THE HANF NUMBER OF OMITTING COMPLETE TYPES

SAHARON SHELAH

It is proved in this paper that the Hanf number m^c of omitting complete types by models of complete countable theories is the same as that of omitting not necessarily complete type by models of a countable theory.

Introduction. Morley [3] proved that if L is a countable first-order language, T a theory in L, p is a type in L, and T has models omitting p in every cardinality $\lambda < \beth_{\omega_1}$, then T has models omitting p in every infinite cardinality. He also proved that the bound \beth_{ω_1} cannot be improved, in other words the Hanf number is \beth_{ω_1} . He asked what is the Hanf number m^c when we restrict ourselves to complete T and p. Clearly $m^c \leq \beth_{\omega_1}$. Independently several people noticed that $m^c \geq \beth_{\omega}$ and p. Knight noticed that $p^c \geq \beth_{\omega}$.

Malitz [2] proved that the Hanf number for complete $L_{\infty,\omega}$ -theories with one axiom $\psi \in L_{\omega_1,\omega}$ is \beth_{ω_1} . We shall prove

Theorem 1. $m^c = \beth_{\omega_1}$.

NOTATION. Natural numbers will be i, j, k, l, m, n, ordinals α, β, δ ; cardinals λ, μ . |A| is the cardinality of $A, \beth_{\alpha} = \sum_{\beta < \alpha} 2^{\beth_{\beta}} + \bigstar_0$.

M will be a model with universe |M|, with corresponding countable first-order language L(M). For a predicate $R \in L(M)$, the corresponding relation is $R^{\mathbb{M}}$ or R(M), and if there is no danger of confusion just R. Every M will have the one place predicate P and individual constants c_n such that $P = P^{\mathbb{M}} = \{c_n : n < \omega\}, \ n \neq m \Rightarrow c_n \neq c_m$ (we shall not distinguish between the individual constants and their interpretation). A type p in L is a set of formulas $\mathcal{P}(x_0) \in L$; p is complete for T in L if it is consistent and for no $\mathcal{P}(x_0) \in L$ both $T \cup p \cup \{\mathcal{P}(x_0)\}$ and $T \cup p \cup \{\mathcal{P}(x_0)\}$ are consistent.

An element $b \in |M|$ realizes p if $\varphi(x_0) \in p$ implies $M \models \varphi[b]$ (\models -satisfaction sign), and M realizes p if some $a \in |M|$ realizes it. A complete theory in L is a maximal consistent set of sentences of L. For every permutation θ of P, model M, and sublanguage L of L(M) we define an Ehrenfeucht game $EG(M, L, \theta)$ between player I and II with ω moves as follows: in the nth move first player I chooses $i \in \{0, 1\}$ and $a_n^i \in |M|$ and secondly player II chooses $a_n^{1-i} \in |M|$. Player II wins if the extension θ^* of θ defined by $\theta^*(a_n^0) = a_n^1$ preserves all atomic formulas of L. That is if $R(x_1, \dots, x_n)$ is an atomic formula in $L, \theta^*(b_i)$ is defined then $M \models R[b_1, \dots, b_n]$ iff $M \models R[\theta^*(b_1), \dots, \theta^*(b_n)]$.

164

REMARK. So if I chooses $a_n^i \in P$, II should choose $a_n^1 = \theta(a_n^0)$.

Define $\Gamma(n_0) = \{\theta \colon \theta \text{ a permutation of } P, \ n < n_0 \Rightarrow \theta(c_n) = c_n \text{ and only for finitely many } n \ \theta(c_n) \neq c_n \}.$

 $M \mid L$ is the reduct of M to the language $L \subseteq L(M)$, that is $M \mid L$ is M without the relations R^{M} , $R \in L(M)$, $R \notin L$, and constants $c_{n} \in L(M)$, $c_{n} \notin L$.

THEOREM 2. For every ordinal $\alpha < \omega_1$ there is a countable first-order language L_{α} a complete theory T_{α} in L, such that

- (i) $p = \{P(x_0)\} \cup \{x_0 \neq c_n : n < \omega\}$ is a complete type for T_{α} .
- (ii) T_{α} has a model of cardinality \beth_{α} omitting p.
- (iii) T_{α} has no model of cardinality $> \beth_{\alpha}$ omitting p.

REMARK. Clearly Theorem 2 implies Theorem 1.

Proof. We shall define by induction on $lpha < \omega_{\scriptscriptstyle 1}$ models $M_{\scriptscriptstyle lpha}$ such that

- (1) $||M_{\alpha}||$, the cardinality of $|M_{\alpha}|$, is, \mathfrak{I}_{α} , and of course $P=P(M_{\alpha})=\{c_n\colon n<\omega\}$ and except for the c_n 's $L(M_{\alpha})$ has only predicates.
- (2) There is no model elementarily equivalent to M_{α} of cardinality $> \beth_{\alpha}$ which omits p.
 - (3) If $(\exists \beta)(\alpha = \beta + 2)$ then $Q_{\alpha} \in L(M_{\alpha})$ and $|Q_{\alpha}(M_{\alpha})| = \beth_{\alpha}$
- (4) For every finite sublanguage L of $L(M_{\alpha})$ there is $n_L = n(L) < \omega$, such that for every permutation $\theta \in \Gamma(n_L)$ player II has a winning strategy in $EG(M_{\alpha}, L, \theta)$.
- (5) In (4) if $(\exists \beta)(\alpha=\beta+2)$ then in the winning strategy of II, if I chooses $a_n^i \in Q_\alpha(M_\alpha)$ then II chooses $a_n^{1-i}=a_n^i$.

The induction will go as follows. First we define M_0 , M_1 , and M_2 ; later we define $M_{\alpha+1}$ by M_{α} when $(\exists \beta)(\alpha = \beta + 2)$; last for limit ordinal δ we define M_{δ} , $M_{\delta+1}$, $M_{\delta+2}$ by M_{α} $\alpha < \delta$.

But before defining the M_{α} 's, let us show how this will finish the proof. We choose $L_{\alpha}=L(M_{\alpha})$. T_{α} is the set of sentences of L_{α} that M_{α} satisfies. Clearly (ii), (iii) are satisfied. To prove (i) let $\varphi(x_0) \in L_{\alpha}$, so for some finite sublanguage L of $L_{\alpha} \varphi(x_0) \in L$. By possibly interchanging $\varphi(x_0)$ and $\neg \varphi(x_0)$ we can assume $M_{\alpha} \models \varphi[c_{n(L)}]$. For $k \geq n(L)$ let θ_k be the permutation of P interchanging $c_{n(L)}c_k$, and leaving the other elements fixed.

Clearly $\theta \in \Gamma(n_L)$, hence player II has a winning strategy in $EG(M_\alpha, L, \theta)$. By Ehrenfeucht [1] this implies $c_{n(L)}$ and $c_k = \theta(c_{n(L)})$ satisfy the same formulas of L. Hence $M_\alpha \models \mathcal{P}[c_{n(L)}] \equiv \mathcal{P}[c_k]$, hence $M_\alpha \models \mathcal{P}[c_k]$. As this holds for any $k \geq n(L)$ $M_\alpha \models (\forall x)[P(x) \land \bigwedge_{i < n(L)} x \neq c_i \to \mathcal{P}(x)]$. Hence $T_\alpha \cup p \cup \{\neg \mathcal{P}(x_0)\}$ is inconsistent. So p is complete

Sh:33

(for T_{α} , L_{α}) and we finish.

So let us define

Case I. $\alpha = 0, 1, 2$

(A) Let us define M_0 :

 $|M_0|=P$, and its only predicate is P (and of course the individual constants c_n , which we will not mention in later cases). Clearly (1), (2) are immediate. (3) and (5) are satisfied vacuously. As for (4), let $n_L=\max\{n+1\colon c_n\in L\}$. Clearly θ is an automorphism of $M_0\mid L$ (the reduct of M_0 to L).

So player II will play by the automorphism: if I chooses a_n^0 , II will choose $a_n^1 = \theta(a_n^0)$, and if I chooses a_n^1 , II will choose $a_n^0 = \theta^{-1}(a_n^1)$.

 $(B) \quad |M_1| = |M_0| \cup P_1(M_1), \quad \text{where} \quad P_1(M_1) = \mathscr{S}(|M_0|), \quad \text{where} \quad \mathscr{S}(A) = \text{the power set of } A = \{B \colon B \subseteq A\}.$

The predicates of M_1 are those of M_0 , P_1 and ε_1

$$\varepsilon_1(M_1) = \{\langle c, A \rangle : c \in |M_0|, A \in P_1, c \in A\}$$
.

As in (A) it is clear that M_1 satisfies the induction conditions, as if $\theta \in \Gamma(n_L)$ $L \subseteq L(M_1)$, L finite, then θ can be extended to an automorphism of M_1 by

$$\theta(A) \stackrel{\mathrm{def}}{=} \{ \theta(c) \colon c \in A \}$$
 .

(C) Let us define an equivalence relation E_1 on $P_1(M_1)$: AE_1B iff for some $\theta \in \Gamma(0)$ $A = \theta(B)[= \{\theta(c): c \in B\}]$.

This is an equivalence relation, as $\Gamma(0)$ is a group of permutations, and as $|\Gamma(0)| = \aleph_0$, each equivalence class is countable. Define

$$egin{aligned} &|M_2|=|M_1|\cup Q_2(M_2)\ &Q_2(M_2)=\{S\colon S\subseteqq P_1(M_1),\,A,\,B\in P_1,\,AE_1B{\Rightarrow}A\in S\longleftrightarrow B\in S\}\ &arepsilon_2(M_2)=\{\langle A,\,S
angle\colon A\in P_1,\,S\in Q_2,\,A\in S\} \;. \end{aligned}$$

The relations of M_2 will be the relations of M_1 , and Q_2 , ε_2 . By the definition of Q_2 , each $\theta \in \Gamma(n_L)$ [L a finite sublanguage of $L(M_2)$] can be extended to an automorphism θ^* of $M_2 \mid L$, which is the identity over Q_2 . As before (1), (2), (4) hold, and as θ^* is the identity over Q_2 , also (5) holds. As for (3) each E_1 -equivalence class is countable, and $|P_1(M_1)| = 2^{|P|} = 2^{\aleph_0}$, the number of E_1 -equivalence classes is \mathfrak{I}_1 , so $|Q_2| = 2^{\mathfrak{I}_1} = \mathfrak{I}_2$.

Case II. We define $M_{\alpha+1}$, where M_{α} is defined, $(\exists \beta)(\alpha = \beta + 2)$. Let

$$|M_{\alpha+1}| = |M_{\alpha}| \cup \mathscr{T}(Q_{\alpha}(M_{\alpha}))$$
.

166

The relations of $M_{\alpha+1}$ will be those of M_{α} and in addition $Q_{\alpha+1}(M_{\alpha+1})=\mathscr{T}(Q_{\alpha}(M_{\alpha}))$

$$\varepsilon_{\alpha+1}(M_{\alpha+1})=\{\langle a,A\rangle\colon a\in Q_{\alpha}(M_{\alpha}),\,A\in Q_{\alpha+1}(M_{\alpha+1}),\,a\in A\}$$
 .

Clearly Conditions (1), (2), (3) are satisfied. As for (4), (5) the winning strategy of player II in $EG(M_{\alpha+1}, L, \theta)[\theta \in \Gamma(n_L)]$ will be as follows: when I chooses elements in $|M_{\alpha}|$ he will pretend all the game is in $|M_{\alpha}|$ and play accordingly; and if player I chooses $a_n^i \in Q_{\alpha+1}(M_{\alpha+1})$, then player II will choose $a_n^{1-i} = a_n^i$. As M_{α} satisfies (5) this is a winning strategy, and trivially it satisfies (5).

Case III. δ a limit ordinal, M_{α} is defined for $\alpha < \delta$; and we shall define M_{δ} , $M_{\delta+1}$, $M_{\delta+2}$.

PART A. By changing, when necessary, names of elements and relations, we can assume that for $\alpha < \beta < \delta$,

$$\mid M_{lpha} \mid \cap \mid M_{eta} \mid = P$$
, and $L(M_{lpha}) \cap L(M_{eta}) = \{P,\, c_n \colon n < \omega\}$,

but that if $(\exists \beta)(\alpha = \beta + 2)$ then still $Q_{\alpha} \in L(M_{\alpha})$. Choose an increasing sequence of ordinals α_n $n < \omega$, $\delta = \bigcup_{n < \omega} \alpha_n$ and $(\exists \beta)(\alpha_n = \beta + 2)$. Define M_{δ} as follows

$$|M_{\delta}| = \bigcup_{n \leq \omega} M_{\alpha_n}$$
 .

The relations of M_{δ} will be those of M_{α_n} for each $n < \omega$ and $R_{\delta}^{M_{\delta}}$

$$R_{\delta}^{M_{\delta}} = \{\langle c, a \rangle : c = c_n \in P, a \in (M_{\alpha_n} - P)\}$$
.

It is easy to check that Conditions (1), (2) are satisfied. Conditions (3) and (5) are vacuous. So let us prove Condition (4) holds. Let L be a finite sublanguage of $L(M_i)$; then $L \subseteq \bigcup_{j < n_0} L_j \cup \{R\}$, where $L_j = L \cap L(M_{\alpha_j})$ is a finite sublanguage of $L(M_{\alpha_j})$. Define $n_L = \max \left[\{n_{L_j} \colon j < n_0\} \cup \{n_0\}\right]$. Let $\theta \in \Gamma(n_L)$. We shall describe now the winning strategy of player II in $EG(M_i, L, \theta)$. When player I will choose $i \in \{0, 1\}$, $a_n^i \in M_{\alpha_j}$, $j < n_0$, player II will pretend all the game is in the model M_{α_j} , and so play his winning strategy for $EG(M_{\alpha_j}, L \cap L(M_{\alpha_j}), \theta)$. If player I chooses $i \in \{0, 1\}$, $a_n^i \in M_{\alpha_j}$ $j \geq n_0$ then player II will choose $a_n^{1-i} \in M_{\alpha_k}$ [where $i = 0 \Rightarrow k = \theta(j)$, $i = 1 \Rightarrow j = \theta(k)$] such that for any m < n $a_n^i = a_n^i \Leftrightarrow a_m^{1-i} = a_n^{1-i}$.

Note that for $j \geq n_0$, in $M_i \mid L$, every permutation of elements of M_{α_j} is an automorphism, as the only relation an $a \in |M_{\alpha_j}|$ satisfies is $R_i[c_j, a]$.

PART B. Here we define $M_{\delta+1}$. Let $A^* = \bigcup_{n<\omega} Q_{\alpha_n}(M_{\alpha_n})$, and $|M_{\delta+1}| = |M_{\delta}| \cup \mathscr{S}(A^*)$.

The relations of M_{i+1} will be those of M_i , and in addition

$$egin{aligned} P_{\delta}(M_{\delta+1}) &= \mid M_{\delta}\mid, \ P_{\delta+1}(M_{\delta+1}) = \mathscr{S}(A^*) \ arepsilon_{\delta+1}(M_{\delta+1}) &= \{\langle b,B
angle \colon b \in A^*, \ B \in \mathscr{S}(A^*), \ b \in B \} \ . \end{aligned}$$

It is easy to see that Conditions (1), (2) are satisfied, and (3), (5) are vacuous. So let us prove (4) — let L be a finite sublanguage of $L(M_{\delta+1})$. So

$$L \subseteqq \bigcup_{i < n_0} L_i \cup \{R_\delta,\, P_\delta,\, P_{\delta+1},\, arepsilon_{\delta+1} \},\, L_i = L \cap L(M_{lpha_i})$$
 .

Define again

$$n_L = \max [\{n_{L_i}: j < n_0\} \cup \{n_0\}]$$
.

Let $\theta \in \Gamma(n_L)$ and we should describe player II's winning strategy in $EG(M_{\delta+1}, L, \theta)$. When player I chooses an element in M_{α_j} $j < n_0$, player II will ignore all elements chosen outside M_{α_j} , and play by his winning strategy in $EG(M_{\alpha_j}, L_j, \theta)$. In the other cases player II will play so that the following conditions are satisfied for every n

- P(1) $a_n^0 \in P_{\delta+1}(M_{\delta+1}) \Leftrightarrow a_n^1 \in P_{\delta+1}(M_{\delta+1})$
- P (2) if $c_j = \theta(c_k)$, then $a_n^0 \in |M_{\alpha_k}| \Leftrightarrow a_n^1 \in |M_{\alpha_j}|$
- P(3) if m < n then $a_m^0 = a_n^0 \Leftrightarrow a_m^1 = a_n^1$
- P(4) if $m, l \leq n$ and $a_m^0 \in A^*, a_l^0 \in P_{\delta+1}$ then $a_m^0 \in a_l^0 \Leftrightarrow a_m^1 \in a_l^1$
- P (5) if $a_m^0 \in P_{\delta+1}$, $l < \omega$, $c_l = \theta(c_l)$ then $a_m^0 \cap Q_{\alpha_l}(M_{\alpha_l}) = a_m^1 \cap Q_{\alpha_l}(M_{\alpha_l})$
- P (6) if $c_j = \theta(c_k)j \neq k < \omega$, then $\langle a_m^0 \colon m \leq n, a_m^0 \in P_{\delta+1} \rangle$ and $\langle a_m^1 \colon m \leq n, a_m^1 \in P_{\delta+1} \rangle$ generate corresponding finite Boolean algebras of subsets of $Q_{\alpha_k}(M_{\alpha_k})$ and $Q_{\alpha_j}(M_{\alpha_j})$ correspondingly; then the corresponding atoms in those algebras are both infinite, or have the same power.

It is easy to see that this can by done, and it is a winning strategy.

PART C. Here we define $M_{\delta+2}$.

Define equivalence relations $E_{\delta+1}$, $E_{\delta+1}^n$ on $P_{\delta+1}(M_{\delta+1})$: if $A, B \in P_{\delta+1}(M_{\delta+1})$, then $A, B \subseteq A^* = \bigcup_{n < \omega} Q_{\alpha_n}(M_{\alpha_n})$; define $AE_{\delta+1}^nB$ iff $A \cap [\bigcup_{\omega > m > n} Q_{\alpha_m}(M_{\alpha_m})] = B \cap [\bigcup_{\omega > m > n} Q_{\alpha_m}(M_{\alpha_m})]$; $AE_{\delta+1}B$ iff for some $n \in AE_{\delta+1}^nB$.

Clearly each $E_{\delta+1}^n$ is an equivalence relation, $E_{\delta+1}^n$ refines $E_{\delta+1}^{n+1}$, hence $E_{\delta+1}$ is an equivalence relation.

It is clear that

$$|P_{\delta+1}(M_{\delta+1})| = \beth_{\delta+1}$$

but for every $n < \omega$, $A \in P_{\delta+1}(M_{\delta+1})$

168

$$egin{aligned} | \{B \colon B \in P_{\delta+1}(M_{\delta+1}), \ BE^n_{\delta+1}A \} | & \leq | \mathscr{T}(igcup_{m \leq n} Q_{lpha_m}(M_{lpha_m})) | \ & = 2^{\beth_{lpha_n}} = \beth_{lpha_n+1} \leq \beth_{\delta} \end{aligned}$$

hence

$$|\{B\colon B\in P_{\delta+1}(M_{\delta+1}),\,BE_{\delta+1}A\}|\leqq\sum_{\sigma\in\sigma}\,\beth_{\delta}=\,\beth_{\delta}$$
 .

So each $E_{\delta+1}$ — equivalence class has cardinality $\leq \Im_{\delta}$, hence there are $\Im_{\delta+1} E_{\delta+1}$ -equivalence classes.

Define $M_{\delta+2}$:

$$\mid M_{\scriptscriptstyle \delta+2} \mid = \mid M_{\scriptscriptstyle \delta+1} \mid \; \cup \; Q_{\scriptscriptstyle \delta+2}(M_{\scriptscriptstyle \delta+2})$$

where

$$Q_{\delta+2}(M_{\delta+2}) = \{S: S \subseteq P_{\delta+1}(M_{\delta+1}), A, B \in S, AE_{\delta+1}B \longrightarrow A \in S \longleftrightarrow B \in S\}$$
.

Clearly $|Q_{\delta+2}(M_{\delta+2})| = \beth_{\delta+2}$.

The relations of $M_{\delta+2}$ will be those of $M_{\delta+1}$, and $Q_{\delta+2}$, and

$$\varepsilon_{\delta+2}(M_{\delta+2}) = \{\langle A, S \rangle : A \in P_{\delta+1}(M_{\delta+1}), S \in P_{\delta+2}(M_{\delta+2}), A \in S \}$$
.

It is easy to prove all conditions are satisfied as in Case II, if we notice that by Condition P (5) if for any instance of any game $EG(M_{\delta+1}, L, \theta)[\theta \in \Gamma(n_L)]$ in which player II plays his strategy, if a_n^i, a_n^{1-i} are chosen for some n and they belong to $P_{\delta+1}(M_{\delta+1})$ then they are $E_{\delta+1}$ -equivalent (as $\{n: \theta(c_n) \neq n\}$ is finite).

REFERENCES

- 1. A. Ehrenfeucht, Application of games to completeness problem for formalized theories, Fund. Math., 49 (1961), 129-141.
- 2. J. Malitz, On the Hanf Number of Complete $L_{\omega_1,\omega}$ Sentences; The syntax and semantics of infinitary languages, edited by J. Barwise, Lecture notes in Mathematics 72, Springer, Berlin.
- 3. M. Morley, Omitting Classes of Elements; The Theory of Models, Proc. of the 1962 Symp. in Berkeley, Editors J. Addison, L. Henkin, and A. Tarski, North-Holland Publ. Co., Amsterdam, 1965, 265-273.

Received May 18, 1972.

THE HEBREW UNIVERSITY