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PRESERVATION OF SPLITTING FAMILIES
AND CARDINAL CHARACTERISTICS OF THE CONTINUUM

MARTIN GOLDSTERN, JAKOB KELLNER, DIEGO A. MEJIA, AND SAHARON SHELAH

ABSTRACT. We show how to construct, via forcing, splitting families than are
preserved by a certain type of finite support iterations. As an application, we
construct a model where 15 classical characteristics of the continuum are pair-
wise different, concretely: the 10 (non-dependent) entries in Cichoni’s diagram,
m(2-Knaster), p, b, the splitting number s and the reaping number t.

1. INTRODUCTION

In this paper we present a method to preserve certain splitting families along
finite support iterations. These splitting families are constructed via forcing, using
specific uncountable 2-edge-labeled graphs' as support. The main application of
this method is a forcing model where many classical cardinal characteristics of the
continuum are pairwise different, including the splitting number s and the reaping
number t.

We assume that the reader is familiar with Cichori’s diagram (Figure 1) contain-
ing the characteristics that we will call Cichorni-characteristics. We also investigate
some of the characteristics in the Blass diagram [Blal0, Pg. 481]. Figure 2 illus-
trates both diagrams combined, along with all the ZFC-provable inequalities that
we are aware of. See [Blal0, BJ95] for the definitions and the proofs for the in-
equalities (with the exception of cof(M) < i, which was proved in [BHHHO04]). In
the following, we only give the definitions of the non-Cichon-characteristics that we
will investigate in this paper.

Definition 1.1. (1) For a,b € [w]®°, we define a C* b iff a \ b is finite;

(2) and we say that a splits b if both a Nb and b \ a are infinite, that is, a 2* b
and w~ a 2* b.

(3) F C [w]® is a splitting family if every y € [w]X0 is split by some 2 € F. The
splitting number s is the smallest size of a splitting family.

(4) D C [w]™0 is an unreaping family if no x € [w]®° splits every member of D. The
reaping number v is the smallest size of an unreaping family.

(5) D C [w]0 is groupwise dense when:

(i) if a € [w]*, b€ D and a C* b, then a € D,

Date: 2024-04-17.

2010 Mathematics Subject Classification. 03E17, 03E35, 03E40.

This work was supported by the following grants: Austrian Science Fund (FWF): project
number 13081, P29575 (first author); P30666 (second author); Grant-in-Aid for Early Career
Scientists 18K13448, Japan Society for the Promotion of Science (third author); Israel Science
Foundation (ISF) grant no: 1838/19 (fourth author). This is publication number 1199 of the
fourth author.

1A 2-edge-labeled graph is a simple graph whose edges are labeled by either 0 or 1.
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FIGURE 1. Cichoi’s diagram (left). In the version on the right,
the two “dependent” values add(M) = min{b,cov(M)} and
cof (M) = max{non(M),d} are removed; the “independent” ones
remain (nine entries excluding X;, or ten including it). An arrow

r — y means that ZFC proves ¢ <.

(ii) if (I, : n < w) is an interval partition of w then |, ., I, € D for some
a € [w]®o.

The groupwise density number g is the smallest size of a collection of groupwise
dense sets whose intersection is empty.

(6) The distributivity number b is the smallest size of a collection of dense subsets
of ([w]X, C*) whose intersection is empty.

(7) Say that a € [w]™° is a pseudo-intersection of F C [w]™0 if a C* b for all b € F.

(8) The pseudo-intersection number p is the smallest size of a filter base of subsets
of [w]® without pseudo-intersection.

(9) The tower number t is the smallest length of a (transfinite) C*-decreasing se-
quence in [w]®° without pseudo-intersection.

(10) Given a class P of forcing notions, m(P) denotes the minimal cardinal s such
that, for some @ € P, there is some collection D of size k of dense subsets of
@ without a filter in @) intersecting every member of D.

(11) Let P be a poset. A set A C P is k-linked (in P) if every k-element subset of A
has a lower bound in P. A is centered if it is k-linked for all k € w.

(12) A poset P is k-Knaster, if for each uncountable A C P there is a k-linked
uncountable B C A. And P has precaliber Xy, if such a B can be chosen
centered. For notational convenience, 1-Knaster means ccc, and w-Knaster
means precaliber Nj.

(13) For 1 < k < w denote my := m(k-Knaster) and m := m;. We also set mg := ;.

nea

Below we list some additional properties of these cardinals. Unless noted other-
wise, proofs can be found in [Blal0].

Fact 1.2. (1) In [MS16] it was proved that p = t.>
(2) The cardinals add(N'), add(M), b, t, b and g are regular.
(3) cof(s) >t (see [DS18]).
(4) 2 =
(5) cof(c) > g.
(6) For 1 <k <k <w, mp <my.
(7) For 1 < k < w, mp > Ny implies my = my, (well-known, but see e.g.
[GKMS21, Lemma 4.2]).

2Only the trivial inequality p < t is used in this text.
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FicUre 2. Cichoni’s diagram and the Blass diagram combined. An
arrow ¢ — ) means that ZFC proves ¢ <.

This work contributes to the project of constructing a forcing model satisfying:
Q) All the cardinals in Figure 2 are pairwise different,

with the obvious (ZFC provable) exception of the dependent entries add(M) =
min{b, cov(M)} and cof(M) = max{non(M),d}, and the Martin axiom numbers
m, my, for some 2 < k < w, and m,, which can not have more than one value >Ny,
see Fact 1.2(7).

In this direction [GKS19] constructed a forcing model, using four strongly com-
pact cardinals, where all the ten (non-dependent) values of Cichoii’s diagram are
pairwise different (a situation we call Cichori’s Mazimum), as in Figure 3(A). This
was improved later in [BCM21] by only using three strongly compact cardinals;
finally in [GKMS22] it was shown that no large cardinals are needed for Cichon’s
Maximum.

A model of Cichori’s Maximum with the order as in Figure 3(B) was obtained
in [KST19]. Although this model initially required four strongly compact cardinals
as well, the methods of [GKMS22] allow to remove the large cardinal assumptions
also here.

As a next step towards (©), [GKMS21] proved:

Theorem 1.3 ([GKMS21]). Under GCH, for any k € [1,w), there is a cofinality
preserving poset Py forcing that

(a) Cichon’s Mazimum holds with the order of Figure 3(A).
(b)) Ny =mp_1 <my =m, <p<h<add(N) (recall mg := Ry ).
An analogous result holds for the alternative order of Figure 3(B).
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FIGURE 3. The two known consistent orders where all the (non-
dependent) values in Cichont’s diagram are pairwise different. (A)
corresponds to the model in [GKS19], and (B) to the model
in [KST19] (both proven consistent in [GKMS22] without large
cardinals). Each arrow can be < or = as desired.

In this paper, we continue this line of work by including, in addition, s and «.

Main Theorem. Under GCH, for any k € [2,w) there is a cofinality preserving
poset forcing that the cardinals in Cichon’s diagram, my, p, b, s and v are pairwise
different. More specifically:

(a) Cichori’s Maximum holds, in either of the orders of Figure 3.

(b) Ry =mp_1 <mgp =m, <p<h<addWNV).

(c) s can assume any regular value between p and b.

(d) t can assume any regular value in the dual position to 5. E.g., if s < add(N),
then v can be any arbitrary regular in [cof (N),¢| (see details in Section 7).

In both theorems above, item (b) can also be replaced by X; < m, < p < h <
add(N) while mj, = Ny for all k < w. Those are the only possible constellations of
the Knaster numbers, by Fact 1.2(7), unless you count m as the 1-Knaster-number:
In contrast to Theorem 1.3 (where we do not control t,s), we cannot force m > N;
with the methods we use here. We cannot just iterate over all small ccc forcings
one by one to increase m, as our method requires that all iterands of the forcing
iteration have to be “homogeneous”. So instead of using a certain small forcing
Q as iterand, we will use a finite support product over all variants as iterand. So
only if Q (and therefore all variants) is Knaster,® this product can be used in a ccc
iteration; accordingly we can increase the Knaster numbers but not m itself.

We remark that the full power of GCH is not required in the Main Theorem,
but we do need some assumption on cardinal arithmetic in the ground model. See
details in Section 7.

In order to include s and v in our main result, we need a new preservation
theorem for splitting families. Previously, the following was known in the context
of FS (finite support) iterations:

[BD85] Hechler forcing (for adding a dominating real) preserves splitting families
witnessing the property LCUgr,, (x) for any uncountable regular  (see Sec-
tion 3).

30r at least stays ccc in ccc extensions.
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[JS88] Assuming CH, any F'S iteration of Suslin ccc posets forces that the ground
model reals form a splitting family.

In this paper we will use a splitting family obtained by a FS product of Hechler-
type posets (cf. [Hec72]) which we call Gg; the support of Gp is a graph B of size
N; with certain homogeneity properties. We then show that this splitting family is
preserved by certain FS iterations, which we will call “symmetric Suslin-A-small”.
(Every FS iteration of Suslin ccc posets with parameters in the ground model is
such an iteration, but our application will not use such “full” Suslin ccc forcings.)

Similar preservation techniques have appeared in different contexts. For instance,
concerning preservation of mad (maximal almost disjoint) families, Kunen [Kun80]
constructed, under CH, a mad family that can be preserved by Cohen posets;
afterwards, Steprans [Ste93] showed that, after adding w;-many Cohen reals, there
is a mad family of size N; that can be preserved in further Cohen extensions;
Fischer and Brendle [BF11] constructed a Hechler-type poset H 4 with support (any
uncountable set) A that adds a mad family indexed by A, which can be preserved
not only in further Cohen extensions but after other concrete FS iterations, thus
generalizing Steprans’ result because H,,,, = C,,; [FFMM18, Mej19a] showed that
any such mad family added by H4 can be preserved by some general type of FS
iterations, but the most general result so far was shown in [BCM21]: Any k-Fr-
Knaster poset preserves k-strong-Md-families (with x uncountable regular; the
mad family added by H, is of such type).

There are deep technical differences between the mad family added by this H 4,
and the construction of a splitting family in this paper: No structure is needed on
A, and because of this it is clear that Hechler’s posets satisfy H4 < Hp whenever
A C B; but we cannot guarantee Gp, < Gp for our posets, whenever By is a
subgraph of B. Also, Gg itself does not add a splitting family, but it just adds a
set of Cohen reals {n, : a € B} over the ground model (recall that we do not have
intermediate extensions by restricting the support B). Hence, the FS product (or
iteration, which is the same, as the poset Gg is absolute) of size k of such posets
adds a splitting family of size x (witnessing LCUgr(k)) formed by the previously
mentioned Cohen reals. It is clear that just adding x many Cohen reals produces
a splitting family satisfying LCUgr(k), but we need to use FS support products of
x many Gg (with B of size Ny, instead of just one Ggs with B’ of size k), and
we need the graph structure on B, to be able to guarantee the preservation of
the new splitting family. The forcing structure is very important here because an
isomorphism of names argument is required for this preservation.

The strategy to prove the main theorem is similar to Theorem 1.3. We first show
how to construct a ccc poset that forces distinct values for the cardinals on the left
side of Cichont’s diagram, including some of the other cardinal characteristics (like
s in this case). Afterwards, methods from [GKMS22, GKMS21] are applied to this
initial forcing to get the poset for the main theorem.

Acknowledgment. We thank Cezar Port for pointing out a mistake in the pub-
lished version of the proof of Theorem 2.6 (which is fixed in this version).

Annotated contents.

82 We show how to construct, in ZFC, a suitable 2-graph. This is the type of graph
we use as support for Gg.
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§3 The LCU and COB properties are reviewed from [GKS19, GKMS22, GKMS21].
These describe strong witnesses to cardinal characteristics associated with a de-
finable relation on the reals. Examples of such cardinal characteristics are the
Cichon-characteristics as well as s and .

84 We introduce the forcing Gg, which has as support a suitable 2-graph B. We
look at FS iterations of ccc posets, in general, whose initial part is a F'S product
of posets of the form Gg where B is in the ground model. We define A-small
history iterations (where on a dense set, conditions have <A-sized history), as well
as symmetric iterations, and show that symmetric A-small history iterations allow
us to control s (and later also t).

85 We define Suslin A-small iterations, which are A-small history iterations, and
give consequences of this notions, as well as sufficient conditions to get symmetric
ones.

§6 Closely following [GKS19], we construct a symmetric Suslin-A-small iteration P°
that separates the cardinals on the left hand side of the diagram, with cov(M) = ¢
and s = p.

§7 We show how the tools of [GKMS22, GKMS21] can applied to P°, resulting in
a forcing that gives the main theorem.

88 We discuss some open questions related to this work.

2. SUITABLE 2-GRAPHS
In this section we define and construct suitable 2-graphs.

Definition 2.1. Say that B := (B, Ry, R1) is a 2-edge-labeled graph, abbreviated
2-graph or bi-graph, if
(i) Ro and R; are irreflexive symmetric relations on B,
(ii) RoN Ry =10.
In other words: Between two nodes x and y there is at most one edge, with color
0or 1.
Concerning 2-graphs, we define the following notions.
(1) If A C B, denote B|4 := (A, Ro|a, R1|a) where R.|4 := R. N (A x A).
(2) A partial function (or coloring) n from B into 2 respects B if {n(a),n(b)} # {e}
whenever e € 2, a,b € domn and aR.b.
The 2-graph of Figure 4 does not have a coloring (with full domain) respecting
it.
For an infinite cardinal A\, we say that B is a suitable bi-graph of size X if
(iii) for each e € {0,1}, there is a W, C B such that W, is a complete R.-graph
(as a subgraph of (B, R.)),
(iV) Wo N W1 =0 and |B| = |W0| = |W1‘ =),
(v) for any a € B and e € {0,1}, there is a coloring n: B — {0,1} respecting B
such that n(a) = e, and
(vi) for any a,b € B, there is some automorphism f on B sending a to b.

Any suitable 2-graph of size R; is just called suitable 2-graph (S2G).
Properties (iii), (iv) and (vi) imply for all b € B and e € {0,1}:

(2.2) b is contained in an uncountable R.-complete subgraph of B.



Paper Sh:1199, version 2024-04-17_2. See https://shelah.logic.at/papers/1199/ for possible updates.

PRESERVATION OF SPLITTING FAMILIES 7

FIGURE 4. A finite 2-graph which cannot be respected by any
coloring.

In the rest of this section we will show that suitable graphs of any infinite size
exist.

Remark 2.3. In our applications, we only need the following weakening of property
(v): for any t € [B]<M, a € t and e € 2, there is some 7 : t — 2 that respects
B such that n(a) = e. The only place where (the weakening of) (v) is used is in
the proof of Lemma 4.2(b). However, this weakening is equivalent to (v) itself by
compactness.

Definition 2.4. Let B = (B, Ry, R1) be a bi-graph.

(1) A path in B is a finite sequence (b; : j < n) of elements of B such that, for
Jj < n, there is some e € {0,1} such that b; R. bj11. For a,b € B, a path from
a to b in B is a path in B as above such that by = a and b,, = 0.

(2) If B = (B, R{, R}) is another bi-graph, then B <~ B’ means that B is a
substructure of B’ and there is no path (b, : j <n) in B’ with n > 2 such that
{bj : 5 <n}NB={by,b,} and by # by,.

Lemma 2.5. The relation <~ is a partial order in the class of bi-graphs. Fven
more, if (B = (B* RS, RY) : a < 7) is a <~ -increasing sequence, then

B’ ::<U B*, | J Ry, | R?>

a<y a<ly a<y
is the 2~ -supremum of {B%* : a < ~v}.

Proof. We show that <~ is transitive (the rest is straightforward). So assume
that B <~ B! and B! <~ B? and, towards a contradiction, that there is a path
(bj : j < n)in B? with n > 2 such that {b; : j < n} N B® = {bo,b,} and by # b,.
This path may contain cycles of the form (b; : j € [jo,j1]) for some jo < j; such
that {b; : j € [jo.j1]} N Br = {bjo,b;, } = {bjo} (i.e bj, = bj,). By removing such
loops (and leaving the points in Bq), we may assume that the path (b; : j < n)
does not contain such loops.

Since BY <~ B!, we must have that the path (b; : j < n) intersects B? \ B!,
so we can find jj < jj such that {b; : j € [jg, 511} N By = {bj;,bj; } and by, # bjr,
which contradicts B <~ B2, O

Theorem 2.6. For any infinite cardinal X\, there is a suitable bi-graph of size \.

Proof. Our construction of the graph relies on the partial order P whose elements
are tuples p = (BP, Rb, R}, CP, fP, 7)P) satisfying:

(C1) BP:=(BP,RE, RY) is a bi-graph with B? C A" of size <),

(C2) CP C B? x BP;
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(C3) f? = (f¥,: (a,b) € CP) where each f? . DI, — EI is an isomorphism of
substructures of BP such that a € Di,b’ Bp|Dpl <" BP, be Ef;b, B?|gr , =7
B? and f? (a) = b; and

(C4) n* = (nh . a € BP, e €{0,1}) such that each nf ,: B? — {0, 1} is a coloring
respecting BP sending a to e;

The order is defined by ¢ < p if

(O1) B? <~ BY,

(02) CP C C1,

(O3) for each (a,b) € CP, f1, extends f},, and

(04) for a € B? and e € {0,1}, nZ . extends 7% ..

By recursion, we construct a decreasing sequence (p® : a < A) in P, p® =
(B, Ry, RS, C%, f*,7%). Our desired graph will be B*.

For the construction, we use a book-keeping bijection h: A — 2 x 6 such that,
whenever h(a) = (i,t), tr, < o for all & < 6. At each step o < A, we enumerate
B = {bay:n < A}

In the base step o = 0, pick disjoint subsets Wy and Wy of AT of size A and
define BY := (B RS, RY) such that, for e € {0,1} and a,b € B:

[ ] BOZ:WOUWL
e a RObiff a# b are in W,

We set C? := (). For each a € B and e € {0, 1}, it is easy to find a desired coloring
n9 .: B® = {0,1}. Concretely,

o o e e Wi_U {a}’
na,e(x) T { l—e xzeW,\ {CL}

In the successor step « + 1, let h(a) = (i,t). We proceed by cases according to

the value 1.
Case i = 0: Let ag := by t,, a1 := b, ¢, and c := by, 1., which are in B*. We
aim to construct a p**! < p® such that (ag,a1) € C**' and ¢ € DgF,

Define p := (B, Ry, R1,C, f,7) € P as p® but with C := C* U {(ag,a;)} and,
in the case (ag,a1) ¢ C%, let f2 . be the only function from {ag} onto {a;}
(notice that singletons are <~ -below a bi-graph). Clearly p € P and p < p*. In
the case ¢ € D? ., let pt! := p. So assume that ¢ ¢ D := Db . We say
that (xy : £ < m) is a path from ¢ to D if it is a path in B such that zo = ¢,
Zn € D and 2y ¢ D when 0 < £ < n. The point z, is called the end-point of
the path. Since B|p <~ B, any two paths from ¢ to D must go to the same end-
point, which we denote by z* if it exists (i.e. if a path from ¢ to D exists). Let
D' = {c} U{xy € B~ {z*} : T is a path from ¢ to D} and D* := DU D’. Let
E’ C AT be a copy of D’ disjoint with B, E* := E U E’ where E := Eg ..» and
let f*: D* — E* be a bijection extending f := f2 . Let B**! := BUE and
let B®*! be the smallest bi-graph expanding B such that f* is an isomorphism of
substructures. Also let CoF! := C, foft = foy for any (a,b) € C'\ {(ao,a1)},

a,
and fg‘o‘*‘all = f*
We have that B|p- <~ B <~ B! and Bo*!|g. <~ Bt Tosee B|p- <~ B:
if = (y; :j <n)is apath in B from yo € D* to y, € D* and yo # y, then: in
the case yo,yn € D, y; € D for some 0 < j < n because B|p <~ B; otherwise, the
path can be extended (on both sides) to a path from ¢ to D, so it lies inside D*.
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Observe that, whenever z € B, y € E' = B! \ B and =z R, y for some
e, x = f(z*). This implies B <~ B®*! and B®*!|g. <~ B**! (also because
f(2*) € E and B|g =~ B).

We now define the colorings ngt! for a € B**! and e € {0,1}. When a € B,
extend 74, by defining ng‘gl(f*(x)) =1z ma o (f(z+)) (2) for z € D' in case 2™ exists
(otherwise B = {f*(c)} and f*(c) does not have neighbors, so it can be colored
arbitrarily). When a = f*(z) for some z € D', define

at1 7z,e() y = f(z) for some z € D',
Nae (Y) = A
Ni(=)mee(z) (Y)Y E

in case z* exists (otherwise z = ¢, 80 9f(z+),y. .(=+) can be replaced by anything in
7%). All the above clearly defines a p®*! < p.

Case i = 1: Let ag := by 4y, 01 := by, 1, and d := by, 4., which are in B®. Proceed
similarly as in the previous proof to construct p®+! < p® such that (ag,a;) € C**H1
and d € Egt) .

In the limit step v < A, we let p? be the infimum of {p* : « < 4} in P. We
show that this infimum exists (which shows that any decreasing sequence in P of
length <A™ has an infimum, i.e. P is <AT-closed). Let B be the <~ -supremum of
{B:a <}, O =U,o, C% [y = Upe, for and 17 . = U, -, 74 . (abusing
notation in the last two unions, since formally the union starts at some «q from
where the functions start to appear), which defines this infimum p?.

At the end, our book-keeping functions and the construction ensures that C* =
B* x B* and dom f;\J) = ran f;"b = B* for all (a,b) € C*. Hence, B is as
desired. O

Remark 2.7. In the previous proof, we could have argued a bit differently, using
that the partial order P is <AT-closed. In the successor step of the proof, we have
actually proved that the following sets are dense in P for a,b,c € AT:

Ag,b,c ={peP:(a,d)eC? ce D27b}7
Al ={pe P:(a,b)eC? ce Eﬁ’,b}

a,b,c

Since P is <At-closed, we can find a filter G C P with p° € G intersecting all
the dense sets above. By taking unions of the components of the members of the
filter (similar to the limit step of the proof above), we obtain a bi-graph Bt =
(At Ro, Ry) satisfying the conditions of a suitable bi-graph of size A™, with the
exception that Wy and W; have size A\. Now, pick a large enough regular cardinal
x and an elementary submodel N < H, of size A with AU {B*} C N. Then,
B := BT |+~ is a suitable bi-graph of size A.

3. CARDINAL CHARACTERISTICS, COB AND LCU

Many classical characteristics can be defined by the framework of relational sys-
tems as in e.g. [V0j93, Blal0]. Say that R := (X,Y, R) is a relational system if X
and Y are non-empty sets, and R is a relation. The following cardinal characteris-
tics are associated with R.

O(R):=min{|D|: D CY and Vz € X Jy € D (xRy)};
b(R) := min{|F|: F C X and -3y € Y Vz € X (zRy)}.

In this work, we are particularly interested in relational systems R such that
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(RS1) X and Y are subsets of Polish spaces Zy and Z7, respectively, and absolute
for transitive models of ZFC (e.g. they are analytic);
(RS2) R C ZyxZ; is absolute for transitive models of ZFC (e.g. analytic in Zyx Z7).

When these properties hold we say that R is a relational system of the reals. In all
the cases explicitly mentioned throughout this paper, X and Y are Polish spaces
themselves and R is Borel in X x Y. In this case, there is no problem to identify
X =Y = w*, and we call R, or rather the characteristics b(R) and ?(R.), Blass-
uniform (cf. [GKMS21, §2]).

Example 3.1. ([V0j93, 2.2.2] or [Blal0, §4 & §5]) The splitting number s and the

reaping number t are Blass-uniform: Denote Ry, := (2, [w]™°, Ry,) where xR,y
iff 2y is constant except in finitely many points of y. Then s = b(Rsp) and
v = 0(Rsp).*

Also all Cichoni-characteristics are Blass-uniform. The Blass-uniform relational
systems we use for these characteristics are (as in the Cichon’s Maximum con-
structions) in some instances slightly different from the “canonical” ones. See
e.g. [BCM21, Ex. 2.16], [Mej19b, Ex. 2.10] and [GKS19, §1] for the definition of the
Blass-uniform relational systems corresponding to the Cichon-characteristics.

As in [GKMS22] we also look at relational systems S = (S, .S, <) where < is an
upwards directed partial order on S. Here c¢p(S) := b(S) is the completeness of S,
and cof(S) := 0(S) is the cofinality of S. Recall that, whenever S has no greatest
element, cp(S) < cof(S), and equality holds when the order is linear.

The following is a very useful notion to calculate the value of cardinal charac-
teristics (specially in forcing extensions).

Definition 3.2 (cf. [GKS19, §1]). Fix a directed partial order S = (S5,<) and a
relational system R = (XY, R). Define the property:

Cone of bounds.
COBR/(S) means: There is a family § = {y; : i € S} CY such that

Ve € X 3i, € SVYj > i, (zRy,).

When L = (L, <) is a linear order, we additionally define
Linear cofinally unbounded.
LCUR(L) means: There is a family Z = {x; : i € L} C X such that

Vy e Y 3Jie LVj>i(—(z;Ry)).

In the following remarks we address very natural characterizations and conse-
quences of these properties.

Remark 3.3 (Tukey connections and COB). Let § be a witness of COBgr(S). By
the definition of COBR(S) we have that the functions f : X — Sandg: S — Y,
defined by f(z) := i, and g(4) := y;, form a Tukey connection from R into S. So
we conclude that

COBRr/(S) holds iff R <t S,

where <7 denotes the Tukey order.
It would be more natural to consider the relational system ([w]®0,[w]®0, R) where zRy iff

either x O* y or w \ = D* y, but Rsp is more suitable in our proofs. It is not hard to see that
both relational systems are Tukey-equivalent.
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Remark 3.4 (Duality and LCU). Let R = (X,Y, R) be a relational system. The
dual of R is the relational system Rt := (Y, X, R1) where uR v & —(vRu). It is
clear that 9(R*) = b(R) and b(R*) = 2(R). Also, given a linear order L,

LCUR(L) iff COBgr. (L).
Hence, by Remark 3.3,

LCUr(L) iff Rt <r L.
When L has no greatest element, L+ is Tukey-equivalent to L, so

LCUR(L) iff L <t R.

Although LCU is a particular case of COB, they are used with different roles in our
applications, so it is more practical to use different notations.

As a direct consequence of these remarks:

Lemma 3.5 (cf. [GKS19, §1]). Let R be a relational system, S a directed partial
order and let L be a linear order without greatest element. Then

(a) COBR(S) implies cp(S) < b(R) and d(R) < cof(9).

(b) LCUR(L) implies b(R) < c¢p(L) = cof(L) < d(R).

In our applications we aim to force COBg(.S) and LCUg (L) for a given relational
system of the reals R; this will help us compute the value of b(R) and ?(R) in
generic extensions. For this purpose, the following variation of Definition 3.2 is
very practical.

Definition 3.6 ([GKMS22]). Let R = (XY, R) be a relational system of the reals,
S = (8, <g) a directed partial order, L = (L,<r) a linear order, and let P be a
forcing notion. Define the following properties.

COBR(P,S): There is a family y = {y; : i € S} of P-names of members of yv'

such that, for any P-name & of a member of X V" there is some i € S such that
Fp Vi >g i (2Rg;).

LCUr(P, L): There is a family # = {#; : ¢ € L} of P-names of members of xv

such that, for any P-name 3 of a member of YY" there is some i € L such that

IFp V5 >1 i (—(2;Ry)).

Remark 3.7. Concerning the properties COBgr (P, S) and LCUg (P, L), the rela-
tional system R (i.e., both base sets as well as the relation) are interpreted in the
generic extension (this is why we required these objects to be definable), while S
and L are taken as sets in the ground model (not interpreted).

It is clear that COBgR(PP,.S) implies IFp COBgr/(S). Although the converse is not
true in general, it holds in the cases we are interested in, when P is ccc and cp(S)
is uncountable. More precisely, if cp(S) is uncountable and P is ¢p(S)-cc then
COBRg(P, S) is equivalent to IFp COBR(S). Moreover, P forces cp(S)V[P = cp(S9)V
and cof(S)V]P = cof(9)Y, so, by Lemma 3.5, in the generic extension COBR(S)
implies cp(9)Y < b(R) and ?(R) < cof(S)V.

Likewise, LCUg (P, L) implies IFp LCUR (L), and the converse holds whenever L
has no greatest element, cof(L) is uncountable and P is cof (L)-cc.

However, the restriction “cp(S) is uncountable and PP is c¢p(S)-cc” is not required
for the following result.
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Lemma 3.8 ([GKMS22, Lemma 1.3]). Let R be a relational system of the reals,
S a directed partial order without greatest element, and let P be a forcing notion.
If 1= cp(9)Y and A = cof(9)Y, then

(a) COBRr(P,S) implies IFp “u < B(R) and 9(R) < |A|”.

(b) If L =S is a linear order, then LCUR (PP, L) implies

Fp “6(R) < |\ < A <d(R)”.

4. PRESERVING SPLITTING FAMILIES WITH SYMMETRIC ITERATIONS

4.A. The single forcing Ggp. Using suitable 2-graphs, we define a poset which
will be used as factor for the forcing adding the splitting families we aim to preserve.

Definition 4.1. Let B = (B, Ry, R1) be a suitable 2-graph. Define the forcing Gg
whose conditions are functions p : F, x n, — {0,1} where F, € [B]<® and n, < w
(also demand F), = 0 iff n, = (). The order is defined by ¢ < p iff

i) pCq

(ii) for each k € [n,,n,), the map F, — 2, a — ¢(a, k) respects B, that is, if

e € {0,1}, a,b € F), and aR.b, then {q(a, k), q(b,k)} # {e}.
For a € B denote by 7, the name of the generic real added at a, that is, Gg forces
that, for any k < w, 1,(k) = e iff p(a, k) = e for some p in the generic set.
For p € Gg denote suppp := F,.

Lemma 4.2. Let B = (B, Ry, R1) be a suitable 2-graph. Then:

(a) Gp is o-centered.

(b) For any a € B, Gg forces that 1, is Cohen over V.

(c) Any p € Gg forces that, for any k > n,, the map F, — 2, a — 14(k) respects
B, that is, if e € {0,1}, a,b € F, and aR.b, then n,(k) and ny(k) cannot both
be e at the same time.

(d) Assume fori € {1,2}:

® cc {0, 1}, pi € Gp, ¢ € FPH c1Reca,
e Q is a poset, Gg < Q,
e b is a Q-name of an infinite subset of w,
e ¢ <piinQ and g lFg i, lb=e,
Then q1 and qs are incompatible.

(¢) If f : B — B is a B-automorphism, then f : Gg — Gg defined by f(p)(c,n) =

p(f~(a),n) (where Fjy = fFp]); is a p.o.-automorphism.

Proof. To see (a), first note that since | B xw| = Ry, by Engelking-Kartowicz [EK65]
there is a countable set H C 2B8%“ gsuch that any finite partial function from
B X w into 2 can be extended by some member of H. For h € H and n < w,
let Ch,, :=={p € G : p C hand n, = n}. It is clear that C} , is centered and
GB = Uper Uncw Chns 50 G is o-centered.
(b): Consider Cohen forcing C := 2<% ordered by end-extension. For a € B define
pr, : G — C such that, for any p € Gg, pr,(p) := (p(a, k) : k < n,) if a € suppp,
or pr,(p) is the empty sequence otherwise. It is enough to show that pr,, is a forcing
projection, that is,

(i) for any p,q € Gp if ¢ < p then pr,(q) 2 pr,(p),

(ii) for any p € Gg and s € C, if s D pr,(p) then there is some ¢ < p in Gp such

that pr,(q) 2 s (even pr,(q) = s),
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(iii) pr,[Cg] is dense in C (even pr, is onto).

Property (i) is easy, (ii) follows by Definition 2.1(v), and (iii) follows by (ii) and
the fact that pr,(0) = ().

(c): By the definition of the order of Gg.

(d): Assume ¢ € Q is stronger than ¢; and ¢, so ¢ IF{k < w : ¢, (k) = 1, (k) = €}
is infinite”. Hence, there is some p € Gp stronger than p; and ps forcing the same,
but this contradicts (c) because ¢1,c2 € F), and ¢1Recs.

(e) is straightforward. O

Remark 4.3. The obvious restriction of Gg to, say, the first two coordinates, is
not a projection, and Gg is not a FS iteration of length w; in any natural way.
Assume, e.g., we restrict to {0,1} C B = w;, and B contains an e-colored edge
from node e to node 2 for e € {0,1}. Start with a condition p : {0,1,2} x n — 2
(for e.g. n = 1), restrict it to p~ = p[{0, 1} and extend it to p’ € Ggyg,1} by setting
p'(e,n) = e for e € {0,1}. Then there is no ¢ € Gg, ¢ < p, compatible with p’.

We will use F'S iterations where the first step is given by a FS product of posets
of the form Gp as above. It is clear that, if B is a S2G in the ground model, then
it is still a S2G in any extension preserving w;. On the other hand, constructing
Gg from B is absolute for transitive models of ZFC, so any finite support product
of posets of the form Gg is forcing equivalent to their finite support iteration (as
long as the sequence of 2-graphs lives in the ground model).

4.B. Suitable iterations, nice names and automorphisms. We now intro-
duce some notions associated with these iterations, relevant for the preservation of
splitting families.

From this point on, products of ordinals (such as w;m) should be interpreted as
ordinal products.

Definition 4.4. A suitable iteration is defined by the following objects:
(I) A cardinal 7, > 0.
(IT) For each 0 < my, a S2G By = (By, R; ¢, R 1) with B := [w16,w1(d + 1)),
(III) an ordinal m > m; = wym, ’
(IV) a FS ccc iteration P of length 1 + (7 — m;) where the first iterand is the FS
product of the Gp; for 6 < 7, called P , and the following iterands are

indexed by £ € m ~\ m; and are ccc posets called Qg.

As usual, we denote with ¢ the result of the iteration up to ¢ (for m; < ¢ < 7),
and use P to denote either P or the whole iteration (or its definition). See Figure 5
for an illustration.

Remark 4.5. Note that we could also view P, as (the result of) a FS-iteration
of length 7y (instead of length 1, as we do in the definition). Then we would get
an iteration P of mg + (m — m1). However, P, is not a FS iteration of length 7, at
least not with natural iterands, see Remark 4.3.

Let us mention some notation:

Notation 4.6. (1) A real-number-poset is a poset whose universe is a subset of
the set of real numbers. For simplicity, we identify the “set of real numbers”
with the power set of w.
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G, Qr, Qa
———— — - = - — - r—_—————— >
0 w16 wi(0+1) T = W1To m+1 & a+1

FIGURE 5. A suitable iteration. m; = wymg is partitioned into mg-
many intervals of length wy, and Bs := [w1d,w(d + 1)), the set of
vertices of the graph By, is the §-th interval of this partition. A
suitable iteration is a F'S product of the Gg, for § < mg, followed
by a FS iteration of ccc posets. The iterands of the FS iteration
that follow are indexed by « € [y, 7).

(2) For notational simplicity we will often identify P.1 (a set of partial functions)
with Pe = QC (a set of pairs (p,q) with p e Pc and plF ¢ € (@4)

(3) Similarly, we will not distinguish between sequence of names and names of
sequences.

We now define the “support” supp(p) C 7 of a condition p (as opposed to the
domain dom(p), which is, as we are dealing with a FS iteration, a finite subset of
the index set {0} U (7~ 71)). We will also define the “history” H of a name and of
a condition:

Definition 4.7. Let P be a suitable iteration.

(1) For p € Pr, set supp(p) := Uscgom p SUPP(P()) € m1. For p € P, set suppp :=
supp(p(0)) U (dom(p) . {0}) (or just dom(p), if 0 ¢ dom(p)).”
(2) For p € P and a P-name 7, we define H(p) C 7 and H(7) C 7 as follows:
(i) For p € Pr,, H(p) := suppp.
For £ > m; we define H by recursion on ¢ for p € P¢ and for a Pe-name 7. (We
assume that H(r) has been defined for all r € P for m < { < ¢ and H(o) for
all Pe-names for m < ¢ < &):
(ii) For { =¢+1and p € Peyq,

_ | H(pl0) if ¢ ¢ suppp,
H(p) = { H(pI) U{C} UHP(C)) i ¢ € suppp.

(Here, H(p(¢)) is defined because p(¢) is a P,-name.)

(iii) When & > mp is limit and p € Pg, then H(p) has already been defined
(because p € P¢ for some ¢ < &).

(iv) For any Pe-name 7 define (by €-recursion on 7)

H(r):= U{H(U) UH(p): (o,p) € 7}

Note that H(Z) = () for any standard name .5

S5Recall that according to our indexing, dom(p) is a finite subset of {0} U (7 ~ 1) (where we
interpret a FS condition p as a partial function from the index mp with finite domain dom(p)).
Recall that q := p(0) € Pr,, which is the FS product of Gg, for § < mo. So ¢ has a finite domain
dom(q) C mo, and if 6 € dom(g), then ¢(d) € GB,, so X5 = supp(q(d)) (in the sense of the forcing
GB,) is a finite subset of [w1d,w1(d + 1)). According to our definition, supp(q) = Uéedom(q) Xs.

6A standard name & = {(,1) : y € z} (for z € V) hereditarily only uses the weakest condition
1, which in our case (an iteration) is the empty partial function; accordingly H (&) = 0. If the
reader prefers a different formal definition of F'S iteration, then they should modify the definition
of H to make sure that H(%) = 0.
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Remark. H is not a “robust” notion: IF 7 = 7/ does not imply H(7) = H(7').
Still, it is a very natural and useful notion, which has appeared (in slightly different
contexts) many times in forcing theory: If 7 is a Pr-name, then H(7) C 7 is the
set of coordinates the name 7 “depends on”, more concretely, 7 can be calculated
(by a function defined in V') from the sequence of generic objects at the indices in
H(T).

In the case of F'S iterations where all iterands are real-number-posets (as in [She00,
GKS19]), H(p) is countable for p in a dense set; and “hereditarily nice names” for
reals will also have countable history. In this paper we have to use hereditarily
<A-names (even for nice names of reals), the reason is indicated in Remark 4.16.

Let us fix some notation regarding the well-known “nice names”:

Definition 4.8. Let A and B be subsets of P.

(1) A P-name 7 is a nice name for a subset of w, determined by A, if 7 has the
form (J,c,,{(7,q) : ¢ € An}, where each A, is a (possibly empty) antichain in
P, and A =, c,, An-

(2) Analogously, Q is a nice name for a real-number-poset of size <X , determined
by B, if there is a p < X such that Q is a sequence (7i)iep of nice names
for subsets of w determined by A;, together with a sequence (&; ;); je, of nice
names for elements in {0,1} depending on an antichain A ; (where #; ; = 1

codes r; <g rj),7 and B = Uie“ A; U Ui,jeu Ag’j.
So in this case
(4.9) H(i) = | H(p), and H@Q) = | H(p).
peEA peEB

It is well known that every name of a subset of w has an equivalent nice name.
Moreover, as we can choose the conditions of the antichains in any given dense set,
we get the following:

Fact 4.10. (AsP is ccc) Let D C P be dense and let A be a cardinal with uncountable

cofinality.

(a) For anyP-name of a real there is an equivalent nice name determined by A C D

(b) For any name of a poset of size <\ consisting of reals, there is an equivalent
nice name determined by a set B C D with |B| < A.

Every automorphism of B induces an automorphism of Gg, see Lemma 4.2(e).
Therefore, a mp-sequence h of such automorphisms induces an automorphism of the
(FS) product Pr,. Such an automorphism can sometimes be naturally extended
to the whole iteration P (which will allow isomorphism-of-names arguments and
subsequently show LCUgp).

What do we mean by “naturally extend”? Recall that, whenever f : P — P is
an automorphism on some poset P, and 7 is a P-name, f sends 7 to the P-name

() :=A{(f*(0), f(p)) : (o:p) € T}.

A nice name & of a member of {0,1} depending on an antichain C C PP (allowed to be empty)
has the form ¢ = {(0,p) : p € C}. Note that pl-& =1 for all p € C, and q I & = 0 for any g € P
incompatible with all the members of C. Moreover, H(%) = U,cc H(p)-
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Also, (f~HY*(f*(r)) = 7; and p IF o(7) iff f(p) IF ¢(f*(7)) whenever p € P and
@(x) is a formula. If Q is a P-name and P IF f*(Q) = @, then we can certainly
extend f to P x (. We say that P is h-symmetric, if this is the case in all steps of
the iteration:

Definition 4.11. Let P be a suitable iteration.
(1) A bijection h : m — 71 is a 2G-automorphism if, for each § < mg, h[Bs is
an automorphism of Bs. X )
(2) Such an h defines an automorphism hr, of Pr, — Pr,, by hr (p) =
(fs(p(d)) : § € domp) where fs5 := hl[w1d,w1(d + 1)) is the automorphism
of B; induced by h, and fs is defined as in Lemma 4.2(e).
(3) We say P is h-symmetric if the following inductive construction defines
he :Pe = Pe forall m <<
(i) For £ = ¢ + 1, we require that I-p, HEEQC) = Q¢. (Otherwise
the construction fails.) We then define h¢yy @ Peyr — Peyr by

he+1(p1€,p(C)) = (he(PIC), R (p(C)))-
(i) For & > m; limit, set he := Uc<e e
In this case set h := hm which is an automorphlsm of P.

(4) For any 0 < mp and any pair (a,b) € By, fix a 2G-automorphism hg,b such
that hgyb(a) = b and hg,erC is the identity for any ¢ # §. We can pick
such hY , by Definition 2.1(vi).

(5) Let H* be the group generated by the hib above. So |H*| = max{my, N1 }.
Note also that for all h € H* and ¢ € 7y we have h[Bs| = Bs, and that
supp(h) := |J{Bs : h|Bs # idp,, 0 < my} has size <N;.

(6) We say that P is symmetric if P is h-symmetric for every h € H*.

In isomorphism-of-names arguments it is relevant to know when a condition or a
name remains unchanged after applying an automorphism h. The following states
a sufficient condition:

Lemma 4.12. Assume that P is h-symmetric and m < & < 7.

(a) If p € Pe and h[(H(p) Nm) is the identity, then he(p) = p.
(b) If T is a Pe-name and h[(H(T) Nmy) is the identity, then hg( T)="T.
(¢c) Let g :=h~'. Then P is g-symmetric and e = hi

Proof. We show the three statements by induction on &.

For (a), we use a case distinction: Assume £ = mp. If p € P, then H(p) = supp p,
and whenever h is the identity on supp p, it is clear that fALm (p) = p. The limit step
is also immediate (there are no new conditions, and for names use €-induction).

For the successor step & = ( + 1, assume p € P¢;q and that h is the identity
on H(p) Nmy. If ¢ ¢ suppp, then we have p € P¢, so iLgH(p) = Eg(p) = p by the
induction hypothesis. So assume ¢ € suppp. Then H(p) = H(p[¢Q)U{C}UH (p(¢)),
so by induction hypothesis ﬁg(p[{) = p|¢ and fLZ(p(C)) = p(¢), thus ﬁ<+1(p) =p.

We now show (b) by €-induction on 7. If (¢,p) € 7 then H(c) U H(p) C H(7),
so by induction hypothesis and (a), iLZ(J) = o and he(p) = p. Hence

he(r) = {(ht(0),he(p)) : (o.p) € T} = {(00p) : (op) €T} =7
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For (c), the steps £ = 71 and £ > 7 limit are easy, so we deal with the successor
step £ = ¢ + 1. So assume that g¢ is defined and g, = hgl. Since h¢ is defined,

IFp, iLZ(QC) = QC, which implies IFp, g7 (QC) = QC, S0 Jc41 is defined; and for any
p € Pe, ge(he(p)) = (9c(he(pl €)), 92 (hE(p(C)))) = p, 50 Ge = he . O

4.C. A digression: Self-indexed products. How to construct a symmetric it-
eration P? We have to make sure that at each step ¢ the iterand Q< is invariant
under h for all h € H*. One case that will be useful: Q; is a (ccc) FS product such
that whenever Q is one of the factors, then ﬁ*(Q) is also one.

But there is a technical difficulty here: We need I-p, h* (Q¢) = Q¢ (i-e., really
equality, not just isomorphism; as we want to get an actual automorphism of P¢yq).
This is not possible if we “naively” index the product with an ordinal. For example,
assume Q, Q1 are such that IFp, h* (Q:) = Q1_; # Q;. Then Qo x Q1 (the product
with index set {0, 1}) is not a valid choice for Q¢, as IFp, h* (QO X Q1) = Q1 x Qo #
Qo x Q1.

So instead, we define (in the extension) the FS product [] F of a set F of posets
as the set of all finite partial functions p from F into |JF satisfying p(Q) € @ for
all @ € dom(p). We call this object the self-indexed product of the set F.

In our framework, we start with a ground model set Z¢ of P-names of posets.
In the P¢-extension we let F be the set of evaluations of the names in Z¢, and let
QC be the self-indexed product of F.

Assume that all automorphisms from H* can be extended up to ¢.¥ We assume
that Z¢ is closed under each h € H*, i.e., Qe E¢ implies iLZ(Q) € E¢. So as Z¢
is also closed under the inverse of i, by Lemma 4.12(c) we even get flz [Ee] = Ee.
So in particular ﬁz[Eg] and Z¢ evaluate to the same set and thus yield the same
self-indexed product, i.e., IF ﬁz((@g) = Qg.

We record this fact for later reference:

Fact 4.13. Assume that QC is a “self-indeved” product of Z¢, and that Qe E¢
mmplies ﬁZ(Q) € Z¢ for all h € H*. Then P forces EZ(QC) = QC, so we can extend
each h € H* to Pe % Q.

We additionally assume that each factor is (forced to be) a real-number-poset.
Assume that (p,q) € P¢ * QC~ We can densely assume that p decides the finite
domain of ¢, more specifically, the? finite set y C = such that p forces that dom(q)
is (the set of evaluations of) y. Also, for each @ € y, we can assume that ¢(Q) is a
nice name for a real, determined by some AQ. As usual, we can use a given dense
set D C P. instead of P¢.

For later reference:

Fact 4.14. Assume that QC is a “self-indexed” product of Z¢ as described above,
that each factor is forced to be a set of reals, and that D C P¢ is dense. If (p,q) €
P+ Qc, then thereis a (p',q") < (p,q) such that p’ € D decides the (finite) dom(q’),

8For this part all the properties of H* are not required; it is just enough that h € H* implies
h=teH~.
90r rather: a finite set, as different names in =; might evaluate to the same object, i.e., index.
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and each ¢'(Q) is a nice name determined by some Ay € D. So in particular

(4.15) H(w ) = H Ui U | (H(Q)u U H<r>).

Qedom(q’) r€dg

Remark 4.16. This is the reason hereditarily countable nice names are not suffi-
cient in our setting to describe reals: Even the index Q in such a product QC is too
complicated. However, as all the self-indexed products QC we use will have factors
Q of size <)\, it turns out we can restrict ourselves to hereditarily <A-names (this
will be the dense set P of Definition 5.3).

4.D. Symmetric small history iterations preserve splitting families. We
are finally ready to prove the central fact about preservation of splitting families.

Definition 4.17. Let A be an uncountable cardinal.

(1) A condition q € P is A-small, if |{§ < mo : H(q) N Bs # 0} < \.

(2) A suitable iteration P has A-small history if, for any p € P, there is a A-small
q=p-

So in particular if P’ has A-small history and & is a name of a subset of w, then
there is an equivalent nice name b which only uses A-small conditions; and if g > A
has uncountable cofinality, then

(4.18) {6 < mo : H(b) N Bs # 0}| < p.

Theorem 4.19. Let P be a symmetric suitable iteration with A-small history. As-
sume Ny < XA < p < wo are cardinals with p regular. Then LCURSp (Pr, 1) holds,
and it is witnessed by {Nw,s : § < p}.

Proof. Towards a contradiction, assume that there are p € P and a P-name b of an
infinite subset of w such that

plF {0 < p: 1w, s is eventually constant}| = .

Find F € [u]*, no < w and e € {0, 1} such that, for any § € F, there is some ps < p
in P such that w;d € supp(ps) and ps IF 7,5 (b~ 1) = e.

We can assume that b is a nice name, more particularly that (4.18) holds, and
we can also assume that p is A-small. So there is some §y € F' such that Bs, N
(H(p) U H(B)) = 0.

Put a :=widy € B;,. By (2.2), a is contained in an uncountable Rs, .-complete
U C Bs,. Recall that by the definition of “symmetric”, there is for each ¢ € U a
2G-automorphism h¢ € H* such that h°(a) = ¢ and such that h®[Bs is the identity
for all & # 6. Hence, by Lemma 4.12, hS(p) = p and (hS)*(b) = b, therefore

Pl = h&(ps,) < p and, since (hS)*(9a) = i,
PL I e (b~ ng) = e.

Lemma 4.2(d) implies that (p/, : ¢ € U) must be an antichain, which contradicts

that P, is ccc. O

Remark 4.20. The same argument shows that, for any g € H5<# Bs (in the
ground model), {745y : 0 < pu} witnesses LCUR,, (P, ).
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5. SUSLIN-A-SMALL ITERATIONS

We now investigate suitable iterations where the iterand QC at step ¢ > 0 (i.e.,
after the initial F'S product) is
(1) either a restricted (also called: partial) Suslin ccc poset (e.g., random forc-
ing evaluated in some V¢ for some complete subforcing P of P¢);
(2) or the FS product of (in our application: at most |7|-many) <A-size posets
of reals.
More formally:

Definition 5.1. Let A be an uncountable cardinal. A Suslin-A-small iteration
(abbreviated SAs) is a suitable iteration P with the following properties:
(S1) 7~ m is partitioned into two sets ¥ and II.
(S2) For £ € &,
(i) P¢ is a complete subposet of P¢,
(ii) S is a definition of a Suslin ccc poset (with parameters in the ground
model),

. P
(iii) Qg is a P¢-name for (SE)V ‘.
(S3) For ¢ €11,

(1) E¢ is a set in the ground model,

(i) each element of E is a P¢-name Q for a poset of size'® <\ consisting of

reals,

(ili) Q¢ is (the P¢-name for) the FS product of Ze.
Remark 5.2. Regarding (S3), recall that our setting requires Qg (to be .forced by
P¢) to be cce (as suitable iterations have to be ccc). In contrast, in (S2), Q¢ will be
always ccc “for free” (in VFe as well as in V¢ ), as it is an evaluation of a Suslin
cce definition (see [JS88]).

We now show that we can replace such an iteration (P’C,Q’C : ¢ € m) with an
isomorphic version (IP’C,Qg : ¢ € 7): The only difference will be in steps ¢ € II,
where we select (hereditarily) nice names for the factors Q € E¢ and make sure that
QC is self-indexed. In addition, we will define a dense subset P* of hereditarily A-
small conditions, an extended “refined history domain” 7+, and a “refined history”
H* :P* — P(r"). These are formalized in the following notions.

Definition 5.3. Let A be an uncountable cardinal. A tidy Suslin-\-small itera-
tion is a Suslin-A-small iteration P with the following additional components and
properties:
(1) For £ € m ~ m1, Pf is a dense subset of P;.
(2) P, =Px,.
(3) If £ € ¥ and p € P, then p[¢ € Pf, p(§) is a nice P{-name of a real and
IFp, p(€) € Se N Ve
(4) For £ € II, E¢ is composed of nice P{-names for real-number-posets of size <A
(See Definition 4.8(2)).
In addition, if p € P¢,,; then the following is satisfied:

10T hat is, each element of E5 is forced to have size <\, whereas the cardinality of E5 may be

as large as we want.
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(i) pl¢ € PL.
(ii) domp(&) is decided by p[¢, that is, p[¢ H‘[pz “domp(&) = d’g” for some
finite dg CE..
(iii) For each Q € domp(¢), p(£,Q) is a nice P¢-name of a real and I-p;
p&Q)eqQ.
(iv) p(§) = (p(§,Q)) : Q € domp(§)) (in particular, p(§) is a P¢-name).
(5) If m <& < then Pz CPZ,,.
(6) If v € (1, 7] is limit then P} = |, P;.
Denote P* := .
Note that tidy SAs iterations are coherent in the sense that P NP¢ = IP¢ for any
m <& <n < Conditions (5) and (6) were included to guarantee this.

Definition 5.4. Let P be a tidy SAs iteration.
(1) For m; < & < 7 define the refined history domain €T = £ U UceenniCl x Ee.
(2) For p € P* and a P*-name 7 we define the refined history H*(p) C « and
H*(r) C 71 as follows. For m; < ¢ < 7 we define H* by recursion on ¢ for
pe P and for a P¢-name 7.
(i) For p € P71, H*(p) := H(p).
(ii) For £ =(¢+1andp € PZ, |, H*(p) = H*(p[¢) when ¢ ¢ supp p, otherwise:
e if ( € ¥ then
H*(p) :== H"(pI¢) U {C} U H"(p(C));
e if ( € II then

H*(pIQ) U{CHU ({¢} x dom(p(Q)) U | (H(QUH" (¢ Q)).
Qedom(p(¢)
(iii) When £ > m is limit and p € P, then H*(p) has already been defined
(because p € P¢ for some ¢ < §).
(iv) For any P;-name 7 define, by €-recursion,

H*(7) = J{H (o) UH"(p) : (0,p) € T}.

Tidy SAs iterations have many features that ease its manipulation, in particular,
they have A-small history.

H*(p)

Lemma 5.5. Let P be a tidy SAs iteration with A reqular. Then, for any p € P*:
(a) |H*(p)] < A.
(b) H(p) = H*(p) N
(¢) H(t) = H*(1) Nw for any PL-name 7.
In particular, P has A-small history.
Proof. We prove (a), (b) and (c) simultaneously for all p € P; by recursion on
m < & <. It is clear that (c) follows from (b).
In the case £ = m, H*(p) = suppp = H(p), which is finite.

For the successor step £ = ¢ 4 1, assume ¢ € suppp. If { € ¥ then p({) is a nice
P¢-name of a real, so it is determined by some countable A C P¢. Hence

H*(p) = H*(pIQ) U{C} U J{H"(r) : 7 € A}
so, by induction hypothesis, |H*(p)| < A.
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Now assume ¢ € II. Since any Q) € E¢ is a nice P¢-name for a real-number-poset
of size < ), it is determined by some BQ of size < A. Hence

H(Q) = |J H*(s), and [H*(Q)| < A,
sEBQ
the latter by induction hypothesis. On the other hand, for any Q € domp((),
p(¢,Q) is a P¢-name of a real, so it is determined by some countable AQ C Pt
Hence .
H (¢, Q) = |J H (),

TEAQ'

which have size <A by induction hypothesis. As

H*(p) = H*(pIQ) U{C} U ({¢} x domp(() U |J  (H*(Q)UH"(p(¢,Q))),

Qedom p(¢)
we get |H*(p)| < A\. On the other hand, since p(¢) = (p(¢,Q) : Q € dom p(()),

Hp@)= U HQUHKCEQ)),

Q€dom p(¢)

so we can deduce (b). The limit step is immediate. O

As promised, we show that any Suslin-\-small iteration is isomorphic to a tidy
one.

Lemma 5.6. If \ is reqular uncountable, then any Suslin-A-small iteration is iso-
morphic to a tidy SAs iteration.

Proof. By recursion on m; < § < 7 we construct the tidy iteration up to P¢, along
with its components, and the isomorphism ¢ : P’g — P.. We also guarantee that i¢
extends i¢ for any m < ¢ <&.

Case £ = my: Set Py =P, =P/ and let ir, be the identity function.

Case { = (¢ +1 with ( € 3: As i : IP”C — IP¢ is an isomorphism, we let IF’C_ =
iC[P/g_L which is clearly a complete subforcing of P, and evaluate S. accordingly.
Note that i¢ can be extended to an isomorphism 4¢4q : IE"’< 41 — Peya in a natural
way.

We define P?_ ; as the set of pairs (p,q) where p € P, g is a IPZ nice name for a

real, and pI- ¢ € S¢ N Ve . This is dense according to Fact 4.10(a).

Case £ = ¢+ 1 with ¢ € II: Fix a Q' in Ee As zz(Q’) is forced by P¢ to
have size <}, according to Fact 4.10(b), there is an equivalent P¢-nice name Q
determined by BQ C IF’E of size <A. Let Z; be the set of all these names, and
define QC to be the self-indexed FS product of the Q in E¢. We can obtain the
isomorphism 4¢41 in a natural way.

We define P?_ ; to consist of the (p, ) as in Fact 4.14 (using D = Pf).

Case { > 7 limit: As P is a F'S iteration, we (have to) set P¢ = (J._ P¢; and
we set Pg := U, P¢ and i¢ == U ¢ dc. O

For later reference, note: Assume that we can extend some 2G-automorphism f
to P¢, and that @ € Z¢. Set supp(f) :=J{Bs : f[Bs #idp,}. Then

(5.7) supp(f) N H*(Q) = 0 implies fg(Q) =Q.
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This follows from Lemmas 4.12(b) and 5.5(c).
In our applications, }P’g has the following form.

Definition 5.8. Let P be a tidy SAs iteration. For any X C 7+, define P*| X :=
{pePr:H"(p) C X}

Note that generally P*[X will not be a complete subforcing of P*; but we will
only be interested in the case where it is, see Lemma 5.15.

Lemma 5.9. Let P be a tidy SAs iteration with X\ uncountable reqular, and let
i > X\ be reqular and Ry -inaccessible*t. If X C 7% and | X| < p then |P*1X| < p.

Proof. By induction on ¢ € [m, 7] we show that, whenever X C ¢ has size <y,
|P*1X| < p. For £ =y, it is clear that |P*[X| = max{|lw x X|,1} < p.

For limit & > 71, P*|X = UUEC P*[(X Nn™) where ¢ is a cofinal subset of £ of
size cof(§). If cof(§) < p then |[P*[X| < p because it is a union of <p many sets
of size <p; if cof (&) > u then X C 5™ for some 1 < £, so |P*]X| < p by induction
hypothesis.

For the successor step £ = ¢ + 1, assume X C (¢ +1)* and X ¢ ¢* (the non-
trivial case). Put Xo := X N¢*. By induction hypothesis, |P*[Xy| < g and, since
p is Wj-inaccessible, there are at most [P*[ X" < y many nice P*[X¢-names of
reals.

Let p € P*|X. If £ € ¥ then p(€) is a nice P*[Xg-name of a real; if £ € II,
then p(§) is determined by a finite partial function from ({£} x Z¢) N X into the set
of nice P*[ Xy-names of reals, and there are <p-many such finite partial functions.
Hence, |P*1X]| < p. O

Corollary 5.10. Let P be a tidy SAs iteration with \ reqular.

(a) P has \-small history.
(b) Every p € P* is an element of P*[ X from some X C " of size <.
(c¢) For every P-name of a real there is an equivalent P*| X -name for some X C 7™

of size <.
(d) Assume that |w|*0 = |r|, that X\ < |n|*, and that |E¢| < |n| for each ¢ € II.
Then |P*| < |x].

Proof. (a) follows from Lemma 5.5(a),(b); (b) follows from Lemma 5.5(a) (using
X := H*(p)); and (c) follows from (b) (use a nice P*-name for a real).

For (d), set u = |m|* (the cardinal successor). Note that p is <Nj-inaccessible
because |70 = |x|, and |7 < |7| x supeen{|E¢|} < || < p. Therefore [P*| =
|P*|7"| < p by Lemma 5.9 (for X = 771). O

In our applications, P, = P~ [Ce with Ce C & for all € € ¥. We will now show
how to build symmetric SAs-iterations:

Definition 5.11. Let P be a tidy SAs iteration, and let h : m1; — 7 be a 2G-

automorphism.

(1) Let € € TI. We say that Z is closed, if, whenever h € H* and he can be defined
(see Definition 4.11), Q € Z¢ implies BE(Q) € Z¢ (where H* is the group of
2G-automorphisms fixed in Definition 4.11(5)).

(2) We say that C' C 7wt is closed if, for any h € H*, it satisfies:

HRecall that a cardinal @ is k-inaccessible if ¥ < p for any cardinals 0 < p and v < k.
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(i) For any § < my, Bs N C # () implies Bs C C.
(ii) For any § € II, whenever ¢ can be defined, if (§, Q) € C then (&, hi(Q)) €
Cand ¢ e€C.

Lemma 5.12. Assume that P is a tidy SAs iteration such that the following re-
quirements are satisfied:
(I) For any & € 11, Z¢ is closed.
(II) For any € € X, P, =P*[C¢ where C¢ C & s closed.
Then we get:
(a) P is symmetric (i.e., h-symmetric for all h € H*).
(b) h[P*|C] =P*|C for all closed C C 7t.

Of course we will have to also make sure that the assumption “P is a tidy SAs-
iteration” is satisfied. The nontrivial points of these assumptions are:
(I-b) For ¢ € II the FS product Q; is ccc.
(In our case this will be trivial, as all factors Q will be Knaster).
(II-b) For ¢ € 3, P*IC; is a complete subforcing of P*.
We will see in Lemma 5.15 how to achieve this.

Proof. By induction on £ € [m, 7] we show that ng can be defined for any h € H*
(towards (a)), and that (b) is valid for any closed C' C £+.12
Case ¢ = my: It is clear that i, can be defined; (b) is clear because h[Bs] = Bj
for any § < mg and h € H*. )
Case £ = ¢+ 1 with ¢ € X: (a): Note that IF le(QC) = iLZ(SE/P

helP*1Cc]

rcg) _
Sz-/ (as S¢ only uses parameters from the ground model), which is @C by
induction hypothesis (as we assume that C¢ is closed). So we can extend h¢ to
]A“LC+1.

(b): Note that £+ = ¢t U{(}, soif C C £* is closed (and not already a subset of
(1), then C' = C"U{¢} with C” closed, and (p, ¢) € P*|C means that p € P*[C” and
¢ is a nice P*[C’-name for an element of QC~ Then ﬁZ(q) is a nice fLC [P*[C']-name
for an element of hZ(QC), which is by induction hypothesis a nice P*|C’-name for
an element of Q(, ie., iz4+1((p, q)) € P*[C. This shows that fzg[]P’* [C] CP*|C. As
this is also true for the inverse of h (because h=! € H*), by Lemma 4.12(c) we get
equality.

Case £ = ¢+1 with ¢ € II: First note that, by induction hypothesis, BC[IP’Z] =
P because Pf = P*[¢* and ¢* is closed.

(a): Since Q¢ is a PZ-name for the self-indexed FS product of the (evaluated)
set Zc = {Q : Q € B¢}, iLZ(Qg) is the P¢-name for the self-indexed FS product
of the (evaluated) set iLZ [E¢] = {BZ(Q) : Q € Z¢}. But as the ground model set
of names {iL*(Q) c Qe Z¢} is identical to the ground model set of names =,
their evaluations are identical as well (because Z¢ is closed under inverses, and by
Lemma 4.12(c)). In other words, iLZ(QC) = Q¢, and h¢ can be extended to Pg.

(b): Assume that C' C &t = (TU{CIU({¢} xE¢) is closed, and that (p, ¢) € P*|C
(but to avoid the trivial case, not in IP’Z) This means that p € P*[C’ for C' = CN(¢T,

121 this proof we only use that h € H* implies h~! € H*.
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and it determines dom(¢) = {Q1,...,Qn}, such that all ({,Q;) are in C' (and each
4(Q;) is a nice P*[C'-name). Then h¢(p) € P*[C’ by induction hypothesis, and it
determines dom(hZ(qA)) = {h{(Q1),...,h{(Qn)} (and each h7(¢)(Q;) is a P*[C’'-nice
name). Accordingly he((p, ¢)) € P*[C as required.

We conclude that ﬁg [P*[C] C P*[C, but equality holds because the same is true
for h=1.

Case £ limit: By induction hypothesis, iLC is defined for all { < &, so flg is defined
(as its union). On the other hand, if C' C {* is closed then C' = |J._, CN (" where

each C N (T is closed, so iLg [P*]C] = P*[C by induction hypothesis. O
We address some few facts about closed sets.

Lemma 5.13. Let P be a symmetric tidy SAs iteration. Then:

(a) The union of closed sets is closed.

(b) If A C 7% has size <p, with pu > max{\,Na} uncountable reqular, then the
closure A of A (the smallest closed set containing A) has size <p.

Proof. Property (a) is straightforward. We show by induction on & € [y, 7] that
(b) holds for any A C £*.

Case £ =m: A=U{Bs: BsNA#0}. So |[A] =Ny x |[A] < p.

Case £ = ¢+ 1 with ¢ € 3: If A C ¢* has size <p, then A C (AN(¢T)U{¢}
has size <p.

Case £ = (+1 with ¢ € IT: For h € H*, set supp(h) = |J{Bs : h[Bs # idp, }.
Let A* be the closure of

U@ nm : (6,Q) € A}

H*(Q) has size <A\ < p by Lemma 5.5(c), and therefore also the set A* has size
<.
It is clear that A C (AN¢T)U{¢(}UX for

X ={(nr(Q): ((.Q) € A heH}.
Since H* is a group, {¢} U X is closed. We claim that we get the same set X if we
replace H* with
H' :={g € H" : supp(g) C A*}.
As H' has size <p (recall that |supp(g)| < N for any g € H*), we get |A| < u, as
required.

Note that for f € H* and (¢,Q) € A, by (5.7) supp(f) N A* = () implies
fC*(Q) = Q. And for h € H*, there is a g € H’' such that f := ¢g~' o h satisfies
supp(f) N A* = 0. (Basically, g|A* = h[A* and g[(m ~ A*) is the identity.) So
f*(Q) =, which implies

9"(Q) =g"(1"(Q)) = h"(Q),
as required.

Case ¢ limit: If cof(¢) > u, then A C ¢t for some ¢ < &, so |A| < p by
induction hypothesis. Otherwise, A = [ J cer AN for some witness I of cof(€), so
again |A| < p. O

Lemma 5.14. To satisfy assumption (I) of Lemma 5.12 for £ € 11, the following
is sufficient, while assuming (I) and (II) for { < &:
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(I’) For some formula p(x,y) using only parameters from the ground model and
some ke < A, E¢ is the set of all nice Pz—names Q for <kg-sized forcings

consisting of reals such that ”_]pz @(Q,f).

Proof. By the assumption and Lemma 5.12, P¢ is symmetric and h [IP’Z] =P for
any h € H* (because Py = P*[¢{7).
Let Q be such a nice P¢-name. Then fAL’g(Q) is also a nice P¢-name, and “_[P’z

go(ﬁz (Q),€) as ¢ only uses ground model parameters (i.e., standard names). O

As mentioned, we need closed C C 7t that define complete subforcings. For this
we use the following result:

Lemma 5.15. Let P be as in Lemma 5.12, and let p > X\ be regular and W;-
inaccessible.

(a) For A C nt of size <p there is some closed C D A of size <u, such that
P*[C < P*.
(b) The closed sets C € [ T|<F that satisfy P*|C < P* form a \-club.

The proof is just a standard Skolem-Lowenheim type closure argument:

Proof. (a) Using Corollary 5.10(b) we can fix a function f : (P%)%? — [z+]<* such
that if p and ¢ are compatible then there is some r < p, ¢ in P*[ f(p, ¢). Also, we can
fix a function g : (P£)=% — [7F]<* such that, whenever p = (p,, : n < w) (w < w)
is a non-empty antichain but not maximal in P, then there is some ¢ € P*[g(p)
with ¢ L p, for any n < w. By recursion on « < A, define

Ay=AUALU | feou U 90

p,q€P* [Acqa peE(P*1Acq)Sw

where Acq = g, Ae; and let Ay = A7, be the closure (see Lemma 5.13). So
| Aol < p, and we can set C' := J,, . Aqa, which is as desired because any countable
sequence in P*[C' is a countable sequence in P*[ A, for some o < A.

(b) Let (B; : i € A) be an increasing sequence of closed subsets of 7+ such that
P*IB; is a complete subforcing of P*. Set B := |J;c, Bi- According to 5.13(a)
B is closed. Assume that A C P*[B is a maximal antichain. Any p,q € A are
incompatible in P*[B; for some 4, and therefore in P*. Due to ccc, A is countable,
and by Corollary 5.10(b) there is an ¢ < A such that A C P*[B;. Therefore A is
maximal in P*. ]

Corollary 5.16. With the same hypothesis of Lemma 5.15, if P C P% has size <y,
then there is some P~ <IP% of size <p such that P C P~

Proof. Apply Lemma 5.15 to A ==, p H*(p). O

We now summarize what we already know about the construction that we are
going to perform in the next section:

Corollary 5.17. Let \ be reqular uncountable and assume X < |x|, |7|<* = |x],
and that m ~\ 7 is partitioned into ¥ and II. We inductively construct a (tidy) SAs
iteration P as follows:
(X) As step ¢ € X, we pick a (definition of a) Suslin-ccc forcing S¢, some Ri-
inaccessible ke > A, and some C¢ in the A-club set [(T]<%¢ of Lemma 5.15,
and set Q¢ = sV, (So P =P*[C¢.)
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(IT) Fiz a formula p(x,y) with parameters in the ground model. At step ¢ € I,
pick some regular uncountable k¢ < X and let Q¢ be (a suitable name for)
the F'S product of all Knaster real-number-posets of size <k¢ satisfying
o(z,¢).

Then (inductively) Pe is a well defined ccc forcing for m <& <7, and
(a) LCUgs,(Pe, ) holds for any regular A < p < mg.
(b) P¢ forces that the continuum has size below |r|.

Proof. Each QC is forced to be cec (by either absoluteness or the Knaster assump-
tion), so we get a valid iteration (and we assume that we choose the names for the
iterands such that we get a tidy SAs-iteration).

LCU follows from Lemmas 5.14 and 5.12(a), and Theorem 4.19.

For the size of the continuum, we use Corollary 5.10(d) to show by induction
that [P¢| < [r|: Assume this already is the case for ¢ € II, then =¢ consists of nice
PZ-names for <A-sized real-number-forcings, and there are only \IP’Z\<’\ < |7| many
such nice names.

6. THE FORCING CONSTRUCTION FOR THE LEFT HAND SIDE

In this section, we prove the first step of the main theorem: Theorem 6.11,
which gives the independence results for the left hand side. After the work we have
done in the previous sections, this is basically a simple variant of the construction
in [GKS19].

6.A. Preliminaries.

Notation 6.1. Denote

add(N),cof(N)) ifi=1,

cov(N),non(N)) ifi=2,

b,) if i =3,

non(M), cov(M)) if i =4,
(s,1) if i = sp.

As in [GKS19, GKMS22], for i € {1,2,3,4,sp} consider Blass-uniform relational
systems RECY and RECB such that, following in Example 3.1, R'S-SU = Rscpo B=R,,
and ZFC proves!'?

b(REOB) < b; < B(REY) and 2(REY) <o, < o(RECB).
We abbreviate COBgcos by COB;, and LCUgicu by LCU;.

(bi, Di) =

For completeness, we review the posets we use in our construction.

Definition 6.2. Define the following forcing notions (where the forcing in item (%)

is designed to increase b;):

(1) Amoeba forcing A is the poset whose conditions are subtrees T' C 2<% without
maximal nodes such that [T, the set of branches of T', has measure <1 (with
respect to the Lebesgue measure of 2¢). The order is D.

(2) Random forcing B is the poset whose conditions are subtrees T' C 2<% without
maximal nodes such that [T] has positive measure. The order is C.

1311 more detail, R'{CU = RZ-COB except when ¢ = 2. If we follow [BCM21] we can also consider
RLCU = RSOB.
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(3) Hechler forcing is D := w<% x w® ordered by (t,y) < (s,z) iff s Ct, z <y
(pointwise) and ¢(i) > x(i) for all ¢ € |t] \ |s].
(4) FEventually different forcing is

E:=w<¥ x U (w]=™)”
n<w
ordered by (t,9) < (s,p) iff s Ct, Vi < w(p(i) C (7)) and t(i) ¢ ¢(i) for all
i€t~ sl
(sp) Let F be a base of a (free) filter on w. Mathias-Prikry forcing on F is Mp :=
{(s,2) € [w]<M0 x F : max(s) < min(x)} (here max()) := —1) ordered by
(t,y) < (s,z)if sCt,yCaxandt~sCu.

For each of the posets above it is easy to construct a 1-1 function from the poset
into w®”. So, until the end of this section, the posets above are seen as subsets of
w”. Moreover, the posets (1)—(4) are Suslin ccc, and they are homeomorphic to a
Borel subset of w* (and the order is Borel as well).

In the proof of Theorem 6.6 we deal with special restrictions of the posets (1)—(4)
under sets of reals of the following form.

Definition 6.3. Let A > X; be a cardinal. Say that £ C w“ is A-elementary if
E = w® N N for some regular x > (2%)* and some N < H, of size <A, where H,,
denotes the collection of hereditarily <A-size sets.

We look at posets of the form SN E where S is a poset as in (1)—(4) and F C w®
is A-elementary. Note that, whenever y > (2%)* N < H, and E = w* N N, we
have SN E = SY. Therefore:

Fact 6.4. Let E C w® be elementary. Then:

(1) The poset AN E adds a (code of a) Borel measure zero set that contains all
Borel null sets with Borel code in E.

(2) The generic real added by B N E evades all Borel null sets with Borel code in
E.

(8) The generic real added by DN E dominates all the functions in E.

(4) The generic real added by E N E is eventually different from all the functions
in B

We now show how to modify the forcing construction in [GKMS21, §4 & §5] to
include LCUg, and COBgp,, by performing a construction according to the previous
section, in particular to Corollary 5.17. We will assume the following:

Assumption 6.5. ko € [2,w]; Am < A1 < Ay < A3 < A4 are uncountable regular
cardinals, A5 > A4 is a cardinal, A3 = X, Am < Ap < A3 regular, such that
X <X X > Ny, )\5<)‘4 = X5, and \; is Wy-inaccessible whenever A\; > Ay, and
1< <4.

A

Our intention is to show the following:

Goal 6.6. There is a ccc poset P of size A5 such that, for any i € {1,2,3,4,sp},

(a) LCU;(P,0) holds for any regular \; < 6 < As.

(b) There is some directed S; with cp(S;) = A; and |S;| = s such that COB;(P, S;)
holds.

(c) P forcesp=5=Asp and ¢ = Xs.
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(d) P forces my =Ny for any k € [1,kg), and my, = Ay for any k € [ko, w].**

The way to achieve this is parallel to [GKS19, §1]: As first step we give the
“basic construction” in Lemma 6.8, using “simple bookkeeping” (which is described
by parameters C' = (C,) ey in the ground model). This gives us everything apart
from LCU3 (i.e., we do not claim that b remains small). This first step contains
the only new aspect of the construction: As we use a variant of the construction
according to the previous section, we get LCUg.

The next steps are just as in [GKS19, §1.3 & §1.4]. In Lemma 6.10 we remark:
Assuming 2X > A5 (in addition to Assumption 6.5), we can choose the bookkeeping
parameters C' in such a way that the resulting forcing satisfies LCU3 and thus all
of Goal 6.6.

And finally we show Theorem 6.11: without the assumption 2X > A5 (while
assuming 6.5) we can also get all of Goal 6.6. Why do we need to supress the
assumption 2X > A5 from Lemma 6.107 Because we can then additionally control
the right-hand side characteristics in Section 7, using the method of elementary
submodels from [GKMS22].

In the following proof, we deal with the case 2 < ky < w and A\, > Ny. In
Section 6.D we mention the necessary changes for the remaining cases.

6.B. The basic forcing construction. To each 1 < i < 4 associate a Suslin ccc
poset as follows: S| = A, So =B, S3 =D, and S;, = E.

Set A := Agp. Let ¢* be the minimal ¢ such that A; > A. Note that 1 <¢* < 4.
Set I := {i*,...,4} and Iy := {m,p} U {1,2,3,4} \ I.

Set mg 1= A5 (80 M = wy - As), and 7 = m + A5 + A5. Partition the final
As-interval of 7, i.e. m~ (71 + A5), into sets IT; (i € Iy) and 3; (i € 1), each of size
As.

We construct a tidy SA-s iteration, using ¥ := {m +a: a < A5} U, Xi and
= ;e 1, 1Li- We will satisfy the requirements of Corollary 5.17, so in particular
inductively we will have [Pz| = A5 (and so P¢ |- ¢ = ;) for all &.

(I1) At stage ¢ € [m, 71 + As) (in particular, ( € ¥), we just add Cohen reals.
More formally, to fit our framework, we set S¢ = C = w<* (Cohen forcing).
Let C¢ := 0, which is closed and satisfies that Pr =P [Cc (i-e., the set
containing only the empty condition) is a complete subforcing of PZ. And

SX]PC is Cohen forcing in the ground model, which is Cohen forcing in any
extension by absoluteness.
(I2) Assume ¢ € II; (for some i € Ip).
(i) When i = m, let Z¢ be the family of all nice P¢-names of real-number-
posets of size <Ay that are forced (by P¥) to be ko-Knaster.
(ii) When ¢ = p, let Z¢ be the family of all nice PZ-names of real-posets of
size <A that are forced to be o-centered.
(ili) When ¢ € {1,2,3} NIy, we consider Z¢ as the family of nice PZ-names of
all smaller-than-)A; versions of S; in the P¢-extension, i.e., the forcings of
the form

Q = S; N E where E is )\;-elementary

14Note that Am = N is allowed.
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as in Definition 6.3. Note that S;, and therefore also every variant S; N E,

is linked and therefore Knaster.
(I3) If ¢ € &, (for some i € I, so A; > ), we pick (by suitable book-keeping) a
C¢ C ¢* as in Lemma 5.15(b). Le., |C¢| < A, Py = P*[C¢ < Pf, and we set

o
S¢ :=SY ¢ . (Here, suitable bookkeeping just means: For every K € [r+]<*:
there is some index ¢ such that C¢ D K.)

We can now show that the construction does what we want, apart from keeping
b small.

First let us note that sometimes it is more convenient to view P as a FS ccc
iteration, where we first add the As-many Gp forcings (of size W), then the As-
many Cohen reals, and then the rest of the iteration, where we interpret each FS
product Q. for ¢ € II; as a FS iteration with index set A\s = |Z;|. So all in all we
can represent PP as a F'S iteration
(6.7)

. ) A5 if ¢ eIl
(P, Q) acs of length 6" = A5 + A5 + Xeen (rg4r5)0¢, With 6z == g ¢ o
1  otherwise.
For each a < A5 + A5, |Q',| < Ry, and for each o > A5 + A5 in &', we say that Q’,
“is of type ¢” for ¢ € {m,p,1,2,3,4}, if either @, = Q¢ for the respective ¢ € %,
or if )}, is a factor @) of Q; for the respective ¢ € II;. Note that P)’\5 =Pg,.

Lemma 6.8. The construction above satisfies Goal 6.6, apart from possibly LCU3.

Proof. ¢ = Ag, as we use a construction following Corollary 5.17.

Item (a) for ¢ = sp, i.e., LCUg,: This also follows from Corollary 5.17, and
implies IFp s < A.

p =5 = X Toseep > A itis enough to show (in fact, equivalent, by Bell’s
theorem [Bel81]): For every o-centered poset Q' of size <X (and contained in w*),
and any collection D of size <\ of dense subsets of @', there is a Q’-generic set
over D. Any such Q' and D are forced to be already in the P,-extension for some
o < m. Pick some ¢ € II,, larger than o. Then a name Q for Q' is used as factor of
P¢, i.e., in Peyq there is a (Q-generic object (over D).

ZFC shows p < s, and as s < A we get equality.

Item (a) for ¢ € {1,2,4}, i.e., LCU;: This is exactly as in [GKS19, §1.2]. For
this argument we interpret P as the iteration (P, Q",)acs of (6.7). However, we
work in the Pr,-extension (i.e., the P -extension). So we investigate the forcing
which first adds A5 many Cohens, and then a FS iteration of the iterands Q7.

As in [GKS19, §1.2], we now argue that each such @, is (R, )\;)-good.'® So
let us quickly check the cases (they are all summarized in [GKS19, Lemma 1.6],
and use results from [JS90], [Kam89], [Bre91]). To get (RLYY, \1)-good:

e If !, is of type m or type 1, then @', has size <)\; and thus is (RFCY, \;)-
good (for any i € {1,2,3,4}).

e If Q' is of type p, 3 or 4, then @/, is o-centered, and therefore (R:CY Ry )-
good.

15The notion (R, 8)-good was introduced by Judah-Shelah [JS90] and Brendle [Bre91], defini-
tions can also be found in [GKS19, Def. 1.5], [GMS16, Def. 3.2] or [BJ95, Def. 6.4.4].
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o If Q, is of type 2, then it is a subalgebra of the measure algebra, and thus
(REV, R, )-good.

For (R5%Y, \y)-good the argument is even simpler: All Q' have size <)o or are
o-centered; and for (R“Y, \;)-good the argument is trivial, as all Q’, have size
<A4.

So this argument shows that, in the intermediate model VF=1, the rest P’ of the
forcing satisfies LCU;(P’, \;), witnessed by the Cohen reals {n, : o € [m1, 71+ A\i)}.
This implies by definition of LCU that in the ground model LCU;(P, A;) holds,
witnessed by the same Cohen reals.

Item (b) for i € I, i.e., COB;: This is also basically the same as in [GKS19,
§1.2], where this time we argue from the ground model V', not the intermediate
model VF=1. We define the partial order S; to have domain ¥;, ordered by ¢; <g, (2
iff C¢, C Cg,.

Note that C¢ is in [77]<%, |7F| = A5, and our book-keeping ensures that S; is
<\;-directed. Corollary 5.10(c) together with the fact that A < A; shows that our
bookkeeping will catch every real in the P-extension. Therefore S;, and the generics
added at stages in .S;, witness the COB property.

Item (b) for ¢ € Iy N {1,2,3}: This is very similar: Let S; be the set of pairs
(¢, E) such that ¢ € II; and E is a nice P¢-name of a \;-elementary subset of w*
We order S; as follows: (fl,El) < (fg,Eg) iff & < & and the empty condition
forces that Fy C Ey.

For (¢, E) € S;, S; N E forms part of the FS product QC, so P¢4q adds a §; N E-
generic object g, p as in Fact 6.4. We show that S; and {yCE : (G F) € S, } witness
COB;.

Let 7 be a P*-name of a real, then 7 is a P -name of a real for some &, < ,
and there is some Fj such that (fo,E’o) € 5; and lkp, 7 € Ey. Hence, whenever
(&, E) € S; is above (&, Ep), IFp 7 € E so Ye 5 1s generic over 7.

And for any <\;-sequence (E; : j € J) of nice names for A;-elementary sets E;
we can find a nice name for a \;-elementary set E O UjeJ E;. This shows that S;
is <\;-directed.

Item (b) for i = sp, i.e., COBg,: This is basically the same: Among the
o-centered forcings that we use as factors in step ¢ of type p, there are Mathias-
Prikry forcings M on (free) filter bases of size <A. In more detail: Assume Fis
a P¥-name for a filter base of size <A, so set Q= M. Then Q is o-centered and
adds a real which is not split by any set in F'.

So let Sy, be the set of pairs ((, F) such that ¢ € II, and F'is a nice Pz-name of
a filter base of size <\. Set (&1, F1) <p (€2, Fy) iff & < & and the empty condltlon
forces that Fy C Fy U F, where F9 := {w Nz :z € F} For (¢,F) € S,, le
Ye p be the Peii-name of the generic real added by M. It follows that S, and
(e it (&, F) € Sp} witness COBp,.

Item (d) is exactly the same as in [GKMS21, Lemma 4.7]. O
To guarantee b < Az, we have to make sure that the large iterands (i.e., the forc-

ings of size > A3) do not destroy LCUs (small forcings are, as usual, harmless). In
our construction, the only large forcings are the partial eventually different forcings
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at steps ¢ € ¥4. For these forcings, we introduce in [GKS19] (based on [GMS16])
ultrafilter-limits and use them to preserve LCU3. The same argument works here.

Remark 6.9. Note that in the proof of Lemma 6.8 we do not require the hypotheses
x = x<X and A3 = x from Assumption 6.5. These will be used to guarantee LCU3
in the following subsection.

If in Assumption 6.5 we consider A3 = A4 (instead of A3 < A4), then the same
proof of Lemma 6.8 guarantees Goal 6.6 in full (i.e., including LCU3). When Ay, =
A4, in the forcing construction above we have ¥ = [r1, 11 + As5).

6.C. Dealing with b.

Lemma 6.10. In addition to Assumption 6.5 we suppose that 2X > A5. Then we
can choose C; for all ¢ € Xy such that LCU3(P, k) holds for all reqular k € [As, As].
Moreover, in the inductive construction, for each ¢ € ¥4 there is a A-club of [(T]<M
such that we can choose C¢ from this club set.

Proof. This is analogous to [GKS19, §1.3], in particular to Lemma/Construction
1.30. We will only remark on the required changes. Again we interpret P as in (6.7).

We work from the ground model, not in the intermediate P, -extension. Accord-
ingly, we have to incorporate the initial segment of the iteration P,, = P>’\5 into the
argument. This is no problem, as we just have to deal with another type of small
forcing, the Q’, for o < A5, which all have size X;.

Of course, E' := EV¢'“ is closed under conjunctions of conditions, i.e., satis-
fies the assumptions of [GKS19, Fact 1.25]. And instead of “ground model code
sequences” we use “nice P? [C¢-names”.

The crucial part of the old proof is [GKS19, Lemma 1.30(d)]. There, we use the
notation w, C «, and @, are those E-conditions that can be calculated in a Borel
way from the generics with indices in wq, i.e., Qo = EN VT I*a: and we show that
the set of “suitable” wy, is an w;-club in [a]<*, where “suitable” means: If we have
a ground-model-sequence of (nice) @Q,-names, then the DZ-limit (a well-defined
condition in eventually different forcing) is also element of @, (for all € € x).

The same argument gives us the following for our new framework: We can per-
form the construction of Lemma 6.8 and, at all indices  of type 4, the set of
“suitable” C¢ € [(T]<* is a A-club, where suitable now means the following (recall
that we have QC = EPcICe ): For any sequence of nice P¢[C¢-names for elements of

[E,'® the DZ-limit of this sequence is forced to be in Qg as well.
Here, we only get a A-club and not an wy-club, as only for increasing unions of

length A we have

Jezie) =e(Uc)

€A i€
Also, we now have to choose C¢ not only in this A-club, but in the intersection with
the A-club of Lemma 5.15(b) (so that we get a closed C¢ such that P7[C¢ < P} as
required for our construction.)

The same argument as in the old proof (Lemma 1.31 there) then shows: When-

ever all C¢ as chosen “suitably” (for all ¢ of type 4), we get LCUs. O

Theorem 6.11. Assumption 6.5 is enough to find a P as required for Goal 6.6.

6Note: as |C¢l < A4, and Ay is Rj-inaccessible, there are <A4 many such sequences,
cf. Lemma 5.5 (and 5.9).
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Proof. Let R be the poset of partial functions r : x x A5 — {0,1} with domain of
size <x (ordered by extension). As we assume x<X = Y, this poset is xT-cc, and
obviously <x-closed, so it does not change any cofinalities. As in the old proof,
at each step ( of type 4 in the inductive construction of P, we can go into the R-
extension of the ground model, use Lemma 6.10 to get a suitable C? (above some

initial set given by the usual book-keeping), find in V' some C’g such that C7 is
forced to be a subset. Now we iterate this A many times (not just w; as in the old
proof), taking unions at limits, and use the fact that the “suitable” parameters C¢
are closed under A-unions (they form a A-club in [(F]<M).

This way we get a sequence of parameters C¢ in the ground model, such that if
we define in the R-extension a forcing P’ using these parameters we get LCU3(P', k);
a simple absoluteness argument [GKS19, Lemma 1.33] then shows that these pa-
rameters will already define in V' a forcing P with LCU3(PP, k).

Note: We do not interpret = (for ( € II) in the R-extension, but use it with the
same meaning it has in V. So P’ may not be symmetric in the R-extension, but
this is not important here: We are only interested in LCU3(IP’, ) in this argument,
and we do not claim that P’ in the R-extension satisfies the other properties we
have already shown for P. And for LCU3(P’, k), any iterand that has size <\3 is
unproblematic. ([

Remark 6.12. It is not necessary to restrict Az to a successor cardinal in Assump-
tion 6.5. To allow regular A3 in general, we forget about x in Assumption 6.5 and
just assume that /\?f’\?’ = A3 > Nj. In this way, Lemma 6.10 is valid by assuming
23 > )5 instead, and Theorem 6.11 is true when replacing x by Az in the proof
(i.e., R gets modified and it forces 2** > \5). No further changes in the proofs
(even in those from [GKS19]) are needed to justify this.

On the other hand, can we allow A3 = X; in Assumption 6.57 (So all cardinals
except A4 and A5 are Np.) Although we can make the construction in this case,
now the forcings Gg, have size A3 = Ny, so they could destroy LCU3(P,®;). An
alternative to deal with this problem is to perform a similar iteration with 79 =0
(so w1 = 0, that is, no initial FS product of Gg is used) and guarantee LCUg- (PP, k)
for any regular k € [Ny, A5] with the methods of this subsection (i.e. the methods
from [GKS19, §1.3 & §1.4]) adapted to R*, where R* is the Blass-uniform relational
system from [KW96] (see also [Mej13, Example 2.19]) such that b(R*) = max{b,s}
and 9(R*) = min{0, t}.

6.D. The other constellations for the Knaster numbers. So far we have
assumed that A, > Ny and that ky < w. We now remark on how to prove the other
cases:

Case Ay = N;. We only change Iy := {p} U{i € [1,4] : \; < A} (so (I2)(i) is
excluded in the construction). Check details in [GKMS21, Lemma 4.7]. Note that
here the value of kg is irrelevant.

Case kg = w and Ay > V. Force with Py »,, * P where P, »,, is the precaliber
Ny poset from [GKMS21, §5] and P is the forcing resulting from the construction
above (in the Pcau\m—extension).17

VFor ¢ = m, recall that “w-Knaster” abbreviates “precaliber X;”.
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6.E. The alternative order of the left side. The construction of [KST19, §2]
for the alternative order of the left side of Cichon’s diagram can also be adapted
in the situation of the previous theorems. This is just interchanging the order of
the values of b and cov(N), that is, instead of forcing cov(N) = Ay < b = A3, we
force b = A3 < cov(N) = Aq. See also [Mej19b] for the weakening of the hypothesis
GCH:

Theorem 6.13. Theorem 6.11 (and Goal 6.6) is still valid when, in Assump-
tion 6.5, we replace Ay < Ao < A3 < A by A < A3 < Ay < Ay 18

Remark 6.12 also applies in this situation.

7. 15 VALUES

In this section, we review some tools from [GKMS22, GKMS21] and show how
they are used to control the cardinal characteristics other than s. We describe the
forcing constructions but we omit the details in the proofs, since these are exactly
as in the cited references.

We use the notions of m-like cardinal characteristic and h-like characteristic
from [GKMS21, §3]. We do not need to recall their definition, but we only need
some of their properties and to know that the cardinals my (1 < k < w) are m-like,
h and g are h-like, and p and t are of both types.

Lemma 7.1 ([GKMS21, Cor. 3.5]). Let k be an uncountable reqular cardinal,

a cardinal, v a cardinal characteristic, and let P be a k-cc poset that forces r = A

(so A is a cardinal in the P extension). If M < H, (with x o large enough regular

cardinal) is <k closed and contains (as elements) P, s, A and the parameters of the

definition of r, then PN M is a complete subposet of P and:

(i) If ¢ is m-like and \ > k, then PN M I+ ¢ > k.
(i) If ¢ is m-like and A < K, then PN M IFr = .

(ii2) If ¢ is h-like, then PN M Ik < |AN M]|.

Lemma 7.2 ([GKMS21, Lemma 6.3]). Assume:

(1) k < v are uncountable reqular cardinals, P is a k-cc poset.

(2) p=p<">v and P forces ¢ > p.

(3) For some relational systems of the reals R} (i € I1) and some reqular \} < u:
P forces LCUg: (A\D

(4) For some relational systems of the reals R? (i € Iy), and some directed order
SF with b(S7) = A} < p and |S?| <97 < p: P forces COBgz(S7).

(5) For some m-like characteristics v; (j € J) and A\j < k: IFp n; = Aj.

(6) For some wm-like characteristics v}, (k € K): IFp 9}, > k.

(7) ‘[1 UIQUJUK| < .

Then there is a complete subforcing P* of P of size u forcing:

(a) 9; =N, 9}, > K, LCUR%()\}) and COBge (A2,0%) for allie I, i € I, j € J
and k € K; '

(b) c=pand g <wv.

We are now ready to prove the main result of this paper. We use Notation 6.1
and the following assumption for all the results in this section.

18A5in [KST19, §2], the relational system R5CY corresponding to this result is not the same as
the one for Theorem 6.11. Although this is a relational system of the reals, it is not Blass-uniform.
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Assumption 7.3.

(1) pom < pp < po < pn < po < ... < pg are uncountable regular.
(2) po > g is a cardinal such that pug"°® = pg.

(3) 0 <o <2, psp € [1ig, Hig+1] and pie € [ts—iy, po—i,| are regular.
(4)

4) There are eleven regular cardinals 6y > --- > 019 > pg such that Hfgi = 0, for

any i < 11, 6; is Ny-inaccessible for i € {1,3,5,7}, 03 = x4 and y3 = x5 .1
Note that, under GCH, assumption (4) is irrelevant, and p9<” ® = g is equivalent

to cof (pg) > wo-
The Main Theorem for Figure 3(A) is proved in two steps through the following
two results.

Theorem 7.4. Under Assumption 7.3, for any ko € [2,w] there is a ccc poset P!

such that, for any i € {1,2,3,4,sp},

(a) LCU;(PL,0) holds for 0 € {pi, pio—i}, where psp = s and po—sp = fe.

(b) There is some directed S; with cp(S;) = p; and cof(S;) = po—; such that
COB; (P, ;) holds.

(c) P! forces p =g = po and ¢ = pg.

(d) P forces my =Ny for any k € [1,kq), and my, = pn for any k € [ko,w].

Proof. We deal with the case ig = 1, that is, p1 < psp < po (any other case is
similar). We rewrite the sequence

1 < psp < ope < opg < opg <o
Yo < V¥ < ¥ < Uy < U <1

He He Hr Ha
I3 Js5 97 Jg

and let (0 : j < 11) be cardinals as in Assumption 7.3(4) ordered by

lg as

<
S 1911)

IN A
IN A

IN A
IA A

P11 < 0190 < b9 <---< by

as shown in Figure 6.

Let P? be the ccc poset obtained by application of Theorem 6.11 to Ay = fim,
AL =09, Asp =07, Aa =05, A3 = 03, Ay = 01 and A5 = . In particular, this forces
the top diagram of Figure 6 and item (d). We show how to construct a complete
subforcing of PV that satisfies the statement of the theorem, in particular, it forces
the bottom diagram of Figure 6.

For 1 <n <10 and a < ¥, define M, ,, fulfilling:

o M, o = H, (for afixed large enough regular x) and it contains (as elements)
the sequences of #’s and 9¥’s, P° and the directed sets associated with the
COB properties forced by P°.

e The sequences (M, ¢ : €& < ¥p,) for 1 <m < n and (M, ¢ : £ < a) belong
to My, o-

o M, o is <6, closed of size 0,,.

Set M,, := Ua«% M, o and MT := ﬂqllozl M,,. Exactly as in the proof of [GKMS22,
Thm. 3.1] one can show that M T < H,, MT is <tyo-closed, and P’ := PO N M is
a ccc poset that forces (a), (b) and ¢ = 619. Even more, P’ forces (d) and p > 9
by Lemma 7.1.

19%e could further weaken the assumption depending on the value ig. E.g., in case ig = 1,
0; is required Nj-inaccessible only for ¢ € {1,3,5}. Also, it is enough that 90<61 = 0o (here, 69
could be singular), and 03 is not needed successor according to Remark 6.12. For more pedantic
weakenings, see [GKMS22, Rem. 3.5].
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Cpre:90

cov(N)=0¢ non(M)=1vs cof (N) =1y
5:198 b:ﬁ4 02193 \t:197
add(N)=010 B cov(M)=1, non(N)=1;

p=g=po <~ My, =pfm <~ N1

FIGURE 6. The cardinals 9, and 6,, are increasing along the ar-
rows. The upper diagram shows the situation forced by P°, and
the lower diagram shows the one forced by P!. (s can be anywhere
between p and b.)

The desired poset is a complete subposet P; of P’ of size 917 obtained by direct
application of Lemma 7.2 (to kK = v = pg and pu = 911). O

Theorem 7.5. Under Assumption 7.3, for any ko € [2,w] there is a cofinality
preserving poset P such that, for any i € {1,2,3,4,sp}, it satisfies (a), (b) and (d),
and P forces p = pp, b =g = po and ¢ = po.

Proof. Let Q := Mp< "» ordered by end extension, and let P! be the poset constructed
in Theorem 7.4. Exactly as in the proof of [GKMS21, Thm. 7.4], P := P! x Q is as
required. ([

In the same way, we can prove the Main Theorem corresponding to Figure 3(B).
In this case, we initial forcing P is obtained from Theorem 6.13.
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Theorem 7.6. Both Theorems 7.4 and 7.5 are valid when Assumption 7.3 is mod-
ified in the following way:
(i) We replace the order of the regular cardinals in (1) by
P < pp < po < pn < g < pa < pg < ps < i < pg < s
(1) In (3), we consider iy € {0,1}, but psp € [u1,p3] and pe € [ue, us] when

io = 1.
(iii) In (4), instead of 03 = x4 and x5* = x3, assume 05 = x3 and x5° = xs.

8. DISCUSSIONS
One obvious question is:
Question 1. How to separate additional cardinals from Figure 27
Another one:
Question 2. How to get other orderings, where non(M) > cov(M)?

This is not possible with FS ccc iterations, as any such iteration whose length
has uncountable cofinality ¢ forces non(M) < cof(d) < cov(M), so alternative
methods are required. A creature forcing method based on the notion of decisive-
ness [KS09, KS12] has been developed in [FGKS17] to separate five characteristics
in Cichén’s diagram, but this method is restricted to w*-bounding forcings, i.e.,
results in 0 = w;. An unbounded decisive creature construction might be promis-
ing. Alternatively, Brendle proposed a method of shattered iterations 2°, which also
may be a way to solve this problem.

Question 3. Are our main results (specifically, Theorems 6.11, 6.13, 7.4, 7.5
and 7.6) valid for kg = 1¢ Le., can we force m > Ry ¢

For ky > 2 there was no problem to include, in our iterations, FS products of
ko-Knaster posets since they are still kg-Knaster (hence ccc), but we cannot just
use FS products of ccc posets because they do not produce ccc posets in general.
In particular, we do not know how to modify Theorem 6.11 to force m > ;.

Question 4. Is it consistent with ZFC that b < 5 < non(M) < cov(M)?

In this paper s < b; and forcing s > b is much more difficult, since Mathias-
Prikry posets may add dominating reals. Shelah [She84] proved the consistency of
b =N; < s = ¢ =N, by a countable support iteration of proper posets. Much later,
Brendle and Fischer [BF11] constructed an FS iteration via a matrix iteration to
force Ny < b =k < 5 = ¢ = A for arbitrarily chosen regular x < A\. However, in this
latter model, non(M) = cov(M) = c. It is not clear how to adapt Brendle’s and
Fischer’s methods to our methods and produce a poset for the previous question.
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