𝑖(1+𝜁), 𝑖(1+𝜁 +1)

)
, and it is zero otherwise.

Lastly, let ℎ𝑏 (𝛼) B ℎ2
𝜉
(𝛼) and𝑊 = 𝑎 and

𝑆𝜁 B
{
𝛿 ∈ 𝑆 : (i) for 𝛼 ∈ 𝐶𝛿 , otp(𝛼 ∩ 𝐶𝛿) = ℎ𝑏 (𝛼),

(ii) for 𝛼 ∈ 𝐶𝛿 , ℎ𝑏 (𝑖) ∈ 𝑎 ⇒ ℎ𝑎 (𝛼) = 𝜁,
(iii) for 𝛼 ∈ 𝐶𝛿 , ℎ𝑏 (𝑖) ∉ 𝑎 ⇒ ℎ𝑎 (𝑖) = 0

}
.

Now, it is easy to check that 𝑎, ℎ𝑎, ℎ𝑏, and ⟨𝑆𝜁 : 0 < 𝜁 < 𝜆⟩ are as required.
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(2) In the proof of 4.1(1) we shall now consider only sets 𝑎 ⊆ 𝜒which satisfy
the demand on 𝑊 from 4.1(2)(e). (This makes a difference in the definition of
𝐶 ( 𝑗) during the proof of Subfact 4.2.) Also, in (∗) 𝜉 ,𝑎

𝑖, 𝑗
in the definition of 𝑆 𝜉 ,𝑎

𝑖, 𝑗
,

we change (iii) to:
(iii)′ If 𝛼 ∈ 𝐶𝛿 then ℎ2

𝜉
(𝛼) codes the isomorphism type of (for example)(

𝐶•
𝛿 ∪

⋃
𝛽∈𝐶𝛿

𝐶𝛽 , <, 𝛼, 𝐶
•
𝛿 ,

{
⟨𝑖, 𝛽⟩ : 𝑖 ∈ 𝐶𝛽

})
.

In the end, having chosen 𝜉 and 𝑎 we can define𝐶∗
𝛿

and 𝑆∗ in the natural way.

Fact 4.3. (1) If 𝜆 is regular > 2𝜅 , 𝜅 regular, 𝑆 ⊆ {𝛿 < 𝜆 : cf(𝛿) = 𝜅} is
stationary, and 𝐶0

𝛿
is a club of 𝛿 of order type 𝜅 (= cf (𝛿)) for 𝛿 ∈ 𝑆, then we can

find a club 𝑐∗ of 𝜅 (see 4.4(1) below) such that for 𝛿 ∈ 𝑆,
𝐶𝛿 = 𝐶

0
𝛿 [𝑐

∗] B {𝛼 ∈ 𝐶0
𝛿 : otp(𝐶0

𝛿 ∩ 𝛼) ∈ 𝑐
∗}.

It is a club of 𝛿, and:
(∗) For every club 𝐶 ⊆ 𝜆, we have:

(a) If 𝜅 > ℵ0 then {𝛿 ∈ 𝑆 : 𝐶𝛿 ⊆ 𝐶} is stationary.
(b) If 𝜅 = ℵ0, then the set{

𝛿 ∈ 𝑆 : (∀𝛼, 𝛽 ∈ 𝐶𝛿) [𝛼 < 𝛽 ⇒ (𝛼, 𝛽) ∩ 𝐶 ≠ ∅]
}

is stationary.

(2) If 𝜆 is a regular cardinal > 2𝜅 , then we can find
〈
⟨𝐶𝜁
𝛿

: 𝛿 ∈ 𝑆𝜁 ⟩ : 𝜁 < 2𝜅
〉

such that:
(1)

⋃{𝑆𝜁 : 𝜁 < 2𝜅 } = {𝛿 < 𝜆 : ℵ0 < cf (𝛿) ≤ 𝜅}
(2) 𝐶𝜁

𝛿
is a club of 𝛿 of order type cf (𝛿).

(3) If 𝛼 ∈ 𝑆𝜁 , cf (𝛼) > 𝜃 > ℵ0, then{
𝛽 ∈ 𝐶𝜁𝛼 : cf (𝛽) = 𝜃, 𝛽 ∈ 𝑆𝜁 and 𝐶𝜁

𝛽
⊆ 𝐶𝜁𝛼

}
is a stationary subset of 𝛼.

(3) If 𝜆 is regular and 2𝜇 ≥ 𝜆 > 𝜇𝜅 then we can find
〈
⟨𝐶𝜁
𝛿

: 𝛿 ∈ 𝑆𝜁 ⟩ : 𝜁 < 𝜇
〉

such that:
(1)

⋃{𝑆𝜁 : 𝜁 < 2𝜅 } = {𝛿 < 𝜆 : ℵ0 < cf (𝛿) ≤ 𝜅}
(2) 𝐶𝜁

𝛿
is a club of 𝛿 of order type cf (𝛿).

(3) If 𝛼 ∈ 𝑆𝜁 , 𝛽 ∈ 𝐶𝜁𝛼, cf (𝛽) > ℵ0, then 𝛽 ∈ 𝑆𝜁 and 𝐶𝜁
𝛽
⊆ 𝐶𝜁𝛼.
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(4) Moreover, if 𝛼, 𝛽 ∈ 𝑆𝜁 and 𝛽 ∈ 𝐶𝜁𝛼 then{(
otp(𝛾 ∩ 𝐶𝜁

𝛽
), otp(𝛾 ∩ 𝐶𝜁𝛼)

)
: 𝛾 ∈ 𝐶𝛽

}
depends only on

(
otp(𝛽 ∩ 𝐶𝛼), otp(𝐶𝛼)

)
.

(4) We can, in clauses (1)(∗)(a)-(b), replace “stationary” by “∉ 𝐼” for any
normal ideal I on 𝜆.

Remark 4.4. (1) Here a club𝐶 of 𝛿, where cf (𝛿) = ℵ0, just means an unbounded
subset of 𝛿.

(2) In 4.3(1) instead of 2𝜅 , the cardinal
min

{
|F | : F ⊆ 𝜅 𝜅 ∧ (∀𝑔 ∈ 𝜅𝜅) (∃ 𝑓 ∈ F ) (∀𝛼 < 𝜅)

[
𝑔(𝛼) < 𝑓 (𝛼)

]}
suffices.

(3) In 4.3(1)(∗)(b) above, it is equivalent to ask that{
𝛿 ∈ 𝑆 : (∀𝛼, 𝛽 ∈ 𝐶𝛿) [𝛼 < 𝛽 ⇒ otp((𝛼, 𝛽) ∩ 𝐶) > 𝛼]

}
is stationary.

Proof of Fact 4.3. (1) If 4.3(1) fails, then for each club 𝑐∗ of 𝜅 there is a club
𝐶 [𝑐∗] of 𝜆 exemplifying its failure. So 𝐶+ B

⋂{𝐶 [𝑐∗] : 𝑐∗ ⊆ 𝜅 a club} is a
club of 𝜆. Choose a 𝛿 ∈ 𝑆 which is an accumulation point of 𝐶+, and get a
contradiction easily.

(2) Let 𝜆 = cf (𝜆) > 2𝜅 , and let 𝐶𝛼 be a club of 𝛼 of order type cf (𝛼) for
each limit 𝛼 < 𝜆. Without loss of generality

𝛽 ∈ 𝐶𝛼 ∧ 𝛽 > sup(𝛽 ∩ 𝐶𝛼) ⇒ 𝛽 is a successor ordinal.

For any sequence 𝑐 = ⟨𝑐𝜃 : ℵ0 < 𝜃 = cf (𝜃) ≤ 𝜅⟩ such that each 𝑐𝜃 is a club
of 𝜃, for 𝛿 ∈ 𝑆∗ = {𝛼 < 𝜆 : ℵ0 < cf (𝛼) ≤ 𝜅} we let:

𝐶 𝑐̄𝛿 = {𝛼 ∈ 𝐶𝛿 : otp(𝐶𝛿 ∩ 𝛼) ∈ 𝑐cf (𝛿 ) }.

Now to define 𝑆𝑐̄, we define the set 𝑆𝑐̄ ∩ 𝛿 by induction on 𝛿 < 𝜆: the only
problem is to define whether 𝛼 ∈ 𝑆𝑐̄ knowing 𝑆𝑐̄ ∩ 𝛿. We stipulate

𝛼 ∈ 𝑆𝑐̄if and only if (i) ℵ0 < cf (𝛼) ≤ 𝜅

(ii) If ℵ0 < 𝜃 = cf (𝜃) < cf (𝛼)
then the set {𝛽 ∈ 𝐶 𝑐̄𝛼 : cf (𝛽) = 𝜃, 𝛽 ∈ 𝑆𝑐̄ ∩ 𝛼}
is stationary in 𝛼.
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Let ⟨𝑐𝜁 : 𝜁 < 2𝜅⟩ list the possible sequences 𝑐, and let 𝑆𝜁 = 𝑆𝑐̄𝜁 and 𝐶𝜁
𝛿
= 𝐶 𝑐̄

𝜁

𝛿
.

To finish, note that for each 𝛿 < 𝜆 satisfying ℵ0 < cf (𝛿) ≤ 𝜅, we have 𝛿 ∈ 𝑆𝜁
for some 𝜁 .

(3) Combine the proof of (2) and of 4.1.
(4) Similarly.

We may remark

Fact 4.5. Suppose that 𝜆 is a regular cardinal > 2𝜅 , 𝜅 = cf (𝜅) > ℵ0, a set
𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜅}

is stationary, and 𝐼 is a normal ideal on 𝜆 with 𝑆 ∉ 𝐼. If 𝐼 is 𝜆+-saturated (i.e. in
the Boolean algebra P(𝜆)/𝐼, there is no family of 𝜆+ pairwise disjoint elements),
then we can find ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩, 𝐶𝛿 a club of 𝛿 of order type cf (𝛿), such that:

(∗) For every club 𝐶 of 𝜆 we have {𝛿 ∈ 𝑆 : 𝐶𝛿 \ 𝐶 is unbounded in 𝛿} ∈ 𝐼.

Proof. For 𝛿 ∈ 𝑆, let 𝐶′
𝛿

be a club of 𝛿 of order type cf (𝛿). Call 𝐶 = ⟨𝐶𝛿 : 𝛿 ∈
∈ 𝑆∗⟩ (where 𝑆∗ ⊆ 𝑆 ⊆ 𝜆 stationary, 𝑆∗ ∉ 𝐼, 𝐶𝛿 a club of 𝛿) 𝐼-large if for every
club 𝐶 of 𝜆, the set

{𝛿 < 𝜆 : 𝛿 ∈ 𝑆∗ and 𝐶𝛿 \ 𝐶 is bounded in 𝛿}
does not belong to 𝐼.

We call 𝐶 𝐼-full if above {𝛿 ∈ 𝑆∗ : 𝐶𝛿 \ 𝐶 unbounded in 𝛿} ∈ 𝐼.
By 4.3(4), for every stationary 𝑆′ ⊆ 𝑆 with 𝑆′ ∉ 𝐼, there is a club 𝑐∗ of 𝜅

such that ⟨𝐶′
𝛿
[𝑐∗] : 𝛿 ∈ 𝑆′⟩ is 𝐼-large.

Now note:
(∗) If ⟨𝐶𝛿 : 𝛿 ∈ 𝑆′⟩ is 𝐼-large and 𝑆′ ⊆ 𝑆, then for some 𝑆′′ ⊆ 𝑆′ such that

𝑆′′ ∉ 𝐼, ⟨𝐶𝛿 : 𝛿 ∈ 𝑆′′⟩ is 𝐼-full (hence 𝑆′′ ∉ 𝐼).

Proof of (∗). Choose, by induction on 𝛼 < 𝜆+, a club 𝐶𝛼 of 𝜆 such that:
(1) For 𝛽 < 𝛼, 𝐶𝛼 \ 𝐶𝛽 is bounded in 𝜆.
(2) If 𝛽 = 𝛼 + 1 then 𝐴𝛽 \ 𝐴𝛼 ∈ 𝐼+, where

𝐴𝛾 B {𝛿 ∈ 𝑆′ : 𝐶𝛿 \ 𝐶𝛾 is unbounded in 𝛿}.
As clearly

𝛽 < 𝛼 ⇒ 𝐴𝛽 \ 𝐴𝛼 is bounded in 𝜆
(by (a) and the definition of 𝐴𝛼, 𝐴𝛽) and as 𝐼 is 𝜆+-saturated, clearly for some 𝛼
we cannot define 𝐶𝛼. This cannot be true for 𝛼 = 0 or a limit 𝛼, so necessarily
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𝛼 = 𝛽 + 1. Now 𝑆′ \ 𝐴𝛽 is not in 𝐼 as 𝐶 was assumed to be 𝐼-large. Check that
𝑆′′ B 𝑆′ \ 𝐴𝛽 is as required.

Repeatedly using 4.3(4) and (∗), we get the conclusion.

Claim 4.6. Suppose 𝜆 = 𝜇+, 𝜇 = 𝜇𝜒, 𝜒 is a regular cardinal and

𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜒}
is stationary. Then we can find 𝑆∗, ⟨𝐶𝛿 : 𝛿 ∈ 𝑆∗⟩, and ⟨𝑆𝜉 : 𝜉 < 𝜆⟩ such that:

(𝑎) ⋃
𝜁 <𝜇

𝑆𝜁 ⊆ 𝑆∗ ⊆ 𝑆 ∪ {𝛿 < 𝜆 : cf (𝛿) < 𝜒}

(𝑏) 𝑆𝜁 ∩ 𝑆 is a stationary subset of 𝜆 for each 𝜁 < 𝜇.
(𝑐) For 𝛼 ∈ 𝑆∗, 𝐶𝛼 is a closed subset of 𝛼 of order type ≤ 𝜒. If 𝛼 ∈ 𝑆∗ is a

limit then 𝐶𝛼 is unbounded in 𝛼 (so it is a club of 𝛼).
(𝑑) ⟨𝐶𝛼 : 𝛼 ∈ 𝑆𝜁 ⟩ is a square on 𝑆𝜁 ; i.e. 𝑆𝜁 is stationary in sup(𝑆𝜁 ) and:

(𝑖) 𝐶𝛼 is a closed subset of 𝛼, unbounded if 𝛼 is limit.
(𝑖𝑖) If 𝛼 ∈ 𝑆𝜁 and 𝛼(1) ∈ 𝐶𝛼 then 𝛼(1) ∈ 𝑆𝜁 and 𝐶𝛼(1) = 𝐶𝛼 ∩ 𝛼(1).

(𝑒) For each club 𝐶 of 𝜆 and 𝜁 < 𝜇, we have 𝐶𝛿 ⊆ 𝐶 for some 𝛿 ∈ 𝑆𝜁 .

Proof. Similar to the proof of 4.1 (or see [33]). Alternatively, see 4.8 below
(using 4.10(1) for clause (e)).

We shall use the following in 4.27.

Claim 4.7. Suppose 𝜆 = 𝜇+, 𝛾 a limit ordinal of cofinality 𝜒,

ℎ : 𝛾 → {𝜃 : 𝜃 = 1 or 𝜃 = cf (𝜃) ≤ 𝜇},
𝜇 = 𝜇 |𝛾 | , and 𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜒} is stationary. Then we can find 𝑆∗,
⟨𝐶𝛿 : 𝛿 ∈ 𝑆∗⟩ and ⟨𝑆𝜁 : 𝜁 < 𝜆⟩ such that:

(𝑎) ⋃
𝜁 <𝜆

𝑆𝜁 ⊆ 𝑆∗ ⊆ {𝛿 < 𝜆 : cf (𝛿) ≤ 𝜒}

(𝑏) 𝑆𝜁 ∩ 𝑆 is stationary for each 𝜁 < 𝜆.
(𝑐) For 𝛿 ∈ 𝑆∗,

(𝑖) 𝐶𝛿 is a club of 𝛿 of order type ≤ 𝛾 and
(𝑖𝑖) otp(𝐶𝛿) = 𝛾 iff 𝛿 ∈ 𝑆 ∩ 𝑆∗,
(𝑖𝑖𝑖) 𝛼 ∈ 𝐶𝛿 ∧ sup(𝐶𝛿 ∩ 𝛼) < 𝛼 ⇒ 𝛼 has cofinality ℎ[otp(𝐶𝛿 ∩ 𝛼)].

(𝑑) If 𝛿 ∈ 𝑆𝜁 and 𝛿(1) is a limit ordinal ∈ 𝐶𝛿 then 𝛿(1) ∈ 𝑆𝜁 and
𝐶𝛿 (1) = 𝐶𝛿 ∩ 𝛿(1).

(𝑒) For each club 𝐶 of 𝜆 and 𝜁 < 𝜆, for some 𝛿 ∈ 𝑆𝜁 , 𝐶𝛿 ⊆ 𝐶.

Proof. Like 4.6.
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Claim 4.8. (1) Suppose 𝜆 is regular > ℵ1. Then {𝛿 < 𝜆+ : cf (𝛿) < 𝜆} is a good
stationary subset of 𝜆+. (I.e., it is in 𝐼 [𝜆+]: see [12, 3.4=Lcd1.1] or [47, 0.6,0.7]
or 4.9(2) below.)

(2) Suppose 𝜆 is regular > ℵ1. Then we can find ⟨𝑆𝜁 : 𝜁 < 𝜆⟩ such that:

(𝑎) ⋃
𝜁 <𝜆

𝑆𝜁 = {𝛼 < 𝜆+ : cf (𝛼) < 𝜆}

(𝑏) On each 𝑆𝜁 there is a square (see clause 4.6(𝑑)). Say it is ⟨𝐶𝜁𝛼 : 𝛼 ∈ 𝑆𝜁 ⟩
with |𝐶𝜁

𝛿
| < 𝜆.

(𝑐) If 𝛿(∗) < 𝜆 and 𝜅 = cf (𝜅) < 𝜆 then for some 𝜁 < 𝜆, for every club 𝐶 of
𝜆+, for some accumulation point 𝛿 of 𝐶, cf (𝛿) = 𝜅 and otp(𝐶𝜁

𝛿
∩ 𝐶) is

divisible by 𝛿(∗).
(𝑑) If cf (𝛿(∗)) = 𝜅 as well, then we can add in the conclusion of (𝑐):

𝐶
𝜁

𝛿
⊆ 𝐶 and otp(𝐶𝜁

𝛿
) = 𝛿(∗).

Remark 4.9. (1) For 𝜆 = ℵ1 the conclusion of 4.8(1), (2)(a),(b) becomes totally
trivial. But for 𝛿 < 𝜔1, it means something if we add ‘{𝛼 ∈ 𝑆𝜁 : otp(𝐶𝜁𝛼) = 𝛿}
is stationary, and for every club 𝐶 of 𝜆 the set {𝛼 ∈ 𝑆𝛿 : otp(𝐶𝜁𝛼) = 𝛿, 𝐶𝜁𝛼 ⊆ 𝐶}
is stationary.’ So 4.8(2)(c),(d) are not so trivial, but still true. Their proofs are
similar so we leave them to the reader (they are used only in [8, 2.7]).

(2) Recall that for a regular uncountable cardinal 𝜇, the family 𝐼 [𝜇] of good
subsets of 𝜇 is the family of 𝑆 ⊆ 𝜇 such that there are a sequence 𝑎̄ = ⟨𝑎𝛼 : 𝛼 < 𝜆⟩
and a club 𝐶 ⊆ 𝜇 satisfying:

• 𝑎𝛼 ⊆ 𝛼 is of order type < 𝛼 when 𝜆 is a successor cardinal.
• 𝛽 ∈ 𝑎𝛼 ⇒ 𝑎𝛽 = 𝑎𝛼 ∩ 𝛽
• (∀𝛿 ∈ 𝑆 ∩ 𝐶)

[
sup(𝑎 𝛿) = 𝛿 ∧ otp(𝑎 𝛿) = cf (𝛿)

]
.

We may say that the sequence 𝑎̄ as above exemplifies that 𝑆 is good; if 𝐶 = 𝜇 we
say “explicitly exemplifies”.

Proof. Appears also in detail in [38] (originally proved for this work but as its
appearance was delayed we put it there, too). Of course,

(1) follows from (2).
(2) Let 𝑆 = {𝛼 < 𝜆+ : cf (𝛼) < 𝜆}. For each 𝛼 ∈ 𝑆, choose 𝐴̄𝛼 such that:
(𝛼) 𝐴̄𝛼 = ⟨𝐴𝛼

𝑖
: 𝑖 < 𝜆⟩ is an increasing continuous sequence of subsets of 𝛼

of cardinality < 𝜆 such that
⋃
𝑖<𝜆

𝐴𝛼
𝑖
= 𝛼 ∩ 𝑆.

(𝛽) If 𝛽 ∈ 𝐴𝛼
𝑖
∪ {𝛼}, 𝛽 is a limit ordinal and cf (𝛽) < 𝜆 (this actually follows

from the first two conditions), then 𝛽 = sup(𝐴𝛼
𝑖
∩ 𝛽).
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(𝛾) If 𝛽 ∈ 𝐴𝛼
𝑖
∪ {𝛼} is limit and ℵ0 < cf (𝛽) < 𝜆 then 𝐴𝛼

𝑖
contains a club of

𝛽.
(𝛿) 0 ∈ 𝐴𝛼

𝑖
and

(
𝛽 ∈ 𝑆 ∧ 𝛽 + 1 ∈ 𝐴𝛼

𝑖
∪ {𝛼}

)
⇒ 𝛽 ∈ 𝐴𝛼

𝑖
.

(𝜀) The closure of 𝐴𝛼
𝑖

in 𝛼 (in the order topology) is included in 𝐴𝛼
𝑖+1.

There are no problems with choosing 𝐴̄𝛼 as required.
We define 𝐵𝛼

𝑖
(for 𝑖 < 𝜆, 𝛼 ∈ 𝑆) by induction on 𝛼 as follows:

𝐵𝛼𝑖 =


closure(𝐴𝛼

𝑖
) ∩ 𝛼 if cf (𝛼) ≠ ℵ1⋂{ ⋃

𝛽∈𝐶
𝐵
𝛽

𝑖
: 𝐶 a club of 𝛼

}
if cf (𝛼) = ℵ1.

For 𝜁 < 𝜆 we let:
𝑆𝜁 =

{
𝛼 ∈ 𝑆 : (i) 𝐵𝛼𝜁 is a closed subset of 𝛼,

(ii) if 𝛽 ∈ 𝐵𝛼𝜁 , then 𝐵𝛽
𝜁
= 𝐵𝛼𝜁 ∩ 𝛽 and

(iii) if 𝛼 is limit, then 𝛼 = sup(𝐵𝛼𝜁 )
}

and for 𝛼 ∈ 𝑆𝜁 let 𝐶𝜁𝛼 = 𝐵𝛼
𝜁

.
Now, demand (b) holds by the choice of 𝑆𝜁 . To prove clause (a) we shall

show that for any 𝛼 ∈ 𝑆, for some 𝜁 < 𝜆, 𝛼 ∈ 𝑆𝜁 ; moreover we shall prove

(∗)0
𝛼 𝐸𝛼 B {𝜁 < 𝜆 : if cf (𝜁) = ℵ1 then 𝛼 ∈ 𝑆𝜁 } contains a club of 𝜆.

For 𝛼 ∈ 𝑆 define 𝐸0
𝛼 = {𝜁 < 𝜆 : if cf (𝜁) = ℵ1 then 𝐵𝛼

𝜁
= closure(𝐴𝛼

𝜁
) ∩ 𝛼}. We

shall prove by induction on 𝛼 ∈ 𝑆 that 𝐸𝛼 ∩ 𝐸0
𝛼 contains a club of 𝜆, and then

we will choose such a club 𝐸1
𝛼.

Arriving to 𝛼, let

𝐸∗
𝛼 = {𝜁 < 𝜆 : if 𝛽 ∈ 𝐴𝛼𝜁 then 𝜁 ∈ 𝐸1

𝛽 and 𝐴𝛽
𝜁
= 𝐴𝛼𝜁 ∩ 𝛽}.

Clearly 𝐸∗
𝛼 is a club of 𝜆. Let 𝜁 ∈ 𝐸∗

𝛼 and cf (𝜁) = ℵ1, and we shall prove that
𝛼 ∈ 𝑆𝜁 ∩𝐸𝛼∩𝐸0

𝛼: clearly this will suffice. By the choice of 𝜁 (and the definition
of 𝐸) we have: if 𝛽 belongs to 𝐴𝛼

𝜁
then 𝐴𝛽

𝜁
= 𝐴𝛼

𝜁
∩ 𝐴 and 𝐵𝛽

𝜁
= closure(𝐴𝛽

𝜁
) ∩ 𝛽,

so
(∗)1 𝛽 ∈ 𝐴𝛼

𝜁
⇒ 𝐵

𝛽

𝜁
= closure(𝐴𝛼

𝜁
) ∩ 𝛽.

Let us check the three conditions for “𝛼 ∈ 𝑆𝜁 ”; this will suffice for clause (a) of
the claim.
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Clause (i). 𝐵𝛼
𝜁

is a closed subset of𝛼. If cf (𝛼) ≠ ℵ1 then 𝐵𝛼
𝜁
= closure(𝐴𝛼

𝜁
)∩𝛼,

hence necessarily it is a closed subset of 𝛼.
If cf (𝛼) = ℵ1 then 𝐵𝛼

𝜁
=
⋂{ ⋃

𝛽∈𝐶
𝐵
𝛽

𝜁
: 𝐶 is a club of 𝛼

}
. Now, for any club

𝐶 of 𝛼, 𝐶 ∩ 𝐴𝛼
𝜁

is an unbounded subset of 𝛼 (see clause (𝛾) above). By (∗)1
above, ⋃

𝛽∈𝐶
𝐵
𝛽

𝜁
⊇

⋃
𝛽∈𝐶∩𝐴𝛼

𝜁

𝐵
𝛽

𝜁
= closure(𝐴𝛼𝜁 ) ∩ 𝛽.

To finish proving clause (i), it suffices to note that we have gotten
(∗)2 𝛼 ∈ 𝐸0

𝜁
.

[Why? If cf (𝛼) = ℵ1 see above, if cf (𝛼) ≠ ℵ1 this is trivial.]

Clause (ii). If 𝛽 ∈ 𝐵𝛼
𝜁

then 𝐵𝛽
𝜁
= 𝐵𝛼

𝜁
∩ 𝛽.

We know that 𝐵𝛼
𝜁
= closure(𝐴𝛼

𝜁
) ∩ 𝛼 by (∗)2 above. If 𝛽 ∈ 𝐴𝛼

𝜁
then (by

(∗)1) we have 𝐵𝛽
𝜁
= closure(𝐴𝛼

𝜁
) ∩ 𝛽, so we are done. So assume 𝛽 ∉ 𝐴𝛼

𝜁
. Then

by clause (𝜀), necessarily:
⊙ If 𝜀 < 𝜁 then 𝛽 > sup(𝐴𝛼𝜀 ∩ 𝛽) and sup(𝐴𝛼𝜀 ∩ 𝛽) ∈ 𝐴𝛼

𝜀+1 ⊆ 𝐴𝛼
𝜁

.

But 𝛽 ∈ 𝐵𝛼
𝜁
= closure(𝐴𝛼

𝜁
) by (∗)2, hence together 𝐴𝛼

𝜁
contains a club of 𝛽 and

cf (𝛽) = cf (𝜁), but cf (𝜁) = ℵ1, so cf (𝛽) = ℵ1. Now, as in the proof of clause (i),
we get 𝐵𝛽

𝜁
=
⋃{𝐵𝛾

𝜁
: 𝛾 ∈ 𝐴𝛼

𝜁
∩ 𝛽}, so by the induction hypothesis we are done.

Clause (iii). If 𝛼 is limit then 𝛼 = sup(𝐴𝛼
𝑖
).

By clause (𝛽) we know 𝐴𝛼
𝜁

is unbounded in 𝛼, but 𝐴𝛼
𝜁
⊆ 𝐵𝛼

𝜁
(by (∗)2) and

we are done.
So we have finished proving (∗)0

𝛼 by induction on 𝛼 hence clause (a) of the
claim.

For proving (c) of 4.8(2), note that above, if 𝛼 is limit, 𝐶 is a club of 𝛼,
𝐶 ⊆ 𝑆, and |𝐶 | < 𝜆, then for every 𝑖 large enough, 𝐶 ⊆ 𝐴𝛼

𝑖
and even 𝐶 ⊆ 𝐵𝛼

𝑖
.

Now assume that the conclusion of (c) fails (for fixed 𝛿(∗) and 𝜅). Then for
each 𝜁 < 𝜆 we have a club 𝐸0

𝜁
exemplifying it. Now, 𝐸0 B

⋂
𝜁 <𝜆

𝐸0
𝜁

is a club

of 𝜆+, hence for some 𝛿 ∈ 𝐸0, otp(𝐸0 ∩ 𝛿) is divisible by 𝛿(∗) and cf (𝛿) = 𝜅.
Choose an unbounded in 𝛿 set 𝑒 ⊆ 𝐸0 ∩ 𝛿 of cardinality < 𝜆 and order type
divisible by 𝛿(∗). Then, for a final segment of 𝜁 < 𝜆 we have 𝑒 ∩ 𝛿 ⊆ 𝐶𝜁

𝛿
.

Note that for any set 𝐶1 of ordinals, otp(𝐶1) is divisible by 𝛿(∗) if 𝐶1 has
an unbounded subset of order type divisible by 𝛿(∗), so we get a contradiction
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because by (∗)0
𝛿 (∗) for some 𝜁 ∈ 𝐸𝛿 (∗) (so 𝛿(∗) ∈ 𝑆𝜁 ) by 𝐸0

𝜁
∩𝐶𝜁

𝛿
⊇ 𝐸0∩𝛿 ⊇ 𝑒,

sup(𝑒) = 𝛿 and 𝑒 has order type divisible by 𝛿(∗).
We are left with clause (d) of 4.8(2). Fix 𝜅, 𝛿(∗), and 𝜁 as above, we may

add ≤ 𝜆 new sequences of the form ⟨𝐶𝛼 : 𝛼 ∈ 𝑆𝜁 ⟩ as long as each is a square.
First assume that for every 𝛾, 𝛽 < 𝜆, such that cf (𝛽) = 𝜅 = cf (𝛾), 𝛾 divisible by
𝛿(∗) we have

(∗)3
𝛽,𝛾

There is a club 𝐸𝛽,𝛾 of𝜆+ such that for no 𝛿 ∈ 𝑆𝜁 do we have otp(𝐶𝜁
𝛿
) = 𝛽

and otp(𝐶𝜁
𝛿
∩ 𝐸𝛽,𝛾) = 𝛾.

Then let
𝐸 B

⋂{
𝐸𝛽,𝛾 : 𝛾 < 𝜆, 𝛽 < 𝜆, cf (𝛽) = 𝜅 = cf (𝛾), 𝛾 divisible by 𝛿(∗)

}
.

Applying part (c) we get a contradiction.
So for some 𝛾, 𝛽 < 𝜆, cf (𝛽) = 𝜅 = cf (𝛾), 𝛾 divisible by 𝛿(∗) and (∗)3

𝛽,𝛾

fails. Also there is a club 𝐸∗ of 𝜆+ such that for every club 𝐸 ⊆ 𝐸∗ for some
𝛿 ∈ 𝑆𝜁 , otp(𝐶𝜁

𝛿
) = 𝛽, otp(𝐶𝜁

𝛿
∩ 𝐸) = 𝛾 and 𝐶𝜁

𝛿
∩ 𝐸 = 𝐶

𝜁
𝛾 ∩ 𝐸∗ (by 4.10 below).

Let 𝑒 ⊆ 𝛾 = sup(𝑒) be closed and such that otp(𝑒) = 𝛿(∗) and
𝜖 ∈ 𝑒 is limit ⇒ 𝜖 = sup(𝑒 ∩ 𝜖).

We define ∗𝐶𝜁
𝛿

(for 𝛿 ∈ 𝑆𝜁 ) as follows: if 𝛿 ∉ 𝐸∗ then
∗𝐶𝜁
𝛿
B 𝐶

𝜁

𝛿
\ (max(𝛿 ∩ 𝐸∗) + 1),

if 𝛿 ∈ 𝐸∗ and otp(𝐶𝜁
𝛿
∩ 𝐸∗) ∈ 𝑒 ∪ {𝛾} then

∗𝐶𝜁
𝛿
= {𝛼 ∈ 𝐶𝜁

𝛿
∩ 𝐸∗ : otp(𝛼 ∩ 𝐶𝜁

𝛿
∩ 𝐸∗) ∈ 𝑒},

and if 𝛿 ∈ 𝐸∗, otp(𝐶𝜁
𝛿
∩ 𝐸∗) ∉ 𝑒 ∪ {𝛾} let

∗𝐶𝜁
𝛿
= 𝐶

𝜁

𝛿
\
(
max

{
𝛼 : otp(𝐶𝜁

𝛿
∩ 𝐸∗ ∩ 𝛼) ∈ 𝑒 ∪ {𝛾}

}
+ 1

)
.

One easily checks that (d) and square hold for ⟨∗𝐶𝜁
𝛿

: 𝛿 ∈ 𝑆𝜁 ⟩. So, we just have
to add ⟨∗𝐶𝜁

𝛿
: 𝛿 ∈ 𝑆𝜁 ⟩ to {⟨𝐶𝜁

𝛿
: 𝛿 ∈ 𝑆𝜁 ⟩ : 𝜁 < 𝜆} for any 𝜁, 𝛿(∗), 𝜅 (for which

we choose 𝜁 and 𝐸∗).

Claim 4.10. (1) Assume that ℵ0 < 𝜅 = cf (𝜅), 𝜅+ < 𝜆 = cf (𝜆), 𝑆 ⊆ {𝛿 < 𝜆 :
cf (𝛿) = 𝜅} is stationary, 𝐶𝛿 is a club of 𝛿 (for 𝛿 ∈ 𝑆), and (∀𝛿 ∈ 𝑆)

[
|𝐶𝛿 | = 𝜅

]
(or at least sup

𝛿∈𝑆
|𝐶𝛿 |+ < 𝜆). Then for some club 𝐸∗ ⊆ 𝜆, for every club 𝐸 ⊆ 𝐸∗,

the set {𝛿 ∈ 𝑆∗ : 𝐶𝛿 ∩ 𝐸∗ ⊆ 𝐸} is stationary, where

𝑆∗ B {𝛿 ∈ 𝑆 : 𝛿 ∈ acc(𝐸∗)}.
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(2) Assume that 𝜅 = cf (𝜅), 𝜅+ < 𝜆 = cf (𝜆), 𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜅} is
stationary, 𝐶𝛿 is a club of 𝛿 (for 𝛿 ∈ 𝑆), sup

𝛿∈𝑆
|𝐶𝛿 |+ < 𝜆, 𝐼𝛿 is an ideal on 𝐶𝛿

which includes the bounded subsets, and for every club 𝐸 of 𝜆, for stationarily
many 𝛿 ∈ 𝑆, we have 𝐶𝛿 ∩ 𝐸 ∉ 𝐼𝛿 (or 𝐶𝛿 \ 𝐸 ∈ 𝐼𝛿).

Then for some club 𝐸∗ of 𝜆, for every club 𝐸 ⊆ 𝐸∗ of 𝜆 the set {𝛿 ∈
∈ 𝑆∗ : 𝐶𝛿 ∩ 𝐸∗ ⊆ 𝐸} is stationary, where

𝑆∗ B
{
𝛿 ∈ 𝑆 : 𝛿 ∈ acc(𝐸∗), 𝛿 = sup(𝐶𝛿 ∩ 𝐸∗) and

𝐶𝛿 ∩ 𝐸∗ ∉ 𝐼𝛿 (or 𝐶𝛿 \ 𝐸∗ ∈ 𝐼𝛿)
}
.

Remark 4.11. This also was written in [42].

Proof of Claim 4.10. (1) If not, choose by induction on 𝑖 < 𝜇 B sup
𝛿∈𝑆

( |𝐶𝛿 |+)

a club 𝐸∗
𝑖
⊆ 𝜆, decreasing with 𝑖, 𝐸∗

𝑖+1 exemplifies that 𝐸∗
𝑖

is not as required, i.e.,
{𝛿 ∈ 𝑆∗(𝐸∗

𝑖 ) : 𝐶𝛿 ∩ 𝐸∗
𝑖 ⊆ 𝐸∗

𝑖+1} = ∅.
Now, acc( ⋂

𝑖<𝜇

𝐸∗
𝑖

)
is a club of 𝜆, so there is 𝛿 ∈ 𝑆 ∩ acc

( ⋂
𝑖<𝜇

𝐸∗
𝑖

)
. The sequence

⟨𝐶𝛿 ∩ 𝐸∗
𝑖

: 𝑖 < 𝜇⟩ is necessarily strictly decreasing, and we get an easy contra-
diction.

(2) Similarly.

4.2. Black boxes: first round

Now we turn to the main issue: black boxes.

Lemma 4.12. Suppose that 𝜆, 𝜃 and 𝜒(∗) are regular cardinals and 𝜆𝜃 = 𝜆<𝜒 (∗) ,
𝜃 < 𝜒(∗) ≤ 𝜆, and a set 𝑆 ⊆ {𝛿 < 𝜆 : cf (𝜆) = 𝜃} is stationary and in 𝐼 [𝜆].7

Then we can find

W =
{(
𝑀
𝛼
, 𝜂𝛼

)
: 𝛼 < 𝛼(∗)

}
(pedantically, W is a sequence) and functions ¤𝜁 : 𝛼(∗) → 𝑆 and ℎ : 𝛼(∗) → 𝜆

such that (so 𝛼, 𝛽 < 𝛼(∗))
(𝑎0) ℎ(𝛼) depends only on ¤𝜁 (𝛼), and ¤𝜁 is non-decreasing (but not necessarily

strictly increasing).
(𝑎1) We have:

(𝛼) 𝑀𝛼
= ⟨𝑀𝛼

𝑖
: 𝑖 ≤ 𝜃⟩ is an increasing continuous chain. (𝜏(𝑀𝛼

𝑖
), the

vocabulary, may be increasing.)

7If 𝜃 = ℵ0 this holds trivially; see [12, 3.4=Lcd1.1], [47, 0.6,0.7], or just 4.9(2).
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(𝛽) Each 𝑀𝛼
𝑖

is an expansion of a submodel of (H<𝜒 (∗) (𝜆), ∈, <)
belonging to H<𝜒 (∗) (𝜆) and 𝑀𝛼

𝑖
is transitive (i.e. considering the

ordinals as atoms, 𝑥 ∈ 𝑀𝛼
𝑖

⇒ 𝑥 ⊆ 𝑀𝛼
𝑖

), so 𝑀𝛼
𝑖

necessarily
has cardinality < 𝜒(∗). (Of course the order means the order
on the ordinals, and for transparency the vocabulary belongs to
H<𝜒 (∗) (𝜒(∗)).)

(𝛾) 𝑀𝛼
𝑖

∩ 𝜒(∗) is an ordinal, 𝜒(∗) = 𝜒+ ⇒ 𝜒 + 1 ⊆ 𝑀𝛼
𝑖

, and
𝑀𝛼
𝑖
∈ H<𝜒 (∗) (𝜂𝛼 (𝑖)).

(𝛿) 𝑀𝛼
𝑖
∩ 𝜆 ⊆ 𝜂𝛼 (𝑖)

(𝜀) ⟨𝑀𝛼
𝑗

: 𝑗 ≤ 𝑖⟩ ∈ 𝑀𝛼
𝑖+1

(𝜁) 𝜂𝛼 ∈ 𝜃𝜆 is increasing with limit ¤𝜁 (𝛼) ∈ 𝑆 such that for 𝑖 < 𝜃,
𝜂𝛼 ↾ (𝑖 + 1) ∈ 𝑀𝛼

𝑖+1.
(𝑎2) In the following game, ⅁(𝜃, 𝜆, 𝜒(∗),W, ℎ), Player I has no winning

strategy. A play lasts 𝜃 moves. In the 𝑖th move Player I chooses a model
𝑀𝑖 ∈ H<𝜒 (∗) (𝜆), and then Player II chooses 𝛾𝑖 < 𝜆. In the first move,
Player I also chooses 𝛽 < 𝜆. In the end Player II wins the play if
(𝛼) ⇒ (𝛽), where:
(𝛼) The pair

(
⟨𝑀𝑖 : 𝑖 < 𝜃⟩, ⟨𝛾𝑖 : 𝑖 < 𝜃⟩

)
satisfies the relevant demands

on the pair8 (𝑀 𝑖
↾ 𝜃, 𝜂𝛼) in clause (𝑎1).

(𝛽) For some 𝛼 < 𝛼(∗), 𝜂𝛼 = ⟨𝛾𝑖 : 𝑖 < 𝜃⟩, 𝑀𝑖 = 𝑀𝛼
𝑖

for 𝑖 < 𝜃, and
ℎ(𝛼) = 𝛽.

(𝑏0) 𝜂𝛼 ≠ 𝜂𝛽 for 𝛼 ≠ 𝛽.
(𝑏1) If {𝜂𝛼 ↾ 𝑖 : 𝑖 < 𝜃} ⊆ 𝑀

𝛽

𝜃
then

•1 ¤𝜁 (𝛼) ≤ ¤𝜁 (𝛽)
•2 𝑥 ∈ 𝑀𝛼

𝜃
⇒ 𝑥 ∈ 𝑀𝛽

𝜃

•3 𝛼 + (< 𝜒(∗)) 𝜃 = 𝛽 + (< 𝜒(∗)) 𝜃 (see 4.13(2) below).
(𝑏2) If in addition 𝜆<𝜃 = 𝜆<𝜒 (∗) , then for every 𝛼 < 𝛼(∗) and 𝑖 < 𝜃, there is

𝑗 < 𝜃 such that 𝜂𝛼 ↾ 𝑗 ∈ 𝑀𝛽

𝜃
implies 𝑀𝛼

𝑖
∈ 𝑀𝛽

𝜃
(hence 𝑀𝛼

𝑖
⊆ 𝑀

𝛽

𝜃
).

(𝑏3) If 𝜆 = 𝜆<𝜒 (∗) and 𝜂𝛼 ↾ (𝑖 + 1) ∈ 𝑀
𝛽

𝑗
then 𝑀𝛼

𝑖
∈ 𝑀

𝛽

𝑗
(and hence

𝑀𝛼
𝑖
⊆ 𝑀

𝛽

𝑗
, so 𝑥 ∈ 𝑀𝛼

𝑖
⇒ 𝑥 ∈ 𝑀𝛽

𝑗
) and

𝜂𝛼 ↾ 𝑖 ≠ 𝜂𝛽 ↾ 𝑖 ⇒ 𝜂𝛼 (𝑖) ≠ 𝜂𝛽 (𝑖).

Remark 4.13. (1) If W (with ¤𝜁, ℎ, 𝜆, 𝜃, 𝜒(∗)) satisfies (a0), (a1), (a2), (b0), (b1)
we call it a barrier.

8So ⟨𝑀 𝑗 : 𝑗 ≤ 𝑖⟩ is an increasing continuous chain, 𝑀𝑖 ∩ 𝜒(∗) an ordinal, 𝜒(∗) = 𝜒+ ⇒ 𝜒 +
+ 1 ⊆ 𝑀𝑖 , ⟨𝑀𝜖 : 𝜖 ≤ 𝑗⟩ ∈ 𝑀 𝑗+1 and ⟨𝛾𝜖 : 𝜖 ≤ 𝑗⟩ ∈ 𝑀 𝑗+1 for 𝑗 < 𝑖, 𝑀𝑖 ∈ H<𝜒 (∗) (𝛾𝑖), and
⟨𝛾𝑖 : 𝑗 ≤ 𝑖⟩ ∈ 𝑀𝑖+1.
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(2) Remember, (<𝜒) 𝜃 B ∑
𝜇<𝜒

𝜇𝜃 .

(3) The existence of a good stationary set 𝑆 ⊆ {𝛿 < 𝜆 : cf(𝛿) = 𝜃} follows,
for example, from 𝜆 = 𝜆<𝜃 (see [12, 3.4 = Lcd1.1] or [47, 0.6,0.7]) and from “𝜆
is the successor of a regular cardinal and 𝜆 > 𝜃+”. But see 4.16(1),(2),(3).

(4) Compare the proof below with [28, Lemma 1.13,pg.49] and [25].

Proof of Lemma 4.12. First assume 𝜆 = 𝜆<𝜒 (∗) .
Let ⟨𝑆𝛾 : 𝛾 < 𝜆⟩ be a sequence of pairwise disjoint stationary subsets of 𝑆

such that 𝑆 =
⋃
𝛾<𝜆

𝑆𝛾 , and without loss of generality 𝛾 < min(𝑆𝛾). We define

ℎ∗ : 𝑆 → 𝜆 by ℎ∗(𝛼) = “the unique 𝛾 such that 𝛼 ∈ 𝑆𝛾”, and below we shall let
ℎ(𝛼) B ℎ∗( ¤𝜁 (𝛼)).

Let cd = cd𝜆,𝜒 (∗) be a one-to-one function from H<𝜒 (∗) (𝜆) onto 𝜆 such that
cd(⟨𝛼, 𝛽⟩) is an ordinal

max(𝛼, 𝛽) < cd(⟨𝛼, 𝛽⟩) < max( |𝛼 + 𝛽 |+, 𝜔),
and 𝑥 ∈ H<𝜒 (∗) (cd(𝑥)) for every relevant 𝑥. For 𝜉 ∈ 𝑆 let:

(∗)1 (a) W0
𝜉
B{(

𝑀, 𝜂
)
: the pair (𝑀, 𝜂) satisfies (a1) of 4.12,

sup{𝜂(𝑖) : 𝑖 < 𝜃} = 𝜉, and for every 𝑖 < 𝜃, for

some 𝑦 ∈ H<𝜒 (∗) (𝜆), 𝜂(𝑖) = cd
(
⟨𝑀 ↾ (𝑖 + 1), 𝜂 ↾ 𝑖, 𝑦⟩

)}
.

(b) W =
⋃{W0

𝜉
: 𝜉 ∈ 𝑆}

Below, we shall choose
〈
(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)
〉

listing W.
So (a0), (a1), (b0), (b3) (hence (b2)) should be clear.
We can choose

〈
(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)
〉

an enumeration of
⋃
𝜉 ∈𝑆

W0
𝜉

to satisfy

(b1) (and ¤𝜁 (𝛼) = sup rang(𝜂𝛼), of course) because:

(∗)2 If (𝑀∗
, 𝜂∗) ∈ ⋃

𝜉

W0
𝜉

then��{𝜂 ∈ 𝜃𝜆 : {𝜂 ↾ 𝑖 : 𝑖 < 𝜃} ⊆ 𝑀∗
𝜃

}�� ≤ ∥𝑀∗
𝜃 ∥ 𝜃 ≤

(
<𝜒(∗)

) 𝜃
.

Clearly (∗)2 holds, but why does it suffice for choosing our
〈
(𝑀𝛼

, 𝜂𝛼) :
𝛼 < 𝛼(∗)

〉
?
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(∗)2.1 We define the partial order ≤W on W by

(𝑀, 𝜂) ≤W (𝑀 ′
, 𝜂′) iff 𝑀𝜃 ⊆ 𝑀 ′

𝜃 .

For each 𝜉 ∈ 𝑆, try to choose a sequence x𝜉 ,𝛾 =
〈
(𝑀 𝜉 ,𝛾

, 𝜂𝜉 ,𝛾) : 𝛼 < 𝛼𝛾
〉

by
induction on the order 𝛾 < ∥W0

𝜉
∥+, so it will be ◁-increasing with 𝛾 such that:

(∗)2.2 (a)
(
𝑀
𝜉 ,𝛼
, 𝜂𝜉 ,𝛼

)
∈ W0

𝜉
for 𝛼 < 𝛼𝛾 .

(b) If (𝑀, 𝜂) ∈ W0
𝜉

and (𝑀, 𝜂) ≤𝜉
(
𝑀
𝜉 ,𝛼
, 𝜂𝜉 ,𝛼

)
for some 𝛼 < 𝛾𝛼

then (𝑀, 𝜂) =
(
𝑀
𝜉 ,𝛽
, 𝜂𝜉 ,𝛽

)
for some 𝛽 < 𝛼𝛾 .

How do we carry the induction? For 𝛾 = 0 let 𝛼𝛾 = 0; also, for 𝛾 a limit ordinal
the choice of x𝜉 ,𝛾 is obvious. For 𝛾 = 𝛾1 + 1 (= 𝛾(1) + 1), if{(

𝑀
𝜉 ,𝛼
, 𝜂𝜉 ,𝛼

)
: 𝛼 < 𝛼𝛾1

}
= W0

𝜉

then we stop. Otherwise, choose(
𝑁
𝛾1
, 𝜂𝛾1

)
∈ W0

𝜉 \
{(
𝑀
𝜉 ,𝛼
, 𝜂𝜉 ,𝛼

)
: 𝛼 < 𝛼𝛾1

}
and let

W𝜉 ,𝛾1 =

{
(𝑀, 𝜂) ∈ W0

𝜉 : (𝑀, 𝜂) ≤𝜉 (𝑁𝛾1
, 𝜂𝛾1), but

(𝑀, 𝜂) ∉
{(
𝑀
𝜉 ,𝛼
, 𝜂𝜉 ,𝛼

)
: 𝛼 < 𝛼𝛾1

}}
,

so x𝛾 is defined by letting 𝛼𝛾 B 𝛼𝛾 (1) + ∥W𝜉 ,𝛾 (1) ∥ and〈(
𝑀
𝜉 ,𝛼
, 𝜂𝜉 ,𝛼

)
: 𝛼 ∈ [𝛼𝛾 (1) , 𝛼𝛾)

〉
list the elements of W𝜉 ,𝛾 (1) .

So for some 𝛾 [𝜉] < |W0
𝜉
|+, x𝜉 ,𝛾 [ 𝜉 ] lists W0

𝜉
. Lastly, we choose 𝛼(∗) =

=
∑
𝜉 ∈𝑆

𝛾 [𝜉], and (𝑀𝛼
, 𝜂𝛼) = (𝑀 𝜉 ,𝛽

, 𝜂𝜉 ,𝛽) when 𝛼 =
∑{𝛾 [𝜉′] : 𝜉′ < 𝜉} + 𝛽 and

𝛽 < 𝛾 [𝜉].
This, in fact, defines the function ¤𝜁 as follows: we have ¤𝜁 (𝛼) = 𝜉 if and only

if (𝑀𝛼
, 𝜂𝛼) ∈ W0

𝜉
.

We are left with proving (a2). Let G be a strategy for Player I.
Let ⟨𝐶𝛿 : 𝛿 < 𝜆⟩ exemplify “𝑆 is a good stationary subset of 𝜆” (see 4.9(2))

and let 𝑅 = {(𝑖, 𝛼) : 𝑖 ∈ 𝐶𝛼, 𝛼 < 𝜆}.
Let ⟨A𝑖 : 𝑖 < 𝜆⟩ be a representation of the model

A =
(
H<𝜒 (∗) (𝜆), ∈, 𝐺, 𝑅, cd

)
,
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i.e., it is increasing continuous, ∥A𝑖 ∥ < 𝜆, and
⋃
𝑖

A𝑖 = A . Without loss of

generality A𝑖 ≺ A and |A𝑖 | ∩ 𝜆 is an ordinal for 𝑖 < 𝜆.
Let G “tell” Player I to choose 𝛽∗ < 𝜆 in his first move. So there is a 𝛿 ∈ 𝑆𝛽∗

(hence 𝛿 > 𝛽∗: see the beginning of the proof) such that |A𝛿 | ∩ 𝜆 = 𝛿. Now,
necessarily 𝐶𝛿 ∩ 𝛼 ∈ A𝛿 for 𝛼 < 𝛿. Let {𝛼𝑖 : 𝑖 < cf (𝛿)} list 𝐶𝛿 in increasing
order.

Lastly, by induction on 𝑖, we choose 𝑀𝑖 , 𝜂(𝑖) as follows:

𝜂(𝑖) = cd
(〈
⟨𝑀 𝑗 : 𝑗 ≤ 𝑖⟩, ⟨𝜂( 𝑗) : 𝑗 < 𝑖⟩, ⟨𝛼 𝑗 : 𝑗 < 𝑖⟩

〉)
,

and 𝑀𝑖 is what the strategy G “tells” Player I to choose in his 𝑖th move if Player
II has chosen ⟨𝜂( 𝑗) : 𝑗 < 𝑖⟩ so far.

Now for each 𝑖 < 𝜃, the sequences ⟨𝑀 𝑗 : 𝑗 ≤ 𝑖⟩, ⟨𝜂( 𝑗) : 𝑗 < 𝑖⟩ are definable
in A𝛿 with ⟨𝛼 𝑗 : 𝑗 ≤ 𝑖⟩ as the only parameter, hence they belong to A𝛿 . So

sup{𝜂( 𝑗) : 𝑗 < 𝜃} ≤ 𝛿.
However, by the choice of 𝜂(𝑖) (and cd), 𝜂(𝑖) ≥ sup{𝛼 𝑗 : 𝑗 < 𝑖} and hence
sup{𝜂( 𝑗) : 𝑗 < 𝜃} is necessarily 𝛿. Now check.

We have finished the proof, but only by including the assumption𝜆 = 𝜆<𝜒 (∗) .
The case 𝜆 < 𝜆<𝜃 = 𝜆<𝜒 (∗) is similar. For a set 𝐴 ⊆ 𝜃 of cardinality 𝜃 we let
cd𝐴 = cd𝐴

𝜆,𝜒 (∗) be a one-to-one function from H<𝜒 (∗) (𝜆) onto 𝐴𝜆, where

𝐴𝜆 = {ℎ : ℎ is a function from 𝐴 to 𝜆}.
We strengthen (b2) to
(𝑏2)′ Let 𝐴𝑖 B {cd(𝑖, 𝑗) : 𝑗 < 𝜃} for 𝑖 ∈ [1, 𝜃) and 𝐴0 B 𝜃 \⋃{𝐴1+𝑖 : 𝑖 < 𝜃},

so ⟨𝐴𝑖 : 𝑖 < 𝜃⟩ is a sequence of pairwise disjoint subsets of 𝜃, each of
cardinality 𝜃, with min(𝐴𝑖) ≥ 𝑖, and we have
(∗) 𝜂𝛼 ↾ 𝐴𝑖 = cd𝐴𝑖

(
𝑀
𝛼
↾ 𝑖, 𝜂𝛼 ↾ 𝑖

)
.

∗ ∗ ∗
What can we do when 𝑆 is not good? As we say in 4.13(3), in many cases a

good 𝑆 exists (note that for singular 𝜆 we will not have one).
The following rectifies the situation in the other cases (but is interesting

mainly for 𝜆 singular). We shall, for a regular cardinal 𝜆, remove this assumption
in 4.16(1)–(3), while 4.17 helps for singular 𝜆. (This is carried in 4.18).

Definition 4.14. Let 𝜕 be an ordinal greater than 0, and for 𝛼 < 𝜕 let 𝜅𝛼 be a
regular uncountable cardinal and 𝑆𝛼 ⊆ {𝛿 < 𝜅𝛼 : cf (𝛿) = 𝜃} be a stationary set.
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Assume 𝜃, 𝜒 are regular cardinals such that for every 𝛼 < 𝜕 we have 𝜃 < 𝜒 ≤ 𝜅𝛼.
Let 𝑆 = ⟨𝑆𝛼 : 𝛼 < 𝜕⟩, 𝜅 = ⟨𝜅𝛼 : 𝛼 < 𝜕⟩. If 𝜕 = 1 we may write 𝑆0, 𝜅0.

(1) We say that 𝑆 is good for (𝜅, 𝜃, 𝜒) when9 for every large enough 𝜇 and
model A expanding (H<𝜒 (𝜇), ∈) with |𝜏(A ) | ≤ ℵ0, there are 𝑀𝑖 (for 𝑖 < 𝜃)
such that:

• 𝑀𝑖 ≺ A and 𝑆 ∈ 𝑀𝑖 .
• ⟨𝑀 𝑗 : 𝑗 ≤ 𝑖⟩ ∈ 𝑀𝑖+1, ∥𝑀𝑖 ∥ < 𝜒, 𝑀𝑖 ∩ 𝜒 ∈ 𝜒, and 𝜒 = 𝜒+

1 ⇒ 𝜒1 + 1 ⊆
⊆ 𝑀𝑖 .

• 𝛼 < 𝜕, 𝛼 ∈ ⋃
𝑗<𝜃

𝑀 𝑗 implies that sup
(
𝜅𝛼 ∩ ( ⋃

𝑗<𝜃

𝑀 𝑗)
)

belongs to 𝑆𝛼.

(2) If 𝜅 is constant (i.e. 𝑖 < 𝜕 ⇒ 𝜅𝑖 = 𝜅) then we may say 𝑆 is good for
(𝜅, 𝜕, 𝜃, 𝜒). We may omit 𝜕 if 𝜕 = 𝜅.

(3) If 𝜕 = 1, we may write 𝑆0, 𝜅0 instead of 𝑆, 𝜅. If 𝜕 < 𝜒 then we can
demand 𝜕 ⊆ 𝑀0.

Definition 4.15. For regular uncountable cardinal 𝜆 and regular 𝜃 < 𝜆, let
𝐽𝜃 [𝜆] be the family of subsets 𝑆 of 𝜆 such that {𝛿 ∈ 𝑆 : cf (𝛿) = 𝜃} is not good
for (𝜆, 𝜃, 𝜆) (i.e. for (𝜆, 𝜆, 𝜃, 𝜆)).

Claim 4.16. Assume 𝜃 = cf (𝜃) < 𝜒 = cf (𝜒) ≤ 𝜅 = cf (𝜅).
(1) Then {𝛿 < 𝜅 : cf (𝛿) = 𝜃} is good for (𝜅, 𝜃, 𝜒), i.e. is not in 𝐽𝜃 [𝜆].
(2) Any 𝑆 ⊆ 𝜅 good for (𝜅, 𝜃, 𝜒) is the union of 𝜅 pairwise disjoint such

sets.
(3) In 4.12 it suffices to assume that 𝑆 is good for (𝜆, 𝜃, 𝜒).
(4) 𝐽𝜃 [𝜆] is a normal ideal on 𝜆 and there is no stationary 𝑆 ⊆ {𝛿 <

< 𝜆 : cf (𝛿) = 𝜃} which belongs to 𝐽𝜃 [𝜆] ∩ 𝐼 [𝜆].
(5) In Definition 4.14, any 𝜇 > 𝜆<𝜒 is OK; we can pre-assign 𝑥 ∈ H<𝜒 (𝜇)

and demand 𝑥 ∈ 𝑀𝑖 .
(6) In 4.12 we can replace the assumption “𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜃} is

stationary and in 𝐼 [𝜆]” by “𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜃} is stationary not in 𝐽𝜃 [𝜆]”
(which holds for 𝑆 = {𝛿 < 𝜅 : cf (𝛿) = 𝜃}).

Proof. (1) Straightforward (play the game).
(2) Similar to the proof of 4.1.
(3) Obvious.
(4) Easy.

9Note that we can compute 𝜕 from 𝜅.
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(5) Easy.
(6) Follows.

Claim 4.17. Assume that 𝜅, 𝜃, 𝜒 are as in 4.14 with |𝜕 | ≤ 𝜒.
(1) Then the sequence ⟨{𝛿 < 𝜅𝑖 : cf (𝛿) = 𝜃} : 𝑖 < 𝜕⟩ is good for (𝜅, 𝜃, 𝜒).
(2) If 𝜕1 < 𝜕 and ⟨𝑆𝑖 : 𝑖 < 𝜕1⟩ is good for (𝜅 ↾ 𝜕1, 𝜃, 𝜒) then〈

𝑆𝑖 : 𝑖 < 𝜕1
〉
ˆ
〈
{𝛿 < 𝜅𝑖 : cf (𝛿) = 𝜃} : 𝜕1 ≤ 𝑖 < 𝜕

〉
is good for (𝜅, 𝜃, 𝜒).

(3) If ⟨𝑆𝑖 : 𝑖 < 𝜕1⟩ is good for (𝜅, 𝜃, 𝜒) and 𝑖(∗) < 𝜕, then we can partition
𝑆𝑖 (∗) to pairwise disjoint sets ⟨𝑆𝑖 (∗) , 𝜖 : 𝜖 < 𝜅𝑖⟩ such that for each 𝜖 < 𝜅𝑖 , the
sequence〈

𝑆𝑖 : 𝑖 < 𝑖(∗)
〉
ˆ
〈
𝑆𝑖 (∗) , 𝜖

〉
ˆ
〈
{𝛿 < 𝜅𝑖 : cf (𝛿) = 𝜃} : 𝑖(∗) < 𝑖 < 𝜕

〉
is good for (𝜅, 𝜃, 𝜒).

(4) 𝑆 good for (𝜅, 𝜃, 𝜒) implies that 𝑆𝑖 is a stationary subset of 𝜅𝑖 for each
𝑖 < ℓ𝑔(𝜅).

Proof. Like 4.16. [In 4.17(3) we choose, for 𝛿 ∈ 𝑆𝑖 (∗) , a club 𝐶𝛿 of 𝛿 of order
type cf (𝛿); for 𝑗 < 𝜃, 𝜖 < 𝜅𝑖 (𝛼) , let 𝑆 𝑗

𝑖 (∗) , 𝜖 = {𝛿 ∈ 𝑆𝑖 (∗) : 𝜖 is the 𝑗 th member of
𝐶𝛿}; for some 𝑗 and unbounded 𝐴 ⊆ 𝜅𝑖 (∗) , ⟨𝑆 𝑗𝑖 (∗) , 𝜖 : 𝜖 ∈ 𝐴⟩ are as required.]

Now we remove from 4.12 (and subsequently 4.20) the hypothesis “𝜆 is
regular” when cf (𝜆) ≥ 𝜒(∗).

Lemma 4.18. Suppose 𝜆𝜃 = 𝜆<𝜒 (∗) , 𝜆 is singular, 𝜃 and 𝜒(∗) are regular,
𝜃 < 𝜒(∗) and cf (𝜆) ≥ 𝜒(∗). Suppose further that 𝜆 =

∑
𝑖<cf (𝜆)

𝜇𝑖 and each 𝜇𝑖 is

regular > 𝜒(∗)+𝜃+. Then we can find W = {(𝑀𝛼
, 𝜂𝛼) : 𝛼 < 𝛼(∗)} and functions

¤𝜁 : 𝛼(∗) → cf (𝜆), ¤𝜉 : 𝛼(∗) → 𝜆, and ℎ : 𝛼(∗) → 𝜆, and {𝜇′
𝑖
: 𝑖 < cf (𝜆)} such

that ({𝜇′
𝑖
: 𝑖 < cf (𝜆)} = {𝜇𝑖 : 𝑖 < cf (𝜆)} and):

(𝑎0) ℎ(𝛼) depends only on ⟨ ¤𝜁 (𝛼), ¤𝜉 (𝛼)⟩, 𝛼 < 𝛽 ⇒ ¤𝜁 (𝛼) ≤ ¤𝜁 (𝛽),
𝛼 < 𝛽 ∧ ¤𝜁 (𝛼) = ¤𝜁 (𝛽) ⇒ ¤𝜉 (𝛼) ≤ ¤𝜉 (𝛽),

and ¤𝜉 (𝛼) < 𝜇′¤𝜁 (𝛼) .
(𝑎1) As in 4.12, except that: ⟨𝜂𝛼 (3𝑖) : 𝑖 < 𝜃⟩ is strictly increasing with limit

¤𝜁 (𝛼) and ⟨𝜂𝛼 (3𝑖+1) : 𝑖 < 𝜃⟩ is strictly increasing with limit ¤𝜉 (𝛼) for 𝑖 < 𝜃,

sup
(
|𝑀𝛼

𝑖 | ∩ 𝜇′𝜁 (𝛼)
)
< ¤𝜉 (𝛼) = sup

(
|𝑀𝛼

𝜃 | ∩ 𝜇′¤𝜁 (𝛼)
)
,
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and for every 𝑖 < 𝜃,

sup
(
|𝑀𝛼

𝑖 | ∩ cf (𝜆)
)
< ¤𝜁 (𝛼) = sup

(
|𝑀𝛼

𝜃 | ∩ cf (𝜆)
)
.

(𝑎2) As in 4.12.
(𝑏0), (𝑏1), (𝑏2) As in 4.12, but in clause (b3) we demand 𝑖 = 2 mod 3.

Remark 4.19. To make it similar to 4.12, we can fix 𝑆𝑎, 𝑆𝑎
𝑖
, 𝑆𝑏
𝑖
, 𝑆𝑏
𝑖,𝑎

, 𝜇′
𝑖

as in
the first paragraph of the proof below.

Proof of Lemma 4.18. First, by 4.16 [(1)+(2)], we can find pairwise disjoint
𝑆𝑎
𝑖

⊆ cf (𝜆) for 𝑖 < cf (𝜆), each good for (cf (𝜆), 𝜃, 𝜒(∗)) (and 𝛼 ∈ 𝑆𝑎
𝑖

⇒
⇒ 𝛼 > 𝑖 ∧ cf (𝛼) = 𝜃), and let 𝑆𝑎 =

⋃
𝑖<cf (𝜆)

𝑆𝑎
𝑖
. We define 𝜇′

𝑖
∈ {𝜇 𝑗 : 𝑗 < 𝑖} such

that (
∀𝑖 < cf (𝜆)

)
[ 𝑗 ∈ 𝑆𝑎𝑖 ⇒ 𝜇′𝑗 = 𝜇𝑖] .

Then for each 𝑖, by 4.17(2),(3) (with 1, 2, 𝑆0, 𝜅0, 𝜅1 standing for 𝜎1, 𝜎,
𝑆𝑎
𝑖
, cf (𝜆), 𝜇′

𝑖
), we can find pairwise disjoint subsets ⟨𝑆𝑏

𝑖,𝛼
: 𝛼 < 𝜇′

𝑖
⟩ of

{𝛿 < 𝜇′
𝑖
: cf(𝛿) = 𝜃} such that for each 𝛼 < 𝜇′𝛼, (𝑆𝑎

𝑖
, 𝑆𝑏
𝑖,𝛼

) is good for
(⟨cf (𝜆), 𝜇′

𝑖
⟩, 𝜃, 𝜒). Let 𝑆𝑏

𝑖
=
⋃{𝑆𝑏

𝑖,𝛼
: 𝛼 < 𝜇′

𝑖
}.

Let cd be as in 4.12’s proof coding only for ordinals 𝑖 = 2 mod 3, and for
𝜁 ∈ 𝑆𝑎

𝑖
, 𝜉 ∈ 𝑆𝑎

𝑖, 𝑗
let

W0
𝜁 , 𝜉 =

{(
𝑀, 𝜂

)
: 𝑀 satisfies (a1), 𝜁 = sup{𝜂(3𝑖) : 𝑖 < 𝜃},
𝜉 = sup{𝜂(3𝑖 + 1) : 𝑖 < 𝜃} and
for each 𝑖 < 𝜃, for some 𝑦 ∈ H<𝜒 (∗) (𝜆),

𝜂(3𝑖 + 2) = cd
(
⟨𝑀 𝑗 : 𝑗 ≤ 3𝑖 + 1⟩, 𝜂 ↾ (3𝑖 + 1), 𝑦

)}
.

The rest is as in 4.12’s proof.

∗ ∗ ∗
The following Lemma improves 4.12 when 𝜆 satisfies a stronger require-

ment, making the distinct (𝑀𝛼
, 𝜂𝛼) interact less. Lemmas 4.20 + 4.18 were used

in the proof of 3.4 (and 3.3).

Lemma 4.20. (1) In 4.12, if 𝜆 = 𝜆𝜒 (∗) and 𝜒(∗) 𝜃 = 𝜒(∗) then we can strengthen
clause (b1) to

(𝑏1)+ If 𝛼 ≠ 𝛽 and {𝜂𝛼 ↾ 𝑖 : 𝑖 < 𝜃} ⊆ 𝑀𝛽 then 𝛼 < 𝛽 and 𝑥 ∈ 𝑀𝛼
𝜃
⇒ 𝑥 ∈ 𝑀𝛽

𝜃
.

(2) To clause 4.12(b1), we can add
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• Moreover, if 𝛼 < 𝜒(∗) ⇒ |𝛼 |ℵ0 < 𝜒(∗) then 𝛼 < 𝛽 +
(
<𝜒(∗)

) 𝜃 .

Proof. (1) Apply 4.12 (actually, its proof) but using 𝜆, 𝜒(∗)+, 𝜃, instead of
𝜆, 𝜒(∗), 𝜃; and get W = {(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)}, and the functions ¤𝜁, ℎ.
Let cd be as in the proof of 4.12. Let< ∗ be some well ordering ofH<𝜒 (∗) (𝜆),

and let U be the set of ordinals 𝛼 < 𝛼(∗) such that for 𝑖 < 𝜃, 𝑀𝛼
𝑖

has the form
(𝑁𝛼

𝑖
, ∈ 𝛼

𝑖
, < 𝛼) and ( |𝑁𝛼

𝑖
|, ∈ 𝛼

𝑖
, < 𝛼) ≺ (H<𝜒 (∗) (𝜆), ∈, < ∗).

Let 𝛼 ∈ U , by induction on 𝜖 < 𝜒(∗) we define 𝑀 𝜖 ,𝛼
𝑖

, 𝜂𝜖 ,𝛼 as follows:
(𝐴) 𝜂𝜖 ,𝛼 (𝑖) is cd(⟨𝜂𝛼 (𝑖), 𝜖⟩), (which is an ordinal < 𝜆 but > 𝜂𝛼 (𝑖) and > 𝜖)
(𝐵) 𝑀 𝜖 ,𝛼

𝑖
≺ 𝑁𝛼

𝑖
is the Skolem Hull of {𝜂𝜖 ,𝛼 ↾ ( 𝑗 + 1) : 𝑗 < 𝑖} inside 𝑁𝛼

𝑖
,

using as Skolem functions the choice of the < ∗-first element and making
𝑀
𝜖 ,𝛼
𝑖

∩ 𝜒(∗) an ordinal. [If we want, we can use 𝜂𝜖 ,𝛼 such that it fits
the definition in the proof of 4.12].

Note that 𝜒(∗) = 𝜒+ ⇒ 𝜒 + 1 ⊆ 𝑀𝛼
𝑖

and 𝑀
𝜖 ,𝛼
𝑖

is definable in 𝑀
𝜖 ,𝛼

𝑖+1
as 𝑀 𝜖 ,𝛼

𝑖
∈ 𝑀

𝜖 ,𝛼

𝑖+1 (by the definition of W0
𝜉

in the proof of 4.12). Similarly,
⟨𝑀 𝜖 ,𝛼

𝑗
: 𝑗 ≤ 𝑖⟩ is definable in 𝑀𝛼

𝑖+1. It is easy to check that the pair (𝑀 𝜖 ,𝛼
, 𝜂𝜖 ,𝛼)

satisfies condition (a1) of 4.12.
Next we choose 𝜖 (𝛼) < 𝜒(∗) by induction on 𝛼 ∈ U as follows:

(𝐶) 𝜖 (𝛼) is the first 𝜖 < 𝜒(∗) such that if 𝛽 < 𝛼 but 𝛽 + 𝜒(∗) > 𝛼 then
(∗) {𝜂𝛼,𝜖 ↾ 𝑗 : 𝑗 < 𝜃} ⊈ 𝑀

𝛽,𝜖 (𝛽)
𝜃

.
This is possible and easy, as for (∗) it suffices to have for each suitable 𝛽,
𝜖 ∉ 𝑀

𝛽,𝜖 (𝛽)
𝜃

, so each 𝛽 “disqualifies” < 𝜒(∗) ordinals as candidates for 𝜖 (𝛼),
and there are < 𝜒(∗) such 𝛽-s, and 𝜒(∗) is by the assumptions (see 4.12) regular.

Now
W′ =

{
(𝑁𝛼,𝜖 (𝛼) , 𝜂𝛼,𝜖 (𝛼) ) : 𝛼 ∈ U

}
,

¤𝜁 ↾ U , ℎ ↾ U are as required except that we should replace U by an ordinal
(and adjust 𝜁, ℎ accordingly). In the end replace 𝑁𝛼

𝑖
by 𝑁𝛼

𝑖
∩H<𝜒 (∗) (𝜆).

(2) We have to prove the version of (b1) with the “Moreover”.
Let S ⊆ [H<𝜒 (∗) (𝜆)]ℵ0 be MAD (that is, 𝑢 ≠ 𝑣 ∈ S ⇒ |𝑢 ∩ 𝑣 | < ℵ0 and

S is maximal under ⊆) such that S ∩ [H<𝜒 (∗) (𝜁)]ℵ0 is MAD for every 𝜁 < 𝜆,
and demand |𝑀𝛼

𝜃
| ∩ S ⊆

[
|𝑀𝛼

𝜃
|
]ℵ0 is MAD. So it is well-known that the order

(W, ≤W) is well founded.10

10So we use 𝜁 < 𝜒(∗) ⇒ |𝜁 |ℵ0 < 𝜒(∗) to ensure that we can demand that 𝑀𝛼
𝜃

is as required.
However, 𝜆 ̸→ (𝜔)<𝜔2 will suffice.
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Claim 4.21. If in 4.18 we add “𝜆 = 𝜆𝜒 (∗)
𝜃

” (or the condition from 4.20) then
we can replace (b1) by

(𝑏1)+ If {𝜂𝛼 ↾ 𝑖 : 𝑖 < 𝜃} ⊆ 𝑀
𝛽

𝜃
then 𝛼 ≤ 𝛽.

Proof. The same as the proof of 4.20 combined with the proof of 4.18.

4.3. Black boxes: for 𝜃 countable

Next we turn to the case (of black boxes with) 𝜃 = ℵ0. We shall deal with
several cases.

Lemma 4.22. Suppose that

(∗) 𝜆 is a regular cardinal, 𝜃 = ℵ0, 𝜇 = 𝜇<𝜒 (∗) < 𝜆 ≤ 2𝜇, 𝑆 ⊆ {𝛿 < 𝜆 :
cf (𝛿) = ℵ0} is stationary, and ℵ0 < 𝜒(∗) = cf (𝜒(∗)).

Then we can find
W = {(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)}
and functions

¤𝜁 : 𝛼(∗) → 𝑆 and ℎ : 𝛼(∗) → 𝜆

such that:

(𝑎0)–(𝑎2) As in 4.12.
(𝑏0)–(𝑏2) As in 4.12, and even

(𝑏1)∗ 𝛼 ≠ 𝛽, {𝜂𝛼 ↾ 𝑛 : 𝑛 < 𝜔} ⊆ 𝑀
𝛽
𝜔 implies 𝛼 < 𝛽 and even

¤𝜁 (𝛼) < ¤𝜁 (𝛽).
(𝑐1) If ¤𝜁 (𝛼) = ¤𝜁 (𝛽) then |𝑀𝛼

𝜔 | ∩ 𝜇 = |𝑀𝛽
𝜔 | ∩ 𝜇, there is an isomorphism ℎ𝛼,𝛽

from 𝑀𝛼
𝜔 onto 𝑀𝛽

𝜔 , mapping 𝜂𝛼 (𝑛) to 𝜂𝛽 (𝑛) and 𝑀𝛼
𝑛 to 𝑀𝛽

𝑛 for 𝑛 < 𝜔,
and ℎ𝛼,𝛽 ↾ ( |𝑀𝛼

𝜔 | ∩ |𝑀𝛽
𝜔 |) is the identity.

(𝑐2) There is 𝐶 = ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩, 𝐶𝛿 an 𝜔-sequence converging to 𝛿, 0 ∉ 𝐶𝛿 ,
and letting ⟨𝛾 𝛿𝑛 : 𝑛 < 𝜔⟩ enumerate {0} ∪ 𝐶𝛿 we have, when ¤𝜁 (𝛼) = 𝛿:

(𝑖) 𝜆 ∩ |𝑀𝛼
𝑛 | ⊆ 𝛾 𝛿

𝑛+1 but 𝜆 ∩ |𝑀𝛼
𝑛 | is not a subset of 𝛾 𝛿𝑛 , (hence

𝑀𝛼
𝑛 ∩ [𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ≠ ∅).

(𝑖𝑖) 𝐶𝛿 ∩ |𝑀𝛼
𝜔 | = ∅

(𝑖𝑖𝑖) If in addition ¤𝜁 (𝛽) = 𝛿 then for each 𝑛, ℎ𝛼,𝛽 maps |𝑀𝛼
𝜔 | ∩

∩ [𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) onto |𝑀𝛽
𝜔 | ∩ [𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1].

(𝑖𝑣) If ¤𝜁 (𝛽) = 𝛿 = ¤𝜁 (𝛼) and𝜆 = 𝜆<𝜒 (∗) then |𝑀𝛼
𝜔 |∩𝛾 𝛿1 = |𝑀𝛽

𝜔 |∩𝛾 𝛿1 .

Remark 4.23. (1) We only use 𝜆 ≤ 2𝜇 in order to get “ℎ𝛼,𝛽 ↾ ( |𝑀𝛼
𝜔 | ∩ |𝑀𝛽

𝜔 |) =
= id” in condition (c1).
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(2) Below we quote “guessing of clubs” — that is clause (ii) in the proof;
without this we just get a somewhat weaker conclusion.

Proof of Lemma 4.22. Let 𝑆 be the disjoint union of stationary 𝑆𝛼,𝛽,𝛾 , for
𝛼 < 𝜇, 𝛽 < 𝜆, 𝛾 < 𝜆.

For each 𝛼, 𝛽, 𝛾, let ⟨𝐶𝛿 : 𝛿 ∈ 𝑆𝛼,𝛽,𝛾⟩ satisfy:
⊠ (i) 𝐶𝛿 is an unbounded subset of 𝛿 of order type 𝜔.

(ii) For every club 𝐶 of 𝜆, for stationarily many 𝛿 ∈ 𝑆𝛼,𝛽,𝛾 , we have
𝐶𝛿 ⊆ 𝐶.

(iii) 0 ∉ 𝐶𝛿

(exists by [8, 2.2] or [42] = [40, Ch.III]).
Let W∗ be the family of quadruples (𝛿, 𝑀, 𝜂, 𝐶) such that:

⊛ (𝛼) (𝑀, 𝜂) satisfies the requirement (a1) (so 𝑀 = ⟨𝑀𝑛 : 𝑛 < 𝜔⟩).
(𝛽) 0 ∉ 𝐶, and letting {𝛾𝑛 : 𝑛 < 𝜔} enumerate 𝐶 ∪ {0} in increasing

order, we have 𝜆 ∩ 𝑀𝑛 is a subset of 𝛾𝑛+1 but not of 𝛾𝑛, and⋃
𝑛<𝜔

𝛾𝑛 = 𝛿 and 𝐶 ∩ (⋃
𝑛
𝑀𝑛) = ∅.

(𝛾) ⋃
𝑛
|𝑀𝑛 | ⊆ H<𝜒 (∗) (𝜇 + 𝜇)

(𝛿) In 𝜏(𝑀𝑛) there is a two-place relation 𝑅 and a one-place function
cd. (We do not necessarily require cd ↾ 𝑀𝑛 = cd𝑀𝑛 ; similarly for
𝑅 — see below. Recall that as usual, 𝜏(𝑀𝑛) ∈ H<𝜒 (∗) (𝜒(∗)) for
transparency.)

As 𝜇<𝜒 (∗) = 𝜇, clearly |W∗ | = 𝜇, so let
W∗ =

{
(𝛿𝛼, ⟨𝑀𝛼,𝑛 : 𝑛 < 𝜔⟩, 𝜂𝛼, 𝐶𝛼) : 𝛼 < 𝜇

}
.

If 𝜆 = 𝜆<𝜒 (∗) let {𝑁𝛽 : 𝛽 < 𝜆} list the models 𝑁 ∈ H<𝜒 (∗) (𝜆) with 𝜏(𝑁) ∈
∈ H<𝜒 (∗) (𝜒(∗)).

Also, let ⟨𝐴𝛼 : 𝛼 < 𝜆⟩ be a sequence of pairwise distinct subsets of 𝜇, and
define the two place relation 𝑅 on 𝜆 by

𝛾1 𝑅 𝛾2 ⇔ [𝛾1 < 𝜇 ∧ 𝛾1 ∈ 𝐴𝛾2] .

Lastly, for 𝛿 ∈ 𝑆𝛼,𝛽,𝛾 let W0
𝛿

be the set of pairs (𝑀, 𝜂) such that:

⊕ (a) 𝑀 = ⟨𝑀𝑛 : 𝑛 < 𝜔⟩, 𝜂 ∈ 𝜔𝜆

(b) (𝑀, 𝜂) satisfies 4.12(a1). In particular:
(𝛼) 𝜂 is increasing with limit 𝛿.
(𝛽) there is an isomorphism ℎ from

⋃
𝑛<𝜔

𝑀𝑛 onto
⋃
𝑛<𝜔

𝑀𝛼,𝑛.

(𝛾) ℎ maps 𝜂(𝑛) to 𝜂𝛼 (𝑛) and 𝑀𝑛 onto 𝑀𝛼,𝑛.
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(𝛿) ℎ preserves ∈, 𝑅, cd(𝑥) = 𝑦 and their negations. (For 𝑅 and
cd: in

⋃
𝑛<𝜔

𝑀𝑛 we mean the standard cd restricted to
⋃
𝑛<𝜔

𝑀𝛼,𝑛

as in clause ⊛(𝛿) above.)
(c) (∀𝜖 < 𝜆)

[
𝜖 ∈ ⋃

𝑛
𝑀𝑛 ⇒ otp(𝐶𝛿 ∩ 𝜖) = otp

(
𝐶𝛼 ∩ ℎ(𝜖)

) ]
.

(d) If 𝜆 = 𝜆<𝜒 (∗) then 𝑁𝛽 =

(⋃
𝑛
𝑀𝑛

)
↾

{
𝑥 ∈ ⋃

𝑛
𝑀𝑛 : cd(𝑥) <

< min(𝐶𝛿)
}
.

We proceed as in the proof of 4.12 after W0
𝛿

was defined (only ¤𝜁 (𝛼) = 𝛿 ∈
∈ 𝑆𝛼1,𝛽1,𝛾1 ⇒ ℎ(𝛼) = 𝛾1).

Suppose G is a winning strategy for Player I. So suppose that if Player II has
chosen 𝜂(0), 𝜂(1), . . . , 𝜂(𝑛 − 1), Player I will choose 𝑀𝜂 . So |𝑀𝜂 | is a subset
of H<𝜒 (∗) (𝜆) of cardinality < 𝜒(∗) and Rang(𝜂) ⊆ 𝑀𝜂 . For 𝜂 ∈ 𝜔𝜆 we define
𝑀𝜂 =

⋃
ℓ<𝜔

𝑀𝜂↾ℓ .

Let T𝑛 be the set of 𝜂 ∈ 𝑛𝜆 such that 𝑀𝜂 is well defined, so
⋃{T𝑛 : 𝑛 < 𝜔}

is a subtree of (𝜔>𝜆,◁) with each node having 𝜆 immediate successors.
We can find a function c𝑛 from T𝑛 into 𝜇 such that c𝑛 (𝜂) = c𝑛 (𝜈) iff there is

an isomorphism ℎ from 𝑀𝜂 onto 𝑀𝜈 mapping 𝑀𝜂↾𝑘 onto 𝑀𝜈↾𝑘 for every 𝑘 < 𝑛.
By [12, 1.10=L1.7], or [7], or the proof of 4.24 below, there is T such that:

(∗) (a) T ⊆ 𝜔>𝜆

(b) T is closed under initial segments.
(c) ⟨ ⟩ ∈ T
(d) 𝜂 ∈ T ⇒ (∃𝜆𝛼)

[
𝜂ˆ⟨𝛼⟩ ∈ T

]
(e) c𝑛 ↾ (T ∩ T𝑛) is constant.

It follows that for any 𝜈∗ ∈ lim(T ) we can find ⟨ℎ𝜂 : 𝜂 ∈ T ⟩ such that ℎ𝜂 is
an isomorphism from 𝑀𝜈∗↾ℓ𝑔 (𝜂) onto 𝑀𝜂 increasing with 𝜂.

Note that above, all those isomorphisms are unique as the interpretation of
∈ satisfies comprehension. Also, clause (c1) follows from the use of 𝑅.

The rest should be clear.

Lemma 4.24. Let 𝑆, 𝜆, 𝜇, 𝜃, 𝜒(∗) be as in 4.22(∗), and in addition:

ℵ0 ≤ 𝜅 = cf (𝜅) < 𝜒(∗) = cf (𝜒(∗)),(
∀𝜒 < 𝜒(∗)

) [
𝜒<𝜅 < 𝜒(∗)

]
, (∀𝛼 < 𝜆)

[
|𝛼 |<𝜅 < 𝜆

]
.

Then we can find W = {(𝑀𝛼
, 𝜂𝛼) : 𝛼 < 𝛼(∗)} and functions ¤𝜁 : 𝛼(∗) → 𝑆 and

ℎ : 𝛼(∗) → 𝜆 such that:
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(𝑎0), (𝑏0), (𝑏2) As in 4.22 (i.e. as in 4.12).
(𝑏1)∗, (𝑐1), (𝑐2) As in 4.22.
(𝑎1)∗ As in in 4.12(𝑎1), except that we omit “⟨𝑀 𝑗 : 𝑗 ≤ 𝑖⟩ ∈ 𝑀𝑖+1” and add:

[𝑎 ⊆ |𝑀𝑖 | ∧ |𝑎 | < 𝜅] ⇒ 𝑎 ∈ 𝑀𝑖 , and for 𝑖 < 𝑗 , 𝑀𝑖 ∩𝜆 is an initial segment
of 𝑀 𝑗 ∩ 𝜆.

(𝑎2)∗ For every expansion A of (H<𝜒 (∗) (𝜆), ∈, <) by 𝜒 < 𝜒(∗) relations (with
𝜏(A ) ⊆ H<𝜒 (∗) (𝜒(∗))), for some 𝛼 < 𝛼(∗), for every 𝑛, 𝑀𝛼

𝑛 ≺ A . In
fact, for stationarily many 𝜁 ∈ 𝑆, there is such 𝛼 satisfying ¤𝜁 (𝛼) = 𝜁 .

Remark 4.25. We can retain (𝑎1)∗ and add 𝑎 ⊆ 𝑀𝑖 ∧ |𝑎 | < 𝜅 ⇒ 𝑎 ∈ 𝑀𝑖 .

Proof of Lemma 4.24. Similar to 4.22, using the proof of [31], but for com-
pleteness we give details.

We choose ⟨𝑆𝛼,𝛽,𝛾 : 𝛼 < 𝜇, 𝛽 < 𝜆, 𝛾 < 𝜆⟩ as there. The main point is that
defining W∗ we have one additional demand:

(𝜀) If 𝑛 < 𝜔 and 𝑢 ⊆ 𝑀𝑛 has cardinality < 𝜅, then 𝑢 ∈ 𝑀𝑛.
We then define W0

𝛿
and ⟨𝑁𝛼 : 𝛼 < 𝜆⟩ as there.

This gives the changed demand in (a1)∗, but it creates extra work in verifying
the demand (a2)∗.

So let a model A and cardinal 𝜒 = 𝜒<𝜅 < 𝜒(∗) be given as there; as usual,
𝜏(A ) ∈ H<𝜒 (∗) (𝜒(∗)) and A expands (H<𝜒 (∗) (𝜆), ∈, <). For every

x = (𝛿x, 𝑀x, 𝜂x, 𝐶x) ∈ W∗

we define a family Fx, a function 𝑛 : Fx → 𝜔 and a function rankx from Fx
into Ord ∪ {∞} as follows:

(𝛼) Fx =
⋃{Fx,𝑛 : 𝑛 < 𝜔}

(𝛽) Fx,𝑛 = { 𝑓 : 𝑓 is an elementary embedding of 𝑀x,𝑛 into A }
(𝛾) 𝑛( 𝑓 ) = 𝑘 if and only if 𝑓 ∈ Fx,𝑘 .
(𝛿) rank( 𝑓 ) = ⋃{

𝜖 + 1: for every 𝛼 < 𝜆 there is 𝑔 ∈ Fx,𝑛( 𝑓 ) extending 𝑓

such that 𝛽 = rankx(𝑔) and Rang(𝑔) ∩ 𝛼 = Rang( 𝑓 ) ∩ 𝜆
}
.

Now

Case 1. For no x ∈ W∗ and 𝑓 ∈ Fx,0 do we have rankx( 𝑓 ) = ∞.
For every x ∈ W∗ and 𝑓 ∈ Fx let 𝛽( 𝑓 , x) be the first ordinal 𝛼 < 𝜆 such that

if rankx( 𝑓 ) = 𝜖 then there is no 𝑔 ∈ Fx,𝑛( 𝑓 )+1 extending 𝑓 with rankx(𝑔) = 𝜖
and Rang(𝑔) ∩ 𝛼 = Rang( 𝑓 ) ∩ 𝜆.
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Next, let ¯A = ⟨A𝑖 : 𝑖 < 𝜆⟩ be an increasing continuous sequence of
elementary submodels of A , each of cardinality < 𝜆 such that ⟨A 𝑗 : 𝑗 ≤ 𝑖⟩ ∈
∈ A𝑖+1.

Easily the set 𝐸 = {𝑖 < 𝜆 : A𝑖 ∩ 𝜆 = 𝑖 > 𝜇} is a club of 𝜆.
Choose, by induction on 𝑛 < 𝜔, an ordinal 𝑖𝑛 increasing with 𝑛 such that

𝑖𝑛 ∈ 𝐸 is of cofinality 𝜅 (this is possible as 𝜅 = cf (𝜅) < 𝜆) hence A𝑖𝑛 is an
elementary submodel of A of cardinality < 𝜆.

Choose𝑀 ≺ A of cardinality 𝜒, including {𝑖𝑛 : 𝑛 < 𝜔}∪{ ¯A ,W∗}∪(𝜒+1)
such that every 𝑢 ⊆ 𝑀 of cardinality < 𝜅 belongs to 𝑀 .

Note that if 𝑢 ⊆ A𝑖𝑛 has cardinality < 𝜅 then 𝑢 ∈ A𝑖𝑛 because 𝑖𝑛 ∈ 𝐸 and
cf (𝑖𝑛) = 𝜅, hence this holds for every A𝑖𝑛 ∩ 𝑀 .

Let 𝑀∗
𝑛 be A ↾ (A𝑖𝑛 ∩𝑀); easily 𝑀∗

𝑛 ∈ A𝑖𝑛 , so [𝑢 ⊆ 𝑀∗
𝑛 ∧ |𝑢 | < 𝜅] ⇒ 𝑢 ∈

∈ 𝑀∗
𝑛. We can find x ∈ W, and isomorphism 𝑓𝑛 from 𝑀x,𝑛 onto 𝑀∗

𝑛 increasing
with 𝑛. Now clearly x ∈ A𝑖𝑛 .

[Why? As 𝜇 = 𝜇<𝜒 (∗) and 𝜇 + 1 ⊆ A𝑖𝑛 . Also, 𝑓𝑛 ∈ Fx,𝑛 and these 𝑓𝑛
are unique as those models expand a submodel of (H<𝜒 (∗) (𝜆), ∈, <) and are
necessarily transitive over the ordinals.]

Similarly by the choice of x, we have 𝑓𝑛 ⊆ 𝑓𝑛+1. So ⟨rankx( 𝑓𝑛) : 𝑛 < 𝜔⟩ is
constantly ∞ as otherwise we get an infinite decreasing sequence of ordinals.

But this contradicts our case assumption.

Case 2. Not case 1.
So we choose x ∈ W∗ and 𝑓 ∈ Fx,0 such that rankx( 𝑓 ) = ∞.
We easily get the desired contradiction and even a Δ-system tree of models.

How? Let ⟨𝜂𝛼 : 𝛼 < 𝜆⟩ list 𝜔>𝜆 such that 𝜂𝛼 ◁ 𝜂𝛽 implies 𝛼 < 𝛽.
Now we choose a pair ( 𝑓𝜂𝛼 , 𝛾𝛼) by induction on 𝛼 < 𝜆 such that
(𝑖) 𝑓𝜂𝛼 ∈ Fx,ℓ𝑔 (𝜂𝛼 )
(𝑖𝑖) 𝛾𝛼 = sup

(⋃{𝜆 ∩ Rang( 𝑓𝜂𝛽 ) : 𝛽 < 𝛼}
)

(𝑖𝑖𝑖) if 𝜂𝛽 ◁ 𝜂𝛼 and ℓ𝑔(𝜂𝛼) = (ℓ𝑔(𝜂𝛽) + 1 then 𝛾𝛼 ∩ Rang( 𝑓𝜂𝛼) = 𝜆 ∩
∩ Rang( 𝑓𝜂𝛽 ).

There is no problem to carry the induction. This finishes the proof.

Lemma 4.26. (1) In 4.24, if in addition 𝜆 = 𝜇+ then we can add:

(𝑐3) If ¤𝜁 (𝛼) = ¤𝜁 (𝛽), then |𝑀𝛼
𝜔 | ∩ |𝑀𝛽

𝜔 | ∩ 𝜆 is an initial segment of |𝑀𝛼
𝜔 | ∩ 𝜆

and of |𝑀𝛽
𝜔 | ∩ 𝜆, so when 𝛼 ≠ 𝛽 it is a bounded subset of ¤𝜁 (𝛼).

(2) In 4.24 (and 4.26), when 𝜅 > ℵ0 then it follows that:
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(𝑐4)∗ If 𝛼 ≠ 𝛽 and {𝜂𝛼 ↾ 𝑛 : 𝑛 < 𝜔} ⊆ 𝑀
𝛽
𝜔 then 𝑀

𝛼
, 𝜂𝛼 ∈ 𝑀𝛽

𝜔 .

(3) Assume 𝜆 = 𝜇+, 𝜇 = 𝜇𝜅 , 𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = ℵ0} is a stationary subset
of 𝜆, and ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩ guesses clubs (and 𝐶𝛿 is an unbounded subset of 𝛿 of
order type 𝜔, of course).

Then we can find ⟨𝑁 𝜂 : 𝜂 ∈ Γ⟩ such that:

(𝑎) Γ =
⋃{Γ𝛿 : 𝛿 ∈ 𝑆}, where Γ𝛿 ⊆ {𝜂 : 𝜂 an increasing 𝜔-sequence of

ordinals < 𝛿 with limit 𝛿} and 𝛿(𝜂) = 𝛿 when 𝜂 ∈ Γ𝛿 and 𝛿 ∈ 𝑆.
(𝑏) 𝑁 𝜂 is ⟨𝑁𝜂,𝑛 : 𝑛 ≤ 𝜔⟩, which is ≺-increasing continuous, and we let

𝑁𝜂 = 𝑁𝜂,𝜔 .
(𝑐) Each 𝑁𝜂 is a model of cardinality 𝜅 (with vocabulary ⊆ H(𝜅+) for

notational simplicity), universe ⊆ 𝛿 B 𝛿(𝜂), 𝑁𝜂,𝑛 = 𝑁𝜂 ↾ 𝛾
𝛿
𝑛 (where

𝛾 𝛿𝑛 is the 𝑛th member of 𝐶𝛿), and 𝑁𝜂 ∩ (𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ≠ ∅.
(𝑑) For every distinct 𝜂, 𝜈 ∈ Γ𝛿 with 𝛿 ∈ 𝑆, for some 𝑛 < 𝜔, we have

𝑁𝜂 ∩ 𝑁𝜈 = 𝑁𝜂,𝑛 = 𝑁𝜈,𝑛.
(𝑒) For every 𝜂, 𝜈 ∈ Γ𝛿 the models 𝑁𝜂 , 𝑁𝜈 are isomorphic; moreover, there

is such an isomorphism 𝑓 which preserves the order of the ordinals and
maps 𝑁𝜂,𝑛 onto 𝑁𝜈,𝑛.

( 𝑓 ) If A is a model with universe 𝜆 and vocabulary ⊆ H(𝜅+) then for
stationarily many 𝛿 ∈ 𝑆, for some 𝜂 ∈ Γ𝛿 ⊆ Γ, we have 𝑁𝜂 ≺ A .
Moreover, if 𝜅𝜕 = 𝜅 and ℎ is a one to one function from 𝜕𝜆 into 𝜆 then
we can add: if 𝜌 ∈ 𝜕(𝑁𝜂,𝑛) then ℎ(𝜌) ∈ 𝑁𝜂,𝑛.

Proof. (1) Let 𝑔0, 𝑔1 be two place functions from 𝜆 × 𝜆 to 𝜆 such that for
𝛼 ∈ [𝜇, 𝜆], ⟨𝑔0(𝛼, 𝑖) : 𝑖 < 𝜇⟩ enumerates { 𝑗 : 𝑗 < 𝜇} without repetition and
𝑔1(𝛼, 𝑔0(𝛼, 𝑖)) = 𝑖 for 𝑖 < 𝜆.

Now we can restrict ourselves to 𝑀𝛼 such that each 𝑀𝛼
𝑖

(for 𝑖 ≤ 𝜔) is closed
under 𝑔0, 𝑔1. Then (c3) follows immediately from

¤𝜁 (𝛼) = ¤𝜁 (𝛽) ⇒ |𝑀𝛼
𝜔 | ∩ 𝜇 = |𝑀𝛽

𝜔 | ∩ 𝜇
(required in (c1)).

(2) Should be clear.
(3) This just rephrases what we have proved above.

Lemma 4.27. Suppose that 𝜆 = 𝜇+, 𝜇 = 𝜅ℵ0 = 2𝜅 > 2ℵ0 , cf (𝜅) = ℵ0 and
𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = ℵ0} is stationary, 𝜃 = ℵ0, ℵ0 < 𝜒(∗) = cf (𝜒(∗)) < 𝜅.
Then we can find W = {(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)} and functions
¤𝜁 : 𝛼(∗) → 𝑆, ℎ : 𝛼(∗) → 𝜆

and ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩ with ⟨𝛾 𝛿𝑛 : 𝑛 < 𝜔⟩ listing 𝐶𝛿 in increasing order such that:
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(𝑎0)–(𝑎1) As in 4.12.
(𝑎2)∗ As in 4.24.
(𝑏0)–(𝑏2) As in 4.12, and even

(𝑏1)∗ 𝛼 ≠ 𝛽, {𝜂𝛼 ↾ 𝑛 : 𝑛 < 𝜔} ⊆ 𝑀
𝛽
𝜔 implies 𝛼 < 𝛽 and even

¤𝜁 (𝛼) < ¤𝜁 (𝛽).
(𝑐1)–(𝑐3) As in 4.22 + 4.26(1).
(𝑐4) If ¤𝜁 (𝛼) = ¤𝜁 (𝛽) = 𝛿 but 𝛼 ≠ 𝛽 then for some 𝑛0 ≥ 1, there are no 𝑛 > 𝑛0

and 𝛼1 ≤ 𝛽2 ≤ 𝛼3 satisfying:

𝛼1 ∈ |𝑀𝛼
𝜔 | ∩ [𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1),

𝛽2 ∈ |𝑀𝛽
𝜔 | ∩ [𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1),

𝛼3 ∈ |𝑀𝛼
𝜔 | ∩ [𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1),

i.e., either

sup
(
[𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ∩ |𝑀𝛼

𝜔 |
)
< min

(
[𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ∩ |𝑀𝛽

𝜔 |
)

or sup
(
[𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ∩ |𝑀𝛽

𝜔 |
)
< min

(
[𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ∩ |𝑀𝛼

𝜔 |
)
.

(𝑐5) If Υ < 𝜅 and there is 𝐵 ⊆ 𝜔𝜅, |𝐵| = 𝜅ℵ0 which contains no perfect set with
densityΥ (this holds trivially if 𝜅 is strong limit), then also {𝜂𝛼 : 𝛼 < 𝛼(∗)}
does not contain such a set. (See 4.28.)

Proof. We repeat the proof of 4.22 with some changes.
Let ⟨𝑆𝛼,𝛽,𝛾 : 𝛼 < 𝜇, 𝛽 < 𝜆, 𝛾 < 𝜆⟩ be pairwise disjoint stationary subsets

of 𝑆. Let 𝑔0, 𝑔1 be as in the proof of 4.26. By 4.7 there is a sequence ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩
such that:

(𝑖) 𝐶𝛿 is a club of 𝛿 of order type 𝜅 (not 𝜔!), 0 ∉ 𝐶𝛿 .
(𝑖𝑖) For 𝛼 < 𝜇, 𝛽 < 𝜆, 𝛾 < 𝜆, for every club 𝐶 of 𝜆, the set

{𝛿 ∈ 𝑆𝛼,𝛽,𝛾 : 𝐶𝛿 ⊆ 𝐶}
is stationary.

We then define W∗, (𝛿 𝑗 , ⟨𝑀 𝑗 ,𝑛 : 𝑛 < 𝜔⟩, 𝜂 𝑗 , 𝐶 𝑗) for 𝑗 < 𝜇, 𝐴𝛼 for 𝛼 < 𝜆, and 𝑅
as in the proof of 4.22.

Now, for 𝛿 ∈ 𝑆𝛼,𝛽,𝛾 let W1
𝛿

be the collection of all systems ⟨𝑀𝜌, 𝜂𝜌 : 𝜌 ∈
∈ 𝜔>𝜅⟩ such that:

(𝑖) 𝜂𝜌 is an increasing sequence of ordinals of length ℓ𝑔(𝜌).
(𝑖𝑖) otp

(
𝐶𝛿 ∩ 𝜂𝜌 (ℓ)

)
= 1 + 𝜌(ℓ) for ℓ < ℓ𝑔(𝜌).

(𝑖𝑖𝑖) There are isomorphisms ⟨ℎ𝜌 : 𝜌 ∈ 𝜔>𝜅⟩ such that ℎ𝜌 maps 𝑀𝜌 onto
𝑀𝛼,ℓ𝑔 (𝜌) preserving ∈, 𝑅, cd(𝑥) = 𝑦, 𝑔0(𝑥1, 𝑥2) = 𝑦, 𝑔1(𝑥1, 𝑥2) = 𝑦 (and
their negations).
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(𝑖𝑣) If 𝜌 ◁ 𝜈 then ℎ𝜌 ⊆ ℎ𝜈 , 𝑀𝜌 ≺ 𝑀𝜎 , and 𝑀𝜌 ∈ 𝑀𝜈 .
(𝑣) 𝑀𝜌 ∩ 𝐶𝛿 = ∅, and 𝑀𝜌 ∩ 𝜆 ⊆ ⋃

ℓ

[𝛾𝜌(ℓ ) , 𝛾𝜌(ℓ )+1), where 𝛾𝜁 is the 𝜁 th

member of 𝐶𝛿 .
(𝑣𝑖) If 𝜌 ∈ 𝜔>𝜅, ℓ < ℓ𝑔(𝜌), and 𝛾 is the (1 + 𝜌(ℓ))th member of 𝐶𝛿 then

𝑀ℓ ∩ 𝛾 depends only on 𝜌 ↾ ℓ and 𝑀𝜌 ↾ 𝛾 ≺ 𝑀𝜌.
(𝑣𝑖𝑖) 𝑁𝛽 = 𝑀⟨ ⟩ .

Now clearly |W1
𝛿
| ≤ 𝜇, so let W1

𝛿
=

{〈
(𝑀 𝑗

𝜌 , 𝜂
𝑗
𝜌) : 𝜌 ∈ 𝜔>𝜅

〉
: 𝑗 < 𝜇

}
. Let

⟨𝜌 𝑗 : 𝑗 < 𝜇⟩ be a list of distinct members of 𝜔𝜅, for (c5) — choose as there.
Let

𝑀
𝑗

ℓ
=

⋃
ℓ<𝜔

𝑀
𝑗

𝜌 𝑗↾ℓ
, 𝜂 𝑗 =

〈
𝜂
𝑗

𝜌 𝑗↾(ℓ+1) (ℓ + 1) : ℓ ≤ 𝜔
〉
.

Now, {
⟨𝑀 𝑗

ℓ
: ℓ < 𝜔⟩ : 𝑗 < 𝜇

}
is as required in (c4). Also, (c5) is straightforward, as taking union for all 𝛿-s
changes little. (Of course, we are omitting 𝛿-s where we get unreasonable pairs.)

The rest is as before.

Remark 4.28. The existence of 𝐵 as in (c5) is proved for some Υ, for all strong
limit 𝜅 of cofinality ℵ0. By [40, Ch.II,6.9,pg.104], much stronger conclusions
hold. If 2𝜅 is regular and belongs to {cf (∏ 𝜅𝑛/𝐷) : 𝐷 an ultrafilter on 𝜔, 𝜅𝑛 <
< 𝜅}, or 2𝜅 is singular and is the supremum of this set, then it exists for
Υ = (2ℵ0)+. Now, if above we replace 𝐷 by the filter of co-bounded subsets of
𝜔, then we get it even for Υ = ℵ0; by [9, Part D] the requirement holds, e.g., for
ℶ𝛿 for a club of 𝛿 < 𝜔1.

Moreover, under this assumption on 𝜅 we can demand (essentially, this is
expanded in 4.33) We strengthen clause (c4) to:
(𝑐4)∗ If ¤𝜁 (𝛼) = ¤𝜁 (𝛽) = 𝛿 but 𝛼 ≠ 𝛽 then for some 𝑛0 ≥ 1, either for every

𝑛 ∈ [𝑛1, 𝜔) we have

sup
(
[𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ∩ |𝑀𝛼

𝜔 |
)
< min

(
[𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ∩ |𝑀𝛽

𝜔 |
)

or for every 𝑛 ∈ [𝑛1, 𝜔) we have

sup
(
[𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ∩ |𝑀𝛽

𝜔 |
)
< min

(
[𝛾 𝛿𝑛 , 𝛾 𝛿𝑛+1) ∩ |𝑀𝛼

𝜔 |
)
.

Lemma 4.29. We can combine 4.27 with 4.24.

Proof. Left to the reader.
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Lemma 4.30. Suppose ℵ0 = 𝜃 < 𝜒(∗) = cf (𝜒(∗)) and 𝜆ℵ0 = 𝜆<𝜒 (∗) , 𝜒(∗) ≤ 𝜆,
𝜆 = 𝜆+

1, and (∗)𝜆1 (see below) holds.
Then

(∗)𝜆 We can find W = {(𝑀𝛼
, 𝜂𝛼) : 𝛼 < 𝛼(∗)} and functions ¤𝜁 : 𝛼(∗) → 𝑆

and ℎ : 𝛼(∗) → 𝜆 such that:
(𝑎0)–(𝑎2) Are as in 4.12.
(𝑏0)–(𝑏2) As in 4.12, and even
(𝑐3) If ¤𝜁 (𝛼) = ¤𝜁 (𝛽) then |𝑀𝛼 | ∩ |𝑀𝛽 | is a bounded subset of ¤𝜁 (𝛼).

Proof. Left to the reader.

Lemma 4.31. Suppose that 𝜆 is a strongly inaccessible uncountable cardinal,

cf (𝜆) ≥ 𝜒(∗) = cf (𝜒(∗)) > 𝜃 = ℵ0,

and let 𝑆 ⊆ 𝜆 consist of strong limit singular cardinals of cofinality ℵ0 and
be stationary. Then we can find W = {(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)} and functions
¤𝜁 : 𝛼(∗) → 𝑆 and ℎ : 𝛼(∗) → 𝜆 such that:

(𝑎0)–(𝑎2) As in 4.12 (except that ℎ(𝛼) does not only depend on ¤𝜁 (𝛼)).
(𝑏0), (𝑏3) As in 4.12.
(𝑏1)+ As in 4.20.
(𝑐3)− If ¤𝜁 (𝛼) = 𝛿 = ¤𝜁 (𝛽) then |𝑀𝛼

𝜔 | ∩ |𝑀𝛽
𝜔 | ∩ 𝛿 is a bounded subset of 𝛿.

Remark 4.32. (1) See [22] for a use of what is essentially a weaker version.
(2) We can generalize 4.24.

Proof of Lemma 4.31. See the proof of [8, 1.10(3)] (but there sup(𝑁⟨ ⟩ ∩𝜆) <
< 𝛿).

Lemma 4.33. (1) Suppose that 𝜆 = 𝜇+, 𝜇 = 𝜅 𝜃 = 2𝜅 , 𝜃 < cf (𝜒(∗)) = 𝜒(∗) < 𝜅,
𝜅 is strong limit, 𝜅 > cf (𝜅) = 𝜃 > ℵ0, and 𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜃} is stationary.

Then we can find W = {(𝑀𝛼
, 𝜂𝛼) : 𝛼 < 𝛼(∗)} (actually, a sequence),

functions ¤𝜁 : 𝛼(∗) → 𝑆 and ℎ : 𝛼(∗) → 𝜆, and ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩ such that:

(𝑎1), (𝑎2) As in 4.12.
(𝑏0) 𝜂𝛼 ≠ 𝜂𝛽 for 𝛼 ≠ 𝛽.
(𝑏1) If {𝜂𝛼 ↾ 𝑖 : 𝑖 < 𝜃} ⊆ 𝑀

𝛽

𝜃
and 𝛼 ≠ 𝛽 then 𝛼 < 𝛽 and even ¤𝜁 (𝛼) < ¤𝜁 (𝛽).

(𝑏2) If 𝜂𝛼 ↾ ( 𝑗 + 1) ∈ 𝑀𝛽

𝜃
then 𝑀𝛼

𝑗
∈ 𝑀𝛽

𝜃
.

(𝑐2) 𝐶 = ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩, 𝐶𝛿 is a club of 𝛿 of order type 𝜃, and every club of 𝜆
contains 𝐶𝛿 for stationarily many 𝛿 ∈ 𝑆.
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(𝑐3) If 𝛿 ∈ 𝑆, 𝐶𝛿 = {𝛾𝛿,𝑖 : 𝑖 < 𝜃} is the increasing enumeration, and 𝛼 < 𝛼∗

satisfies ¤𝜁 (𝛼) = 𝛿, then there is
〈
⟨𝛾−𝛼,𝑖 , 𝛾+

𝛼,𝑖⟩ : 𝑖 < 𝜃 odd
〉

such that
𝛾−𝛼,𝑖 ∈ 𝑀𝛼

𝑖
, 𝑀𝛼

𝑖
∩ 𝜆 ⊆ 𝛾+

𝛼,𝑖 , 𝛾𝛿,𝑖 < 𝛾−𝛼,𝑖 < 𝛾+
𝛼,𝑖 < 𝛾𝛿,𝑖+1, and

(∗) If ¤𝜁 (𝛼) = ¤𝜁 (𝛽) and 𝛼 < 𝛽 then for every large enough odd 𝑖 < 𝜃
we have 𝛾+

𝛼,𝑖 < 𝛾
−
𝛽,𝑖 (hence [𝛾−𝛼,𝑖, 𝛾+

𝛼,𝑖) ∩ [𝛾−𝛽,𝑖 , 𝛾+
𝛽,𝑖) =

= ∅) and [𝛾−𝛽,𝑖, 𝛾+
𝛽,𝑖) ∩ 𝑀𝛼

𝜃
= ∅.

(2) In part (1), assume 𝜃 = ℵ0 and pp(𝜅) = +2𝜅 . Then the conclusion holds;
moreover, (c3) (from 4.26) does as well.

Remark 4.34. The assumption pp(𝜅) = 2𝜅 holds (for example) for 𝜅 = ℶ𝛿 for a
club of 𝛿 < 𝜔1 (and for a club of 𝛿 < 𝜃 when ℵ0 < 𝜃 = cf (𝜃) < 𝜅: see [41, §5]).

Proof of Lemma 4.33. (1) By 4.6 we can find 𝐶 = ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩, 𝐶𝛿 a club of
𝛿 of order type 𝜅 such that for any club 𝐶 of 𝜆, for stationarily many 𝛿 ∈ 𝑆, we
have 𝐶𝛿 ⊆ 𝐶.

First Case. Assume 𝜇 (= 2𝜅 ) is regular.
By [40, Ch.II,5.9], we can find an increasing sequence ⟨𝜅𝑖 : 𝑖 < 𝜃⟩ of regular

cardinals > 𝜒(∗) such that 𝜅 =
∑
𝑖<𝜃

𝜅𝑖 and
∏
𝑖<𝜃

𝜅𝑖/𝐽bd
𝜃

has true cofinality 𝜇, and

let ⟨ 𝑓𝜖 : 𝜖 < 𝜇⟩ exemplify this. This means
𝜖 < 𝜁 < 𝜇 ⇒ 𝑓𝜖 < 𝑓𝜁 mod 𝐽bd

𝜃

and for every 𝑓 ∈ ∏
𝑖<𝜃

𝜅𝑖 , for some 𝜖 < 𝜇, we have 𝑓 < 𝑓𝜖 mod 𝐽bd
𝜃

. We may

assume that if 𝜖 is limit and 𝑓 ↾ 𝜖 has a < 𝐽bd
𝜃

-l.u.b. then 𝑓𝜖 is a < 𝐽bd
𝜃

-l.u.b., and
we know that if cf (𝜖) > 2𝜃 then this holds, and that without loss of generality∧
𝑖<𝜃

cf ( 𝑓𝜖 (𝑖)) = cf (𝜖). Without loss of generality 𝜅𝑖 > 𝑓𝜖 (𝑖) >
⋃
𝑗<𝑖

𝜅 𝑗 .

We shall define W later. Let St be a strategy for Player I in the game from
4.12(a2). By the choice of 𝐶, for some 𝛿 ∈ 𝑆, for every 𝛼 ∈ 𝐶𝛿 of cofinality > 𝜃,
H<𝜒 (∗) (𝛼) is closed under the strategy St. Let 𝐶𝛿 = {𝛼𝑖 : 𝑖 < 𝜅} be increasing
continuous. For each 𝜖 < 𝜇 we choose a play of the game with Player I using St.
For a play, ⟨𝑀 𝜖

𝑗
, 𝜂𝜖
𝑗

: 𝑗 < 𝜃⟩ satisfies:

⟨𝑀 𝜖
𝑗 : 𝑗 ≤ 𝑗1⟩ ∈ H<𝜒 (∗) (𝛼 𝑓𝜖 ( 𝑗1 )+1),

𝜂𝜖𝛾 =
〈
cd

(
𝛼 𝑓𝜖 (𝑖) , ⟨𝑀 𝜖

𝑖 : 𝑖 ≤ 𝑗⟩
)
: 𝑗 < 𝛾

〉
,

and 𝜂𝜖𝑗+1 ∈ 𝑀 𝜖
𝑗+1.

Then let 𝑔𝜖 ∈ ∏
𝑖<𝜃

𝜅𝑖 be 𝑔𝜖 (𝑖) = sup
(
𝜅𝑖 ∩

⋃
𝑗<𝜃

𝑀 𝜖
𝑗

)
, so for some 𝛽𝜖 ∈ (𝜖, 𝜇), we

have 𝑔𝜖 < 𝑓𝛽𝜖 mod 𝐽bd
𝜃

.
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On the other hand, if cf (𝜖) = (2𝜃 )+ then without loss of generality
cf
(
𝑓𝜖 (𝑖)

)
= cf (𝜖) for every 𝑖 < 𝜃 (see [40, Ch.II,§1]), so there is 𝛾𝜖 < 𝜖

such that
ℎ𝜖 < 𝑓𝛾𝜖 mod 𝐽bd

𝜃 , where ℎ𝜖 (𝑖) = sup( 𝑓𝜖 (𝑖) ∩
⋃
𝑗<𝜃

𝑀 𝜖
𝑗 ).

So for some 𝛾(∗) < 𝜇 we have:
𝑆𝛿 [St] = {𝜖 < 𝜇 : cf (𝜖) = (2𝜃 )+ and 𝛾𝜖 = 𝛾(∗)} is stationary.

Now, for each 𝛿 ∈ 𝑆 we can consider the set C𝛿 of all possible such
⟨(𝑀 𝜖

, 𝜂𝜖 ) : 𝜖 < 𝜇⟩, where 𝑀 𝜖
= ⟨𝑀 𝜖

𝑗
: 𝑗 < 𝑖⟩ and 𝜂𝜖

𝜃
are as above (letting

St vary on all strategies of Player I for which [𝛼 ∈ 𝐶𝛿 ∧ cf (𝛼) > 𝜃] ⇒
⇒ [H<𝜒 (∗) (𝛼) is closed under St]).

A better way to write the members of C𝛿 is
〈
⟨(𝑀 𝜖

𝑗 , 𝜂
𝜖
𝑗
) : 𝑗 < 𝜃⟩ : 𝜖 < 𝜇

〉
,

but for 𝑗 < 𝜃,

𝑓𝜖 (1) ↾ 𝑗 = 𝑓𝜖 (2) ↾ 𝑗 ⇒
[
𝑀
𝜖 (1)
𝑗 = 𝑀

𝜖 (2)
𝑗

∧ 𝜂
𝜖 (1)
𝑗

= 𝜂
𝜖 (2)
𝑗

]
.

Actually, it is a function from { 𝑓𝜖 ↾ 𝑗 : 𝜖 < 𝜇, 𝑗 < 𝜃} to H<𝜒 (∗) (𝛿). But the
domain has power 𝜅, the range has power |𝛿 | ≤ 𝜇. So |C𝛿 | ≤ 𝜇𝜅 = (2𝜅 )𝜅 = 2𝜅 =
= 𝜇.

So we can well order C𝛿 in a sequence of length 𝜇, and choose by induction
on 𝜖 < 𝜇 a representative of each for W satisfying the requirements.

Second case. Assume 𝜇 is singular.
So let 𝜇 =

∑
𝜉<cf (𝜇)

𝜇𝜉 with 𝜇𝜉 regular. Without loss of generality

𝜇𝜉 >
(∑︁

{𝜇𝜖 : 𝜖 < 𝜉}
)+ + cf (𝜇)+.

We know that cf (𝜇) > 𝜅, and again by [40, Ch.VIII,§1] there are ⟨𝜅𝜉 ,𝑖 : 𝑖 < 𝜃⟩,
⟨𝜅𝑖 : 𝑖 < 𝜃⟩ such that

tcf
(∏
𝑖<𝜃

𝜅𝜉 ,𝑖/𝐽bd
𝜃

)
= 𝜇𝜉 , tcf

(∏
𝑖<𝜃

𝜅𝑖/𝐽bd
𝜃

)
= cf (𝜇),

𝜅𝑎𝑖 < 𝜅𝜉𝑖 < 𝜅
𝑏
𝑖 , 𝜅𝑎𝑖 < 𝜅𝑖 < 𝜅

𝑏
𝑖 and 𝑖 < 𝑗 ⇒ 𝜅𝑏𝑖 < 𝜅

𝑎
𝑗

(we can even get 𝜅𝑎
𝑖
>

∏
𝑗<𝑖

𝜅𝑏
𝑗

as we can uniformize on 𝜉).
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Let ⟨ 𝑓 𝜉𝜖 : 𝜖 < 𝜇𝜉 ⟩, ⟨ 𝑓𝜖 : 𝜖 < cf (𝜇)⟩ witness the true cofinalities. Now, for
every 𝑓 ∈ ∏

𝑖<𝜃

𝜅𝑖 (for simplicity, every 𝑓 such that 𝑓 (𝑖) > ∑
𝑗<𝑖

𝜅 𝑗 and
∧
𝑖

cf ( 𝑓 (𝑖)) =

= (2𝜃 )+) and 𝜉 we can repeat the previous argument for ⟨ 𝑓 + 𝑓 𝜉𝜖 : 𝜖 < 𝜇𝜖 ⟩. After
“cleaning inside”, replacing by a subset of power 𝜇𝜉 , we find a common bound
below

∏
𝑖<𝜃

𝜅𝑖 and below
∏
𝑓 , and we can uniformize on 𝜉.

Thus we apply cf (𝜖) = (2𝜃 )+ on every 𝑓𝜖 , and use the same argument on
the bound we have just gotten.

(2) Should be clear.

Similarly to 4.22, with 𝜔2 for 𝜃 (not a cardinal!) we have:

Claim 4.35. Suppose that

(∗) 𝜆 is a regular cardinal, 𝜃 = ℵ0, 𝜇 = 𝜇<𝜒 (∗) < 𝜆 ≤ 2𝜇, 𝑆 ⊆ {𝛿 < 𝜆 :
cf (𝛿) = ℵ0} is stationary, and ℵ0 < 𝜒(∗) = cf (𝜒(∗)).

Then we can find
W = {(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)}
and functions

¤𝜁 : 𝛼(∗) → 𝑆 and ℎ : 𝛼(∗) → 𝜆

such that:

(𝑎0) As in 4.12.
(𝑎1) 𝑀𝛼

= ⟨𝑀𝛼
𝑖

: 𝑖 ≤ 𝜔2⟩ is an increasing continuous elementary chain,11 each
𝑀𝛼
𝑖

is a model belonging to H<𝜒 (∗) (𝜆) [so necessarily has cardinality
< 𝜒(∗)], 𝑀𝛼

𝑖
∩ 𝜒(∗) is an ordinal, [𝜒(∗) = 𝜒+ ⇒ 𝜒 + 1 ⊆ 𝑀𝛼

𝑖
],

𝜂𝛼 ∈ 𝜔2
𝜆 is increasing with limit ¤𝜁 (𝛼) ∈ 𝑆, 𝜂𝛼 ↾ 𝑖 ∈ 𝑀𝛼

𝑖+1, 𝑀𝛼
𝑖

belongs to
H<𝜒 (∗) (𝜂𝛼 (𝑖)), and ⟨𝑀𝛼

𝑖
: 𝑖 ≤ 𝑗⟩ belongs to 𝑀𝛼

𝑗+1.
(𝑎2) Like 4.12 (with 𝜔2 instead 𝜃).
(𝑏0)–(𝑏2) As in 4.12.
(𝑏1)∗ As in 4.22.
(𝑐1) If ¤𝜁 (𝛼) = ¤𝜁 (𝛽) then 𝑀𝛼

𝜔2 ∩ 𝜇 = 𝑀
𝛽

𝜔2 ∩ 𝜇, there is an isomorphism ℎ𝛼,𝛽

from 𝑀𝛼

𝜔2 onto 𝑀𝛽

𝜔2 mapping 𝜂𝛼 (𝑖) to 𝜂𝛽 (𝑖) and 𝑀𝛼
𝑖

to 𝑀𝛽

𝑖
for 𝑖 < 𝜔2,

and ℎ𝛼,𝛽 ↾
(
|𝑀𝛼

𝜔2 | ∩ |𝑀𝛽

𝜔2 |
)

is the identity.
(𝑐2) As in 4.22, using ⟨𝑀𝛼

𝜔𝑛 : 𝑛 < 𝜔⟩.
(𝑐3) As in 4.26, assuming 𝜆 = 𝜇+.
(𝑐4) 𝜂𝛼 (𝑖) > sup

(
|𝑀𝛼

𝑖
| ∩ 𝜆

)
(so sup

(
|𝑀𝛼

𝜔 (𝑛+1) | ∩ 𝜆
)
=
⋃
ℓ

𝜂𝛼 (𝜔𝑛 + ℓ)).

11𝜏(𝑀𝛼
𝑖
), the vocabulary, may be increasing too and belongs to H<𝜒 (∗) (𝜒(∗)).
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Proof. We use ⟨𝑀𝛼,0 : 𝛼 < 𝛼(∗)⟩, which we got in 4.22. Now for each 𝛼 we
look at

⋃
𝑛<𝜔

𝑀
𝛼,0
𝑛 as an elementary submodel of (H<𝜒 (∗) (𝜆), ∈) with a function

St (intended as a strategy for Player I in the play for (a2) above).
Play in

⋃
𝑛<𝜔

𝑀
𝛼,0
𝑛 and get

⟨𝑀𝛼
𝑖 , 𝜂

𝛼 (𝑖) : 𝑖 < 𝜔𝑛⟩ ∈ 𝑀𝛼,0
𝑛 ,

sup{𝜂𝛼 (𝑖) : 𝑖 < 𝜔𝑛} ∈ 𝑀𝛼,0
𝑛+1 ,

𝜂𝛼 (𝜔𝑛) > sup(𝑀𝛼,0
𝑛 ∩ 𝜆).

4.4. Black boxes: third round

Lemma 4.36. Assume that 𝜆 ≥ 𝜒(∗) > 𝜃 are regular cardinals, 𝑆 ⊆ {𝛿 < 𝜆 :
cf (𝛿) = 𝜃} is a stationary set, 𝜆<𝜒 (∗) = 𝜆, and the conclusion of 4.33 holds for
them. Then it holds for 𝜆+ as well as 𝜆.

Proof. By [8, 2.10(2)] (or see [42]) we know
(∗) There are ⟨𝐶𝛿 : 𝛿 < 𝜆+, cf (𝛿) = 𝜃⟩, ⟨𝑒𝛼 : 𝛼 < 𝜆+⟩ such that:

(𝑖) 𝐶𝛿 is a club of 𝛿 of order type 𝜃 such that
𝛼 ∈ 𝐶𝛿 ∧ 𝛼 > sup(𝐶𝛿 ∩ 𝛼) ⇒ cf (𝛼) = 𝜆.

(𝑖𝑖) 𝑒𝛼 is a club of 𝛼 of order type cf (𝛼); we let 𝑒𝛼 = {𝛽𝛼
𝑖

: 𝑖 < cf (𝛼)}
(increasing continuous).

(𝑖𝑖𝑖) If 𝐸 is a club of 𝜆+ then for stationarily many 𝛿 < 𝜆+ we have
cf (𝛿) = 𝜃, 𝐶𝛿 ⊆ 𝐸 , and the set
{𝑖 < 𝜆 : for every 𝛼 ∈ 𝐶𝛿 , cf (𝛼) = 𝜆 ⇒ 𝛽𝛼𝑖+1 ∈ 𝐸}

is unbounded in 𝜆.
Now copying the black box of 𝜆 on each 𝛿 < 𝜆+ with cf (𝛿) = 𝜃, we can finish
easily.

Lemma 4.37. If 𝜆, 𝜇, 𝜅, 𝜃, 𝜒(∗), 𝑆 are as in 4.33, and

𝛼 < 𝜒(∗) ⇒ |𝛼 |𝜃 < 𝜒(∗)
then there is a stationary 𝑆∗ ⊆ [𝜆]<𝜒 (∗) and a one-to-one function cd from 𝑆∗ to
𝜆 such that

[𝐴 ∈ 𝑆∗ ∧ 𝐵 ∈ 𝑆∗ ∧ 𝐴 ⊊ 𝐵] ⇒ cd(𝐴) ∈ 𝐵.

Remark 4.38. This gives another positive instance to a problem of Zwicker.
(See [31].)

Sh:309



116

Proof of Lemma 4.37. Similar to the proof of 4.33, only choose
cd: [𝜆]<𝜒 (∗) → 𝜆 one-to-one, and then define 𝑆∗ ∩ [𝛼]<𝜒 (∗) by induc-
tion on 𝛼.

Problem 4.39. (1) Can we prove in ZFC that for some regular 𝜆 > 𝜃:
(∗)𝜆,𝜃,𝜒 (∗) We can define, for 𝛼 ∈ 𝑆𝜆

𝜃
= {𝛿 < 𝜆 : ℵ0 ≤ cf (𝛿) = 𝜃}, a model

𝑀𝛼 with a countable vocabulary and universe an unbounded subset of 𝛼 of
power < 𝜒(∗), such that 𝑀𝛿 ∩ 𝜒(∗) is an ordinal such that for every model
𝑀 with countable vocabulary and universe 𝜆, for some12 𝛿 ∈ 𝑆𝜆𝜅 , we have
𝑀𝛿 ⊆ 𝑀 .

(2) The same. dealing with relational vocabularies only. (We call it (∗)rel
𝜆,𝜃,𝜅

.)

Remark 4.40. Note that by 4.8, if (∗)𝜆,𝜃,𝜅 and 𝜇 = cf (𝜇) > 𝜆 then (∗)𝜇+, 𝜃 ,𝜅 .

∗ ∗ ∗
Now (in 4.41–4.45) we return to black boxes for singular 𝜆: i.e. we deal with

the case cf (𝜆) ≤ 𝜃.

Lemma 4.41. Suppose that 𝜆𝜃 = 𝜆<𝜒 (∗) , 𝜆 is a singular cardinal, 𝜃 is regular,
and 𝜒(∗) is regular > 𝜃.

Assume further

(𝛼) cf (𝜆) ≤ 𝜃
(𝛽) 𝜆 =

∑
𝑖∈𝑤

𝜇𝑖 , |𝑤 | ≤ 𝜃, 𝑤 ⊆ 𝜃+ (usually 𝑤 = cf (𝜆)), [𝑖 < 𝑗 ⇒ 𝜇𝑖 < 𝜇 𝑗],
each 𝜇𝑖 is regular < 𝜆, and

cf (𝜆) > ℵ0 ∧ cf (𝜆) = 𝜃 ⇒ 𝑤 = cf (𝜆).
(𝛾) 𝜇 > 𝜆, 𝜇 is a regular cardinal, 𝐷 is a uniform filter on 𝑤 (so {𝛼 ∈ 𝑤 :

𝛼 > 𝛽} ∈ 𝐷 for each 𝛽 ∈ 𝑤), 𝜇 is the true cofinality of
∏
𝑖∈𝑤

(𝜇𝑖 , <)/𝐷
(see [12, 3.7(2) = Lc18] or [40]).

(𝛿) 𝑓 = ⟨ 𝑓𝑖/𝐷 : 𝑖 < 𝜇⟩ exemplifies “the true cofinality of
∏
𝑖

(𝜇𝑖 , <)/𝐷
is 𝜇”: i.e.,

𝛼 < 𝛽 < 𝜆 ⇒ 𝑓𝛼/𝐷 < 𝑓𝛽/𝐷,

𝑓 ∈
∏
𝑖

𝜇𝑖 ⇒
∨
𝛼

𝑓 /𝐷 < 𝑓𝛼/𝐷.

(𝜀) 𝑆 ⊆ {𝛿 < 𝜇 : cf (𝛿) = 𝜃} is good for (𝜇, 𝜃, 𝜒(∗)).

12Equivalently, stationarily many.
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(𝜁) If 𝜃 > cf (𝜆), 𝛿 ∈ 𝑆, then for some 𝐴𝛿 ∈ 𝐷 and unbounded 𝐵𝛿 ⊆ 𝛿 we
have

𝛼, 𝛽 ∈ 𝐵𝛿 ∧ 𝛼 < 𝛽 ∧ 𝑖 ∈ 𝐴𝛿 ⇒ 𝑓𝛼 (𝑖) < 𝑓𝛽 (𝑖)
i.e. ⟨ 𝑓𝛼 ↾ 𝐴𝛿 : 𝛼 ∈ 𝐵𝛿⟩ is <-increasing.

Then we can find W = {(𝑀𝛼
, 𝜂𝛼) : 𝛼 < 𝛼(∗)} (pedantically, a sequence) and

functions ¤𝜁 : 𝛼(∗) → 𝑆 and ℎ : 𝛼(∗) → 𝜇 such that:

(𝑎0)–(𝑎2) As in 4.12, except that we replace (𝑎1) (∗) by
(∗)′ (𝑖) 𝜂𝛼 ∈ 𝜃𝜆

(𝑖𝑖) If 𝑖 < cf (𝜆) then sup(𝜇𝑖 ∩ Rang(𝜂𝛼)) = sup(𝜇𝑖 ∩ 𝑀𝛼
𝜃
).

(𝑖𝑖𝑖) If 𝜉 < ¤𝜁 (𝛼) then

𝑓𝜉/𝐸 <
〈

sup(𝜇𝑖 ∩ 𝑀𝛼
𝜃 ) : 𝑖 < cf (𝜆)

〉
/𝐸 ≤ 𝑓 ¤𝜁 (𝛼)/𝐸.

(𝑏0)–(𝑏3) As in 4.12.

Proof. For 𝐴 ⊆ 𝜃 of cardinality 𝜃, let cd𝐴
𝜆,𝜒 (∗) : H<𝜒 (∗) (𝜆) → 𝐴𝜆 be one-to-one

and 𝐺 : 𝜆 → 𝜆 be such that for 𝛾 divisible by |𝛾 | and 𝛼 < 𝛾 ≤ 𝜆 (and
𝜇 ≥ ℵ0), the set {𝛽 < 𝛾 : 𝐺 (𝛽) = 𝛼} is unbounded in 𝛾 and of order type
𝛾. Let 𝐴̄ = ⟨𝐴𝑖 : 𝑖 < 𝜃⟩ be a sequence of pairwise disjoint subsets of 𝜃 each of
cardinality 𝜃.

For 𝛿 ∈ 𝑆, let

W0
𝛿 =

{(
𝑀, 𝜂

)
: 𝑀, 𝜂 satisfy (a1), and for some

𝑦 ∈ H<𝜒 (∗) (𝜆), for every 𝑖 < 𝜃, we have〈
𝐺 (𝜂(𝑖)) : 𝑖 ∈ 𝐴 𝑗

〉
= cd𝐴

𝜆,𝜒 (∗)
(
⟨𝑀 ↾ 𝑗 , 𝜂 ↾ 𝑗 , 𝑦⟩

)}
.

The rest is as before.

Claim 4.42. Suppose that 𝜆𝜃 = 𝜆<𝜒 (∗) , 𝜆 is singular, 𝜃 and 𝜒(∗) are regular,
and 𝜒(∗) > 𝜃.

(1) If (∀𝛼 < 𝜆)
[
|𝛼 |<𝜒 (∗) < 𝜆

]
then by 𝜆𝜃 = 𝜆<𝜒 (∗) we know that either

cf (𝜆) ≥ 𝜒(∗) (and so lemma 4.18 applies) or cf (𝜆) ≤ 𝜃.
(2) We can find regular 𝜇𝑖 (for 𝑖 < cf (𝜆)) increasing with 𝑖 such that

𝜆 =
∑

𝑖<cf (𝜆)
𝜇𝑖 .

(3) For ⟨𝜇𝑖 : 𝑖 ∈ 𝑤⟩ as in 4.41(𝛽), we can find 𝐷, 𝜇, 𝑓 as in 4.41(𝛾),(𝛿) with
𝐷 the co-bounded filter plus one unbounded subset of 𝜔.
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(4) For ⟨𝜇𝑖 : 𝑖 ∈ 𝑤⟩, 𝐷, 𝜇, 𝑓 as in (𝛽),(𝛾),(𝛿) of 4.41, we can find 𝜇 and
pairwise disjoint 𝑆 ⊆ 𝜇 as required in 4.41(𝛿)(𝜀) provided that 𝜃 > cf (𝜆) ⇒
⇒ 2𝜃 < 𝜇 [equivalently, < 𝜆].

(5) If cf (𝜆) > ℵ0, (∀𝛼 < 𝜆)
[
|𝛼 |cf (𝜆) < 𝜆

]
, and 𝜆 < 𝜇 = cf (𝜇) ≤ 𝜆cf (𝜆) then

we can find ⟨𝜇𝑖 : 𝑖 < cf (𝜆)⟩ and the co-bounded filter 𝐷 on cf (𝜆) as required in
4.31(𝛽), (𝛾).

Proof. Now (1)–(3) are trivial; for (5) see [37, §9]. As for (4), we should recall
that [37, §5] actually says:

Fact 4.43. If ⟨𝜇𝑖 : 𝑖 ∈ 𝑤⟩, 𝑓 , 𝐷 are as in 4.41, then
𝑆 =

{
𝛿 < 𝜇 : cf (𝛿) = 𝜃 and there are 𝐴𝛿 ∈ 𝐷 and unbounded 𝐵𝛿 ⊆ 𝛿

such that [𝛼, 𝛽 ∈ 𝐵𝛿 ∧ 𝛼 < 𝛽 ∧ 𝑖 ∈ 𝐴𝛿 ⇒ 𝑓𝛼 (𝑖) < 𝑓𝛽 (𝑖)]
}
.

is good for (𝜇, 𝜃, 𝜒(∗)).

Lemma 4.44. Let 𝜒(1) = 𝜒(∗) + (< 𝜒(∗)) 𝜃 .
In 4.41, if 𝜆𝜃 = 𝜆𝜒 (1) , we can strengthen (b1) to (b1)+ (of 4.20).

Proof. Combine proofs of 4.41, 4.20.

Lemma 4.45. 3.17
3.11 ×3.29 and 3.19

3.11 ×3.37 hold (we need also the parallel to 4.33).

Proof. Left to the reader.

4.5. Conclusion

Now we draw some conclusions.
The first, 4.46, gives what we need in 3.7 (so 3.3).

Conclusion 4.46. Suppose 𝜆𝜃 = 𝜆<𝜒 (∗) , cf (𝜆) ≥ 𝜒(∗) + 𝜃+, 𝜃 = cf (𝜃) <
< 𝜒(∗) = cf (𝜒(∗)). Then we can find

W = {(𝑀𝛼
, 𝜂𝛼) : 𝛼 < 𝛼(∗)},

where

𝑀𝛼
𝑖 = (𝑁𝛼𝑖 , 𝐴𝛼𝑖 , 𝐵𝛼𝑖 ), 𝐴𝛼𝑖 ⊆ 𝜆 ∩ |𝑁𝛼𝑖 |, 𝐵𝛼𝑖 ⊆ 𝜆 ∩ |𝑁𝛼𝑖 |, 𝐴𝛼𝑖 ≠ 𝐵𝛼𝑖 ,

and functions ¤𝜁, ℎ such that:

(𝑎0), (𝑎1) As in 4.12.
(𝑎2) As in 4.12, except that in the game, Player I can choose 𝑀𝑖 only as above.
(𝑏0), (𝑏1), (𝑏2) As in 4.12.
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(𝑏1)′′ If {𝜂𝛼 ↾ 𝑖 : 𝑖 < 𝜃} ⊆ 𝑀𝛽 but 𝛼 < 𝛽 (so 𝛽 < 𝛼 + (<𝜒(∗)) 𝜃 ) then:

𝐴𝛼𝜃 ∩
(
|𝑀𝛼

𝜃 | ∩ |𝑀𝛽

𝜃
|
)
≠ 𝐵

𝛽

𝜃
∩
(
|𝑀𝛼

𝜃 | ∩ |𝑀𝛽

𝜃
|
)
,

𝐵𝛼𝜃 ∩
(
|𝑀𝛼

𝜃 | ∩ |𝑀𝛽

𝜃
|
)
≠ 𝐴

𝛽

𝜃
∩
(
|𝑀𝛼

𝜃 | ∩ |𝑀𝛽

𝜃
|
)
.

Proof. First assume 𝜆 is regular, and W = {(𝑀𝛼
, 𝜂𝛼) : 𝛼 < 𝛼(∗)}, ¤𝜁, ℎ∗

be as in the conclusion of 4.12 (with ℎ∗ here standing in for ℎ there). Let
𝑤 = {cd(𝛼, 𝛽) : 𝛼, 𝛽 < 𝜆}, and 𝐺1, 𝐺2 : 𝑤 → 𝜆 be such that for 𝛼 ∈ 𝐸 ,
𝛼 = cd(𝐺1(𝛼), 𝐺2(𝛼)).

Let
𝑌 =

{
𝛼 < 𝛼(∗) : 𝑀𝛼

𝑖 has the form (𝑁𝛼𝑖 , 𝐴𝛼𝑖 , 𝐵𝛼𝑖 ),
𝐴𝛼𝑖 , 𝐵

𝛼
𝑖 distinct subsets of 𝜆 ∩ |𝑁𝛼𝑖 |

(equivalently, monadic relations), and
𝐺2(ℎ(𝛼)) = min(𝐴𝛼𝑖 \ 𝐵𝛼𝑖 ∪ 𝐵𝛼𝑖 \ 𝐴𝛼𝑖 )

}
.

Now we let
W∗ =

{
(𝑀𝛼

, 𝜂𝛼) : 𝛼 ∈ 𝑌
}
, ¤𝜁∗ = ¤𝜁 ↾ 𝑌, and ℎ = 𝐺1 ◦ ℎ∗.

They exemplify that 4.46 holds.
What if 𝜆 is singular? Still, cf (𝜆) ≥ 𝜒(∗) + 𝜃∗, and we can just use 4.18

instead 4.12.

Claim 4.47. (1) In 4.12, if 𝜆 = 𝜆<𝜒 (∗) we can let ℎ : 𝑆 → H<𝜒 (∗) (𝜆) be onto.
Generally, we can still make Rang(ℎ) be ⊆ 𝐴 whenever |𝐴| = 𝜆.

(2) In 4.12, by its proof, whenever 𝑆′ ⊆ 𝑆 is stationary, and∧
𝜁

[
ℎ−1(𝜁) ∩ 𝑆′ stationary

]
then

{
(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗), ¤𝜁 (𝛼) ∈ 𝑆′
}

satisfies the same conclusion.
(3) For any unbounded 𝑎 ⊆ 𝜃, we can let Player I also choose 𝜂(𝑖) for

𝑖 ∈ 𝜃 \ 𝑎 without changing our conclusions.
(4) Similar statements hold for the parallel claims.
(5) It is natural to have 𝜒(∗) = 𝜒+.

Proof. Straightforward.

Fact 4.48. We can make the following changes in (a1), (a2) of 4.12 (and in all
similar lemmas here) getting equivalent statements:
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(∗) 𝑀𝛼
𝑖

∈ H<𝜒 (∗) (𝜆 + 𝜆): in the game, for some arbitrary 𝜆∗ ≥ 𝜆 (but
fixed during the game) Player I chooses the 𝑀𝛼

𝑖
∈ H (𝜆∗) of cardinality

< 𝜒(∗), and in the end instead of “
∧
𝑖<𝜃

[𝑀𝑖 = 𝑀𝛼
𝑖
]” we have

• There is an isomorphism from 𝑀𝜃 onto 𝑀𝛼
𝜃

taking 𝑀𝑖 onto
𝑀𝛼
𝑖

, is the identity on 𝑀𝜃 ∩ H<𝜒 (∗) (𝜆), maps |𝑀𝜃 | \ H (𝜆) into
H<𝜒 (∗) (𝜆 + 𝜆) \ H<𝜒 (∗) (𝜆), and preserves ∈, ∉, and ‘[is/is not] an
ordinal’.

Exercise 4.49. If 𝐷 is a normal fine filter on P(𝜇), 𝜆 is regular, 𝜆 ≤ 𝜇,
𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜃} is stationary, and furthermore
(∗)𝐷,𝑆 {𝑎 ⊆ 𝜇 : sup(𝑎 ∩ 𝜆) ∈ 𝑆} ≠ ∅ mod 𝐷.
then we can partition 𝑆 to 𝜆 stationary disjoint subsets ⟨𝑆𝑖 : 𝑖 < 𝜆⟩ such that
𝑖 < 𝜆 ⇒ (∗)𝐷,𝑆𝑖 .

[Hint: like the proof of 4.3.]

Notation 4.50. (1) Let 𝜅 be an uncountable regular cardinal. We let seq𝛼<𝜅 (A )
(where A is an expansion of a submodel of some H≤𝜇 (𝜆) with |𝜏(A ) | ≤ 𝜒) be
the set of sequences ⟨𝑀𝑖 : 𝑖 < 𝛼⟩ which are increasing continuous with 𝑀𝑖 ≺ A ,
∥𝑀𝑖 ∥ < 𝜅, 𝑀𝑖 ∩ 𝜅 ∈ 𝜅, 𝜅 = 𝜅+

1 ⇒ 𝜅1 + 1 ⊆ 𝑀𝑖 , and ⟨𝑀 𝑗 : 𝑗 ≤ 𝑖⟩ ∈ 𝑀𝑖+1. (If
𝛼 = 𝛿 is limit, 𝑀𝛿 B

⋃
𝑖<𝛿

𝑀𝑖).

(2) If 𝜅 = 𝜅+
1, we may write ≤ 𝜅1 instead < 𝜅.

We repeat the definition of filters introduced in [21, Definition 3.2].

Definition 4.51. (1) E 𝜃
<𝜅 (𝐴) is a filter on [𝐴]<𝜅 defined as follows:𝑌 ∈ E 𝜃

<𝜅 (𝐴)
iff for (every) 𝜒 large enough, for some 𝑥 ∈ H (𝜒), the set{(⋃

𝑖<𝜃

𝑀𝑖
)
∩ 𝐴 : ⟨𝑀𝑖 : 𝑖 < 𝜃⟩ ∈ seq𝜃<𝜅

(
H(𝜒), ∈, 𝑥

)}
is included in 𝑌 .

Exercise 4.52. Let 𝜆, 𝜅, 𝜃, and 𝑌 ⊆ [𝜆]<𝜅 be given. Then
(a) ⇒ (b) ⇒ (c),

where
(a) For some W = {(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)}, ¤𝜁 , and ℎ satisfying 4.12, we have
𝑌 = {𝑀𝛼

𝜃 ∩ 𝜆 : 𝛼 < 𝛼(∗)}
and
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(∗) 𝛼 ≠ 𝛽 ∧ ∧
𝑖<𝜃

[𝜂𝛼
𝑖
∈ 𝑀𝛽

𝜃
] ⇒ 𝛼 < 𝛽.

(b) ♦𝐸 𝜃
<𝜅 (𝜆) holds.

(c) Like (a), but without (∗).

Exercise 4.53. If 𝜆2𝜅 = 𝜆 and 𝜃 ≤ 𝜅 then ♦𝐸 𝜃
<𝜅

. (Main case: 𝜅 = 𝜃.)

Exercise 4.54. If 𝜆 = 𝜇+, 𝜆𝜅 = 𝜆, 𝜃 = ℵ0, 𝜅 = 𝜅 𝜃 , then there is a coding set
with diamond (see [31]).

Exercise 4.55. Suppose that cf (𝜆) > ℵ0, 2𝜆 = 𝜆cf (𝜆) , 𝜒(∗) ≥ 𝜃 > cf (𝜆),
(∀𝛼 < 𝜆)

[
|𝛼 |𝜒 (∗) < 𝜆

]
, and ℭ is a model expanding (H<𝜒 (∗) (𝜆), ∈),

|𝜏(ℭ) | ≤ ℵ0. Then we can find {𝑀𝛼 : 𝛼 < 𝛼(∗)} such that:

(𝑖) 𝑀𝛼
= ⟨𝑀𝛼

𝑖
: 𝑖 < 𝜎⟩, 𝑀𝛼

𝑖
∈ H<𝜒 (∗) (𝜆), 𝑀𝛼

𝑖
∩ 𝜒(∗) is an ordinal,

𝑀𝛼
𝑖
↾ 𝜏(ℭ) ≺ ℭ, [𝑖 < 𝑗 ⇒ 𝑀𝛼

𝑖
≺ 𝑀𝛼

𝑗
], and ⟨𝑀𝛼

𝑗
: 𝑗 ≤ 𝑖⟩ ∈ 𝑀𝛼

𝑖+1.
(𝑖𝑖) If 𝑓𝑛 is a 𝑘𝑛-place function from 𝜆 to H<𝜒 (∗) (𝜆) then for some 𝛼,

𝑀𝛼
𝜎 ≺ (ℭ, 𝑓𝑛)𝑛<𝜔 .

Exercise 4.56. Suppose 𝜃 = cf (𝜇) < 𝜇, (∀𝛼 < 𝜇)
[
|𝛼 |𝜃 < 𝜇

]
, 2𝜇 = 𝜇𝜃 and

𝜆 = (2𝜇)+, and 𝑆 ⊆ {𝛿 < 𝜆 : cf (𝛿) = 𝜃}. Let 𝜇 =
∑
𝑖<𝜃

𝜇𝑖 , 𝜇𝑖 regular strictly

increasing, and cf (∏ 𝜇𝑖/𝐸) = 2𝜇. Then we can find

W =
{
(𝑀𝛼

, 𝜂𝛼) : 𝛼 < 𝛼(∗)
}
, ¤𝜁 : 𝛼(∗) → 𝑆, ℎ : 𝛼(∗) → 𝜆

such that:
(∗) For 𝛿 ∈ 𝑆 there is a club 𝐶𝛿 of 𝛿 of order type 𝜃 such that

𝛼 ∈ 𝐶𝛿 ∧ otp(𝛼 ∩ 𝐶𝛿) = 𝛾 + 1 ⇒ cf (𝛼) = 𝜇𝛾 .

Remark 4.57. We do not know if the existence of a Black Box for 𝜆+ with ℎ
one-to-one follows from ZFC (of course it is a consequence of ♦). On the other
hand, it is difficult to get rid of such a Black Box (i.e., prove the consistency of
non-existence).

If 𝜆 = 𝜆<𝜆 then we have ℎ : 𝑆 → 𝜆, 𝑆 ⊆ {𝛿 < 𝜆+ : cf(𝛿) < 𝜆} such that 𝐶𝛿
is a club of 𝛿, otp(𝐶𝛿) = cf (𝛿) and
(∀𝛼 ∈ 𝐶𝛿) (∀clubs 𝐶 ⊆ 𝛼)

[
cf (𝛼) > ℵ0 ∧ min

𝐶′ club of 𝐶𝛼

sup(ℎ ↾ 𝐶′)=otp(𝐶∩𝛼)
]
.

This is hard to get rid of (i.e. it is hard to find a forcing notion making it
no longer a black box without collapsing too many cardinals); compare with
Mekler–Shelah [6].
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Recall

Definition 4.58. For 𝜆 > 𝜃 = cf (𝜃) > ℵ0 and stationary 𝑆 ⊆ [𝜆]<𝜃 , let ♦𝑆 be
defined as follows:

If 𝜏 is a countable vocabulary, then there is a diamond sequence 𝑁 =

= ⟨𝑁𝑎 : 𝑎 ∈ 𝑆⟩ witnessing it, which means
• If 𝑁 is a 𝜏-model with universe 𝜆 then for stationarily many 𝑎 ∈ 𝑆 we

have 𝑁𝑎 ≺ 𝑁 .
(Pedantically, we only consider 𝑎 ∈ 𝑆 \ ∅.)

5. On partitions to stationary sets

We present some results on the club filter on [𝜅]ℵ0 and [𝜅] 𝜃 and some
relatives, and on ♦ (see Definition [12, 4.6=Ld12] or 5.4(2) here). There are
overlaps of the claims, hence redundant parts, but we believe they are still of
some interest.

Claim 5.1. Assume 𝜅 is a cardinal > ℵ1. Then [𝜅]ℵ0 can be partitioned to 𝜅ℵ0

(pairwise disjoint) stationary sets.

Proof. Follows by 5.2 below. In detail, let 𝜏 be the vocabulary {𝑐𝑛 : 𝑛 < 𝜔}
where each 𝑐𝑛 is an individual constant. By 5.2 below there is a sequence
𝑀 = ⟨𝑀𝑢 : 𝑢 ∈ [𝜅]ℵ0⟩ of 𝜏-models, with 𝑀𝑢 having universe 𝑢 such that 𝑀 is a
diamond sequence.

For each 𝜂 ∈ 𝜔𝜆, let S𝜂 be the set 𝑢 ∈ [𝜅]ℵ0 such that for every 𝑛 < 𝜔 we
have 𝑐𝑀𝑢

𝑛 = 𝜂(𝑛).
By the choice of 𝑀 , each set S𝜂 is necessarily a stationary subset of [𝜅]ℵ0 ,

and trivially those sets are pairwise disjoint.

Claim 5.2. Let 𝜅 > ℵ1. Then we have diamond on [𝜅]ℵ0 (modulo the filter
of clubs on it: see 4.58 or [12, 4.6=Ld12]), and we can find 𝐴𝛼 ⊆ [𝜅]ℵ0 for
𝛼 < 𝜆 B 2𝜅ℵ0 such that each is stationary but the intersection of any two is not.

Proof. The existence of the 𝐴𝛼-s for 𝛼 < 𝜆 follows from the first result. Let
𝜏 be a countable vocabulary and 𝜏1 = 𝜏 ∪ {<}. First we prove it when 𝜅 = ℵ2.
Without loss of generality 𝜅 ≤ 2ℵ0 , as otherwise the claim follows by 4.26(3),
with (ℵ2,ℵ1,ℵ0) here standing in for (𝜆, 𝜇, 𝜅) there. Let 𝜔 \ {0} be the disjoint
union of 𝑠𝑛 for 𝑛 < 𝜔, each 𝑠𝑛 is infinite with the first element > 𝑛+3 when 𝑛 > 0.
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By [8, 2.2] or [42] = [40, Ch.III] we can choose a sequence ⟨𝐶𝛿 : 𝛿 ∈ 𝑆2
0⟩ which

guesses clubs (where 𝑆2
0 = {𝛿 < 𝜔2 : cf (𝛿) = ℵ0}) such that 𝐶𝛿 ⊆ 𝛿 = sup(𝐶𝛿)

has order type 𝜔.
Let

〈
(𝔄𝜁 , 𝛼̄𝜁 ) : 𝜁 < 2ℵ0

〉
list the pairs (𝔄, 𝛼̄) without repetitions, with

𝔄 a model with vocabulary 𝜏1 and universe a limit countable ordinal, and
𝛼̄ = ⟨𝛼𝑛 : 𝑛 < 𝜔⟩ an increasing sequence of ordinals with limit sup(𝔄) and
𝔄↾𝛼𝑛 ≺ 𝔄. Let 𝐸𝑛 be the following equivalence relation relation on 2ℵ0 : 𝜀 𝐸𝑛 𝜁
iff (𝔄𝜀 ↾ 𝛼𝜀𝑛 , 𝛼̄

𝜀 ↾ 𝑛) is isomorphic to (𝔄𝜁 ↾ 𝛼𝜁𝑛 , 𝛼̄𝜁 ↾ 𝑛). By this we mean
there is an isomorphism 𝑓 from 𝔄 ↾ 𝛼𝜀𝑛 onto 𝔄𝜁 ↾ 𝛼𝜁𝑛 which maps 𝔄𝜀 ↾ 𝛼𝜀

𝑘

onto 𝔄𝜁 ↾ 𝛼𝜁
𝑘

for 𝑘 < 𝑛 and is an order preserving function (for the ordinals,
alternatively we restrict ourselves to the case where < is interpreted as a well
ordering).

We can find subsets 𝑡𝜁 of 𝜔 (for 𝜁 < 2ℵ0) such that:

(∗) (a) For 𝜁, 𝜀 < 2ℵ0 and 𝑛 < 𝜔 we have 𝑡𝜁 ∩ 𝑠𝑛 = 𝑡 𝜀 ∩ 𝑠𝑛 iff 𝔄𝜁 ↾ 𝛼𝜁𝑛 =

= 𝔄𝜀 ↾ 𝛼𝜀𝑛 and 𝛼𝜁
𝑘
= 𝛼𝜀

𝑘
for 𝑘 ≤ 𝑛.

(b) If 𝜁 < 2ℵ0 and 𝑛 < 𝜔 then 𝑡𝜁 ∩ 𝑠𝑛 is infinite.
(c) 𝑡𝜁 ∩ 𝑠𝑛 depends only on 𝜁/𝐸𝑛.

For 𝜁 < 2ℵ0 let
S𝜁 B

{
𝑎 ∈ [𝜅]ℵ0 : otp(𝑎) is a limit ordinal and 𝑡𝜁 = {|𝐶sup(𝑎) ∩ 𝛽 | : 𝛽 ∈ 𝑎}

}
and

S′
𝜁 =

{
𝑎 ∈ S𝑡 : otp(𝑎) = otp(𝔄𝜁 )

}
,

and for 𝑎 ∈ S′
𝜁

let 𝑁𝑎 be the model isomorphic to 𝔄𝜁 by the function 𝑓𝑎, where
Dom( 𝑓𝑎) = 𝑎, 𝑓𝑎 (𝛾) = otp(𝛾 ∩ 𝑎).

Let S be the union of S′
𝜁

for 𝜁 < 2ℵ0 . Clearly 𝜁 ≠ 𝜉 ⇒ S𝜁 ∩ S𝜉 = ∅, and
so S′

𝜁
∩ S′

𝜉
= ∅. Hence 𝑁𝑎 is well defined for 𝑎 ∈ S.

Let 𝐾𝑛 be the set of pairs (𝔄, 𝛼̄) such that 𝔄 is a 𝜏1-model with universe a
countable subset of 𝜅 with no last member, and 𝛼̄ is an increasing sequence of
ordinals< 𝜅 of length 𝑛 such that for all 𝑘 < 𝑛we have𝛼𝑘 < sup(𝔄), [𝛼𝑘 , 𝛼𝑘+1)∩
∩ 𝔄 ≠ ∅, and 𝔄 ↾ 𝛼𝑘 ≺ 𝔄. So clearly there is a function cd𝑛 : 𝐾𝑛 → P(𝑠𝑛)
such that for 𝜁 < 2ℵ0 , cd𝑛 (𝔄, 𝛼̄) = 𝑡𝜁 ∩ 𝑠𝑛 iff the pairs (𝔄, 𝛼̄), (𝔄𝜁 , 𝛼̄𝜁 ↾ 𝑛) are
isomorphic.

Let 𝑀 be a 𝜏1-model with universe 𝜅. Now13 we can find a full subtree T
of 𝜔> (ℵ2) (i.e. it is non-empty, closed under initial segments, and each member

13See [12, 1.16=L1.15] or history in the introduction of §3, and the proof of 4.24.
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has ℵ2 immediate successors) and elementary submodels 𝑁𝜂 of 𝑀 for 𝜂 ∈ T
such that:

(1) rang(𝜂) ⊆ 𝑁𝜂
(2) If 𝜂 is an initial segment of 𝜌 then 𝑁𝜂 is a submodel 𝑁𝜌. Moreover,

𝑁𝜂 ∩ ℵ2 is an initial segment of 𝑁𝜌.
Now let 𝐸 be the set of 𝛿 < 𝜅 = ℵ2 satisfying the following condition: if
𝜌 ∈ T ∩ 𝜔>𝛿 then 𝑁𝜌 ∩ 𝜅 is a bounded subset of 𝛿, and 𝛿 is a limit ordinal. Let
𝐸1 be the set of 𝛿 ∈ 𝐸 such that if 𝜌 ∈ T ∩ 𝜔>𝛿 then for every 𝛽 < 𝛿, there is 𝛾
such that 𝛽 < 𝛾 < 𝛿 and 𝜌ˆ⟨𝛾⟩ ∈ T . So by the choice of ⟨𝐶𝛿 : 𝛿 ∈ 𝑆⟩, for some
𝛿 ∈ 𝑆 we have 𝐶𝛿 ⊂ 𝐸1.

Let ⟨𝛼𝛿,𝑘 : 𝑘 < 𝜔⟩ list 𝐶𝛿 in increasing order.
Now we choose, by induction on 𝑛, a quadruple (𝜂𝑛, 𝑠∗𝑛, 𝛼𝑛, 𝑘𝑛) such that:
(∗) (a) 𝜂𝑛 ∈ T has length 𝑛 (so 𝜂0 is necessarily ⟨ ⟩).

(b) If 𝑛 = 𝑚 + 1 then 𝜂𝑛 is a successor of 𝜂𝑚.
(c) 𝑠∗𝑛 is cd𝑛

(
(𝑁𝜂𝑛 , ⟨𝛼ℓ : ℓ < 𝑛⟩)

)
if the pair (𝑁𝜂𝑛 , ⟨𝛼ℓ : ℓ < 𝑛⟩) belongs

to 𝐾𝑛 and is 𝑠𝑛 otherwise (so 𝑠∗𝑛 ⊆ 𝑠𝑛 is infinite).
(d) 𝛼𝑛 = sup(𝑁𝜂𝑛) + 1
(e) 𝑘𝑛 = min{𝑘 : 𝑁𝜂𝑛 ⊆ 𝛼𝛿,𝑘} and 𝑘0 = 0.
(f) if 𝑛 = 𝑚 + 1 then

(𝛼) min(𝑁𝜂𝑛 \ 𝑁𝜂𝑚) > 𝛼𝛿,𝑘𝑛−1
(𝛽) 𝑘𝑚 < 𝑘𝑛
(𝛾) 𝑘𝑛 ∈ ⋃{𝑠∗

ℓ
: ℓ < 𝑛}

(𝛿) If 𝑛 = (𝑛1 + 𝑛2)2 + 𝑛2 < (𝑛1 + 𝑛2 + 1)2 (so 𝑛1, 𝑛2 are uniquely
determined by 𝑛 and 𝑛2 < 𝑛) then 𝑘𝑛 ∈ 𝑠∗𝑛2 .

(𝜀) 𝑘𝑛 is minimal under those restrictions.
There is no problem to carry the induction. In the end, let 𝜂 =

⋃
𝑛
𝜂𝑛 ∈ lim(T ), so

we get a 𝜏1-model 𝑁𝜂 B
⋃{𝑁𝜂𝑛 : 𝑛 < 𝜔} and an increasing sequence ⟨𝛼𝑛 : 𝑛 <

< 𝜔⟩ of ordinals with limit sup(𝔄). Now by the choice of ⟨(𝔄𝜁 , 𝛼̄𝜁 ) : 𝜁 < 2ℵ0⟩,
clearly for some 𝜁 we have (𝑁𝜂 , 𝛼̄) isomorphic to (𝔄𝜁 , 𝛼̄𝜁 ), so necessarily
(𝑁𝜂 ↾ 𝛼𝑛, 𝛼̄ ↾ 𝑛) belongs to 𝐾𝑛 and cd𝑛 (𝑁𝜂↾𝑛, ⟨𝛼ℓ : ℓ < 𝑛⟩) = 𝑠∗𝑛.

Also, clearly sup(𝑁𝜂) = 𝛿 and {𝑘𝑛 : 𝑛 < 𝜔} = {|𝐶𝛿 ∩ 𝛽 | : 𝛽 ∈ 𝑁𝜂}.
Letting 𝑎 be the universe of 𝑁𝜂 , it follows that 𝑎 ∈ S𝜁 , so 𝑁𝑎 is well defined

and isomorphic to 𝔄𝜁 (hence to 𝑁𝜂). Using < 𝑀 we get 𝑁𝑎 = 𝑁𝜂 . But 𝑁𝜂 ≺ 𝑀 ,
so ⟨𝑁𝑎 : 𝑎 ∈ S⟩ is really a diamond sequence. (Well, for 𝜏1-models rather then
𝜏-models, but this does no harm and will even help us for 𝜅 > ℵ2.)

Sh:309



125

Second, we consider the case 𝜅 > ℵ2. Given a countable vocabulary 𝜏, let
𝜏1 = 𝜏 ∪ {<} (pedantically, assuming <∉ 𝜏) and let ⟨𝑁𝑐 : 𝑐 ∈ [ℵ2]ℵ0⟩ be as was
proved above with 𝜅 = ℵ2. For each 𝑐 ∈ [𝜅]ℵ0 , if otp(𝑐) = otp(𝑐 ∩𝜔2, <

𝑁𝑐∩𝜔2 ),
let 𝑔𝑐 be the unique isomorphism from (𝑐∩𝜔2, <

𝑁𝑐∩𝜔2 ) onto (𝑐, <), < the usual
order, and let 𝑀𝑐 be the 𝜏-model with universe 𝑐 such that 𝑔 is an isomorphism
from 𝑁𝑐∩𝜔2 ↾ 𝜏 onto 𝑀𝑐. Clearly it is an isomorphism and the 𝑀𝑐-s form a
diamond sequence.

[Why? For notational simplicity 𝜏 has predicates only (and, of course,<∉ 𝜏).
Let 𝑀0 = 𝑀 be a 𝜏-model with universe 𝜅, let 𝑀1 be an elementary submodel
of 𝑀 of cardinality ℵ2 such that 𝜔2 ⊆ 𝑀1, let ℎ be a one-to-one function from
𝑀1 onto 𝜔2, 𝑀2 be a 𝜏-model with universe 𝜔2 such that ℎ is an isomorphism
from 𝑀1 onto 𝑀2, and let 𝑀3 be the 𝜏1-model expanding 𝑀2 such that

<𝑀3 =
{(
ℎ(𝛼), ℎ(𝛽)

)
: 𝛼 < 𝛽 are from 𝑀1

}
.

So for some 𝑎 ∈ S ⊆ [𝜅]ℵ0 we have 𝑁𝑎 ≺ 𝑀3 and
ℎ(𝛼) = 𝛽 ∈ 𝑁𝑎 ∧ 𝛼 < 𝜔2 ⇒ 𝛼 ∈ 𝑎.

(Note that the set of 𝑎-s satisfying this contains a club of [ℵ2]ℵ0 .)
Let 𝑐 = {𝛼 : ℎ(𝛼) ∈ 𝑎}, so clearly 𝑐∩𝜔2 = 𝑎 and 𝑀𝑐 ≺ 𝑀1 hence 𝑀𝑐 ≺ 𝑀 ,

so we are done.]

Discussion 5.3. Some concluding remarks:
(1) We can use other cardinals, but it is natural if we deal with 𝐷𝜅,<𝜃,ℵ0

(see below).
(2) The context is very near to §3, but the stress is different.

Definition 5.4. Let 𝜅 ≥ 𝜃 ≥ 𝜎 and 𝜃 be uncountable regular. If 𝜃 = 𝜇+ we
may write 𝜇 instead of < 𝜃.

(1) Let 𝐷 = 𝐷1 = 𝐷1
𝜅,<𝜃,ℵ0

be the filter on [𝜅]<𝜃 generated by {𝐴1
𝑥 : 𝑥 ∈

∈ H (𝜒)}, where

𝐴1
𝑥 =

{
𝑁 ∩ 𝜅 : 𝑁 =

⋃
𝑛<𝜔

𝑁𝑛 is an elementary submodel of (H (𝜒), ∈),

𝑁𝑛 is increasing, 𝑁𝑛 ∈ 𝑁𝑛+1, ∥𝑁𝑛∥ < 𝜃, and 𝑁𝑛 ∩ 𝜃 ∈ 𝜃
}
.
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(2) Let 𝐷 = 𝐷2 = 𝐷2
𝜅,<𝜃,𝜎

be the filter on [𝜅]<𝜃 generated by {𝐴2
𝑥 : 𝑥 ∈ H (𝜒)},

where
𝐴2
𝑥 =

{
𝑁 ∩ 𝜅 : 𝑁 =

⋃
𝜁 <𝜎

𝑁𝜁 is an elementary submodel of (H (𝜒), ∈),

𝑁𝜁 increasing, ⟨𝑁𝜀 : 𝜀 ≤ 𝜁⟩ ∈ 𝑁𝜁+1, and 𝑁𝜀 ∩ 𝜃 ∈ 𝜃
}
.

(3) For a filter 𝐷 on [𝜅]<𝜃 , let ♦𝐷 mean the following: fixing any countable
vocabulary 𝜏 there are 𝑆 ∈ 𝐷 and 𝑁 = ⟨𝑁𝑎 : 𝑎 ∈ 𝑆⟩, each 𝑁𝑎 a 𝜏-model
with universe 𝑎, such that for every 𝜏-model 𝑀 with universe 𝜆 we have
{𝑎 ∈ 𝑆 : 𝑁𝑎 ⊆ 𝑀} ≠ ∅ mod 𝐷.

(4) If 𝐷 is a filter on [𝜅]<𝜃 and 𝑆 ∈ 𝐷+, then
𝐷 ↾ 𝑆 B

{
𝑋 ⊆ [𝜅]<𝜃 : 𝑋 ∪

(
[𝜅]<𝜃 \ 𝑆

)
∈ 𝐷

}
.

Claim 5.5. Assume 𝜃 ≤ 𝜎 and 𝜅 > 𝜎+, and let 𝐷 = 𝐷𝜅, 𝜃 ,ℵ0 .
(1) [𝜅] 𝜃 can be partitioned to 𝜎ℵ0 (pairwise disjoint) 𝐷-positive sets.
(2) Assume in addition that 𝜎ℵ0 ≥ 2𝜃 . Then

(𝛼) We can find 𝐴𝛼 ⊆ [𝜅] 𝜃 for 𝛼 < 𝜆 B 2𝜅 𝜃 such that each is 𝐷-positive
but they are pairwise disjoint mod 𝐷.

(𝛽) If 𝜆 = 𝜅 𝜃 and 𝜏 is a countable vocabulary then ♦𝜆,𝜃,ℵ0 . Moreover, there
exist 𝑆∗ ⊆ [𝜆] 𝜃 and a function 𝑁∗ with domain 𝑆∗ such that
(𝑎) For distinct 𝑎, 𝑏 from 𝑆∗ we have 𝑎 ∩ 𝜅 ≠ 𝑏 ∩ 𝜅.
(𝑏) For 𝑎 ∈ 𝑆∗ we have that 𝑁∗(𝑎) = 𝑁∗

𝑎 is a 𝜏-model with universe 𝑎.
(𝑐) For a 𝜏-model 𝑀 with universe 𝜆, the set {𝑎 : 𝑁∗

𝑎 = 𝑀 ↾ 𝑎} is
stationary.

Proof. Similar to earlier ones: part (1) like Claim 5.1 case (a), part (2) like the
proof of Claim 5.2.

Claim 5.6. (1) If 𝜃 ≤ 𝜅0 ≤ 𝜅1 and ♦𝑆0 (i.e. ♦𝐷𝜅0 , 𝜃,𝜎↾𝑆0), where 𝑆0 is a subset of
[𝜅0] 𝜃 which is 𝐷𝜅0, 𝜃 ,𝜎-positive and 𝑆1 B {𝑎 ∈ [𝜅1] 𝜃 : 𝑎 ∩ 𝜅0 ∈ 𝑆0}, then ♦𝑆1
(i.e. ♦𝐷𝜅1 , 𝜃,𝜎↾𝑆1).

(2) In part (1), if in addition 𝜅0 = (𝜅0) 𝜃 and 𝜅2 = (𝜅1) 𝜃 then we can find
𝑆2 ⊆ [𝜅2] 𝜃 such that:

(𝑎) 𝑎 ∈ 𝑆2 ⇒ 𝑎 ∩ 𝜅0 ∈ 𝑆0
(𝑏) If 𝑏 ≠ 𝑐 ∈ 𝑆2 then 𝑏 ∩ 𝜅1 ≠ 𝑐 ∩ 𝜅1.
(𝑐) ♦𝑆2

(3) If 𝜅 = 𝜅 𝜃 then ♦𝐷𝜅,𝜃,𝜎
.
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Remark 5.7. This works for other uniform definitions of normal filters.
Above, 𝜅 𝜃𝜎 = 𝜅 can be replaced by “every tree with ≤ 𝜃 nodes has at most

𝜃∗ branches, and 𝜅 𝜃∗ = 𝜅”.

Proof of Claim 5.6. (1) Easy.
(2) Implicit in earlier proof, 5.2.
(3) See [34], [31]
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