# Avoiding equal distances 

by

Ashutosh Kumar (Jerusalem) and Saharon Shelah (Jerusalem and Piscataway, NJ)


#### Abstract

We show that it is consistent that there is a nonmeager set of reals each of whose nonmeager subsets contains equal distances.


1. Introduction. In [1], Erdős and Kakutani showed that the continuum hypothesis (CH) is equivalent to the following statement: There is a partition of the set $\mathbb{R}$ of reals into countably many rationally independent sets. It follows that, under CH , every nonmeager set of reals contains a nonmeager (in fact, everywhere nonmeager) subset avoiding equal distances. The aim of this note is to show that CH is needed here.

Theorem 1.1. It is consistent that there is a nonmeager $X \subseteq \mathbb{R}$ such that for every nonmeager $Y \subseteq X$, there are $a<b<c<d \in Y$ such that $b-a=d-c$.

Note that, by a result of Rado (see [2, Theorem 3.2]), we cannot require $Y$ to avoid arithmetic progressions of length 3. Also by [1], $X$ cannot have size $\aleph_{1}$. So we start by adding $\aleph_{2}$ Cohen reals and consider the set $X$ of their pairwise sums. We then make every small subset $Y$ of $X$ meager using a finite support product where $Y$ is small if it avoids equal distances. To capture the new subsets of $X$ that may appear later, we use a $\sigma$-ideal $\mathcal{I}$ (see below). The rest of the work is to show that $X$ remains nonmeager in the final model. The dual problem for the null ideal will be dealt with in a forthcoming work.

## 2. Proof

Notation. We sometimes identify $x \in 2^{\omega}$ with a real whose binary expansion is $x$. Addition is always the usual addition in $\mathbb{R}$. We also sometimes

[^0]interpret $y \in \mathbb{R}$ as a member of $2^{\omega}$ which is the binary expansion of the fractional part of $y$. The relevant point here is that these transformations preserve meager sets.

Assume CH. Let $S_{\star}=\left[\omega_{2}\right]^{2}$. Let $\mathcal{I}=\left\{S \subseteq S_{\star}:(\exists c: S \rightarrow \omega)(\forall A \in\right.$ $\left.\left[\omega_{2}\right]^{\aleph_{1}}\right)\left([A]^{2} \subseteq S \Rightarrow\left|c\left[[A]^{2}\right]\right| \geq 2\right)$. Note that, by the Erdős-Rado theorem, $\mathcal{I}$ is a proper $\sigma$-ideal over $S_{\star}$.

Let $\left\langle S_{\gamma}: \gamma<\gamma_{\star}\right\rangle$ be a one-one listing of $\mathcal{I}$. Let $\mathbb{P}$ add $\aleph_{2}$ Cohen reals $\left\langle x_{\alpha}: \alpha<\omega_{2}\right\rangle$. In $V^{\mathbb{P}}$, let $\mathbb{Q}=\prod\left\{\mathbb{Q}_{\gamma}: \gamma<\gamma_{\star}\right\}$ be the finite support product where $\mathbb{Q}_{\gamma}=\mathbb{Q}_{S_{\gamma}}$ is a $\sigma$-centered forcing making $\left\{x_{\alpha}+x_{\beta}:\{\alpha, \beta\} \in S_{\gamma}\right\}$ meager. For $S \subseteq S_{\star}, \mathbb{Q}_{S}$ is defined as follows: $p \in \mathbb{Q}_{S}$ iff

- $p=\left(F_{p}, \bar{n}_{p}, \bar{\sigma}_{p}, N_{p}\right)=(F, \bar{n}, \bar{\sigma}, N)$,
- $F \subseteq[S]^{2}$ is finite,
- $\bar{n}=\left\langle n_{k}: k \leq N\right\rangle$ is an increasing sequence of integers with $n_{0}=0$ and $n_{k+1}-n_{k}>2^{n_{k}-n_{k-1}}$,
- $\bar{\sigma}=\left\langle\sigma_{k}: k<N\right\rangle$ where $\sigma_{k} \in{ }^{\left[n_{k}, n_{k+1}\right)} 2$ for each $k$.

We write $p \leq q$ iff $F_{p} \subseteq F_{q}, \bar{n}_{p} \preceq \bar{n}_{q}, \bar{\sigma}_{p} \preceq \bar{\sigma}_{q}$ and for all $N_{p} \leq k<N_{q}$ and $\{\alpha, \beta\} \in F_{p},\left(x_{\alpha}+x_{\beta}\right) \upharpoonright\left[n_{q, k}, n_{q, k+1}\right) \neq \sigma_{q, k+1}$. It is clear that $\mathbb{Q}_{S}$ is a $\sigma$ centered forcing adding a meager set covering $X_{S}=\left\{x_{\alpha}+x_{\beta}:\{\alpha, \beta\} \in S\right\}$. We write $X$ for $X_{S_{\star}}$.

Note that the set of conditions $p=(p(0), p(1)) \in \mathbb{P} \star \mathbb{Q}$ such that for each $\gamma \in \operatorname{dom}(p(1)), p(0)$ forces an actual value $p(1)(\gamma)$, and for every $\{\alpha, \beta\} \in$ $F_{p(1)(\gamma)},\{\alpha, \beta\} \subseteq \operatorname{dom}(p(0))$, is dense in $\mathbb{P} \star \mathbb{Q}$. We will always assume that our conditions have this form.

Claim 2.1. In $V^{\mathbb{P} \star \mathbb{Q}}$, whenever $Y \subseteq X$ is nonmeager, there are $y_{1}<$ $y_{2}<y_{3}<y_{4}$ in $Y$ such that $y_{2}-y_{1}=y_{4}-y_{3}$.

Proof. Choose $S \subseteq S_{\star}$ such that $Y=X_{S}$ is nonmeager and suppose $p$ forces this. Let $S_{1}=\left\{\{\alpha, \beta\}:\left(\exists p_{\alpha, \beta} \geq p\right)\left(p_{\alpha, \beta} \Vdash\{\alpha, \beta\} \in \stackrel{\circ}{S}\right)\right\}$. Then $S_{1} \in \mathcal{I}^{+}$. Define an equivalence relation $E$ on $S_{1}$ as follows: $\left\{\alpha_{0}, \beta_{0}\right\} E\left\{\alpha_{1}, \beta_{1}\right\}$ iff

- $\left|\operatorname{dom}\left(p_{\alpha_{0}, \beta_{0}}(i)\right)\right|=\left|\operatorname{dom}\left(p_{\alpha_{1}, \beta_{1}}(i)\right)\right|=l_{i}$ for $i \in\{0,1\}$; let $\left\{\gamma_{\alpha_{j}, \beta_{j}, k}^{i}\right.$ : $\left.k<l_{i}\right\}$ list $\operatorname{dom}\left(p_{\alpha_{j}, \beta_{j}}(i)\right)$ in increasing order for $i, j \in\{0,1\}$.
- $p_{\alpha_{0}, \beta_{0}}(0)\left(\gamma_{\alpha_{0}, \beta_{0}, k}^{0}\right)=p_{\alpha_{1}, \beta_{1}}(0)\left(\gamma_{\alpha_{1}, \beta_{1}, k}^{0}\right)$ for each $k<l_{0}$.
- $p_{\alpha_{0}, \beta_{0}}(1)\left(\gamma_{\alpha_{0}, \beta_{0}, k}^{1}\right)$ and $p_{\alpha_{1}, \beta_{1}}(0)\left(\gamma_{\alpha_{1}, \beta_{1}, k}^{1}\right)$ have the same $\bar{n}, \bar{\sigma}, N$ (but not necessarily $F$ ), for each $k<l_{1}$.

It is clear that $E$ is an equivalence relation on $S_{1}$ with countably many equivalence classes. Since $S_{1} \in \mathcal{I}^{+}$, we can choose $A \in\left[\omega_{2}\right]^{\aleph_{1}}$ such that $[A]^{2} \subseteq S_{1}$ and $\left\{\alpha_{0}, \beta_{0}\right\} E\left\{\alpha_{1}, \beta_{1}\right\}$ for all $\left\{\alpha_{0}, \beta_{0}\right\},\left\{\alpha_{1}, \beta_{1}\right\} \in[A]^{2}$. Let $l_{0}, l_{1}$ be the corresponding domain sizes. By the Ramsey theorem, there is an infinite $A_{1} \subseteq A$ such that whenever $\alpha_{0}<\beta_{0}$ and $\alpha_{1}<\beta_{1}$ are from $A_{1}$, for all $i \in\{0,1\}$ and $k_{0}, k_{1}<l_{i}$ the truth value of $\gamma_{\alpha_{0}, \beta_{0}, k_{0}}^{i}=\gamma_{\alpha_{1}, \beta_{1}, k_{1}}^{i}$ depends
only on the order type of $\left\langle\alpha_{0}, \beta_{0}, \alpha_{1}, \beta_{1}\right\rangle$. Choose $\alpha_{1}<\alpha_{2}<\alpha_{3}<\alpha_{4} \in A_{1}$ such that $A_{1}$ has at least two members between any two $\alpha_{i}$ 's. It is easy to check that the conditions $p_{\alpha_{1}, \alpha_{3}}, p_{\alpha_{1}, \alpha_{4}}, p_{\alpha_{2}, \alpha_{3}}, p_{\alpha_{2}, \alpha_{4}}$ have a least common extension $q$. For example, to see that $p_{\alpha_{1}, \alpha_{3}}$ and $p_{\alpha_{2}, \alpha_{3}}$ have a least common extension, choose some $\beta \in A_{1} \cap\left(\alpha_{2}, \alpha_{3}\right)$ and use the fact that $\left\langle\alpha_{1}, \alpha_{3}, \beta, \alpha_{3}\right\rangle$, $\left\langle\alpha_{2}, \alpha_{3}, \beta, \alpha_{3}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{3}, \alpha_{2}, \alpha_{3}\right\rangle$ have the same order type. Similarly, for $p_{\alpha_{2}, \alpha_{3}}$ and $p_{\alpha_{1}, \alpha_{4}}$, choose $\beta_{1}<\beta_{2}$ from $\left(\alpha_{2}, \alpha_{3}\right) \cap A_{1}$ and use the fact that $\left\langle\alpha_{1}, \alpha_{4}, \beta_{1}, \beta_{2}\right\rangle,\left\langle\alpha_{2}, \alpha_{3}, \beta_{1}, \beta_{2}\right\rangle$ and $\left\langle\alpha_{1}, \alpha_{4}, \alpha_{2}, \alpha_{3}\right\rangle$ have the same order type. Now $q$ forces that $x_{\alpha_{1}}+x_{\alpha_{3}}, x_{\alpha_{1}}+x_{\alpha_{4}}, x_{\alpha_{2}}+x_{\alpha_{3}}$ and $x_{\alpha_{1}}+x_{\alpha_{4}}$ are in $Y$ and $\left(x_{\alpha_{1}}+x_{\alpha_{3}}\right)+\left(x_{\alpha_{2}}+x_{\alpha_{4}}\right)=\left(x_{\alpha_{1}}+x_{\alpha_{4}}\right)+\left(x_{\alpha_{2}}+x_{\alpha_{3}}\right)$.

Claim 2.2. $X$ is nonmeager in $V^{\mathbb{P} * \mathbb{Q}}$.
Proof. Suppose not. Let $p_{\star}$ and $\left\langle\stackrel{\circ}{T}_{m}: m<\omega\right\rangle$ be such that $p_{\star} \Vdash$ $(\forall m)\left(\stackrel{\circ}{T}_{m} \subseteq{ }^{<\omega^{\omega}} 2\right.$ is a nowhere dense subtree $) \wedge \stackrel{\circ}{X}^{( } \bigcup_{m}\left[\stackrel{\circ}{T}_{m}\right]$. Since $\mathbb{P} \star \mathbb{Q}$ is ccc, we can assume that each $\stackrel{\circ}{T}_{m}$ is in $V^{\mathbb{P}^{*} \times \prod_{k \geq 1} \mathbb{Q}_{k}}$ where $\mathbb{Q}_{k}=\mathbb{Q}_{S_{k}}$ for some $S_{k} \in \mathcal{I}$. For each $\{\alpha, \beta\} \in S_{\star}$, choose $p_{\alpha, \beta}, m(\alpha, \beta), k(\alpha, \beta), v(\alpha, \beta), l(\alpha, \beta)$, $n(\alpha, \beta)$ etc. such that:

- $p_{\alpha, \beta} \geq p_{\star}$ and $p_{\alpha, \beta} \Vdash\left(\stackrel{\circ}{x}_{\alpha}+\stackrel{\circ}{x}_{\beta}\right) \in\left[\stackrel{\circ}{T}_{m(\alpha, \beta)}\right]$.
- $p_{\alpha, \beta}=\left\langle p_{\alpha, \beta}(k): k \leq k(\alpha, \beta)\right\rangle$ where $p_{\alpha, \beta}(0)$ is the Cohen part and $p_{\alpha, \beta}(k) \in \mathbb{Q}_{k}$.
- $\operatorname{dom}\left(p_{\alpha, \beta}(0)\right)=v(\alpha, \beta),|v(\alpha, \beta)|=l(\alpha, \beta)$ and $\alpha, \beta \in v(\alpha, \beta)$.
- For each $\gamma \in v(\alpha, \beta), p_{\alpha, \beta}(0)(\gamma) \in^{n(\alpha, \beta)} 2$.
- For each $1 \leq k \leq k(\alpha, \beta), p_{\alpha, \beta}(k)=\left(F_{\alpha, \beta, k}, \bar{n}_{\alpha, \beta, k}, \bar{\sigma}_{\alpha, \beta, k}, N_{\alpha, \beta, k}\right)$ where $F_{\alpha, \beta, k} \subseteq\left[v_{\alpha, \beta}\right]^{2} \cap\left[S_{k}\right]^{2}$ and $n_{N_{\alpha, \beta, k}}=n(\alpha, \beta)$ does not depend on $k$.

Let $\left\{\gamma_{\alpha, \beta, l}: l<l(\alpha, \beta)\right\}$ list $v(\alpha, \beta)$ in increasing order. Since $S_{\star} \in \mathcal{I}^{+}$, as before, we can choose $A \in\left[\omega_{2}\right]^{\aleph_{0}}$ such that for every $\alpha<\beta$ from $A$ the following hold:

- $\{\alpha, \beta\} \notin \bigcup_{k \geq 1} S_{k}$.
- $m(\alpha, \beta)=m_{\star}, k(\alpha, \beta)=k_{\star}, l(\alpha, \beta)=l_{\star}, n(\alpha, \beta)=n_{\star}$.
- For each $l<l_{\star}, p_{\alpha, \beta}(0)\left(\gamma_{\alpha, \beta, l}\right)=\eta_{\star}^{l} \in{ }^{n_{\star}} 2$.
- For each $1 \leq k \leq k_{\star}, \bar{n}_{\alpha, \beta, k}=\bar{n}_{\star}^{k}, \bar{\sigma}_{\alpha, \beta, k}=\bar{\sigma}_{\star}^{k}, N_{\alpha, \beta, k}=N_{\star}^{k}$.
- For all $\alpha_{1}<\alpha_{2}$ and $\beta_{1}<\beta_{2}$ from $A$ and $l_{1}, l_{2}<l_{\star}$, the truth value of $\gamma_{\alpha_{1}, \beta_{1}, l_{1}}=\gamma_{\alpha_{2}, \beta_{2}, l_{2}}$ depends only on the order type of $\left\langle\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right\rangle$.

Let $\left\langle\alpha_{i}: i<\omega\right\rangle$ be increasing members of $A$. Choose $n_{\star \star}>n_{\star}+\left(k_{\star}+\right.$ $\left.l_{\star}+10\right)$ !. Choose $q_{1} \geq p_{\alpha_{0}, \alpha_{1}}$ such that

- $q_{1}=\left\langle q_{1}(k): k \leq k_{\star}\right\rangle$.
- $\operatorname{dom}\left(q_{1}(0)\right)=\operatorname{dom}\left(p_{\alpha_{0}, \alpha_{1}}\right)$ and $q_{1}(0)(l)=\eta_{\star}^{l} \frown 0^{n_{\star \star}-n_{\star}}$ for each $l<l_{\star}$.
- $q_{1}(k)=\left(F_{\alpha_{\star}, \beta_{\star}, k}, \bar{n}_{\star}^{k \frown} n_{\star \star}, \bar{\sigma}_{\star}^{k} \frown 01^{n_{\star \star}-n_{\star}-2} 0, N_{\star}^{k}+1\right)$ for each $1 \leq k \leq k_{\star}$.

Since $p_{\star}$ forces that $\left[\stackrel{\circ}{T}_{m_{\star}}\right]$ is nowhere dense, we can find $n_{\star \star \star}>n_{\star \star}$, $q_{2} \geq q_{1}$ and $\rho \in{ }^{\left[n_{\star *}, n_{\star * *}\right)} 2$ such that:

- $q_{2}=\left\langle q_{2}(k): k \leq K\right\rangle$ for some $k_{\star} \leq K<\omega$.
- For $1 \leq k \leq k_{\star}$, if $q_{2}(k)=\left(F_{k}, \bar{n}_{k}, \bar{\sigma}_{k}, N_{k}\right)$, then $n_{\star \star \star}<n_{k, N_{k}}$.
- $q_{2} \Vdash\left(\forall x \in\left[\stackrel{\circ}{T}_{m_{\star}}\right]\right)\left(x \upharpoonright\left[n_{\star \star}, n_{\star \star \star}\right) \neq \rho\right)$.

For $j \geq 2$, consider the set $s_{j}=\left\{l<l_{\star}:\left(\exists l^{\prime}<l_{\star}\right)\left(\gamma_{\alpha_{0}, \alpha_{1}, l}=\gamma_{\alpha_{j}, \alpha_{j+1}, l^{\prime}}\right)\right\}$. We claim that $s_{j}=s_{\star}$ is constant. To see this, suppose $2 \leq j_{1}<j_{2}$. Choose $j_{3}$ much larger than $j_{2}$ and use the fact that the order types of $\left\langle\alpha_{0}, \alpha_{1}, \alpha_{j_{i}}, \alpha_{j_{i}+1}\right\rangle$, $\left\langle\alpha_{0}, \alpha_{1}, \alpha_{j_{3}}, \alpha_{j_{3}+1}\right\rangle$ and $\left\langle\alpha_{j_{i}}, \alpha_{j_{i}+1}, \alpha_{j_{3}}, \alpha_{j_{3}+1}\right\rangle$ are the same for $i \in\{1,2\}$. It also follows that $\left\{\gamma_{\alpha_{j_{1}}, \alpha_{j_{1}+1}, l}: l \in l_{\star} \backslash s_{\star}\right\} \cap\left\{\gamma_{\alpha_{j_{2}}, \alpha_{j_{2}+1}, l}: l \in l_{\star} \backslash s_{\star}\right\}=\emptyset$ whenever $2 \leq j_{1}<j_{2}-1$. So we can choose $j$ large enough such that $\left(\operatorname{dom}\left(q_{2}(0)\right) \cup \bigcup_{k \leq K} F_{q_{2}(k)}\right) \cap\left(\left\{\gamma_{\alpha_{j}, \alpha_{j+1}, l}: l \in l_{\star} \backslash s_{\star}\right\} \cup\left\{\alpha_{j}, \alpha_{j+1}\right\}\right)=\emptyset$. The next claim gives us the desired contradiction.

CLAIM 2.3. For some $q_{3}, q_{3} \geq q_{2}, q_{3} \geq p_{\alpha_{j}, \alpha_{j+1}}$ and $q_{3} \Vdash \rho \subseteq{\stackrel{\circ}{\alpha_{j}}}+\stackrel{\circ}{x}_{\alpha_{j+1}}$.
Proof. Set $q_{3}=\left\langle q_{3}(k): k \leq K\right\rangle$ and $\operatorname{dom}\left(q_{3}(0)\right)=\operatorname{dom}\left(q_{2}(0)\right) \cup$ $\left\{\gamma_{\alpha_{j}, \alpha_{j+1}, l}: l \in l_{\star} \backslash s_{\star}\right\}$. For each $l \in l_{\star} \backslash s_{\star}$, we would like to find $\eta_{\star \star}^{l} \succeq \eta_{\star}^{l}$ such that:
(a) If $l_{1}<l_{2} \in l_{\star} \backslash s_{\star}, 1 \leq k \leq k_{\star},\left\{\gamma_{\alpha_{j}, \alpha_{j+1}, l_{1}}, \gamma_{\alpha_{j}, \alpha_{j+1}, l_{2}}\right\} \in S_{k}$ and $N_{\star}^{k} \leq i<N_{q_{2}(k)}$, then $\left(\eta_{\star \star}^{l_{1}}+\eta_{\star \star}^{l_{2}}\right) \upharpoonright\left[n_{q_{2}(k), i}, n_{q_{2}(k), i+1}\right) \neq \sigma_{q_{2}(k), i}$.
(b) If $l \in s_{\star}, l^{\prime} \in l_{\star} \backslash s_{\star}, 1 \leq k \leq k_{\star}$ and $N_{\star}^{k} \leq i<N_{q_{2}(k)}$, then $\left(q_{2}(0)\left(\gamma_{\alpha_{0}, \alpha_{1}, l}\right)+\eta_{\star \star}^{l^{\prime}}\right) \upharpoonright\left[n_{q_{2}(k), i}, n_{q_{2}(k), i+1}\right) \neq \sigma_{q_{2}(k), i}$.
(c) If $\gamma_{\alpha_{j}, \alpha_{j+1}, l_{1}}=\alpha_{j}, \gamma_{\alpha_{j}, \alpha_{j+1}, l_{2}}=\alpha_{j+1}$ (so that $l_{1}, l_{2} \in l_{\star} \backslash s_{\star}$ ), then $\left(\eta_{\star \star}^{l_{1}}+\eta_{\star \star}^{l_{2}}\right) \upharpoonright\left[n_{\star \star}, n_{\star \star \star}\right)=\rho$.
Here, for $\sigma, \tau \in 2^{<\omega}, m<n<\omega$ and $\rho:[m, n) \rightarrow 2$, by $(\sigma+\tau) \upharpoonright[m, n) \neq \rho$ we mean that $(x+y) \upharpoonright[m, n) \neq \rho$ for all $x \in[\sigma]$ and $y \in[\tau]$.

This suffices since then we can let $q_{3}(0)=q_{2}(0) \cup\left\{\left(\gamma_{\alpha_{j}, \alpha_{j+1}, l}, \eta_{\star \star}^{l}\right): l \in\right.$ $\left.l_{\star} \backslash s_{\star}\right\}$ and $q_{3}(k)=\left(F_{q_{2}(k)} \cup F_{p_{\alpha_{j}, \alpha_{j+1}}(k)}, \bar{n}_{q_{2}(k)}, \bar{\sigma}_{q_{2}(k)}, N_{q_{2}(k)}\right)$ for $1 \leq k \leq K$.

First set $\eta_{\star \star}^{l} \upharpoonright\left[n_{\star}, n_{\star \star}\right)=0^{n_{\star \star}-n_{\star}}$ for every $l \in l_{\star} \backslash s_{\star}$. Next let $W=$ $\left\{(k, i): 1 \leq k \leq k_{\star}, N_{\star}^{k}+1 \leq i<N_{q_{2}(k)}\right\}$. Note that for $(k, i) \in W$, we have $n_{q_{2}(k), i+1}-n_{q_{2}(k), i}>2^{i-N_{\star}^{k}}\left(n_{\star \star}-n_{\star}\right)>2^{i-N_{\star}^{k}}\left(k_{\star}+l_{\star}+10\right)!$.

Inductively choose pairwise disjoint intervals $\left\langle I_{k, i}:(k, i) \in W\right\rangle$ with $I_{k, i}=\left[m_{k, i}, m_{k, i}+\left(l_{\star}+5\right)!\right) \subseteq\left[n_{q_{2}(k), i}, n_{q_{2}(k), i+1}\right)$. We claim that for each $(k, i) \in W$, we can choose $\left\langle\eta_{\star \star}^{l}\left\lceil I_{k, i}: l \in l_{\star} \backslash s_{\star}\right\rangle\right.$ such that the $(k, i)$ th instance of requirements (a), (b) are met. To see this, note that we have at $\operatorname{most}\left(\begin{array}{c}l_{\star}-\left|s_{\star}\right|\end{array}\right)+\left|s_{\star}\right|\left(l_{\star}-\left|s_{\star}\right|\right)$ inequalities (coming from (a) and (b)) and one equality from (c) to satisfy, and since $\left\{\alpha_{j}, \alpha_{j+1}\right\} \notin \bigcup\left\{S_{k}: k \geq 1\right\}$, there is no conflict between requirements (a) and (c).

Acknowledgments. Research of A. Kumar was supported by a Postdoctoral Fellowship at the Einstein Institute of Mathematics funded by European Research Council grant 338821.

Research of S. Shelah was partially supported by European Research Council grant 338821; publication no. 1079.

## References

[1] P. Erdős and S. Kakutani, On non-denumerable graphs, Bull. Amer. Math. Soc. 49 (1943), 457-461.
[2] P. Komjáth, Set theoretic constructions in Euclidean spaces, in: New Trends in Discrete and Computational Geometry, J. Pach (ed.), Springer, 1993, 303-325.

Ashutosh Kumar
Einstein Institute of Mathematics
The Hebrew University of Jerusalem
Edmond J Safra Campus
Givat Ram, Jerusalem 91904, Israel
E-mail: akumar@math.huji.ac.il

Saharon Shelah
Einstein Institute of Mathematics The Hebrew University of Jerusalem

Edmond J Safra Campus Givat Ram, Jerusalem 91904, Israel
and
Department of Mathematics Rutgers, The State University of New Jersey

Hill Center-Busch Campus
110 Frelinghuysen Road
Piscataway, NJ 08854-8019, U.S.A.
E-mail: shelah@math.huji.ac.il
$\qquad$ . 107

號 . $\square$

再
(
(
(

(
(

 $\square$ $\square$
(
(
(
(
$\square$
$\square$
$\square$ $\square$
$\qquad$
$\square$
$\qquad$
$\square$

$\square$
$\square$
$\qquad$


[^0]:    2010 Mathematics Subject Classification: Primary 03E35; Secondary 03E75.
    Key words and phrases: forcing, Baire category.
    Received 1 November 2015; revised 6 April 2016.
    Published online 5 August 2016.

