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Torsion-free abelian groups
are Borel complete

By Gianluca Paolini and Saharon Shelah

Abstract

We prove that the Borel space of torsion-free abelian groups with domain

ω is Borel complete, i.e., the isomorphism relation on this Borel space is

as complicated as possible, as an isomorphism relation. This solves a long-

standing open problem in descriptive set theory, which dates back to the

seminal paper on Borel reducibility of Friedman and Stanley from 1989.

1. Introduction

Since the seminal paper of Friedman and Stanley on Borel complexity [4],

descriptive set theory has proved itself to be a decisive tool in the analysis of

complexity problems for classes of countable structures. A canonical example

of this phenomenon is the famous result of Thomas from [17], which shows

that the complexity of the isomorphism relation for torsion-free abelian groups

of rank 1 6 n < ω (denoted as ∼=n) is strictly increasing with n, thus, on

one hand, finally providing a satisfactory reason for the difficulties found by

many eminent mathematicians in finding systems of invariants for torsion-free

abelian groups of rank 2 6 n < ω which were as simple as the one provided by

Baer for n = 1 (see [2]) and, on the other hand, showing that for no 1 6 n < ω

the relation ∼=n is universal among countable Borel equivalence relations. As a

matter of fact, abelian group theory has been one of the most important fields
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GIANLUCA PAOLINI and SAHARON SHELAH

of mathematics from which inspiration is taken for forging the general theory

of Borel complexity as well as for finding some of the most striking applications

thereof. The present paper continues this tradition, solving one of the most

important problems in the area — a problem open since the above mentioned

paper of Friedman and Stanley from 1989. In technical terms, we prove that the

space of countable torsion-free abelian groups with domain ω is Borel complete.

As we will see in detail below, saying that a class of countable structures

is Borel complete means that the isomorphism relation on this class is as com-

plicated as possible, as an isomorphism relation. The Borel completeness of

countable abelian group theory is particularly interesting from the perspective

of model theory, as this class is model theoretically “low,” i.e., stable (in the

terminology of [14]). In fact, as already observed in [4], Borel reducibility can

be thought of as a weak version of Lω1,ω-interpretability, and for other classes

of countable structures such as groups or fields, much stronger results than

Borel completeness exist, as in such cases we can first-order interpret graph

theory, but such classes are unstable, while abelian group theory is stable. Ref-

erence [9] starts a systematic study of the relations between Borel reducibility

and classification theory in the context of ℵ0-stable theories.

Coming back to us, we now introduce the notions from descriptive set

theory which are necessary to understand our results, and we try to make

a complete historical account of the problems which we tackle in this paper.

The starting point of the descriptive set theory of countable structures is the

following fact:

Fact 1.1. The set KL
ω of structures with domain ω in a given countable

language L is endowed with a standard Borel space structure (KL
ω ,B). Every

Borel subset of this space (KL
ω ,B) is naturally endowed with the Borel structure

induced by (KL
ω ,B).

For example, if we take L = {e, ·, ( )−1} and we let K ′ be one of the

following,

(a) the set of elements of KL
ω which are groups;

(b) the set of elements of KL
ω which are abelian groups;

(c) the set of elements of KL
ω which are torsion-free abelian groups;

(d) the set of elements of KL
ω which are n-nilpotent groups for some n < ω,

then we have that K′ is a Borel subset of (KL
ω ,B), and so Fact 1.1 applies.

Thus, given a class K ′ as in Fact 1.1, we can consider K ′ as a standard

Borel space, and so we can analyze the complexity of certain subsets of this

space or of certain relations on it (i.e., subsets of K ′ × K ′ with the product

Borel space structure). Further, this technology allows us to compare pairs of

classes of structures or, in another direction, pairs of relations defined on pairs

of classes of structures.
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 3

Definition 1.2. Let X1 and X2 be two standard Borel spaces, and also let

Y1 ⊆ X1 and Y2 ⊆ X2. We say that Y1 is reducible to Y2, denoted as Y1 6R Y2,

when there is a Borel map B : X1 → X2 such that for every x ∈ X1, we have

x ∈ Y1 ⇔ B(x) ∈ Y2.

Notice that Definition 1.2 covers, in particular, the case X1 = K ′×K ′ for

K ′ as in Fact 1.1 and so, for example, Y1 could be the isomorphism relation

on K ′. Also, given a Borel space X, we can ask if there are subsets of X which

are 6R-maxima with respect to a fixed family of subsets of an arbitrary Borel

space (e.g., Borel sets, analytic sets, co-analytic sets, etc). In particular, we

have the following definition:

Definition 1.3. Let X1 be a Borel space, and let Y1 ⊆ X1. We say that Y1

is complete analytic (resp. complete co-analytic) if for every Borel space X2

and analytic subset (resp. co-analytic subset) Y2 of X2, we have that Y2 6R Y1.

We now introduce the notion of Borel reducibility among equivalence re-

lations.

Definition 1.4. Let X1 and X2 be two standard Borel spaces. Also let E1

be an equivalence relation defined on X1 and E2 be an equivalence relation

defined on X2. We say that E1 is Borel reducible to E2, denoted as E1 6B E2,

when there is a Borel map B : X1 → X2 such that for every x, y ∈ X1 we have

xE1y ⇔ B(x)E2B(y).

Remark 1.5. Note that in the context of Definitions 1.2 and 1.4, E16RE2

and E16B E2 have two different meanings, as in the first case the witnessing

Borel function has domain X ×X, while in the second case it has domain X.

Furthermore, notice that E1 6B E2 implies E1 6R E2. (However the converse

need not hold; see 1.7.)

We now define Borel completeness, the notion at the heart of our paper.

Definition 1.6. Let K1 be a Borel class of structures with domain ω, and

let ∼=1 be the isomorphism relation on K1. We say that K1 is Borel complete

(or, in more modern terminology, ∼=1 is S∞-complete) if for every Borel class

K2 of structures with domain ω, there is a Borel map B : K2 → K1 such that

for every A,B ∈ K2,

A ∼= B ⇔ B(A) ∼=1 B(B);

that is, the isomorphism relation on the space K2 is Borel reducible (in the

sense of Definition 1.4) to the the isomorphism relation on the space K1.

The following fact will be relevant for our subsequent historical account.
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GIANLUCA PAOLINI and SAHARON SHELAH

Fact 1.7 ([4]). Let K be a Borel class of structures with domain ω. If K

is Borel complete, then its isomorphism relation is a complete analytic subset

of K × K, but the converse need not hold as, for example, abelian p-groups

with domain ω have complete analytic isomorphism relation but they are not

a Borel complete space.

We now have all the ingredients necessary to be able to understand the

problems which we solve in this paper and to introduce the state of the art con-

cerning them. But first a useful piece of notation, which we will use throughout

the paper.

Notation 1.8.

(1) We denote by Graph the class of graphs;

(2) we denote by Gp the class of groups;

(3) we denote by AB the class of abelian groups;

(4) we denote by TFAB the class of torsion-free abelian groups;

(5) given a class K, we denote by Kω the set of structures in K with domain ω.

Convention 1.9. To simplify statements, we use the following convention:

when we say that a class K of countable structures is Borel complete, we mean

that Kω is Borel complete. Similarly, when we say that a class K of countable

groups is complete co-analytic, we mean that Kω is a complete co-analytic

subset of Gpω. Finally, when we say that the isomorphism relation on a class

of countable groups is analytic, we mean that restriction of the isomorphism

relation on K to Kω ×Kω is an analytic subset of the Borel space Gpω ×Gpω
(as a product space).

In [4], together with the general notions just defined, the authors studied

some Borel complexity problems for specific classes of countable structures

of interest. Among other things they showed (we mention only the results

relevant to us) that

(i) countable graphs, linear orders and trees are Borel complete;

(ii) torsion abelian groups have complete analytic ∼= but are not Borel com-

plete;

(iii) nilpotent groups of class 2 and exponent p (p a prime) are Borel com-

plete;1

(iv) the isomorphism relation on finite rank torsion-free abelian groups is

Borel.

In [4] Friedman and Stanley explicitly state the following:

1As already mentioned in [4], this result is actually a straightforward adaptation of a

model theoretic construction due to Mekler [10].
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 5

There is, alas, a missing piece to the puzzle, namely our conjecture

that torsion-free abelian groups are complete. [. . . ] We have not even

been able to show that the isomorphism relation on torsion-free abelian

groups is complete analytic, nor, in another direction, that the class

of all abelian groups is Borel complete. We consider these problems to

be among the most important in the subject.

The challenge was taken by several mathematicians. The first to work on

this problem was Hjorth, who in [6] proved that any Borel isomorphism relation

is Borel reducible (in the sense of Definition 1.4) to the isomorphism relation on

countable torsion-free abelian groups and that, in particular, the isomorphism

relation on TFABω is not Borel (as there is no such Borel equivalence relation),

however leaving open the question whether TFABω is a Borel complete class,

or even whether the isomorphism relation on TFABω is complete analytic (cf.

Definition 1.3 and Fact 1.7).

The problem resisted further attempts of the time, and the interest moved

to another very interesting problem on torsion-free abelian groups: for 1 6 n <
m < ω, is the isomorphism relation ∼=n on torsion-free abelian groups of rank

n strictly less complex (in the sense of Definition 1.4) than the isomorphism

relation on torsion-free abelian groups of rank m? As mentioned above, the

isomorphism relation on torsion-free abelian groups of finite rank is Borel while,

as just mentioned, the isomorphim relation on countable torsion-free abelian

groups is not, and so the two problems are quite different, but obviously related.

Also this problem proved to be very challenging, until Thomas finally gave a

positive solution to the problem, in a series of two fundamental papers [16],

[17] proving, in particular, that for every n < ω, ∼=n is not universal among

countable Borel equivalence relations.

The fundamental work of Thomas thus completely resolved the case of

torsion-free abelian groups of finite rank, leaving open the problem for count-

able torsion-free abelian groups of arbitrary rank, i.e., the problem referred to

as “among the most important in the subject” in [4]. The problem remained

“dormant” for various years (at the best of our knowledge), until Downey and

Montalbán [3] made some important progress showing that the isomorphism

relation on countable torsion-free abelian groups is complete analytic, a neces-

sary but not sufficient condition for Borel completeness, as recalled in Fact 1.7.

This was of course possible evidence that the isomorphism relation was indeed

Borel complete, as conjectured in [4]. Despite this advancement, the prob-

lem of Borel completeness of countable torsion-free abelian groups remained

unresolved for another 12 years, until this day, when we prove

Main Theorem. The space TFABω is Borel complete; in fact there ex-

ists a continuous map B : Graphω → TFABω such that for every H1, H2,∈

Proof: page numbers may be temporary
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GIANLUCA PAOLINI and SAHARON SHELAH

Graphω , we have

H1
∼= H2 if and only if B(H1) ∼= B(H2).

The techniques employed in the proof of our Main Theorem lead us to (and

at the same time were inspired by) classification questions of “rigid” countable

abelian groups. One of the most important notions of rigidity in abelian group

theory is the notion of endorigidity, where we say that G ∈ AB is endorigid if

the only endomorphisms of G are multiplication by an integer. The analysis of

endorigid abelian groups is an old topic in abelian group theory; famous in this

respect is the result of the second author [15] that for every infinite cardinal λ,

there is an endorigid torsion-free abelian group of cardinality λ. We prove in

Theorem 1.10 below that the classification of the countable endorigid TFAB

is an highly untractable problem.

Theorem 1.10. The set of endorigid torsion-free abelian groups is a com-

plete co-analytic subset of the Borel space space TFABω . In fact, more strongly,

there is a Borel function F from the set of tree with domain ω into TFABω

such that
(i) if T is well-founded, then F(T ) is endorigid ;

(ii) if T is not well-founded, then F(T ) has a one-to-one f ∈ End(G) which

is not multiplication by an integer and such that G/f [G] is not torsion.

In [12] we extend the ideas behind Theorem 1.10 to a systematic investiga-

tion of several classification problems for various rigidity conditions on abelian

and nilpotent groups from the perspective of descriptive set theory of count-

able structures. In another direction, in [13] we study the question of existence

of uncountable (co-)Hopfian abelian groups; this work was later continued by

the second author et al. in the preprint [1], which settles some questions left

open in [13].

We conclude with a few words on the history of this article. At the end

of the refereeing process, the referee indicated some points which needed cor-

rection in the original version of this paper. Around the same time, Laskowski

and Ulrich indicated another point which needed correction in our original

submission. The referee also asked us to change the presentation of our Main

Theorem and to simply its proof — in particular, separating the algebra from

the combinatorics (division which is reflected by the current division in Sec-

tions 3 and 4). Here all the points raised there are addressed. We thank the

anonymous referee, Laskowski and Ulrich. Meanwhile, Laskowski and Ulrich

have found another proof of our Main Theorem; see [8], [7].

2. Notation and preliminaries

For the readers of various backgrounds we try to make the paper self-

contained.
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 7

2.1. General notation.

Definition 2.1.

(1) Given a set X, we write Y ⊆ω X for ∅ 6= Y ⊆ X and |Y | < ℵ0.

(2) Given a set X and x̄, ȳ ∈ X<ω, we write ȳ / x̄ to mean that lg(ȳ) < lg(x̄)

and x̄ � lg(ȳ) = ȳ, where x̄ is naturally considered as a function lg(x̄)→ X.

(3) Given a partial function f : M → M , we denote by dom(f) and ran(f)

the domain and the range of f , respectively.

(4) For ā ∈ Bn, we write ā ⊆ B to mean that ran(ā) ⊆ B, where, as usual, ā

is considered as a function {0, . . . , n− 1} → B.

(5) Given a sequence f̄ = (fi : i ∈ I), we write f ∈ f̄ to mean that there exists

j ∈ I such that f = fj .

2.2. Groups.

Notation 2.2. Let G and H be groups.

(1) H 6 G means that H is a subgroup of G.

(2) We let G+ = G \ {eG}, where eG is the neutral element of G.

(3) If G is abelian, we might denote the neutral element eG simply as 0G = 0.

Definition 2.3. Let H 6 G be groups. We say that H is pure in G,

denoted by H 6∗ G, when if h ∈ H, 0 < n < ω, g ∈ G and (in additive

notation) G |= ng = h, then there is h′ ∈ H such that H |= nh′ = h. Given

S ⊆ G, we denote by 〈S〉∗S the pure subgroup generated by S (the intersection

of all the pure subgroups of G containing S).

Observation 2.4. If H 6∗ G ∈ TFAB, h ∈ H, 0 < n < ω, G |= ng = h,

then g ∈ H.

Observation 2.5. Let G ∈ TFAB, let p be a prime, and let

Gp = {a ∈ G : a is divisible by pm for every 0 < m < ω}.

Then Gp is a pure subgroup of G.

Proof. This is well known; see, e.g., the discussion in [5, pp. 386–387]. �

Definition 2.6. Let p be a prime. We let

Qp =

ß
m1

m2
: m1 ∈ Z,m2 ∈ Z+, p and m2 are coprime

™
.

2.3. Trees.

Definition 2.7. Given an L-structure M , by a partial automorphism of M

we mean a partial function f : M →M such that f : 〈dom(f)〉M ∼= 〈ran(f)〉M .

In Section 5 we shall use the following notions.
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Definition 2.8. Let (T,<T ) be a strict partial order.

(1) (T,<T ) is a tree when, for all t ∈ T , {s ∈ T : s <T t} is well-ordered by

the relation <T . Notice that according to our definition, a tree (T,<T )

might have more than one root, i.e., more than one <T -minimal element.

We say that the tree (T,<T ) is rooted when it has only one <T -minimal

element (its root).

(2) A branch of the tree (T,<T ) is a maximal chain of the partial order (T,<T ).

(3) A tree (T,<T ) is said to be well-founded if it has only finite branches.

(4) Given a tree (T,<T ) and t ∈ T , we let the level of t in (T,<T ), denoted as

lev(t), be the order type of {s ∈ T : s <T t}; recall item (1).

Remark 2.9. Concerning Definition 2.8(4), we will only consider trees

(T,<T ) such that, for every t ∈ T , {s ∈ T : s <T t} is finite, so for us,

lev(t) ∈ ω.

3. The combinatorial frame

The isomorphism problem for countable models of the theory of two equiv-

alence relations is known to be at least as complex as the isomorphism problem

for any other Borel class of countable structures (cf., e.g., [11, p. 295]). In what

follows we will reduce this problem to the isomorphism problem for countable

TFAB’s. Our reduction will consist of an elaborated coding of finite partial

automorphisms g’s of models with two equivalence relations into partial auto-

morphisms fg’s of TFAB’s. For technical reasons, we will actually work with

finite sequences ḡ of finite partial automorphisms, and to avoid the trouble-

some case g = g−1 we will actually work with objects of the form (ḡ, ι) with

ι ∈ {0, 1}. Finally, also for technical reasons, we will consider models of the

theory of three equivalence relation, with one of them being equality.

The definition of m ∈ Kbo
2 (M) which we will introduce in Definition 3.4

is phrased just to construct a certain GM ∈ TFAB (see Definition 4.3) for

any relevant M and, in fact, as we will see, it will suffice (and it will be very

useful to do so) to construct such a GM just for M the countable homogeneous

universal model of the theory of two equivalence relations; cf. 3.2(2). In this

regard, below X will serve as set of generators for GM (in the appropriate

sense) and a ∈ M will be coded as X ′{a} ⊆ X (in a certain sense). As the

fḡ’s are finite partial automorphisms related to the partial automorphisms in

ḡ, it is natural to require that if ḡ = (g0, . . . , gn), then fḡ maps elements in

dom(fḡ) ∩X ′{a} into elements in X ′{gn(a)}. Almost all clauses in Definition 3.4

right below are combinatorial but, not surprisingly, one is more algebraic,

namely clause (8). As will be clear from reading Section 4 below, this clause is

crucial in reconstructing an isomorphism between models of the theory of two

equivalence relations from an isomorphism between TFABω’s.
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 9

Notation 3.1. For Z a set and 0 < n < ω, we let seqn(Z) = {x̄ ∈ Zn :

x̄ injective}.

Hypothesis 3.2.

(1) Keq is the class of models M in a vocabulary {E0,E1,E2} such that each

EMi is an equivalence relation and EM2 is the equality relation. We use the

symbol Ei to avoid confusion, as the symbol Ei appears in 3.4.

(2) M is the countable homogeneous universal model in Keq.

(3) G is essentially the set of finite non-empty partial automorphisms g of M ,

but for technical reasons2 it is the set of objects g = (hg, ιg), where

(A) (a) hg is a finite non-empty partial automorphism of M ;

(b) ιg ∈ {0, 1};
(B) for g ∈ G, we let

(a) g−1 = (h−1
g , 1− ιg);

(b) for a ∈M , g(a) = hg(a);

(c) for U ⊆M , g[U ] = {hg(a) : a ∈ U};
(d) g1 ⊆ g2 means hg1 ⊆ hg2 and ιg1 = ιg2 ;

(e) g1 ( g2 means g1 ⊆ g2 and g1 6= g2;

(f) dom(g) = dom(hg) and ran(g) = ran(hg);

(g) for U ⊆M , g � U = (hg � U , ιg).
(4) For m < ω, Gm∗ = {(g0, . . . , gm−1) ∈ Gm : g0 ( · · · ( gm−1}.
(5) G∗ =

⋃
{Gm∗ : m < ω}. (Notice that the empty sequence belongs to G∗.)

Notation 3.3. (1) We use s, t, . . . to denote finite non-empty subsets of M

and U ,V, . . . to denote arbitrary subsets of M . Recall from 2.1 that ⊆ω
means finite subset.

(2) For A a set, we let s ⊆1 A mean s ⊆ A and |s| = 1.

(3) For ḡ = (g0, . . . , glg(ḡ)−1) ∈ Glg(ḡ)
∗ and s, t ⊆ω M , we let

(a) for a, b ∈M , ḡ(a) = b mean that glg(ḡ)−1(a) = b;

(b) ḡ[s] = t means that glg(ḡ)−1[s] = t;

(c) dom(ḡ) = dom(glg(ḡ)−1), and ∅ if lg(ḡ) = 0;

(d) ran(ḡ) = ran(glg(ḡ)−1), and ∅ if lg(ḡ) = 0;

(e) ḡ−1 = (g−1
i : i < lg(ḡ));

(f) ḡ((x` : ` < n)) = (ḡ(x`) : ` < n).

Definition 3.4. In the context of 3.2, let Kbo
2 (M) be the class of objects

(called systems) m(M) = m = (Xm, X̄m, f̄m, Ēm) = (X, X̄, f̄, Ē) such that

(1) X is an infinite countable set and X ⊆ ω;

(2) (a) (X ′s : s ⊆1 M) is a partition of X into infinite sets;

2The reason is that we want to force that g 6= g−1.
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(b) for s ⊆ω M , let Xs =
⋃
t⊆1sX

′
t;

(c) X̄ = (Xs : s ⊆ω M) and so s ⊆ t ⊆ω M implies Xs ⊆ Xt;

(3) for U ⊆M , let XU =
⋃
{Xs : s ⊆1 U} and so X = XM =

⋃
{Xs : s ⊆1 M};

(4) f̄ = (fḡ : ḡ ∈ G∗) (recall the definition of G∗ from 3.2(5)) and

(a) fḡ is a finite partial bijection of X and fḡ is the empty function if and

only if lg(ḡ) = 0;

(b) for s, t ⊆1 M and ḡ[s] = t, we have

fḡ(x) = y implies (x ∈ X ′s if and only if y ∈ X ′t);

(c) for s, t ⊆1 M , (fḡ(x) = y, x ∈ X ′s, y ∈ X ′t) implies (ḡ[s] = t);

(d) fḡ−1 = f−1
ḡ (recall that ḡ−1 6= ḡ, when dom(ḡ) 6= ∅);

(5) ḡ, ḡ′ ∈ G∗, ḡ / ḡ′ ⇒ fḡ ( fḡ′ ;

(6) we define the graph (seqn(X), Rm
n ) as (x̄, ȳ) ∈ Rm

n = Rn when x̄ 6= ȳ and

for some ḡ ∈ G∗, we have fḡ(x̄) = ȳ;

notice that f−1
ḡ = fḡ−1 ∈ f̄ , as ḡ ∈ G∗ implies ḡ−1 ∈ G∗;

(7) Ēm = Ē = (En : 0 < n < ω) = (Em
n : 0 < n < ω) and, for 0 < n < ω, En is

the equivalence relation corresponding to the partition of seqn(X) given

by the connected components of the graph (seqn(X), Rn);

(8) if p is a prime, k > 2, x̄ ∈ seqk(X), y = (ȳi : i < i∗) ∈ (x̄/Em
k )i∗ , with the

ȳi’s pairwise distinct, r̄ ∈ Qy, q` ∈ Qp for ` < k, and

a(y,r̄)(y) = a(y,r̄,y) =
∑
{rȳq` : ` < k, ȳ = ȳi, i < i∗, y = yi`}

for y ∈ set(y) =
⋃
{ran(ȳi) : i < i∗}, then we have the following:

|{y ∈ set(y) : a(y,r̄)(y) /∈ Qp}| 6= 1,

where we recall that Qp was defined in Definition 2.6;

(9) if for every n < ω, gn ∈ G and gn ( gn+1, U =
⋃
n<ω dom(gn) ⊆ M and

V =
⋃
n<ω ran(gn) ⊆M , then we have the following:⋃
n<ω

dom(f(g` : `<n)) = XU and
⋃
n<ω

ran(f(g` : `<n)) = XV .

The definition of m ∈ Kbo
2 (M) from 3.4 isolates exactly what is needed

for the group theoretic construction from Section 4 to take place. The rest of

this section has as its sole purpose to show that an object as in Definition 3.4

exists. To this extent, we introduce an auxiliary class of objects, Kbo
1 (M); cf.

Definition 3.5. This definition is devised with a twofold aim in mind: on one

hand to put more detailed information on the objects at play in Definition 3.4,

and on the other hand to be able to construct the desired m ∈ Kbo
2 (M) as a

limit of a sequence of approximations m` ∈ Kbo
1 (M), for ` < ω, of such an

m ∈ Kbo
2 (M). In this process the crucial algebraic condition (8) from Defi-

nition 3.4 gets translated in the more technical algebraic condition (11) from
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 11

Definition 3.5, showing that this condition is preserved in the limit construc-

tion, which will be the most elaborated part of this section.

Definition 3.5. In the context of 3.2, let Kbo
1 (M) be the class of objects

m(M) = m = (Xm, X̄m, Im, Īm, f̄m, Ēm, Ym) = (X, X̄, I, Ī, f̄, Ē, Y ) such that

(1) X is an infinite countable set and X ⊆ ω;

(2) (a) (X ′s : s ⊆1 M) is a partition of X into infinite sets;

(b) for s ⊆ω M , let Xs =
⋃
t⊆1sX

′
t;

(c) X̄ = (Xs : s ⊆ω M) and so s ⊆ t ⊆ω M implies Xs ⊆ Xt.

(3) For U ⊆M , letXU =
⋃
{Xs : s ⊆1 U} and soX = XM =

⋃
{Xs : s ⊆1 M}.

(4) (a) Ī = (In : n < ω) = (Imn : n < ω) are pairwise disjoint;

(b) ḡ ∈ In implies ḡ ∈ Gm∗ for some m 6 n;

(c) In is finite.

(5) If ḡ′ / ḡ ∈ In, then ḡ′ ∈ I<n :=
⋃
`<n I`.

(6) I = Im =
⋃
n<ω In.

(7) f̄ = (fḡ : ḡ ∈ I) and

(a) fḡ is a finite partial bijection of X and fḡ is the empty function if and

only if lg(ḡ) = 0;

(b) dom(fḡ) ⊆ Xdom(ḡ) and ran(fḡ) ⊆ Xran(ḡ) (cf. Notation 3.3(3c), (3d));

(c) for s, t ⊆1 M , (fḡ(x) = y, x ∈ X ′s, y ∈ X ′t) implies (ḡ[s] = t);

(d) if ḡ ∈ In, then ḡ−1 ∈ In and fḡ−1 = f−1
ḡ .

(8) ḡ / ḡ′ ⇒ fḡ ( fḡ′ .

(9) We define the graph (seqn(X), Rm
n ) as (x̄, ȳ) ∈ Rm

n = Rn when x̄ 6= ȳ and

for some ḡ ∈ I, we have fḡ(x̄) = ȳ.

Notice that f−1
ḡ = fḡ−1 ∈ f̄ , as ḡ ∈ I implies ḡ−1 ∈ I.

(10) (a) Ēm = Ē = (En : n < ω) = (Em
n : n < ω), and, for n < ω, En is the

equivalence relation corresponding to the partition of seqn(X) given

by the connected components of the graph (seqn(X), Rn);

(b) Y = Ym is a non-empty subset of X which includes the following set:

{x ∈ X : for some ḡ ∈ I, x ∈ dom(fḡ)};

notice that this inclusion may very well be proper;

(c) seqk(m) = {x̄ ∈ seqk(X) : for some ḡ ∈ I, x̄ ⊆ dom(fḡ)}; notice that

seqk(m) ⊆ seqk(Ym) but the converse need not hold.

(11) If p is a prime, k > 2, x̄ ∈ seqk(X), q̄ ∈ (Qp)
k, s = (p, k, x̄, q̄) and ā ∈ As,

then suppp(ā) is not a singleton, where we define As, Am and suppp(ā) as

follows:

(a) As ⊆ Am = {(ay : y ∈ Z) : Z ⊆ω X and ay ∈ Q};
(b) if ā ∈ Am, then we let

suppp(ā) = {y ∈ dom(ā) : ay /∈ Qp};
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(c) if y = (ȳi : i < i∗) ∈ (x̄/Em
k )i∗ (but abusing notation we may treat y as

a set), with the ȳi’s pairwise distinct and r̄ ∈ Qy, then ā ∈ As, where

ā = ā(y,r̄) = (ay : y ∈ set(y)),

and where ay and set(y) are defined as follows:

ay = a(y,r̄)(y) = a(y,r̄,y) =
∑
{rȳq` : ` < k, ȳ = ȳi, i < i∗, y = yi`},

set(y) =
⋃
{ran(ȳi) : i < i∗};

(d) if ā ∈ As and suppp(ā) ⊆ Z ⊆ dom(ā), then ā � Z ∈ As;

(e) if ā, b̄ ∈ As, then c̄ = ā+ b̄ ∈ As, where dom(c̄) = dom(ā)∪dom(b̄) and

(i) cy = ay + by, if y ∈ dom(ā) ∩ dom(b̄);

(ii) cy = ay, if y ∈ dom(ā) \ dom(b̄);

(iii) cy = by, if y ∈ dom(b̄) \ dom(ā);

(f) if ḡ ∈ Im, Z1 ⊆ω dom(fḡ), Z2 = fḡ[Z1] and ā = (ay : y ∈ Z2) ∈ As,

then

ā[fḡ ] = (afḡ(y) : y ∈ Z1) ∈ As;

(g) As is the minimal subset of Am satisfying clauses (c)–(f).

As mentioned above, members in m ∈ Kbo
1 (M) are to be thought of as

approximations to objects in Kbo
2 (M), but technically an m ∈ Kbo

1 (M) and

an m ∈ Kbo
2 (M) are made of different components, so we give a name to the

objects in m ∈ Kbo
1 (M) which are essentially members of Kbo

2 (M). We call

them full; see 3.6.

Definition 3.6. For m ∈ Kbo
1 (M), we say that m is full when in addition

to (1)–(11), condition 3.4(9) is satisfied and 3.5(4) is strengthen to 3.4(4) (that

is, we ask I = G∗). Explicitly to (1)–(11) from 3.5 we add

(12) if for every n < ω, gn ∈ G and gn ( gn+1, U =
⋃
n<ω dom(gn) ⊆ M and

V =
⋃
n<ω ran(gn) ⊆M , then we have the following:⋃
n<ω

dom(f(g` : `<n)) = XU and
⋃
n<ω

ran(f(g` : `<n)) = XV ;

(13) I =
⋃
n<ω In = G∗.

We shall concentrate on the m ∈ Kbo
1 (M) which are, in some sense, with

“finite information,” i.e., the ones in which both Ym and Im are finite. Fur-

thermore, we will define a notion of “n is a successor of m.” These notions are

tailor made for our inductive construction of a full m ∈ Kbo
1 (M) to take place.

Definition 3.7.

(1) Kbo
0 (M) is the class of m ∈ Kbo

1 (M) such that Ym is finite, and for some

n < ω, we have that for every m > n, Im = ∅ and I0 = {( )}. In this case

we let n = n(m) to be the minimal such n < ω (so n(m) > 0).

Proof: page numbers may be temporary

Paper Sh:1205, version 2024-04-15. See https://shelah.logic.at/papers/1205/ for possible updates.



1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 13

(2) We say that n ∈ suc(m) when

(a) n,m ∈ Kbo
0 (M), Xm = Xn;

(b) for s ⊆1 M , (X ′s)
m = (X ′s)

n;

(c) for t ⊆ω M , (Xt)
m = (Xt)

n (follows);

(d) n(n) = n+ 1, where n(m) = n;

(e) if ` < n(m), then Im` = In` and
∧
ḡ∈Im` f

m
ḡ = fnḡ ;

(f) for some ḡ ∈ G∗, Inn = {ḡ, ḡ−1}, lg(ḡ) 6 n and ` < lg(ḡ) implies

ḡ � ` ∈
⋃
`<n

Im` ;

notice that ḡ /∈
⋃
`<n I

m
` (by Definition 3.5(4a)) and the symmetric

condition ḡ−1 � ` ∈
⋃
`<n I

m
` follows from Definition 3.5(7d);

(g) (α) if x̄En
k ȳ and ¬(x̄Em

k ȳ), then x̄ /∈ seqk(m) or ȳ /∈ seqk(m);

(β) En
k � seqk(m) = Em

k � seqk(m).

(3) <suc on Kbo
0 (M) is the transitive closure of the relation n ∈ suc(m).

The heart of this section is the following claim.

Claim 3.8. For M as in 3.2, there exists m ∈ Kbo
1 (M) which is full.

Proof. Our strategy is to construct a full m ∈ Kbo
1 (M) as a limit of mem-

bers m` ∈ Kbo
0 (M) for ` < ω. Naturally, m0 is not hard to choose; see (∗)1

below. Concerning the choice of the m`’s, in (∗)3 below we list our tasks: for

every ḡ ∈ G∗, we have a ḡ-task which is ensuring that fḡ is well defined. Thus,

we list G∗ as (ḡ` : ` < ω) appropriately and in choosing m`+1, a successor of

m`, we take care of the ḡ`-task. This lead us to the main part of the proof,

namely (∗)2. Here we are given m and appropriate ḡ_(g) ∈ G∗ such that

ḡ ∈ Im, i.e., fḡ is already well defined for m. Our aim is to define a suitable

successor n of m and, in particular, to define fḡ_(g) for n. Moreover, to take

care of the fullness of the limit we want both dom(fḡ_(g)) and Ym to be large

enough. This explains the statement of (∗)2.

(∗)1 Kbo
0 (M) 6= ∅.

[Why? Let m be such that

(a) |X| = ℵ0 and X ⊆ ω;

(b) (X ′s : s ⊆1 M) is a partition of X into infinite sets;

(c) for s ⊆ω M , Xs =
⋃
t⊆1sX

′
t;

(d) X̄ = (Xs : s ⊆ω M);

(e) Im0 = {( )}, f( ) is the empty function, f̄ = (f( )) and I1+n = ∅ for every

n < ω;

(f) Ym is any finite non-empty subset of X.

Note that ( ) denotes the empty sequence and under this choice of m, n(m)=1,

where we recall that the notation n(m) was introduced in Definition 3.7(1).
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Notice also that 3.5(11) is easy to verify for m as above, as x̄/Em
k is always a

singleton.]

(∗)2 If m ∈ Kbo
0 (M), n = n(m) > 0, ḡ = (g0, . . . , gm−1) ∈ Im (so n > m) and

(i) g ∈ G;

(ii) for every ` < m, g` ( g;

(iii) ḡ_(g) /∈ Im;

then there is n ∈ Kbo
0 (M) such that

(a) n ∈ suc(m);

(b) ḡ_(g) ∈ Inn;

(c) if s ⊆1 s
+ = dom(g) ∪ ran(g), then Yn contains min(X ′s \ Ym);

(d) dom(fnḡ_(g)) = Ym ∩Xdom(g);

(e) so n(n) = n(m) + 1.

The proof of (∗)2 is clearly the heart of the proof. The choice of n in (∗)2.3

below is natural: we choose fnḡ_(g) = f∗ “freely,” i.e., it extends fmḡ , it has

large enough domain and no “accidental equality” holds. Lastly, Yn has to

include Ym, ran(f∗) and witnesses toward the proof of fullness (cf. (∗)2(c)),

which will be dealt with in the next successor step, so we are making sure that

the induction goes on.

We thus move to the proof of (∗)2, where we let fmḡ = fḡ.

(∗)2.1 Let s∗ = dom(g) ⊆ω M , hence dom(ḡ) ( s∗, and let u∗ = Ym ∩Xs∗ .

(∗)2.2 Let f∗ be a finite permutation of X satisfying the following:

(a) f∗ obeys 3.5(7a)–(7c) for ḡ_(g) and dom(f∗) = u∗;

(b) f∗ extends fḡ;

(c) dom(f∗) ∩ ran(f∗) = ran(fḡ);

(d) if x ∈ dom(f∗) \ dom(fḡ), then f∗(x) /∈ Ym (so f∗(x) /∈ dom(f∗)).

We now define n, as required in (∗)2.

(∗)2.3 (A) (a) Xn = Xm and X̄n = X̄m;

(b) Inn = {ḡ_(g), (ḡ−1)_(g−1)};
(c) In = Im ∪ Inn;

(d) In` = Im` for ` 6= n;

(e) fn
h̄

= fm
h̄

for h̄ ∈ Im.

(B) (a) n(n) = n+ 1;

(b) fnḡ_(g) = f∗, f
n
(ḡ−1)_(g−1) = f−1

∗ ;

(c) Yn = Z ∪ Z+, where (noticing f∗[Ym] = ran(f∗))

(·1) Z = Ym ∪ f∗[Ym];

(·2) Z+ = {min(X ′s \ Ym) : s ⊆1 s
+} \ Z, recalling (∗)2(c).

The reason for Z+ in (B)(c) above it to satisfy condition (∗)2(c).

(∗)2.3.1 Rn
k and En

k are defined from the information in (∗)2.3, as in 3.5(9).
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 15

Comparing (seqk(X), Rn
k) and (seqk(X), Rm

k ), the set of new edges is

{(x̄, ȳ) : (x̄, ȳ) ∈ Zk1 ∪ Zk−1},

where we let

(∗)2.4 Zk1 = {(x̄, ȳ) : x̄ ∈ seqk(dom(f∗)), f∗(x̄) = ȳ, x̄ /∈ seqk(dom(fḡ))},
Zk−1 = {(x̄, ȳ) : (ȳ, x̄) ∈ Zk1 }.

Notice that possibly x̄ ⊆ dom(f∗) ∧ x̄ /∈ seqk(m), and possibly x̄ ⊆ dom(f∗) ∧
x̄ 6⊆ dom(fmḡ ) ∧ x̄ ∈ seqk(m) (as witnessed by some ḡ′ ∈ Im<n). Anyhow the

union Zk1 ∪ Zk−1 is disjoint, as dom(f∗) = u∗ by (∗)2.2(a), u∗ ⊆ Ym by (∗)2.1,

and x ∈ dom(f∗) \ dom(fḡ) implies f∗(x) /∈ Ym by (∗)2.2(d). Notice now that

(∗)2.4.1 if x̄ ∈ seqk(u∗) and ȳ = f∗(x̄), then

x̄ ⊆ dom(fḡ)⇔ ȳ ⊆ ran(fḡ)⇒ (x̄ ∈ seqk(m) ∧ ȳ ∈ seqk(m)).

Now, we have

(∗)2.5 (a) if (x̄, ȳ) ∈ Zk1 , then

(α) x̄ ∈ seqk(u∗) and x̄ 6⊆ dom(fḡ);

(β) ȳ ⊆ f∗(u∗), ȳ 6⊆ Ym, ȳ 6⊆ ran(fḡ) and ȳ ∩ Ym ⊆ ran(fḡ);

(b) the dual of item (a) for (x̄, ȳ) ∈ Zk−1;

(c) if z̄ ∈ seqk(n) \ seqk(m), then z̄ occurs in exactly one edge of Rn
k.

[Why? Item (a)(β) is by (∗)2.2(d). Item (c) is by (∗)2.2(c).]

Notice now that

(∗)2.6 in the graph (seqk(X), Rn
k), we have (where x̄ ∈ seqk(X) below)

(i) all the new edges have at least one node in seqk(u∗)\seqk(dom(fḡ))

and one in seqk(f∗[u∗]) \ seqk(ran(fḡ)) = seqk(f∗[u∗]) \ seqk(Ym);

(ii) every node in seqk(n) \ seqk(Ym) has valency 1;

(iii) if x̄ 6⊆ Ym and x̄ 6⊆ ran(f∗), then x̄/En
k = {x̄};

(iv) if x̄ ⊆ Ym and x̄ 6⊆ dom(f∗), then x̄/En
k = x̄/Em

k ;

(v) if x̄ ⊆ dom(f∗) (hence x̄ ⊆ Ym), then

x̄/En
k = x̄/Em

k ∪ {f∗(ȳ) : ȳ ∈ x̄/Em
k , ȳ ⊆ u∗, ȳ 6⊆ dom(fḡ)};

(vi) if x̄ ⊆ dom(fḡ) and x̄/Em
k ∩ seqk(u∗) ⊆ seqk(dom(fḡ)), then

x̄/En
k = x̄/Em

k = f∗(x̄)/Em
k ;

(vii) if x̄ 6⊆ Ym but x̄ ⊆ f∗(u∗), then x̄/En
k = f−1

∗ (x̄)/En
k ;

(viii) if x̄ ∈ seqk(Ym), then

(x̄/En
k) ∩ seqk(Ym) = (x̄/Em

k ) ∩ seqk(Ym).

Notice also that

(∗)2.6.1 (a) if x̄0, . . . , x̄m is a path in (seqk(n), Rn
k) with no repetitions and

0 < ` < m, then x̄` ∈ seqk(m);

(b) En
k � seqk(m) = Em

k � seqk(m) and En
k � seqk(Ym) = Em

k � seqk(Ym).
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Now, we claim

(∗)2.7 n ∈ Kbo
0 (M) and n ∈ suc(m).

The only non-trivial thing is to verify that n satisfies 3.5(11). In principle,

verifying that this holds should be straightforward. As n is explicitly defined

in an essentially free manner, we should be able to check the algebraic condi-

tion 3.5(11). In actuality, though, verifying 3.5(11) would require an explicit

description of An
s . We circumvent this by explicitly defining an A′ such that

An
s ⊆ A′ (cf. (∗)2.7.5) and such that A′ satisfies the crucial condition that each

ā ∈ A′ has non-singleton p-support (cf. (∗)2.7.6). Notice that in order to show

that An
s ⊆ A′, it suffices to show that A′ satisfies the minimal set of condition

defining An
s , as defined in 3.5(11), and so it is not hard to achieve, although

the proof requires careful checking. Also the proof (∗)2.7.6 is in principle not

hard but it involves a careful checking of many cases.

We thus move to the proof of 3.5(11). To this extent,

(∗)2.7.0 Let s = (p, k, x̄, q̄) be as in 3.5(11).

Now, if x̄ /∈ seqk(Ym) and x̄ /∈ seqk(ran(f∗)), then x̄/En
k is a singleton and so

the proof is as in (∗)1. Thus, from now on we assume

(∗)2.7.1 Without loss of generality, x̄ ∈ seqk(Ym) or x̄ ∈ seqk(ran(f∗)).

(∗)2.7.2 (a) Without loss of generality, x̄ ∈ seqk(Ym);

(b) let s be is as in 3.5(11) for m and x̄;

(c) so Am
s is well defined.

[Why (a)? If x̄ 6⊆Ym, then, by (∗)2.7.1, necessarily x̄⊆ran(f∗), so f−1
∗ (x̄)∈ x̄/En

k

and f−1
∗ (x̄)⊆Ym. By (∗)2.6(vii), we can replace x̄ by f−1

∗ (x̄); (b), (c) are clear.]

(∗)2.7.3 (a) Am
s ⊆ An

s , let A1
s = Am

s , recalling 3.5(11);

(b) let A2
s = {b̄[f

−1
∗ ] : b̄ ∈ A1

s and dom(b̄) ⊆ dom(f∗)}, where for b̄ =

(by : y ∈ Z1) with Z1 ⊆ dom(f∗) and Z2 = f∗[Z1], we let

b̄[f
−1
∗ ] = (bf−1

∗ (y) : y ∈ Z2);

(c) A2
s ⊆ {b̄ ∈ A2

s : dom(b̄) ⊆ ran(f∗)};
(d) recalling 3.5(11)(f), notice that for any function h such that b̄[h] is

well defined, we have that if b̄[h] = c̄, then the following happens:

dom(b̄) ⊆ ran(h) and dom(c̄) ⊆ dom(h).

(∗)2.7.4 Let A′ be the set of ā such that for some ā1 ∈ A1
s , ā2 ∈ A2

s and u

such that suppp(ā1 + ā2) ⊆ u ⊆ dom(ā1) ∪ dom(ā2), we have that

(ā1 + ā2) � u = ā. In this case we call (ā1, ā2, u) a witness for ā.

Now we crucially claim

(∗)2.7.5 An
s ⊆ A′.
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 17

Why (∗)2.7.5? Obviously A′ satisfies 3.5(11)(a) and 3.5(11)(b) is a definition.

By 3.5(11)(g) it suffices to prove that A′ satisfies (c)–(f) from 3.5(11).

(∗)2.7.5.1 A′ satisfies Clause 3.5(11)(c).

Let y = (ȳi : i < i∗) ∈ (x̄/En
k)i∗ , r̄ ∈ Qy and ā = ā(y,r̄) be as in the

assumptions of Clause 3.5(11)(c). Recall that abusing notation we treat y as

a set. Let

y1 = {ȳi : i < i∗, ȳ
i ⊆ Ym},

y2 = {ȳi : i < i∗, ȳ
i 6⊆ Ym (so ȳi ⊆ ran(f∗))}.

Easily we have that y is the disjoint union of y1 and y2, and we have

ā(y,r̄) = ā(y1,r̄�y1) + ā(y2,r̄�y2),

provided that we show that ā2 = ā(y2,r̄�y2) ∈ A2
s (as ā1 = ā(y1,r̄�y1) ∈ A1

s is

obvious by (∗)2.6(viii)). We do this. Let y′2 = {f−1
∗ (ȳ) : ȳ ∈ y2}. Now, if

ȳ ∈ y2, then f−1
∗ (ȳ) = f−1

ḡ_(g)(ȳ) ∈ x̄/En
k ∩ seqk(Ym) ⊆ x̄/Em

k . Why? First of

all f−1
∗ (ȳ) = f−1

ḡ_(g)(ȳ), by the choice of ḡ_(g). Secondly, f−1
ḡ_(g)(ȳ)∈ x̄/En

k as

ȳ⊆f∗[u∗], ȳ /∈Ym and ȳ/En
k=f−1

∗ (ȳ)/En
k , by (∗)2.6(vii). Thirdly, f−1

ḡ_(g)(ȳ)∈Ym,

by the choice of fḡ_(g). Thus, f−1
ḡ_(g)(ȳ) ∈ x̄/En

k ∩ Ym, and, by (∗)2.6(viii)

we have that x̄/En
k ∩ Ym ⊆ x̄/Em

k . Now let r̄′2 = (r′(2,ȳ) : ȳ ∈ y′2), where

r′(2,ȳ) = r(2,f∗(ȳ)). Also, let ā′2 = (a′(2,y) : y ∈ set(y′2)), where for y ∈ set(y′2), we

let

a′(2,y) =
∑
{r′(2,ȳ)q` : ȳ ∈ y′2 and y` = y}.

As y′2 ⊆ x̄/Em
k and m satisfies 3.5(11)(c), easily ā′2 ∈ Am

s = A1
s . Also, easily

y ∈ set(y′2) implies a′(2,y) = a(2,f∗(y)) (recall that r′(2,ȳ) = r(2,f∗(ȳ))) and so

(ā′2)[f−1
∗ ] = ā2. Thus, ā2 ∈ A2

s . Now, y′2, r̄
′
2 witness that ā′2 ∈ A1

s and so by the

definition of A2
s we are done. This concludes the proof of (∗)2.7.5.1.

(∗)2.7.5.2 A′ satisfies Clause 3.5(11)(d).

This is obvious by the definition of A′.
(∗)2.7.5.3 A′ satisfies Clause 3.5(11)(e).

Let ā, b̄ ∈ A′, and let (ā1, ā2, u) be a witness for ā and (b̄1, b̄2, v) be a

witness for b̄, now (ā1 + ā2, b̄1 + b̄2, u ∪ v) is a witness for ā + b̄. Hence,

c̄ = ā+ b̄ ∈ A′.
(∗)2.7.5.4 A′ satisfies Clause 3.5(11)(f).

Let h̄ ∈ In, Z1 ⊆ dom(fh̄), Z2 = fh̄[Z1] and dom(ā) ⊆ Z2. We shall prove

that ā[fh̄] ∈ A′, where ā ∈ A′ and (ā1, ā2, u) is a witness of this.

Case 1: u 6⊆ Ym and u 6⊆ ran(f∗). In this case there is no such h̄.
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Case 2: u 6⊆ Ym and u ⊆ ran(f∗). Notice that u 6⊆ Ym, so there is y ∈
u \ Ym. Now, y ∈ u ⊆ dom(f∗). But we have

h̄ ∈ Im ⇒ dom(fh̄) ⊆ Ym ⇒ y /∈ dom(fh̄),

h̄ = ḡ_(g)⇒ dom(fh̄) = u∗ ⇒ y /∈ dom(fh̄),

so necessarily h̄ = (ḡ−1)_(g−1) and fh̄ = f−1
∗ . Now,

(·) Without loss of generality, dom(ā1) ⊆ ran(fḡ).

[Why? If z ∈ dom(ā1) \ ran(fḡ), then z /∈ u so z /∈ suppp(ā) and z /∈ dom(ā2),

hence az = a(1,z) ∈ Qp. Thus, ā∗1 = ā1 � (dom(ā1) ∩ ran(fḡ)) ∈ A1
s and

(ā1 + ā2) � u = (ā∗1 + ā2) � u, so we can replace ā1 by ā∗1, as m satisfies

clause (f).]

Let ā′1 = ā
[fḡ ]
1 = ā

[f∗]
1 ; this is well defined. I belongs to A1

s and has domain

⊆ dom(f∗). Also, dom(ā2)⊆ ran(f∗) and ā2 ∈A2
s , hence ā′2 = a

[f∗]
2 ∈A1

s and it

has domain ⊆dom(f∗). By 3.5(11)(e) and the above we have that ā′ = ā′1 + ā′2
∈A1

s . Also, suppp(ā
′)⊆f−1

∗ [u]⊆dom(ā′1+ā′2), hence ā′ � f−1
∗ [u] ∈ A1

s . Thus,

ā[fh̄] = ā[f∗]

= ((ā1 + ā2) � u)[f−1
∗ ]

= (ā1 + ā2)[f∗] � f−1
∗ [u]

= (ā
[f∗]
1 + ā

[f∗]
2 ) � f−1

∗ [u]

= (ā′1 + ā′2) � f−1
∗ [u]

= ā′ � f−1
∗ [u] ∈ A1

s .

Case 3: u ⊆ Ym and h̄ = fnḡ_(g) = f∗. In this case we have

(·) Without loss of generality, dom(ā2) ⊆ ran(fḡ).

[Why? If y ∈ dom(ā2) \ ran(fḡ), then (recalling dom(ā2) \ ran(fḡ) ⊆ f∗[u∗] \
ran(fḡ) ⊆ f∗[u∗]\u) we have that y /∈ u so y /∈ suppp(ā) and y /∈ dom(ā1), hence

ay = a(2,y) ∈ Qp. Thus, by 3.5(11)(d), ā∗2 = ā2 � (dom(ā2)∩ ran(fḡ)) ∈ A2
s and

(ā1+ā2) � u = (ā1+ā∗2) � u, so we can replace ā2 by ā∗2, as m satisfies clause (f).]

Let ā′2 = ā
[fḡ ]
2 = ā

[f∗]
2 . This is well defined, and it belongs to A1

s (by the

definition of A2
s , recalling ā2 ∈ A2

s). Also, ā′2 has domain ⊆ dom(f∗). Now,

as m ∈ Kbo
0 (M), fḡ ∈ Im and ā′2 ∈ A1

s = Am
s , recalling 3.5(11)(e), we have

ā2 = (ā′2)[f−1
ḡ ] ∈ A1

s , so as m ∈ Kbo
0 (M), we have ā1 + ā2 ∈ A1

s . Thus, as

A1
s ⊆ A′, we are done.

Case 4: u ⊆ Ym and h̄ ∈ Im. This is similar to Case 3.

Case 5: u ⊆ Ym and h̄ = fn(ḡ−1)_(g−1) = f−1
∗ . As u ⊆ Ym and u ⊆

dom(fn
h̄
) = dom(f−1

∗ ) = ran(f∗), necessarily we have

u ⊆ Ym ∩ ran(f∗) = ran(fḡ) (cf. (∗)2.2(c)).
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TORSION-FREE ABELIAN GROUPS ARE BOREL COMPLETE 19

As in earlier cases,

(·) Without loss of generality, dom(ā2) ⊆ ran(fḡ).

So we can finish as in Case 4.

Thus, indeed An
s ⊆ A′, by (g) of the definition of An

s in 3.5(11) and

(∗)2.7.5.1-(∗)2.7.5.4. Hence, we finished proving (∗)2.7.5.

(∗)2.7.6 If ā ∈ A′, then suppp(ā) is not a singleton.

We prove (∗)2.7.6. Let ā ∈ A′, and let (ā1, ā2, u) be a witness of this. For

` = 1, 2, let ā′` = ā` � suppp(ā`). Then, by 3.5(11)(d), we have that ā′1 ∈ A1
s =

Am
s . Also, ā∗2 = ā

[f∗]
2 ∈ A1

s , by the definition of A2
s , and so, as m ∈ Kbo

0 (M),

ā∗2 � {y ∈ X : f∗(y) ∈ dom(ā′2)} ∈ A1
s . Clearly we have the following:

domp(a
∗
2) := {y ∈ dom(ā∗2) : ā∗(2,y) /∈ Qp}

= {y ∈ dom(a∗2) : a(2,f∗(y)) = a(2,y) /∈ Qp}

= {f∗(y) : y ∈ domp(ā2) = {y ∈ dom(ā∗2) : ā(2,y) /∈ Qp}}.

Thus, ā∗2 � domp(ā
∗
2) = (ā′2)[f∗]. As ā∗2 = ā

[f∗]
2 ∈ A1

s , recalling that A1
s = Am

s ,

by 3.5(11)(d), we have that (ā′2)[f∗] = ā∗2 � domp(ā
∗
2) ∈ Am

s . Hence, by the

definition of A2
s (as ā = b̄[f∗] if and only if b̄ = ā[f−1

∗ ]), ā′2 ∈ A2
s . So we have

(a) if y ∈ dom(ā1) ∩ dom(ā2), then

(·) y /∈ suppp(ā1) implies y ∈ suppp(ā1 + ā2) if and only if y ∈ suppp(ā2);

(·) y /∈ suppp(ā2) implies y ∈ suppp(ā1 + ā2) if and only if y ∈ suppp(ā1);

(b) if y∈dom(ā1)\dom(ā2), then y∈suppp(ā1) if and only if y∈suppp(ā1+ā2);

(c) if y∈dom(ā2)\dom(ā1), then y ∈ suppp(ā2) if and only if y∈suppp(ā1+ā2).

Hence,

(∗)2.7.6.1 Without loss of generality, ā = ā1 + ā2 and ā` = ā` � suppp(ā`) for

` = 1, 2.

[Why? Letting u′ = dom(ā′1) ∪ dom(ā′2), we have

(a) u′ ⊆ u;

(b) dom(ā′1), dom(ā′2) ⊆ u;

(c) ā′1 + ā′2 � suppp(ā
′
1 + ā′2) = ā1 + ā2 � suppp(ā1 + ā2).

So (∗)2.7.6.1 holds indeed.]

With (∗)2.7.6.1 in mind, we now get back to the proof of (∗)2.7.6.

Case A: suppp(ā1) 6⊆ ran(fḡ) and suppp(ā2) 6⊆ ran(fḡ). As suppp(ā1) 6⊆
ran(fḡ), we can choose y1 ∈ suppp(ā1) \ ran(fḡ), and similarly we can choose

y2 ∈ suppp(ā2) \ ran(fḡ). Now dom(ā1) ⊆ Ym and dom(ā2) ⊆ f∗[Ym], hence

dom(ā1) ∩ dom(ā2) ⊆ Ym ∩ f∗[Ym] = ran(fḡ) (recall (∗)2.2(c)), so necessarily

y1 /∈ dom(ā2) and y2 /∈ dom(ā1) (by the choice of y1 and y2). Hence, letting ā =

(ay : y ∈ u) and recalling the definition of ā = ā1 + ā2 from 3.5(11e), we have
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(·) y1 ∈ dom(ā1) \ dom(ā2), so ay1 = a(1,y1);

(·) y2 ∈ dom(ā2) \ dom(ā1), so ay2 = a(2,y2).

But a(1,y1), a(2,y2) /∈ Qp (as y` ∈ suppp(ā`), for ` = 1, 2) and so ay1 , ay2 /∈ Qp,

and, as obviously y1 6= y2, we are done. This concludes the proof of Case A.

Case B: suppp(ā2)⊆ran(fḡ), equivalently, by (∗)2.7.6.1, dom(ā2)⊆ran(fḡ).

Define y′2 = {f−1
∗ (ȳ) : ȳ ∈ y2}, where, recalling x̄ is from s (cf. (∗)2.7.0), we let

y2 = {ȳ ∈ x̄/En
k : ȳ 6⊆ Ym (so ȳ ⊆ ran(f∗))}.

Now let

ā′2 = (a′(2,y) : y ∈ set(y′2)),

where

y ∈ set(y′2) ⇒ a′(2,y) = a(2,f∗(y)).

Now, we have

(·1) y′2 ⊆ x̄/Em
k ;

(·2) ā′2 ∈ A1
s ;

(·3) (ā′2)[f∗] = ā2;

(·4) dom(ā′2) ⊆ dom(fḡ);

(·5) ā2 ∈ A1
s .

[Why? Concerning (·1), if ȳ′ ∈ y′2, then by the choice of y′2, there is ȳ ∈ y2

such that f−1
∗ (ȳ) = ȳ′. Furthermore, by the choice of y2, we have ȳ ∈ x̄/En

k

and ȳ 6⊆ Ym (so ȳ ⊆ ran(f∗)). By the definition of En
k we have ȳ′ ∈ x̄/En

k .

Thus, by (∗)2.6(viii), we have ȳ′ ∈ x̄/Em
k , so (·1) indeed holds. Also, (·2) is

by (·1) and (·3) is because we defined ā′2 = (a′(2,y) : y ∈ set(y′2)). Moving to

the remaining clauses, we have that (·4) holds as supp(ā2) ⊆ ran(fḡ). Finally,

concerning (·5), recalling that fḡ ⊆ f∗, by (·3)+(·4) we have that (ā′2)[fḡ ] = ā2,

and as ā′2 ∈ A1
s = Am

s , by 3.5(11)(e) we have ā2 ∈ A1
s = Am

s .]

Now let ā∗ = ā1 + ā2, as each summand is in A1
s (notice that the second

summand is in A1
s by (·6)). Then also ā∗ ∈ A1

s , recalling that A1
s = Am

s and

m satisfies condition 3.5(8)(e). Also, clearly ā = ā∗, but the latter belong-

ing to A1
s , we have that suppp(ā) is not a singleton, recalling that A1

s = Am
s

and m satisfies 3.5(11).

Case C: suppp(ā1)⊆ran(fḡ), equivalently, by (∗)2.7.6.1, dom(ā1)⊆ran(fḡ).

This case is similar to Case B. Recalling x̄ is from s (cf. (∗)2.7.0), let

y2 = {ȳ ∈ x̄/En
k : ȳ 6⊆ Ym (so ȳ ⊆ ran(f∗))},

y′2 = {f−1
∗ (ȳ) : ȳ ∈ y2},

ā′2 = (a′(2,y) : y ∈ set(y′2)),

where

y ∈ set(y′2) ⇒ a′(2,y) = a(2,f∗(y)).
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Now let Y1 = suppp(ā1) ⊆ ran(fḡ) and Y ′1 = f−1
ḡ (Y1) ⊆ dom(fḡ). Then we let

(·a) ā′1 = (a′(1,y) : y ∈ Y ′1), where

(·b) a′(1,y) = a(1,fḡ(y));

(·c) Y2 = dom(ā2), Y ′2 = f−1
∗ [Y2] = f−1

ḡ [Y2];

(·d) ā′2 = (a′(2,y) : y ∈ Y ′2), where

(·e) a′(2,y) = a′(2,f∗(y)).

Then

(·1) y′2 ⊆ x̄/Em
k (recall that s = (p, k, x̄, q̄) and 3.5(11)(e));

(·2) ā′2 ∈ A1
s ;

(·3) (ā′1)[f−1
∗ ] = ā1;

(·4) dom(ā′1) ⊆ dom(fḡ);

(·5) ā′1 ∈ A1
s ;

(·6) (ā′2)[f−∗ ] = ā2.

Now let ā∗ = ā1 + ā2, and let ā′∗ = ā′1 + ā′2, so that (ā′∗)
[f−1
∗ ] = ā∗. As ā′1 ∈ A1

s

by (·5) and ā′2 ∈ A1
s by (·2), then by 3.5(8)(e), we also have ā′∗ = ā′1 + ā′2 ∈ A1

s .

Hence suppp(ā
′
∗) is not a singleton (as m ∈ Kbo

1 (M)) and so also suppp(ā∗) is

not a singleton.

So we have finished proving (∗2.7.6); i.e., ā ∈ A′ implies that suppp(ā) is

not a singleton. Thus, we also finished proving (∗)2, as by (∗2.7.5) we have

ā ∈ An
s ⇒ ā ∈ A′, and so by (∗2.7.6) we are done; i.e., we have verified that n

satisfies 3.5(11).

(∗)3 We can choose an <suc-increasing sequence (m` : ` < ω) in Kbo
0 (M) whose

limit m is as wanted, i.e., m ∈ Kbo
2 (M).

We show this. We can find a list (ḡ` : ` < ω) of
⋃
m<ω Gm∗ such that

(∗)3.1 (i) lg(ḡ`) 6 `;
(ii) if ḡ` / ḡk, then ` < k;

(iii) lg(ḡ`) = 0 if and only if ` = 0;

(iv) note that for ` < lg(ḡ), gk` 6= (gk` )−1

(v) ḡ2`+2 = (ḡ2`+1)−1;

(vi) if lg(ḡ2`+1) > 1, then there is a unique i < ` such that

(·1) ḡ2i+1 / ḡ2`+2;

(·2) ḡ2i+2 / ḡ2`+1;

(·3) lg(ḡ2`+1) = lg(ḡ2`+2) = lg(ḡ2i+1) + 1 = lg(ḡ2i+2) + 1.

Why do we ask what we ask in (∗)3.1? Clause (i) is just for clarity. Clause

(ii) is needed because defining mk+1 we would like to ensure ḡk ∈ Imk+1 , in the

interesting case ḡk /∈ Imk . But ḡ′/ḡk implies fḡ′ ⊆ fḡk , so it makes sense to take

care of ḡk only after all the ḡ′/ḡk have been taken care of, but this means ḡ′/ḡk
implies ḡ′ ∈ Imk . Concerning clause (vi), the point is that in (∗)2 we only took

care of having dom(f̄ḡ_(g)) be large enough, but not of ran(f̄ḡ_(g)). But, by our
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bookkeeping, if ḡ` is not empty sequence, ḡ` / ḡk and lg(ḡ`)+1 = lg(ḡk), then k

is odd if and only if ` is even. Hence if k is odd, then choosing ḡk will increase

the domain of f
mk+1
ḡk to include Ymk

∩ Xdom(ḡk) (cf. (∗2)(d)), and if ` is odd,

then choosing ḡ` will increase the domain of f
m`+1
ḡ` to include Ym`

∩Xdom(ḡ`).

But Ym`
⊆ Ymk

, so always Ym`
∩Xdom(ḡ`) ⊆ dom(f

mk+1
ḡk ). Mutatis mutandi we

have that Ym`
∩Xran(ḡ`) ⊆ ran(f

mk+1
ḡk ). Clearly this suffices.

Now, by induction on ` < ω, we choose m` ∈ Kbo
0 such that n(m`) 6 `+ 1

and m`+1 ∈ suc(m`) or m`+1 = m`. We proceed as follows:

(∗)3.2 (` = 0) use (∗)1;

(` = k + 1) (·1) if ḡk+1 ∈ Imk , then m` = mk (if this occurs, then k is

odd);

(·2) if ḡk+1 /∈ Imk , let mk = lg(ḡk+1)−1, so ḡk+1 � mk ∈ Imk ,

and use (∗)2 with the pair n(mk), ḡ
2k+1 here standing

for n, ḡ_(g) there.

Clearly m = lim`<ω(m`) ∈ Kbo
1 (M). Notice that by (∗)3.1, we have

(∗)3.3 if ḡk / ḡ` / ḡm, then

(i) fḡk ⊆ fḡ` ⊆ fḡm ;

(ii) Ymk
∩Xdom(f

ḡk
) ⊆ dom(fḡm);

(iii) Ymk
∩Xran(f

ḡk
) ⊆ ran(fḡm);

(iv) if s⊆1 dom(fḡk), then min(X ′s\Ymk
)∈dom(fḡm) (see (∗)2.3(B)(c)(·1));

(v) if s ⊆1 ran(fḡk), then min(X ′s\Ymk
) ∈ ran(fḡm) (see (∗)2.3(B)(c)(·2)).

Thus we are only left to show that m ∈ Kbo
1 (M) is full, that this, that m

satisfies conditions (12) and (13) from 3.6. For this, notice that

(i) Definition 3.6(12) holds by the definition of mk+1 ∈ sucmk
, recalling

(∗)3.3(iv)(v);

(ii) Definition 3.6(13) holds as the ḡ`’s list G∗. �

Corollary 3.9. Kbo
2 (M) 6= ∅.

Proof. This is obvious by Claim 3.8, simply comparing Definitions 3.4, 3.5

and 3.6. �

4. Borel completeness of torsion-tree abelian groups

4.1. The definition of the groups G(1,U).

Definition 4.1. Let Kbo
3 (M) be the class of m ∈ Kbo

2 (M) expanded with a

sequence p̄ = p̄m of prime numbers without repetitions such that we have the

following:

(1) p̄ = (p(e,q̄) : e ∈ seqn(X)/Em
n for some 0 < n < ω and q̄ ∈ (Z+)n);

(2) for every ` < n, p 6 | q`.
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Fact 4.2. Clearly every element of m ∈ Kbo
2 (M) can be expanded to an

element of m ∈ Kbo
3 (M) and, as we showed in 3.9 that Kbo

2 (M) 6= ∅, we have

Kbo
3 (M) 6= ∅.

We try to give some intuition on the group G1 = G1[m] which we are

about to introduce in Definition 4.3. This group will be some sort of universal

domain for our construction, and in fact all the TFABω’s which will be in the

range of our Borel reduction from Keq
2 (cf. Hypothesis 3.2) to TFABω will be

pure subgroups of this group G1. The group G1 naturally interpolates between

G0 =
⊕
{Zx : x ∈ X} and G2 =

⊕
{Qx : x ∈ X}, which have respectively the

minimal and the maximal amount of divisibility possible. Clearly, the groups

G0 and G2 do not code anything of the universal countable model M ∈ Keq
2

(cf. Hypothesis 3.2). Thus, we want to find a subgroup G0 6 G1 6 G2 which

does encode M . We do this adding divisibility conditions to G0 which depend

on the relation Em
n from 3.4. So the first step is that for every a ∈ G+

0 , we

choose a prime pa and require the following condition:

G0 |= a =
∑
`<k

q`x` 6= 0 ⇒ G1 |= p∞a | a.

However, we want the partial permutations fḡ of X from 3.4 to induce partial

automorphisms f̂1
ḡ of our desired group G1, and so we naturally demand

ι ∈ {1, 2}, aι =
∑
`<k

q`x
ι
`,

∧
`<k

fḡ(x
1
` ) = x2

` ⇒ pa1 = pa2 .

Formally, this translates into a choice of p(e,q̄) as in Section 4.1, where con-

dition 4.1(2) is simply a useful technical requirement. We finally define our

“universal” group G1.

Definition 4.3. Let m ∈ Kbo
3 (M).

(1) Let G2 = G2[m] be
⊕
{Qx : x ∈ X}.

(2) Let G0 =G0[m] be the subgroup of G2 generated by X, i.e.,
⊕
{Zx : x∈X}.

(3) Let G1 = G1[m] be the subgroup of G2 generated by

(a) G0;

(b) p−m(
∑

`<n q`x`), where

(i) 0 < m < ω;

(ii) x̄ = (x` : ` < n) ∈ seqn(X), e = x̄/Em
n , n > 0;

(iii) q̄ is as in 4.1;

(iv) p = p(e,q̄) (so a prime, recalling Definition 4.1);

(c) [follows] for every a ∈ G1, there are i∗ < ω and, for i < i∗, ki, x̄i ∈
seqki(X), q̄i ∈ (Z+)k(i), ei = x̄i/E

m
ki

, pi = p(ei,q̄i) (hence q̄i is as in 4.1),

m(i) > 0 and ri ∈ Z+ such that the following condition holds:

a =
∑
{p−m(i)
i riq(i,`)x(i,`) : i < i∗, ` < ki}.
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(4) For a prime p, we have

G(1,p) = {a ∈ G1 : a is divisible by pm, for every 0 < m < ω}.

(Notice that by Observation 2.5, G(1,p) is always a pure subgroup of G1.)

(5) For U ⊆M , we let

G(1,U)[m] = G(1,U)[m(M)] = G(1,U) = 〈y : y ∈ Xu, u ⊆1 U〉∗G1
= 〈XU 〉∗G1

.

The notation m(M) is from the second line of Definition 3.4 and XU is

from 3.4(3).

(6) For fḡ ∈ f̄m (cf. Definition 3.4(4)), let f̂2
ḡ be the unique partial automor-

phism of G2 which is induced by fḡ (see 4.4(2)), explicitly: if k < ω and

for every ` < k we have that y1
` ∈ dom(fḡ), y

2
` = fḡ(y

1
` ), q` ∈ Q+, then

a =
∑
`<k

q`y
1
` ∈ G2 ⇒ f̂2

ḡ (a) =
∑
`<k

q`y
2
` .

(7) For ` ∈ {0, 1}, we let f̂2
ḡ � G` = f̂ `ḡ and f̂ḡ = f̂1

ḡ (see 4.4(2)).

(8) For i ∈ {0, 1, 2}, a =
∑

`<m q`x` ∈ Gi, with (x` : ` < k) ∈ seqk(X) and

q` ∈ Q+, let supp(a) = {x` : ` < m}, i.e., when a ∈ G+
i , supp(a) ⊆ω X is

the smallest subset of X such that a ∈ 〈supp(a)〉∗Gi
.

(9) For p a prime and a ∈ G+
2 , we define the p-support of a, denoted as

suppp(a), as follows: if a =
∑
{q`x` : ` < k} with (x` : ` < k) ∈ seqk(X)

and q` ∈ Q+, then

suppp(a) = {x` : ` < k and q` /∈ Qp},
where we recall that Qp was defined in 2.6.

Lemma 4.4. Let m ∈ Kbo
3 and ` ∈ {0, 1, 2}.

(1) G`[m] ∈ TFAB and |G`[m]| = ℵ0.

(2) (a) f̂2
ḡ is a partial automorphisms of G2[m] mapping G0[m] into itself ;

(b) f̂ḡ = f̂1
ḡ = f̂2

ḡ � G(1,dom(ḡ)) (cf. Definition 4.3(5), (7)), the map f̂ḡ is a

well-defined partial automorphism of G1, and dom(f̂ḡ) is a pure sub-

group of G1[m]; in fact dom(f̂ḡ) is the pure closure in G1 of dom(f̂0
ḡ );

(c) f̂ḡ−1 = f̂−1
ḡ ;

(d) ḡ1 ⊆ ḡ2 ⇒ f̂ḡ1 ⊆ f̂ḡ2 ;

(e) fḡ ⊆ f̂0
ḡ ⊆ f̂1

ḡ ⊆ f̂2
ḡ .

(3) If p=p(e,q̄), e∈seqn(X)/Em
n , q̄ = (q` : ` < n) is as in 4.1, and n > 1, then

(a) 〈
∑

`<n p
−mq`y` : m < ω, ȳ ∈ e〉∗G1

6 G(1,p);

(b) G1 6 〈{p−m
∑

`<n q`y` : m < ω, ȳ ∈ e} ∪QpG0〉G2 ;

(c) if a ∈ G1, then there are k < ω, and, for i < k, ȳi ∈ e, si ∈ Q+ such

that

(i) a =
∑

i<k si(
∑

`<n q`y
i
`) mod(QpG0 ∩G1);
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(ii) for all i < k, si
∑

`<n q`y
i
` /∈ QpG0, and ` < n implies siq`y

i
` /∈

QpG0;

(iii) si
∑
{qi`yi` : ` < n} ∈ G1.

(4) In Lemma 4.4(3) we may add that (ȳi : i < i∗) is with no repetitions.

Proof. Item (1) is clear. Concerning item (2), clause (a) holds as fḡ is

a partial one-to-one function from X to X; while for clause (b) it suffices to

prove that given
∑

`<k q`y
1
` and

∑
`<k q`y

2
` as in Definition 4.3(6), we have that∑

`<k

q`y
1
` ∈ G1 ⇒

∑
`<k

q`y
2
` ∈ G1.

In order to verify this it suffices to consider the case in which a :=
∑

`<k q`y
1
`

is one of the generators of G1 from 4.3(3). Thus, to conclude, it suffices to

notice that fḡ maps ȳ1 = (y1
` : ` < k) to ȳ2 = (y2

` : ` < k); hence ȳ2 ∈ ȳ1/Em
k

and recall 4.3(3b). This shows (2)(b). Finally, items (2)(c)–(e) are easy, and

so we omit details.

Concerning item (3), if ȳ ∈ e and 0 < m < ω, then p−m
∑

`<k q`y` is

one of the generators of G1. As this holds for every 0 < m < ω, it follows

that
∑

`<k p
−mq`y` ∈ G(1,p), by the definition of G(1,p). As G(1,p) is a sub-

group of G1, for every ȳ ∈ e, we have that
∑

`<n q`y` ∈ G(1,p) 6 G1. Let

Z(e,q̄) = {
∑

`<n q`y` : ȳ ∈ e} ⊆ G(1,p). Then 〈Z(e,q̄)〉∗G1
6 G(1,p), because by

Definition 4.3(4) we have that G(1,p) is a pure subgroup of G1 (cf. Observa-

tion 2.5). This proves (3)(a).

Concerning (3)(b)(c), assume

(∗1) a ∈ G+
1 .

By 4.3(3)(c), we have

(∗2) As a ∈ G1, we can find

(a) i∗ < ω;

(b) for i < i∗, ei = x̄i/Eki , x̄i ∈ seqki(X), q̄i = (qi` : ` < ki) ∈ (Z+)ki ;

(c) ri ∈ Z+, ȳi ∈ ei, bi =
∑

`<ki q
i
`y
i
` ∈ G0;

(d) pi = p(ei,q̄i);

(e) a =
∑

i<i∗ p
−m(i)
i ribi, where m(i) < ω;

(f) (bi : i < i∗) is with no repetitions;

(g) p
−m(i)
i ribi ∈ G1.

Now let

(∗3) V = {i < i∗ : pi = p = p(e,q̄) and p
−m(i)
i ribi /∈ QpG0},

where we recall that the object p(e,q̄) is from the statement of lemma and, in

particular, it is fixed. Notice also that if i ∈ V , then (e, q̄) = (ei, q̄
i). Hence,

we have

(∗4) (a) if i ∈ i∗ \ V , then p
−m(i)
i ribi ∈ QpG0;
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(b) i ∈ V implies ȳi ∈ e and q̄i = q̄;

(c) if i ∈ V and `(1), `(2) < k, then

p
−m(i)
i riqi`(1) ∈ Qp ⇔ p

−m(i)
i riqi`(2) ∈ Qp ⇔ p

−m(i)
i ribi ∈ QpG0;

(d) if i ∈ V , then p
−m(i)
i ribi /∈ QpG0;

(e) if i ∈ V and ` < k, then p
−m(i)
i riqi`y

i
` /∈ QpG0.

[Notice that in the first equivalence of (∗4)(c) we use ` < k ⇒ q` ∈ Z+, p 6 | q`.]
By (∗4), we have

(∗5) (a) a =
∑
{p−m(i)
i ribi : i ∈ V } mod(QpG0 ∩G1);

(b) i ∈ V implies p
−m(i)
i ribi /∈ QpG0.

So, defining si as p−m(i)ri, we are done proving (3)(b)(c). Finally, (4) is easy.

�

Fact 4.5. Assume that m ∈ Kbo
3 (M), U ,V ⊆ M and |U| = |V| = ℵ0.

Suppose further that there is h : M � U ∼=M � V . Then there is ḡ=(gk :k<ω)

such that

(a) for every k < ω, gk ∈ G (cf. Hypothesis 3.2(3));

(b) for every k < ω, gk ( gk+1;

(c)
⋃
k<ω gk : M � U ∼= M � V .

Proof. Let h : M � U ∼= M � V. We can choose an increasing sequence

(nk : k < ω) such that gk = h ∩ (nk × nk) (pedantically g = (h ∩ (nk × nk), 1)

recalling 3.2(3)) is strictly increasing and
⋃
k<ω gk = h. �

As mentioned, G1 will be some sort of universal domain for our con-

struction. This is reflected by the fact that instead of varying M ∈ Keq in

Definition 3.4, we fix M to be the countable universal homogeneous model

of Keq and, for U ⊆ M , we consider the substructure M � U and the group

G(1,U). We intend to show

M � U ∼= M � V ⇔ G(1,U)[m] ∼= G(1,V)[m].

The easy direction is course the left-to-right one, which we now establish:

Claim 4.6. Assume that m ∈ Kbo
3 (M), U ,V ⊆ M and |U| = |V| = ℵ0.

Then
M � U ∼= M � V ⇒ G(1,U)[m] ∼= G(1,V)[m].

Proof. Let (gk : k < ω) be as in Fact 4.5, sk = dom(gk) and tk = ran(gk).

Then

(i) for k < ω, ḡk = (g` : ` 6 k), so ḡk ∈ Gk+1
∗ (cf. Hypothesis 3.2(4) and

4.5(a), (b));

(ii)
⋃
k<ω gk : M � U ∼= M � V (cf. 4.5(c));

(iii) for every k < ω, we have that ḡk ∈ G∗ and so, by 3.4(4), fḡk ∈ f̄m.
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Notice also that by 3.4(9) we have

(?1) (d)
⋃
k<ω dom(fḡk) =

⋃
k<ωXsk = XU ;

(e)
⋃
k<ω ran(fḡk) =

⋃
k<ωXh[sk] = XV .

Hence, we have

(?2)
⋃
k<ω f̂ḡk is an isomorphism from G(1,U) onto G(1,V) (cf. 4.3(5), (7)).

[Why? By 4.3(5), (6), (7), 4.4(2b) and 3.4(9).] �

4.2. Analyzing isomorphism. Our aim in this subsection is to prove the

converse of Claim 4.6.

Throughout this subsection the following hypothesis holds:

Hypothesis 4.7.

(1) m ∈ Kbo
3 (M);

(2) U ,V ⊆M ;

(3) |U| = ℵ0 = |V|;
(4) π is an isomorphism from G(1,U)[m] onto G(1,V)[m].

Our aim in Lemma 4.8 and Conclusion 4.9 below is to show that π es-

sentially comes from a bijection from XU onto XV , which are respectively the

bases of G(1,U)[m] and G(1,V)[m] (in the appropriate sense). At the bottom

of this is the crucial algebraic condition 3.4(8), which puts restrictions on the

possible p-supports of certain members of G1.

Lemma 4.8. Let a ∈ G(1,U)[m], and let b = π(a).

(1) For a prime p, a ∈ G(1,p) ⇔ b ∈ G(1,p);

(2) if a = qx for some q ∈ Q+ and x ∈ XU , then for some y ∈ XV ,

(a) (x)Em
1 (y);

(b) b ∈ Qy, i.e., there exist m1,m2 ∈ Z+ such that m1b = m2y.

Proof. Item (1) is obvious by 4.7(4). Notice now that

(∗0) It suffices to prove (2)(b).

Why (∗0)? Suppose that b = m2
m1
y, and let e′ = (x)/Em

1 and p′ = p(e′,(1)).

Then x ∈ G(1,p′), but a = qx and a ∈ G1, hence a ∈ G(1,p′). Now, applying

(1) with (a, b, p′) here standing for (a, b, p) there, we get that b ∈ G(1,p′). As

b = m2
m1
y ∈ G1, we have that y ∈ G(1,p′) and thus

(·) G1 |= (p′)∞|x and G1 |= (p′)∞| y.

Now, letting H(p′,0) = 〈x/Em
1 〉G0 and H(p′,1) = 〈x/Em

1 〉∗G1
we have that

(∗0.1) (i) G0/H(p′,0) is canonically∼= to the direct sum of 〈Zy : y ∈ X\x/Em
1 〉;

(ii) H(p′,1) ∩G0 = H(p′,0);

(iii) G1/H(p′,1) naturally extends G0/H(p′,0);

(iv) no non-zero element of G1/H(p′,1) is divisible by (p′)∞.
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Why (∗0.1)? This is straightforward; see a detailed proof of a more complicated

case in 5.15(2). This concludes the proof of (∗0).

Coming back to the proof,

(∗1) Let n < ω, ȳ ∈ seqn(XV) and q̄ ∈ (Q+)n be such that b =
∑
{q`y` : ` < n}.

Trivially, n>0. We shall show that n=1, i.e., that (2)(b) holds. To this extent,

(∗1.1) Let q∗ ∈ ω \ {0} be such that

(·1) b1 := q∗b ∈ G0[m];

(·2) q∗q ∈ Z, and q∗q` ∈ Z for all ` < n;

(·3) for every prime p′, we have that p′ | (q∗q) implies p′ | (q∗q`) for all

` < n.

Let e = ȳ/En, q′` = q∗q` and q̄′ = (q′` : ` < n), so that q∗q`y` = q′`y` and q′` ∈ Z+.

Let p = p(e,q̄′), and let b1 = q∗b =
∑
{q′`y` : ` < n}. Notice that we have

(∗2)
∧
`<k p 6 | q′` and, for every ` < k, q′` ∈ Z+ ⊆ Qp.

[Why? Because p = p(e,q̄′) has been chosen in 4.1 exactly in this manner.]

Then we have

(∗3) (i) b ∈ G(1,p);

(ii) a ∈ G(1,p);

(iii) if m < ω, then p−ma ∈ G(1,p) 6 G1.

[Why (i)? By the choice of p we have that b1 ∈ G(1,p) (cf. Definition 4.3(3),

(4)) and so, as G(1,p) is pure in G1 (cf. Observation 2.5), b1 = q∗b and q∗ ∈ Z,

we have b ∈ G(1,p) (cf. Observation 2.4). Why (ii)? By (1) and (i), recall-

ing 4.7(4). Lastly, (iii) is immediate: by the definition of G1 and of G(1,p)

(Definition 4.3(3), (4)).]

(∗4) Without loss of generality, a = qx /∈ QpG0 and pa ∈ G0.

We prove (∗4). Let a′ = p−1q∗a, b′ = p−1q∗b and q′ = p−1q∗. So by

(∗3) we have that a′, b′ ∈ G1 and of course π(a′) = b′. Now, by the choice

of b′ and q∗ (in particular, cf. (∗1.1)(·3)) we have that pb′ ∈ G(0,V), hence

pa′ = π−1(pb′) ∈ G(0,U). Notice that a′ 6∈ G(0,U), as a′ /∈ QpG0 because

b′ /∈ QpG0, since from (∗2) above,
∧
`<k p 6 | q′`. Noticing that (a′, b′, q′∗, b1, p, q̄

′)

satisfies all the demands of (a, b, q∗, b1, p, q̄
′) (including (∗3)), it follows that

(∗4.1) (a) replacing (a, q, b) with (a′, q′, b′) we can assume that a = qx /∈ QpG0;

(b) if b′ belongs to Qy for some y ∈ XV , the the conclusion of (2) is

satisfied.

This concludes the proof of (∗4).

Now, by 4.4(3), there are k < ω and, for i < k, ȳi ∈ ȳ/En and ri ∈ Q+

such that

(∗5) (a) qx=a=
∑

i<k ri(
∑

`<n q
′
`y
i
`)=

∑
i<k(

∑
`<n riq

′
`y
i
`) mod(QpG0 ∩G1);

(b) ri
∑

`<n q
′
`y
i
` ∈ G1 and riq

′
` /∈ Qp.
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By (∗4), a = qx /∈ QpG0, and so clearly k > 0. It suffices to prove that k = 1,

which by (∗5) implies that n = 1; i.e., there is y ∈ XV such that b ∈ Qy. Why

does it follow that n = 1? Because otherwise, the left-hand side of (∗5)(a) has

p-support a singleton but the right-hand side of (∗5)(a) has p-support of size

at least two, a contradiction.

So toward contradiction assume that k > 2. Recalling (∗4), notice that

(∗6) qx = a =
∑

`<n(
∑

i<k riq
′
`y
i
`) mod(QpG0 ∩G1).

Now, let Z = {yi` : i < i∗, ` < k} and, for y ∈ Z, let

ay =
∑
{riq′` : i < i∗, ` < k, yi` = y}.

So, by (∗6) we have

(∗7) qx =
∑
{ayy : y ∈ Z} mod(QpG0 ∩G1).

Now, since for the sake of contradiction we are assuming that k > 2, recalling

that by (∗2) we have that q′` ∈ Z+ ⊆ Qp, by 3.4(8), we have the following:

(∗8) suppp(
∑

y∈Y ayy) = {y ∈ Y : ay /∈ Qp} is not a singleton.

Now recall that, by (∗4), qx = a /∈ QpG0, hence suppp(qx) = {x}, so it is a

singleton. By (∗8), the right-hand side of (∗7) has a non-singleton p-support

whereas the left-hand side of (∗7) has p-support a singleton, a contradiction.

Hence, we are done proving (2). �

Conclusion 4.9.

(1) There is a sequence (q1
x : x ∈ XU ) of non-zero rationals and a function

π1 : XU → XV such that for every x ∈ XU , we have that

π(x) = q1
x(π1(x)) and π1(x) ∈ x/Em

1 .

(2) There is a sequence (q2
x : x ∈ XV) of non-zero rationals and a function

π2 : XV → XU such that

π−1(x) = q2
x(π2(x)).

(3) (i) π2 ◦ π1 : XU → XU = idU ;

(ii) π1 ◦ π2 : XV → XV = idV ;

(iii) π1 : XU → XV is a bijection.

Proof. (1) is by 4.8; we elaborate. To this extent, let R = {(x, y) : x, y ∈
X and π(x) ∈ Q+y}. Now, we have

(∗1) For all x ∈ XU , there is y ∈ XV such that R(x, y).

[Why? By 4.8(2b) there is y ∈ XV such that π(x) ∈ Qy, as π is an automor-

phism, necessarily π(x) 6= 0 and so π(x) ∈ Q+y.]

(∗2) If x ∈ XU and (x, y1), (x, y2) ∈ R, then y1 = y2.
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[Why? By the definition of R, there are q1, q2 ∈ Q+ such that q1y1 = π(x) =

q2y2. As q1, q2 6= 0, necessarily q1 = q2 and y1 = y2.]

Together, R is the graph of a function that we call π1. Lastly, π1(x) ∈
x/Em

1 by 4.8(2a). Thus we proved (1).

(2) is by part (1) applied to π−1 (and V, U).

(3) is by (1) and (2). Why? For example, for (i), we have that

π−1 ◦ π(x) = π−1(q1
x(π1(x))) = q2

π1(x)q
1
x(π2 ◦ π1(x)) = x,

which implies that π2 ◦ π1(x) = x; (ii) is similar, and (iii) follows from (i)

and (ii). �

Our aim in the subsequent claims is to lift the one-to-one mapping from

XU onto XU defined in 4.9 to an isomorphism from M � U onto M � V.

We recall that the equivalence relations EMi (for i ∈ {0, 1, 2}) were defined

in 3.2. We intend to show that our mappings π1 and π−1
1 = π2 preserve

them (and so also their negations). This is done introducing some auxiliary

equivalence relations Ei (for i ∈ {0, 1, 2}) on X which reflect (to some extent)

the equivalence relations EMi on M .

Definition 4.10. For i < 3, let

Ei = {(x, y) : for some (a, b) ∈ EMi , x ∈ X ′{a} and y ∈ X ′{b}},

where we recall that EMi was introduced in 3.2.

Claim 4.11.

(1) If (y0, y1) ∈ (x0, x1)/Em
2 , x0, x1, y0, y1 ∈ X and i < 3, then

x0Eix1 ⇔ y0Eiy1.

(2) The mapping π1 from 4.9 preserves Ei and its negation for all i < 3.

Proof. (1) Suppose that (y0, y1) ∈ (x0, x1)/Em
2 . Then it is enough to prove

(?1) If ḡ ∈ G∗, fḡ(x`) = y` for ` = 0, 1, then x0Eix1 ⇔ y0Eiy1.

For ` = 0, 1, let x` ∈ X ′s` for s` ⊆1 M , and y` ∈ X ′t` for t` ⊆1 M . Now, as

fḡ(x`) = y`, by 3.4(4)(d) we have that ḡ[s`] = t`. So ḡ(s0, s1) = (t0, t1), and

so, as ḡ ∈ G∗ we have that s0Eis1 ⇔ t0E
M
i t1. This implies x0Eix1 ⇔ y0Eiy1.

Concerning (2), also using π2,V,U it suffices to prove that for x, y ∈ XU ,

we have

xEiy ⇒ π1(x)Eiπ1(y).

To this extent, suppose that xEiy and let s ⊆1 U be such that x, y ∈ Xs/EM
i

.

(As s/EMi ⊆M , we are using 3.4(3) to give meaning to the expression Xs/EM
i

.)

If x = y, then the conclusion is trivial, so we assume that x 6= y.

(?1.1) Let e = (x, y)/Em
2 , q̄ = (1, 1) and p = p(e,q̄).

Now, we claim
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(?1.2) There is 0 < m < ω such that p−mqxπ1(x) + p−mqyπ1(y) /∈ QpG0 ∩G1.

[Why? First of all, as qx, qy ∈ Q+ and x 6=y⇒π1(x) 6=π1(y) and π(x+ y)∈G1,

we have that 0 6= a = qxπ1(x) + qyπ1(y) ∈ G1 and so we are done, recalling

that by the definition of Qp we have that for every b ∈ G+
1 , there is m < ω

such that p−mb /∈ QpG0.]

So fix an m < ω as in (?1.2). Now, by the choice of p, we have that

p−m(x+ y) ∈ G(1,p) 6 G1 and so we have that the following is satisfied:

p−mqxπ1(x) + p−mqyπ1(y) = p−mπ(x) + p−mπ(y) = π(p−m(x+ y)) ∈ G(1,p).

Therefore, by Lemma 4.4(3) applied with ((x, y)/Em
2 , (1, 1), p, p−mqxπ1(x) +

p−mqyπ1(y)) standing for (e, q̄, p(e,q̄), a) there, there are (xj , yj) ∈ (x, y)/Em
2

and rj ∈ Q+ for j < j∗ such that

(?2) (a) ((xj , yj) : j < j∗) is with no repetitions;

(b) p−mqxπ1(x) + p−mqyπ1(y) =
∑

j<j∗ rj(xj + yj) mod(QpG0 ∩G1).

Now, by (1), recalling xEiy, for j < j∗ there are sj ⊆1 M such that xj , yj ∈
Xsj/EM

i
. Next, by (?1.2), the left-hand side of (?2)(b) is not in QpG0 ∩ G1,

so the same happens for the right-hand side of (?2)(b), hence, necessarily,

{sj/EMi : j < j∗} 6= ∅ (i.e., j∗ > 1), let (t`/E
M
i : ` < `∗) list it without

repetitions, with t` ∈ {sj : j < j∗} for each ` < `∗. Then let

u` = {j < j∗ : sj/E
M
i = t`/E

M
i }.

So we have

(?3) p−mqxπ1(x) + p−mqyπ1(y) =
∑

`<`∗

∑
j∈u` rj(xj + yj) mod(QpG0 ∩G1).

Now, for ` < `∗, let c` =
∑

j∈u` rj(xj + yj). Then

(?4) p−mqxπ1(x) + p−mqyπ1(y) =
∑

`<`∗ c` mod(QpG0 ∩G1).

(?5) (suppp(c`) : ` < `∗) is a sequence of pairwise disjoint sets.

[Why? As supp(c`) ⊆ Xt`/E
M
i

, recall the t`/E
M
i ’s are with no repetitions.]

(?6) If c` /∈ QpG0, then |suppp(c`)| > 2.

[Why? Recall that c` =
∑

j∈u` rj(xj + yj), and let Y` =
⋃
{{xj , yj} : j ∈ u`}

and, for z ∈ Y`, let az =
∑
{rj : j ∈ u`, xj = z}+

∑
{rj : j ∈ u`, yj = z}. Now

we can apply 3.4(8) with

(p, 2, (x, y), ((xj , yj) : j∈u`), (1, 1), (rj : j ∈ u`), (az : z ∈ Y`))

here standing for (p, k, x̄,y, r̄, ā(y,r)) there, and get |{z ∈ Y` : az /∈ Qp}| 6= 1.

But this means that |suppp(c`)| 6= 1, but |suppp(c`)| 6= 0 as c` /∈ QpG0, hence

|suppp(c`)| > 2, as promised. This concludes the proof of (?6).]

(?7) V = {` < `∗ : c` /∈ QpG0} has exactly one member.

[Why? If V = ∅, then the right-hand side of (?4) is in QpG0 but not the

left-hand side, recalling (?5) and the choice of m < ω in (?1.2), a contradiction.

On the other hand, if |V | > 2, then the right-hand side of (?3) has p-support
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of size
∑

`<`∗ |suppp(c`)| > 2|V | > 2, but the p-support of the left-hand side of

(?3) has cardinality 2, a contradiction.]

Let k be the unique member of V . Then we have the following:

{π1(x), π1(y)} = suppp(p
−mqxπ1(x) + p−mqyπ1(y))

= suppp(
∑

`<`∗ c`)

= suppp(ck) ⊆ Xtk/E
M
i
.

So π1(x), π1(y) ∈ Xtk/E
M
i

and as Xtk/E
M
i

is an Ei-equivalence class (by the

definition of Ei), then π1(x)Eiπ1(y), as desired. This concludes the proof of the

claim. �

Claim 4.12. There is a bijection h : U → V preserving EMi and ¬EMi
for all i < 3.

Proof. By 4.11(2), we have

(∗1) If x, y ∈ XU and i < 3, then xEiy ⇔ π1(x)Eiπ1(y).

Now apply (∗1) for i = 2 and recall that by 3.2(1) EM2 is equality on M . Then

(∗2) ∃s ⊆1 U(x, y ∈ X ′s)⇔ ∃t ⊆1 V(π1(x), π1(y) ∈ X ′t).
Now, as XU =

⋃
s⊆1U X

′
s and XV =

⋃
s⊆1V X

′
s, there is a function h1 from U

into V such that (not distinguishing a ∈ U with {a} ⊆1 U)

(∗3) If x ∈ X ′s, s ⊆1 U , then π1(x) ∈ X ′h1(s).

As π2 = π−1
1 and π2 is a function from XV onto XU (cf. 4.9), we have that

(∗4) h1 : U → V is one-to-one and onto.

Finally, applying 4.11(2) to i and recalling the definition of Ei, we get

(∗5) For i = 0, 1, a 6= b ∈ U implies aEMi b⇔ π1(a)EMi π1(b). �

Conclusion 4.13. M � U and M � V are isomorphic members of Keq.

In a work in preparation, (among other things) we intend to give a charac-

terization of the automorphism groups of the groups G(1,U) that we construct

above.

4.3. The proof of the Main Theorem. Notice that in this subsection 4.7 is

no longer assumed.

Conclusion 4.14. Let m[M ] ∈ Kbo
3 , U ,V ⊆M and |U| = |V| = ℵ0. Then

(?) M � U ∼= M � V ⇔ G(1,U)[m] ∼= G(1,V)[m].

Proof. If the left-hand side of (?) holds, then by 4.6 also the right-hand

side of (?) holds. If the right-hand side of (?) holds, then the assumptions in 4.7

are fulfilled and thus 4.13 holds, and so the left-hand side of (?) holds. �
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Convention 4.15. In Fact 1.1 and Notation 1.8(5), instead of considering

structures with domain ω we could have considered structures with domain an

infinite subset of ω. We take the liberty of not distinguishing between these

two variants. This happens most notably in the proof of the Main Theorem

right below.

Recall the following:

Fact 4.16. The class Keq
ω is Borel complete. In fact, there is a continuous

map from Graphω into Keq
ω which preserves isomorphism and its negation.

Proof. See, e.g., [11, pg. 295]. �

Proof of the Main Theorem. Let M be as in 3.2. Fix m ∈ Kbo
3 (M) (cf.

Fact 4.2) and assume without loss of generality, that G1[m] has the set of el-

ements ω. For every H ∈ Keq
ω , we define F [H] : H → M by defining F [H](n)

by induction on n < ω as the minimal k < ω such that {(`, F [H](`)) : ` < n}
∪ {(n, k)} is an isomorphism from H � (n + 1) onto M � ({F [H](`) : ` < n}
∪ {k}). The map H 7→ M � {F [H](n) : n < ω} is clearly continuous. We

will show that the map F ′ : M � U 7→ G(1,U)[m], for U ⊆ M infinite, is

also continuous (cf. 4.15), thus concluding that the map B := F ′ ◦ F : H 7→
G(1,{F [H](n) :n<ω})[m] is a continuous map from Keq

ω into TFABω (cf. 4.15) so,

by 4.14 and 4.16, we are done.

In order to show that F ′ is continuous, first recall that m ∈ Kbo
3 is fixed

(cf. 4.1) and so, in particular, p̄ is fixed. Now, given a ∈ G1[m], we have to

compute from U whether a ∈ G(1,U)[m] or not. To this extent, let a =
∑
{qa` xa` :

` < n} with the x`’s pairwise distinct and q` ∈ Q+. Now, as by 3.4(3), XU =⋃
{Xs : s ⊆ω U} =

⋃
{X ′s : s ⊆1 U} and the latter is a partition of X, for every

` < n, there is a unique finite sa` ⊆M such that the following conditions holds:

a ∈ G(1,U)[m]⇔
∧
`<n

sa` ⊆ U .

This suffices to show continuity of F ′, thus concluding the proof of the theorem.

�

Remark 4.17. We observe that in the context of the proof of the Main

Theorem, we can choose both M and m to be computable stuctures, in the

sense of computable model theory; i.e., all the relations and functions of the

structure are computable.

5. Completeness of endorigid torsion-free abelian groups

The aim of this section is to show that deciding whether a group G ∈
TFABω is endorigid is a complete co-analytic problem. We do this by reducing

a well-known problem to the endorigidity problem, namely the problem of

deciding whether a tree with domain ω has an infinite branch, which is well
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known to be complete co-analytic. So the idea here is to code a tree T into a

TFABω G[T ]. The way we code the tree T is reminiscent of the coding used for

the proof of the Main Theorem. Also in this case X will be a basis of the group

G[T ], and we will code an element t ∈ T via a partial permutation ft of X. As

in Section 4, the group G[T ] that we wish to construct will interpolate between

between G0 =
⊕
{Zx : x ∈ X} and G2 =

⊕
{Qx : x ∈ X}, via a set of tailored

divisibility conditions which code the behavior of the partial maps ft’s, which

in turn code the elements of the tree T .

In 5.1–5.9 we deal with the combinatorial part; then we will define the

groups.

Hypothesis 5.1. Throughout this section the following hypothesis stands :

(1) T = (T,<T ) is a rooted tree with ω levels, and we denote by lev(t) the level

of t.

(2) T =
⋃
n<ω Tn, Tn ⊆ Tn+1, and t ∈ Tn implies that lev(t) 6 n.

(3) T0 = ∅, Tn is finite, and we let T<n =
⋃
`<n T` (so T<(n+1) = Tn).

(4) If s <T t ∈ Tn+1, then s ∈ Tn.

(5) T is countable.

Definition 5.2. Let Kri
1 (T ) be the following class of objects:

m(T ) = m = (X,XT
n , f̄

T : n < ω) = (X,Xn, f̄ : n < ω)

satisfying the following requirements:

(a) X0 6= ∅ and, for n < ω, Xn is finite and Xn ( Xn+1, and X<n =
⋃
`<nX`;

(b) f̄ = (ft : t ∈ T );

(c) if n>0 and t∈Tn\T<n, then ft is a one-to-one function from Xn−1 into Xn;

(d) for every t ∈ T , X0 ∩ ran(ft) = ∅;
(e) if s 6T t ∈ Tn, then fs ⊆ ft;
(f) if t ∈ Tn+1 \Tn, ft(x) = y and y ∈ Xn, then for some s <T t, x ∈ dom(fs);

(g) if s, t ∈ Tn and y ∈ ran(fs)∩ ran(ft), then for some r ∈ Tn such that r 6T
s, t, we have that y ∈ ran(fr), equivalently, ran(fs)∩ ran(ft) = ran(fr), for

r = s ∧ t, where ∧ is the natural semi-lattice operation taken in the tree

(T,<T );

(h) Xn+1 )
⋃
{ran(ft) : t ∈ Tn+1 \ Tn} ∪Xn;

(i) we let X = Xm =
⋃
n<ωXn;

(j) if fs(x) = ft(x) and x ∈ Xn \X<n, then we have the following:

fs � Xn = ft � Xn and Xn ⊆ dom(fs) ∩ dom(ft).

Notation 5.3. For x ∈ X, we let n(x) be the unique n < ω such that

x ∈ Xn \X<n (so, e.g., x ∈ X0 implies n(x) = 0).

Convention 5.4. Fix m = (X,Xn, f̄ : n < ω) ∈ Kri
1 (T ) (cf. Definition 5.2

and Claim 5.6 below).
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Observation 5.5. In the context of Definition 5.2, we have

(1) If m < n < ω, t ∈ Tn \ T<n and for every s <T t we have s ∈ Tm, then

(Xn−1 \Xm) ∩ ran(ft) = ∅.
(2) If t ∈ T , then for every x ∈ dom(ft), we have that x 6= ft(x). Moreover

there is a unique 0 < n < ω such that x ∈ Xn−1 and ft(x) ∈ Xn \Xn−1,

and for some s ∈ Tn \ T<n, we have s 6T t and fs(x) = ft(x).

Proof. First we prove (1). By Definition 5.2(c) we know that ft is one-to-

one from Xn−1 into Xn. If n = 1, then m = 0 and so Xn−1 = X0 = Xm, thus

the conclusion is trivial. Suppose then that n > 1, let y ∈ (Xn−1\Xm)∩ran(ft),

and let x ∈ dom(ft) be such that ft(x) = y. Then, by Definition 5.2(f) there

exists s <T t such that x ∈ dom(fs). But then, using the assumption in (1),

we have that s ∈ Tm (so m = 0 is impossible by Definition 5.1(3)). Hence,

by Definition 5.2(c), ran(fs) ⊆ Xm, so y = f(x) ∈ Xm, contradicting the fact

that y ∈ (Xn−1 \Xm).

Now we prove (2). Assume that x, t, and thus also ft, are fixed and

x ∈ dom(ft). Let s 6T t be 6T -minimal such that fs(x) is well defined, and

let n < ω be such that s ∈ Tn \ T<n. (Notice that n > 1 since T0 = ∅.)
Clearly, there is unique m < ω such that x ∈ Xm \ X<m. As x ∈ dom(fs)

and s ∈ Tn \ T<n necessarily m < n, so x ∈ X<n. But by the choice of s

we have that r <T s implies x /∈ dom(fr). By the last two sentences and

Definition 5.2(f) we have fs(x) ∈ Xn \X<n, but ft(x) = fs(x). �

Claim 5.6. For T as in 5.1, Kri
1 (T ) 6= ∅ (cf. Definition 5.2).

Proof. The proof is straightforward. �

Definition 5.7. On X (cf. Convention 5.4) we define the following:

(1) For x ∈ X, suc(x) = {ft(x) : t ∈ T, x ∈ dom(ft)}.
(2) For x, y ∈ X, we let x <X y if and only if for some 0 < n < ω and

x0, . . . , xn ∈ X, we have that
∧
`<n x`+1 ∈ suc(x`), x = x0 and y = xn.

(3) seqk(X) = {x̄ ∈ seqk(X) : x̄ is injective}.
(4) We say that x̄ ∈ seqk(X) is reasonable when the following happens:

n(1) < n(2), xi(1) ∈ Xn(1) \X<n(1), xi(2) ∈ Xn(2) \X<n(2) ⇒ i(1) < i(2).

(5) <kX is the partial order on seqk(X) defined as x̄1 <kX x̄2 if and only if

x̄1, x̄2 ∈ seqk(X) and there are 0 < n < ω, ȳ0, . . . , ȳn ∈ seqk(X) and

t0, . . . , tn−1 ∈ T such that for every ` < n, we have that ft`(ȳ
`) = ȳ`+1,

and (x̄1, x̄2) = (ȳ0, ȳn).

(6) Notice that for k = 1, we have that <kX=<X , where <X is as in (2)

(ignoring the difference between x and (x), for x ∈ X).

(7) For k > 1, let Ek be the closure of {(x̄, ȳ) : x̄ <kX ȳ} to an equivalence

relation.
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Observation 5.8. If x̄1 6kX x̄2 (cf. 5.7(5)), then there is a unique t̄ such

that

(a) t̄ ∈ Tn for some n < ω;

(b) ft̄(x̄
1) = x̄2, where ft̄ = (ftn−1 ◦ · · · ◦ ft0) and t0, . . . , tn−1 are as in Defini-

tion 5.7(5);

(c) for every ` < n, there is no s <T t` such that fs(ȳ`) is well defined, where

(ȳ0, . . . , ȳn−1) are as in Definition 5.7(5);

(d) if t̄′ ∈ Tn is as in clauses (a)–(b) above and ` < n, then t` 6T t′`.

Observation 5.9.

(1) (X,<X) is a tree with ω levels.

(2) Every z ∈ X0 is a root of the tree (X,<X); further, for every n < ω, some

z ∈ Xn+1 \Xn is a root of the tree (X,<X), and so z/E1 ∩Xn = ∅.
(3) If y ∈ Xn+1 \Xn, then for at most one x ∈ Xn, we have y ∈ suc(x).

(4) If y ∈ suc(x), then {t ∈ T : ft(x) = y} is a cone of T .

(5) If x̄ ∈ seqk(X), then some permutation of x̄ is reasonable (cf. Defini-

tion 5.7(4)).

(6) If ft(x̄) = ȳ and x̄ is reasonable, then so is ȳ.

(7) For every 1 6 k < ω, (seqk(X), <kX) is a tree with ω levels.

(8) If x̄ <kX ȳ and x̄ is reasonable, then ȳ is also reasonable.

(9) If x̄ ∈ seqk(X) is reasonable, x̄ 6kX ȳ1 = (y1
0, . . . , y

1
k−1), x̄ 6kX ȳ2 =

(y2
0, . . . , y

2
k−1) and y1

k−1 = y2
k−1, then ȳ1 = ȳ2.

(10) For every t ∈ T , dom(ft) is Xn for some n < ω, and we have

x, y ∈ dom(ft) ∧ n(x) = n(y) ⇒ n(ft(x)) = n(ft(y)).

(11) Like (10) with t̄ ∈ Tn, n > 1, where we let

ft̄ = (ftn−1 ◦ · · · ◦ ft0).

(12) Recalling the notation from (11), if ft̄1(x)=ft̄2(x), then lg(t̄1)=lg(t̄2)=k.

Moreover, letting t̄1 = (t(1,`) : ` < k) and t̄2 = (t(2,`) : ` < k), if t̄1 is as

in 5.8, then we have that ` < lg(t̄1) implies that t(1,`) 6T t(2,`).

Proof. Items (1)–(2) are clear, where (2) is by 5.2(h). Item (3) is by

Definition 5.2(f)–(g). Items (4) and (5) are also easy (and (4) is not used

(except in 5.11(1)) but we retain it to give the picture). Item (6) can be

proved for t ∈ Tn \ T<n by induction on n < ω. Finally, (7) and (8) are easy,

and (9) is easy to see using 5.8 and 5.2(j). Also clauses (10), (11) are easy, and

clause (12) holds by 5.8. �

Definition 5.10. Let m ∈ Kri
1 (T ) (i.e., as in Convention 5.4).

(1) Let G2 =G2[m] be
⊕
{Qx : x ∈ X}.

(2) Let G0 =G0[m] be the subgroup of G2 generated by X, i.e.,
⊕
{Zx : x∈X}.

(3) For t ∈ T , let
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(a) H(2,t) =
⊕
{Qx : x ∈ dom(ft)};

(b) I(2,t) =
⊕
{Qx : x ∈ ran(ft)};

(c) f̂2
t is the (unique) isomorphism from H(2,t) onto I(2,t) such that x ∈

dom(ft) implies that f̂2
t (x) = ft(x) (cf. Definition 5.2(c)).

(4) For t ∈ T , we define H(0,t) := H(2,t) ∩G0 and I(0,t) := I(2,t) ∩G0.

(5) For f̂2
t as above, we have that f̂2

t [H(0,t)] = I(0,t). We define f̂0
t as f̂2

t � H(0,t).

(6) We define the partial order <∗ on G+
0 by letting a <∗ b if and only if

a 6= b ∈ G+
0 and, for some 0 < n < ω, a0, . . . , an ∈ G0, a0 = a, an = b and

` < n⇒ ∃t ∈ T (f̂0
t (a`) = a`+1).

(7) For a =
∑

`<m q`x`, with x` ∈ X and q` ∈ Q+, let supp(a) = {x` : ` < m}.
(8) For a ∈ G+

2 , let n(a) be the minimal n < ω such that a ∈ 〈Xn〉∗G2
.

While the aim of Definition 5.10 should be clear from the explanations

given at the beginning of this section, the reader may wonder what is the aim

of Lemma 5.11 and Claim 5.12. In the crucial proof of this section we will

show that given an endomorphism π of G1 and x ∈ X we have that π(x) has

the form qy for some y ∈ Y and q ∈ Q. This requires a detailed analysis of

supports, hence 5.11 and 5.12.

Lemma 5.11.

(1) If {t ∈ T : f̂2
t (a) = b} 6= ∅, then it is a cone of T .

(2) <∗� X =<X (where <X is as in Definition 5.7(2)).

(3) (G+
0 , <∗) is a countable tree with ω levels (recall 5.1(1)).

(4) If s 6T t, then f̂ `s ⊆ f̂ `t for ` ∈ {0, 2}.
(5) If t ∈ T , f̂2

t (a) = b and a ∈ G+
0 , then n(a) < n(b) (cf. Definition 5.10(8)).

(6) If a <∗ b (so a, b ∈ G+
0 ), then the sequence (a` : ` 6 n) from 5.10(6) is

unique.

(7) If a1 <∗ a2 and, for ` ∈ {1, 2}, a` =
∑

i<k q
`
ix
`
i , q

`
i ∈ Q+, x̄` = (x`i : i < k)

∈ seqk(X), then maybe after replacing x̄1 with a permutation of it we have

x̄0 6kX x̄1 and q1
i = q2

i (for i < k).

Proof. Unraveling definitions, we elaborate only on item (5). As a 6= 0,

let a =
∑

i6n qixi, xi ∈ X with no repetitions, qi ∈ Q+. Let xi ∈ Xk(i) \X<k(i)

and without loss of generality, k(i) 6 k(i+1) for i < n (cf. Observation 5.9(5)).

Clearly a ∈ 〈Xk(n)〉∗G2
but a /∈ 〈X<k(n)〉∗G2

. As f̂2
t (a) is well defined, clearly

{xi : i 6 n} ⊆ dom(ft) and b = f̂2
t (a) =

∑
i6n qift(xi) and, as ft is one-

to-one, the sequence (ft(xi) : i 6 n) is with no repetitions. By Obser-

vation 5.5(2) applied with n there as k(n) here, ft(xn) /∈ 〈Xk(n)〉∗G2
, hence

we have that n(b) > n(ft(xn)) > k(n) = n(a). �

Claim 5.12. If (A), then (B), where

(A) (a) a, b` ∈ G+
2 for ` < `∗;
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(b) a 6∗ b` and the b`’s are with no repetitions;

(c) a =
∑
{qixi : i < j}, qi ∈ Q+;

(d) x̄ = (xi : i < j) ∈ seqj(X) and it is reasonable;

(B) for ` < `∗, there are ȳ` = (y(`,i) : i < j) such that

(a) y(`,i) =: y`i ∈ X and x̄ 6jX ȳ` (cf. Definition 5.7(5));

(b) b` =
∑
{qiy(`,i) : i < j}, (so the ȳ` are pairwise distinct, as the b`’s

are);

(c) (y(`,i) : i < j) ∈ seqj(X) and it is reasonable;

(d) if j > 1 and `∗ > 1, then there are `1 6= `2 < `∗ and i1, i2 < j such

that

(i) if ` < `∗, i < j and y(`,i) = y(`1,i1), then (`, i) = (`1, i1);

(ii) if ` < `∗, i < j and y(`,i) = y(`2,i2), then (`, i) = (`2, i2).

Proof. By the definition of 6∗ there are (y(`,i) : i < j, ` < `∗), and by

5.9(6) and 5.11(7) they satisfying clauses (a)–(c) of (B). Recall that ({ȳ :

x̄ 6jX ȳ},6jX) is a tree (as (seqj(X),6jX) is a tree). We now show (B)(d).

There are two cases.

Case 1: {ȳ` : ` < `∗} is not linearly ordered by 6jX . Then there are

`(1) 6= `(2) < `∗ such that ȳ`(1), ȳ`(2) are locally 6jX -maximal. So we can

choose i1, i2 < j such that we have the following:

x`1i1 ∈ Xn(b`1 ) \X<n(b`1 ) and x`2i2 ∈ Xn(b`2 ) \X<n(b`2 ).

Notice that using the assumption that the sequences are reasonable we can

choose i1 = j − 1 = i2; see 5.11(5) and 5.9(9). Hence, `1, `2, i1, i2 are as

required for (d).

Case 2: Not Case 1. So without loss of generality, we have that for every

` < `∗− 1, ȳ` <jX ȳ`+1. Now, for ` < `∗ and i < j, let n(`, i) = n(y`i ). Then let

(·1) i(1) < j be such that i < j implies n(0, i) > n(0, i(1));

(·2) i(2) < j be such that i < j implies n(`∗ − 1, i) 6 n(`∗ − 1, i(2)).

Then (0, i(1)), (`∗ − 1, i(2)) are as required. Since ȳ` is reasonable for ` < `∗,

we can actually choose i(1), i(2) such that i(1) = 0 and i(2) = j∗ − 1. �

Now we turn to the groups which we shall actually use, i.e., the groups

G1 = G1[T ] defined in 5.13(2) below. Our aim is to include among the partial

automorphisms of G1 all the maps of the form f̂t, i.e., the maps induced by

the ft’s, but we want in addition that G1 is minimal modulo this. So to each

a ∈ G+
0 we assign a prime number pa and add p−ma to G1 for all m < ω. But

in order to respect the f̂t’s, when a ∈ dom(f̂t) we have to also add p−mf̂t(a)

to G1, for all m < ω. Of course all the f̂s’s have to respect this, so we also add

p−mf̂t̄(a) to G1 for all m < ω, where t̄ = (t0, . . . , tn) and f̂t̄ = f̂tn ◦ · · · ◦ f̂t0
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(and f̂t̄(a) is well defined). This is done in 5.13. In 5.14–5.15 we analyze the

groups G(1,p) = {a ∈ G1 : G1 |= p∞| a}.

Definition 5.13. Let (pa : a ∈ G+
0 ) be a sequence of pairwise distinct

primes such that

a =
∑
`<k

q`x`, q` ∈ Z+, (x` : ` < k) ∈ seqk(X)⇒ pa 6 | q`.

(1) For a ∈ G+
0 , let

P6∗a = {pb : b ∈ G+
0 , b 6∗ a}.

(2) Let G1 = G1[m] = G1[m(T )] = G1[T ] be the subgroup of G2 generated by

{m−1a : a ∈ G+
0 , m ∈ ω \ {0} a power of a prime from P6∗a }.

(3) For a prime p, let

G(1,p) = {a ∈ G1 : a is divisible by pm for every 0 < m < ω}.

(Notice that by Observation 2.5, G(1,p) is always a pure subgroup of G1.)

(4) For b ∈ G+
1 , let Pb = {pa : a ∈ G+

0 , G1 |=
∧
m<ω p

m
a | b}.

(5) For t ∈ T and ` ∈ {0, 1, 2}, let

H(`,t) = 〈x : x ∈ dom(ft)〉∗G`
and I(`,t) = 〈x : x ∈ ran(ft)〉∗G`

Remark 5.14.

(1) If a, b ∈ G+
1 and Qa = Qb ⊆ G2, then Pa = Pb.

(2) If a 6∗ b, then Pa ⊆ Pb.

Proof. The proof is essentially due to Observation 2.5. �

Here we look more deeply at G1. The crucial point is that any endomor-

phism of G1 maps G(1,p) = {a ∈ G1 : for all m < ω, pm| a} into itself, and so

the following characterization of G(1,p) will allow us to reconstruct information

on the action of the ft’s on X, and thus eventually to reconstruct the tree T ,

to some extent.

Lemma 5.15.

(1) For b ∈ G+
0 , we have that P6∗b = Pb.

(2) If p = pa, a ∈ G+
0 , then

G(1,p) = 〈b ∈ G+
0 : a 6∗ b〉∗G1

.

(3) For t ∈ T , H(1,t) := H(2,t) ∩G1 and I(1,t) := I(2,t) ∩G1 are pure in G1.

(4) For f̂2
t as in Definition 5.10(3c), f̂2

t [H(1,t)] ⊆ I(1,t). We define

f̂1
t = f̂2

t � H(1,t),

and for t̄ a finite sequence of members of T , we let

f̂1
t̄ = (· · · ◦ f̂1

t`
◦ · · · ).
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(5) f̂1
t � H(1,t) = f̂2

t � H(1,t) is into I(1,t) 6 G1 but it is not onto I(1,t).

(6) Assume a =
∑

`<k q`x` ∈ G0, k > 0, x` ∈ X , q` ∈ Q+, x̄ = (x` : ` < k) ∈
seqk(X) and p = pa. If b ∈ G(1,p), then there are j > 0, m > 0 and, for

i < j, ȳi, bi and q′i ∈ Q+ such that the following conditions are verified :

(a) for i < j, x̄ 6kX ȳi;

(b) (bi =
∑

`<k q`y
i
` : i < j) is linearly independent ;

(c) b =
∑
{q′ibi : i < j};

(d) for i < j, ma 6∗ mbi.

Proof. Item (1) is easy. We prove item (2). The RTL inclusion is clear by

5.13(2). We prove the other implication. To this extent,

(∗1) a ∈ G+
0 , p = pa, and we let Wp := {b ∈ G+

0 : a 6∗ b}.
We claim

(∗2) Wp is a linearly independent subset of G2, as a Q-vector space.

[Why (∗2)? Let k > 1, x̄ ∈ seqk(X), q̄ ∈ (Z+)k and a =
∑
{q`x` : ` < k}.

(Recall that a ∈ G+
0 .) Without loss of generality, x̄ is reasonable. Now, toward

contradiction, assume that n > 1, bi ∈ Wp for i < n, (bi : i < n) is without

repetitions and there are qi ∈ Q+ for i < n, such that

(∗2.1)
∑
{qibi : i < n} = 0.

For each i < n, let bi =
∑
{q`x(i,`) : ` < k}, where x̄ 6kX x̄i = (x(i,`) : ` < k).

As a ∈ G+
1 , clearly n > 1, and by 5.9(7) there is i∗ < n such that x̄i∗ is <kX -

maximal in {x̄i : i < n}. As x̄ is reasonable, so is x̄i∗ and so x(i∗,n−1) appears

exactly once in (∗2.1), so recalling qn−1 ∈ Q+ we get a contradiction, and so

(∗2) holds indeed.]

(∗3) Let U ⊆ X be such that

(a) if y ∈ U , then y /∈ 〈Wp〉∗G2
;

(b) U ∪Wp is linearly independent;

(c) under conditions (a), (b), U is maximal.

Clearly U is well defined, and we have

(∗4) (a) the disjoint union U ∪Wp is a basis of G2, as a Q-vector space;

(b) let h ∈ End(G2) be such that h � U is the identity and h(a) = 0 for

all a ∈Wp.

Now we define

(∗5) (a) G′1 := (
∑
{Qy : y ∈ U}) +G1;

(b) G′′1 =
∑
{Qpy : y ∈ U}+G1.

Also, we have

(∗6) (a) h � G′′1 ∈ End(G′′1);

(b) if d ∈ G′′1 and G′′1 |= p∞ | d, then d = 0;

(c) G′1 = G′′2.
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[Why (∗6))? Concerning clause (a), we just have to prove that if b ∈ G+
0 , p′ ∈

Pb, so p′ = pd for some d 6∗ b, then, for every m < ω, h(p−md b) = p−md h(b) ∈
G′′1. Now, if d = a, then pd = p and a ∈ Wp, hence h(b) = 0, so in this case

we are fine. If on the other hand d 6= a, then pd 6= p. Notice that the support

of h(b) is a subset of U . Now, {b′ ∈ G′′1 : supp(b′) ⊆ U} =
⊕
{Qpx : x ∈ U},

which is pd-divisible, so clause (a) holds indeed. Finally clauses (b) and (c)

hold by the definitions of Qp and G′1.]

Now, let c be any member of G(1,p). As h � G′′1 ∈ End(G′′1), clearly

h(c) ∈ G′′1, and as m < ω implies p−mc ∈ G(1,p), clearly G′′1 |= p∞|h(c). By

(∗6)(b), it follows that h(c) = 0, but this implies that c belongs to the kernel

of h � G1, which is 〈Wp〉∗G1
. As c was any member of G(1,p), we are done. This

concludes the proof of item (2).

Concerning item (3), notice

H(1,t) = 〈Zx : x ∈ dom(ft)〉∗G1
,

I(1,t) = 〈Zx : x ∈ ran(ft)〉∗G1
.

Item (4) is by item (2) and the following observation, if ft(x) = y, then we

have x 6∗ y (recall 5.7(2)), and so Px ⊆ Py (cf. 5.14(2)). Concerning item (5),

assume that 0 < n < ω, t ∈ Tn \ T<n, x ∈ Xn−1 \X<n−1 and let y = ft(x) ∈
Xn \X<n (cf. Observation 5.5). Notice that in particular, x <∗ y. So py is well

defined, since y ∈ G+
0 , and we have the following:

(a) G1 |= py 6 | x, and so H(1,t) |= py 6 | x (as H(1,t) is pure in G1; cf. item (3)).

(b) G1 |=
∧
m<ω p

m
y | y.

[Why (b)? By the definition of G1. Why (b)? Recalling that x <∗ y.] Do you mean to
repeat “Why (b)?But then, since by item (4) f̂t � H(1,t) is an embedding of H(1,t) into I(1,t),

we have that f̂t[H(1,t)] |= py 6 | f(x)∧f(x) = y. On the other hand, since I(1,t) is

pure in G1 (cf. (3) of this lemma), we have that for every m < ω, p−my y ∈ I(t,1)

(cf. 2.4). Finally, item (6) is by clause (2) and unraveling definitions. �

We now prove the main theorem of this section, namely Theorem 5.16.

Notice that in 5.16(2) below, we prove more than needed in order to show

that the set of endorigid groups in TFABω is complete co-analytic, as, in

combination with 5.16(1) and 5.16(3), it would suffice to show that if T is

well-founded, then there is an endomorphism of G1 which is not multiplication

by an integer. We show that in addition, such an endomorphism can be taken

to be one-to-one and such that G1/f [G1] is not torsion.

Theorem 5.16. Let m(T ) ∈ Kri
1 (T ).

(1) We can modify the construction so that G1[m(T )] = G1[T ] has domain ω

and the function T 7→ G1[T ] is Borel (for T a tree with domain ω).
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(2) If T is not well-founded, then G1[T ] = G1 has a one-to-one f ∈ End(G1)

which is not multiplication by an integer and such that G1/f [G1] is not

torsion.

(3) If T is well-founded, then G1[T ] is endorigid.

Proof. Item (1) is easy. We prove item (2). Let (tn : n < ω) be a strictly

increasing infinite branch of T . By Lemma 5.11(4), (f̂2
tn : n < ω) is increasing,

by Definition 5.10(3c), f̂2
tn embeds H(2,tn) into I(2,tn), thus f̂2 =

⋃
n<ω f̂

2
tn is an

embedding of G2 into
⋃
n<ωH(2,tn). Now, (H(2,tn) : n < ω) is a chain of pure

subgroups of G2 with limit G2, because, recalling 5.2(e), we have that

H(2,tn) = dom(ftn) ⊆ dom(ftn+1) ⊆ H(2,tn+1),

and by 5.2(c) we have that
⋃
n<ωH(2,tn) = G2. Thus f̂1 := f̂ � G1 =⋃

n<ω f̂
1
tn =

⋃
n<ω f̂

2
tn � H(1,tn) is an embedding ofG1 intoG1 (cf. Lemma 5.15(3),

(5)). In fact we have that dom(f̂1
tn) = H(1,tn) (cf. Lemma 5.15(3), (5)) and

G1 =
⋃
n<ωH(1,tn), where (H(1,tn) : n < ω) is chain of pure subgroups of G1

with limit G1. Clearly f̂1 is not of the form g 7→ mg for some m ∈ Z\{0}, since

for every x ∈ dom(ft), we have x 6= ft(x) (cf. Observation 5.5(2)). We claim

that G1/f̂
1[G1] is not torsion. To this extent, first of all notice that X0 6= ∅

(by Definition 5.2(a)) and X0 ∩ ran(ftn) = ∅ (by Definition 5.2(d)). Thus, we

have the following:

ran(f̂1) ⊆ G2
X\X0

:=
∑
{Qx : x ∈ X \X0} = 〈X \X0〉∗G2

.

Now, let x ∈ X0. Then x ∈ G1 \ ran(f̂1), and moreover for q ∈ Q \ {0},
qx /∈ G2

X\X0
and so qx /∈ ran(f̂1).

So, in particular, for every 0 < n < ω, we have that nx /∈ ran(f̂1), hence

n(x/(ran(f̂1)) 6= 0. This concludes the proof of item (2).

We now prove item (3). To this extent, suppose that (T,<T ) is well-

founded and, letting G1 = G1[T ], suppose that π ∈ End(G1). We shall show

that there is m ∈ Z such that for every a ∈ G1, π(a) = ma; i.e., G1 is

endorigid. We recall that the equivalence relation E1 (used below) was defined

in Definition 5.7(7).

Case 1: The set Y = {x/E1 : for some y ∈ x/E1, π(y) /∈ Qy} is infinite.

(∗1) Choose xi, ni, for i < ω, such that
(a) ni is increasing with i;

(b) xi ∈ Xni+1 \Xni ;

(c) π(xi) /∈ Qxi, supp(π(xi)) ⊆ Xni+1 ;

(d) Xni ∩ xi/E1 = ∅;
(e) (xi/E1 : i < ω) are pairwise distinct (this actually follows).

Note that for i < ω, we have
(∗2) supp(π(xi)) ⊆ xi/E1, hence supp(π(xi)) ⊆ Xni+1 \Xni .
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[Why? We apply 5.15(6) with (xi, π(xi), 1, (1)) here standing for (a, b, k, (q` :

` < k)) thereso, in particular, p = pxi . In order to be able to apply 5.15(6)

we need that b = π(a) ∈ G(1,p), but this is clear in our case as π ∈ End(G1)

and p = pxi . But then applying 5.15(6) and writing b = π(xi) as there, we get

what we need.]

For r < ω, (supp(x`) : ` 6 r) is a sequence of non-empty sets and

supp(x`) ⊆ Xn`+1
\ Xn`

, so it is a sequence of pairwise disjoint non-empty

sets. Now, for r < ω, let

x+
r =

∑
`6r

x`, pr = px+
r

and x̄r = (x` : ` 6 r).

As π ∈ End(G1), clearly π(x+
r ) ∈ G(1,pr), hence by 5.15(6) applied to x+

r ,

π(x+
r ) here standing for a, b there, we can find jr,mr > 0, and for j < jr, ȳ

(r,j),

brj , q
r
j ∈ Q+ such that the following hold:

(∗3) (a) for j < jr, x̄r 6
r+1
X ȳ(r,j);

(b) (brj =
∑

`6r y
(r,j)
` : j < jr) is linearly independent;

(c) π(x+
r ) =

∑
{qrj brj : j < jr};

(d) for j < jr, mrx
+
r 6∗ mrb

r
j (and mrb

r
j ∈ G

+
0 ).

(∗3.1) We define f1
( ) as the identity on X, hence, for j < jr, the following are

equivalent:

(·1) ȳ(r,j) = x̄r;

(·2) f1
( )(x̄r) = ȳ(r,j);

(·3) for all 0 < n < ω and t̄ ∈ Tn, f1
t̄ (x̄r) 6= ȳ(r,j).

As x̄r 6
r+1
X ȳ(r,j) we can apply 5.8 and find a finite sequence t̄rj ∈ T<ω such

that

(∗4) if x̄r <
r+1
X ȳ(r,j), then

(a) f1
t̄rj

(x̄r) = ȳ(r,j);

(b) f̂1
t̄rj

(x+
r ) = brj ;

(c) for ` 6 r and j < jr, we have f1
t̄rj

(x`) 6= x` and lg(t̄rj) > 0;

(d) t̄rj = (tr(j,`) : ` < lg(t̄rj));

(e) if j < jr and ` < lg(t̄rj), then

t <T t
r
(j,`) ⇒

∨
m6r

ft̄rj �`(xm) /∈ dom(ft);

(f) in (e) this is equivalent to the following condition:

t <T t
r
(j,`) ⇒ ft̄rj �`(xr) /∈ dom(ft);

(g) (t̄rj : j < jr) is without repetitions;

(h) (ft̄rj (xr) : j < jr) is without repetitions.
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Why (∗4)? Concerning (e), recall 5.8. Concerning (f)–(h), recalling 5.9(10),

note that if lg(t̄rj) > 0, then dom(ft̄rj ) is Xn for some n < ω; so xr ∈ dom(ft̄rj )

and

(∗4.1) ` 6 r ⇒ x` ∈ dom(ft̄rj ).

This concludes the proof of (∗4).

(∗5) For r < ω and ` 6 r, we have π(x`) =
∑
{y(r,j)
` : j < jr}.

[Why? Because {y(r,j)
` : j < jr} ⊆ x`/E1 and (x`/E1 : ` 6 r) is a sequence of

pairwise disjoint sets.]

Now, by induction on r < ω, we choose ir and yr such that

(∗6) (a) ir < jr, yr = ft̄rir
(xr) 6= xr, hence lg(t̄rir) > 0;

(b) if r > 0, then ft̄rir
(xr−1) = yr−1.

Why (∗6) is possible? For r = 0, recall that π(xr) /∈ Qxr. For r > 1, by (∗5),∑
{ft̄rj (xr−1) : j < jr} = π(xr−1) =

∑
{ft̄r−1

j
(xr−1) : j < jr−1}.

Now, by (∗4)(h) the sum in the right-hand side is without repetitions and

of course ft̄r−1
ir−1

(xr−1) appears in it, hence it belongs to the support on the

left-hand side, so for some ir < jr,

ft̄rir
(xr−1) = ft̄r−1

ir−1

(xr−1) = yr−1.

As ft̄rir
(xr−1) 6= xr−1, clearly lg(t̄rir) > 0 and so xr 6= yr. This proves (∗6).

Now, ft̄r−1
ir−1

(xr−1) = ft̄rir
(xr−1) and t̄r−1

ir−1
satisfies (∗4)(e), hence by 5.9(12)

we have lg(t̄r−1
ir−1

) = lg(t̄rir) and ` < lg(t̄rir) implies tr−1
(ir−1,`)

6T tr(ir,`). So (lg(t̄rir) :

r < ω) is constant, say constantly k, and if ` < k, then (tr(ir,`) : r < ω) is a

6T -sequence. But xr /∈ Xnr and so tr(ir,`) /∈ Tn, hence (tr(ir,`) : r < ω) is

<T -increasing, and so we reach a contradiction. This concludes the proof of

Case 1.

Case 2: The set Y = {x/E1 : for some y ∈ x/E1, π(y) /∈ Qy} is finite

and 6= ∅. Choose x0 ∈ X such that π(x0) /∈ Qx0. Let n < ω be such that

x0 ∈ Xn, and choose x1 such that

(⊕1) (a) x1 ∈ X \
⋃
{y/E1 : y ∈ Xn};

(b) π(x1) ∈ Qx1.

[Why possible? By the assumption in Case 2.]

Notice now that

(⊕2) For ` ∈ {1, 2}, supp(x`) ⊆ x`/E1.

(⊕3) By 5.15(6), there are (t̄j , qj : j < j∗) such that

(a) t̄j (j < j∗) are with no repetitions and qj ∈ Q+;

(b) π(x0 + x1) =
∑
{qjft̄j (x0 + x1) : j < j∗}.
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(⊕4) We have

(a) π(x0) =
∑
{qjft̄j (x0) : j < j∗};

(b) π(x1) =
∑
{qjft̄j (x1) : j < j∗}.

[Why? π(x0) −
∑
{qjft̄j (x0) : j < j∗} = −π(x1) +

∑
{qjft̄j (x1) : j < j∗}.

Now the left-hand side has support ⊆ x0/E1 and right-hand side has support

⊆ x1/E1. As x0/E1 ∩ x1/E1 = ∅, both the left-hand side and the right-hand

side are 0, and so we are done.]

However π(x1) ∈ Qx1 by choice, and so

(⊕5) (a) for some j < j∗, t̄j = ( ), without loss of generality, for j = 0;

(b) for 0 < j < j∗, lg(t̄j) > 0 (by (⊕3)(a)).

(⊕6) For i = 0, 1, let Ei be the following equivalence relation on j∗:

{(j1, j2) : ft̄j1 (xi) = ft̄j2 (xi)}.

(⊕7) 0/E1 = {0} and if 0 < j < j∗, then

(a)
∑
{q` : ` ∈ j/E1} = 0;

(b)
∑
{q`ft̄`(x1) : ` ∈ j/E1} = 0.

[Why? Note that∑
{q`ft̄`(x1) : ` ∈ j/E1} =

∑
{q` : ` ∈ j/E1}ft̄j (x1).

So if
∑
{q` : ` ∈ j/E1} 6= 0, then ft̄j (x1) belongs to the support of the right-

hand side of (⊕4)(b) but the support of this object is {x1} (by (⊕1)(b)) and

x1 6= ft̄j (x1), as t̄j 6= ( ), together we reach a contradiction, and so we have

(⊕7)(a), (b).]

(⊕8) E1 refines E0.

[Why? Assume that j1, j2<j∗ and j1E1j2. This means that ft̄j1 (x1)=ft̄j2 (x1).

By 5.2(j), as x1 /∈ Xn, we have that Xn ⊆ dom(ft̄j1 ) ∩ dom(ft̄j2 ) and ft̄j1 �
Xn = ft̄j2 � Xn. As x0 ∈ Xn, we get that ft̄j1 (x0) = ft̄j2 (x0), which means

j1E0j2, as desired.]

(⊕9) 0/E0 = {0} and if 0 < j < j∗, then

(a)
∑
{q` : ` ∈ j/E0} = 0;

(b)
∑
{q`ft̄0(x`) : ` ∈ j/E0} = 0.

[Why? By (⊕7)+(⊕8), recalling 5.2(j).]

(⊕10) π(x0) = q0x0 (follows by (⊕9)(b)).

But (⊕10) contradicts our choice of x0, as π(x0) /∈ Qx0.

Case 3: The set Y = {x/E1 : for some y ∈ x/E1, π(y) /∈ Qy} is empty.

For x ∈ X, let π(x) = qxx. Now, first of all we claim

(?0.1) If a ∈ G+
1 , π(a) = 0 and x/E1 ∩ supp(a) = ∅, then π(x) = 0.
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[Why? Let p = px+a. Firstly, notice that π(x + a) = π(x) + π(a) = qxx.

Secondly, recalling that x/E1 ∩ supp(a) = ∅, notice that by 5.15(2), we have

that x /∈ G(1,p), but this contradicts that x+ a ∈ G(1,p), as π(x+ a) = qxx.]

(?0.2) If π is not one-to-one, then π of the form a 7→ 0 for all a ∈ G1.

[Why? Let a ∈ G+
1 be such that π(a) = 0. If y ∈ X \ supp(a), then we get that

π(y) = 0, by applying (?0.1) to (a, y). If y ∈ supp(a), choose x ∈ X \ supp(a)

and apply (?0.1) to (x, y).]

(?0.3) Without loss of generality, π is one-to-one.

[Why? Otherwise, by (?0.2), π is multiplication by an integer, and so we are

done.]

(?1) (qx : x ∈ X) is constant.

Why (?1)? Choose x0, x1 ∈ X such that qx0 6= qx1 and, if possible, they are

both 6= 0. Let n < ω be such that x0, x1 ∈ Xn and choose a <X -minimal

x2 ∈ Xn+1 \Xn, possible by 5.9(2). Let a = x0 +x1 +x2, p = pa (cf. 5.13) and

x̄ = (x0, x1, x2). As a ∈ G(1,p) and π ∈ End(G1), clearly π(a) = b ∈ G(1,p) and

so by 5.15(6) there are j < ω and, for i < j, ȳi ∈ seq3(X) and qi ∈ Q+ such

that x̄ 63
X ȳi and

(?1.1) b =
∑

i<j q
i(
∑

`<3 y
i
`).

Notice that by (?0.2) we have j > 0, and without loss of generality, we can

assume that for i < j − 1, we have ȳj−1 663
X ȳi and also that x̄ is reasonable

(so the ȳi’s are also reasonable). Also,

(?1.2) b = π(a) = qx0x0 + qx1x1 + qx2x2.

As i < j − 1 implies ȳj−1 663
X ȳi, clearly yj−1

2 /∈ {yi` : i < j − 1, ` 6 2} ∪
{yj−1

0 , yj−1
1 } (by 5.9(9) and ȳj−1 ∈ seq3(X)), and so yj−1

2 appears exactly

once in the right-hand side of equation (?1.1), and so it appears in left-hand

side of (?1.1), so yj−1
2 ∈ supp(b) ⊆ {x0, x1, x2}. But x2 /∈ x0/E1 ∪ x1/E1, as

x0, x1 ∈ Xn and x2 ∈ Xn+1 \Xn is <X -minimal. On the other hand, clearly

yi` ∈ x`/E1 for ` 6 2 and i < j. Hence, necessarily yj−1
2 = x2. Finally, as x2

is <X -minimal and for some t̄ ∈ T<ω, ft̄(x̄) = ȳj−1, necessarily, ft̄(x2) = yj−1
2 ,

so clearly t̄ = ( ). Hence, ȳj−1 = x̄ and of course x̄ 63
X ȳ implies ft̄(x̄) 63

X ȳ.

Thus, by the statement after (?1.1), j = 1 and ȳ0 = x̄. So we have

(?1.3) qx0x0 + qx1x1 + qx2x2 = q0(y0
0 + y0

1 + y0
2) = q0(x0 + x1 + x2).

Thus, qx0 = q0 = qx1 , contradicting our assumption that qx0 6= qx1 .

(?2) Let qx = q∗ for x ∈ X (recalling (?1)).

(?3) q∗ is an integer.

Why (?3)? Let q∗ = m
n , with m,n ∈ Z+, m and n coprimes. Suppose that

there is a prime p such that p |n. Then we easily reach a contradiction noticing

that
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(·) if x ∈ X is <1-minimal and r is a prime different from px, then r 6 | x;

(·) there are <1-minimal x, y ∈ X such that x 6= y.

It follows that n = 1 and so (∗3) holds.

Hence, our proof is complete, as Cases 1 and 2 are contradictory, while in

Case 3 we showed that the arbitrary π ∈ End(G1) is indeed multiplication by

an integer. �

Remark 5.17. Notice that in the proof of 5.16, Cases 2 and 3 do not use

the assumption that T is well-founded and so for an arbitrary tree T (as in

5.1) and π ∈ End(G1[T ]), we have

(a) Case 1 happens if only if T is not well-founded;

(b) Case 2 never happens;

(c) if Case 3 happens, then π is multiplication by an integer.
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