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Abstract. We show that the existence of a continuum sized family F of entire func-
tions such that for each complex number z, the set {f(z) : f ∈ F} has size less than
continuum is undecidable in ZFC plus the negation of CH.

1. Introduction. In [2], Erdős asked the following (for some history on
this, see [3]):

Question 1.1. Is there a continuum sized family F of analytic functions
from C to C such that for each z ∈ C, {f(z) : f ∈ F} has size less than
continuum?

In the same paper, answering a question of Wetzel, Erdős showed that
CH is equivalent to the following: There is an uncountable family F of
analytic functions from C to C such that for each z ∈ C, {f(z) : f ∈ F} is
countable. We show here that the answer to Question 1.1 is undecidable in
ZFC plus the negation of CH.

2. No such family in the Cohen real model. The following theo-
rem implies that there is no such family in the Cohen real model which is
obtained by adding ℵ2 Cohen reals to L.

Theorem 2.1. Suppose V |= c = λ ≥ cf(λ) > κ = ω1. Let P add κ
Cohen reals. Then in V P, whenever F is a continuum sized family of entire
functions, there exists z ∈ C such that |{f(z) : f ∈ F}| = c.

Proof. Let r ∈ κ2 be the Cohen generic sequence added by P. Clearly,
V [r] |= c = λ. Suppose 〈fα : α < λ〉 is a sequence of pairwise distinct

2010 Mathematics Subject Classification: Primary 03E35; Secondary 03E75.
Key words and phrases: forcing, entire functions.
Received 2 May 2016; revised 8 December 2016 and 29 March 2017.
Published online 28 April 2017.

DOI: 10.4064/fm252-3-2017 [279] c© Instytut Matematyczny PAN, 2017

Sh:1078



280 A. Kumar and S. Shelah

entire functions in V [r]. Note that each fα is coded in V [r�ξα] for some
ξα < κ. As cf(λ) > κ, we can choose X ∈ [λ]λ and ξ? < κ such that for each
α ∈ X, fα is coded in V [r�ξ?]. Let z? ∈ C be Cohen over V [r�ξ?] so that
it avoids every meager subset of the complex plane coded in V [r�ξ?]. Since
two distinct entire functions only agree on a countable set, it follows that
〈fα(z?) : α ∈ X〉 are pairwise distinct.

3. Consistency with failure of CH. We now show that a positive
answer to 1.1 is also consistent with the failure of CH.

Theorem 3.1. It is consistent with ZFC plus the negation of CH that
there is a family F of entire functions such that |F| = c and for every
z ∈ C, |{f(z) : z ∈ C}| < c.

Before we begin the proof of Theorem 3.1, let us recall Erdős’ con-
struction in [2] under CH. Let {zi : i < ω1} = C. Inductively construct
〈fi : i < ω1〉 such that each fi : C → C is entire and for every j < i < ω1,
fi 6= fj and fi(zj) is a rational complex number. This is possible because
for every countable X ⊆ C, there is a non-constant entire function sending
X into the set of rational complex numbers.

We adopt a slightly different strategy that exploits the singularity of
continuum as follows. Starting with a model where c = ωω1 , we perform a
finite support iteration 〈Pi,Qi : i < ω1〉 such that, at each stage i < ω1, via
a ccc forcing Qi of size ωi+1, we add a family Fi of entire functions such
that|Fi| = ωi+1 and for every j ≤ i, lettingWj be the set of firstωj+1 members
of V Pi ∩ C in some fixed enumeration, we have (∀z ∈ Wj)(|{f(z) : f ∈ Fi}|
≤ ωj+1). So F =

⋃
{Fi : i < ω1} will be the required family in V P. The

possible set of values for {f(z) : f ∈ Fi} is not fixed beforehand but added
generically together with F—this is the major point of difference with Erdős’
construction. The main problem then is to ensure that Qi is ccc. We do this by
requiring that the finite approximations to members of {f(z) : z ∈Wi} can
be chosen quite independently of those for {g(z) : z ∈Wi}, for f 6= g ∈ Fi.
This is materialized by using strongly almost disjoint families in [ωi+1]

ωi+1 .
The next lemma says that such families can consistently exist.

Lemma 3.2. The following is consistent:

(a) c = ωω1.
(b) There is a family {Aα : α < ωω1} such that each Aα is in [ωω1 ]ωω1 .
(c) For every α < β < ωω1, Aα ∩Aβ is finite.
(d) For every i < ω1 and α < ωω1, |Aα ∩ ωi+1| = ωi+1.

Proof. We use Baumgartner’s thinning out forcing [1, Theorem 6.1]. Let
V |= GCH. Set λ = ωω1 and λi = ωi+1. For each 1 ≤ i < ω1, define Pi as
follows. Let Ki = {ν ∈ [ω2, λi] : ν = cf(ν)}. Then p ∈ Pi iff:
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(i) p = 〈pν : ν ∈ Ki〉.
(ii) Each pν is a function with dom(pν) ∈ [λ]<ν .
(iii) For each α ∈ dom(pν), pν(α) ∈ [λi]

<ν .
(iv) If ν < ν ′, then dom(pν) ⊆ dom(pν′), and for each α ∈ dom(pν),

pν(α) ⊆ pν′(α).

For p, q ∈ Pi, write p ≤i q iff:

• For each ν ∈ Ki, dom(pν) ⊆ dom(qν).
• For each α, β ∈ dom(pν), pν(α)⊆ qν(α), and if α 6= β, then pν(α)∩pν(β)

= qν(α) ∩ qν(β).

Let P =
∏
{Pi : i < κ} be the full support product of {Pi : i < κ}. So p ∈ P

iff p = 〈p(i) : i < κ〉 and p(i) ∈ Pi for every i < κ. For p, q ∈ P, p ≤ q iff
p(i) ≤i q(i) for every i < κ.

Claim 3.3. P preserves all regular cardinals below λ.

Proof of Claim 3.3. The proof is almost identical to that of [1, Lem-
ma 6.6] but we provide a sketch. Let G be P-generic over V . Let τ < λ be
a regular cardinal in V and suppose V [G] |= τ > cf(τ) = µ. Note that P is
ω2-closed, so µ ≥ ω2. Fix 1 ≤ i? < ω1 such that µ = λi? .

Let Q = {〈p(i)�[λi?+1,∞) : i < ω1〉 : p ∈ P} and H = {〈p(i)�[λi?+1,∞) :
i < ω1〉 : p ∈ G}. Then Q is λi?+1-closed and H is Q-generic over V . In V [H],
for i? < i < ω1 and α < λ, let Ei,α =

⋃
{p(i)(λi?+1)(α) : p ∈ H} and for

i ≤ i? and α < λ, let Ei,α = λi. Let

Q′ = {〈p(i)�[0, λi? ] : i < ω1〉 : p ∈ P
∧ (∀α ∈ dom(p(i)(λi?)))(pi(λi?)(α) ⊆ Ei,α)}

and K = {〈p(i)�[0, λi? ] : i < ω1〉 : p ∈ G}. Then it is easily verified that
K is Q′-generic over V [H] and V [G] = V [H][K]. As Q is λi?+1-closed,
cf(τ) ≥ λi?+1 in V [H]. Since λi? ≥ ω2, a ∆-system argument shows that
V [H] |= Q′ satisfies λi?+1-c.c. (see [1, Lemma 6.3]), hence V [G] = V [H][K]
|= cf(τ) ≥ λi?+1 > µ, a contradiction. 3.3

Let G be P-generic over V and V1 = V [G]. In V1, for α < λ, let Fα =⋃
{Fi,α ∩ [ωi, ωi+1) : i < ω1} where Fi,α =

⋃
{qω2(α) : (∃p ∈ G)(q = p(i))}.

Then each Fα is unbounded in ωi+1 for 1 ≤ i < ω1 and their pairwise
intersections have sizes ≤ ω1.

In V1, define P1 by p ∈ P1 iff p is a function, dom(p) ∈ [λ]<ℵ1 and p(α) ∈
[Fα ∪ ω1]

<ℵ1 for each α ∈ dom(p). For p, q ∈ P1, p ≤ q iff dom(p) ⊆ dom(q)
and for all α, β ∈ dom(p), p(α) ⊆ q(α) and if α 6= β, then p(α) ∩ p(β) =
q(α)∩q(β). As CH holds in V1, a ∆-system argument shows that P1 satisfies
ℵ2-cc. Since it is also countably closed, all cofinalities from V1 are preserved.
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Let G1 be P1-generic over V1 and V2 = V1[G1]. For α < λ, set F ′α =⋃
{p(α) : p ∈ G1}. Then each F ′α is unbounded in ωi+1 for i < ω1 and their

pairwise intersections are countable.

In V2, define P2 by p ∈ P2 iff p is a function, dom(p) ∈ [λ]<ℵ0 and for
each α ∈ dom(p), p(α) ∈ [F ′α]<ℵ0 . For p, q ∈ P1, p ≤ q iff dom(p) ⊆ dom(q)
and for all α, β ∈ dom(p), p(α) ⊆ q(α) and if α 6= β, then p(α) ∩ p(β) =
q(α)∩ q(β). A ∆-system argument shows that P2 satisfies ccc, so all cofinal-
ities are preserved.

Let G2 be P2-generic over V2 and V3 = V2[G2]. For α < λ, set Aα =⋃
{p(α) : p ∈ G2}. Then each Aα is unbounded below ωi+1 for each i < ω1

and their pairwise intersections are finite. As {Aα ∩ ω1 : α < λ} is a mod
finite almost disjoint family, V3 |= c ≥ λ. The other inequality follows from
a name counting argument using V2 |= λℵ0 = λ. 3.2

Proof of Theorem 3.1. Let V be a model satisfying the clauses of Lem-
ma 3.2. We will construct a finite support iteration 〈Pi,Qi : i < ω1〉 of ccc
forcings with limit P satisfying the following:

• |P| = ωω1 .
• Pi 〈̊zi,α : α < ωω1〉 lists C and Z̊i = {z̊j,α : j ≤ i, α < ωi+1}.
• 〈ẙα : α < ωi+1〉 ∈ V Pi is such that Pi 〈ẙα : α < ωi+1〉 is a one-one listing

of Z̊i, so {ẙα : α < ωω1} = C ∩ V P.
• In V Pi , Qi is a ccc forcing of size λi that adds a family Fi of entire functions

of size ωi+1 such that for every j ≤ i, Qi |{f(yα) : α < ωj+1}| ≤ ωj+1.

Set F =
⋃
i<ω1
Fi. If z̊ ∈ V P ∩ C, then for some i? < ω1 and α < ωi?+1, we

have z̊ = yα. Hence

|{f (̊z) : f ∈ F}| ≤ |
⋃
i<i?

{f (̊z) : f ∈ Fi}|+ |
⋃
i>i?

{f(yα) : f ∈ Fi}|

≤ ωi?+1 + ω1 · ωi?+1 = ωi?+1 < c.

The following lemma shows that Qi’s can be constructed.

Lemma 3.4. Suppose κ is regular uncountable. Let 〈Aα : α < κ〉 be such
that for every α < β < κ and uncountable cardinal µ ≤ κ, Aα ∩ µ ∈ [µ]µ

and Aα ∩ Aβ is finite (so κ ≤ c). Let 〈yα : α < κ〉 be a sequence of distinct
complex numbers. Then there exists a ccc forcing Q of size κ such that the
following hold in V Q:

(a) There is a family F of entire functions of size κ.
(b) For every uncountable cardinal µ ≤ κ, |{f(yα) : α < µ, f ∈ F}| = µ.

Proof of Lemma 3.4. For ξ < κ, let hξ : κ→ Aξ be such that hξ(α) is the
αth member of Aξ. Note that hξ[µ] = Aξ ∩ µ for every regular uncountable
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µ < κ. Define Q as follows: p ∈ Q iff

p = (np,mp, up, vp, wp, 〈mp
ξ,α : ξ ∈ up, α ∈ vp〉, 〈fpξ : ξ ∈ up〉,

〈Bp
γ,m : γ ∈ wp, m < mp〉)

where:

• 1 ≤ np < ω, 1 ≤ mp < ω.
• up, vp, wp ∈ [κ]<ℵ0 and |yα| < np for every α ∈ vp.
• wp ⊇ {hξ(α) : ξ ∈ up, α ∈ vp}.
• mp

ξ,α < mp for all ξ ∈ up and α ∈ vp.
• For each ξ ∈ up, f

p
ξ = fpξ (x, x′α, x

′′
α)α∈vp = fpξ (x, x′α, x

′′
α : α ∈ vp) is

a rational function in the 2|vp| + 1 variables {x} ∪ {x′α, x′′α : α ∈ vp}
over the rational complex field (complex numbers whose real and imag-
inary parts are rational) which can be expressed as a polynomial in x
whose coefficients are rational functions of {x′α, x′′α : α ∈ vp} such that
fpξ (x′β, x

′
α, x

′′
α)α∈vp = x′′β for every β ∈ vp.

• For every γ ∈ wp and m < mp, B
p
γ,m is a closed disk in the com-

plex plane with rational complex center and rational radius that satis-
fies: If zα,ξ,m ∈ Bp

hξ(α),m
for some ξ ∈ up, α ∈ vp and m < mp, then

fξ(x, yα, zα,ξ,mpξ,α
)α∈vp is well defined (no vanishing denominators).

Informally, p promises that for ξ ∈ up, the ξth entire function f̊ξ added by Q
is approximated by fpξ (x, yα, zα)α∈vp uniformly on the disk {x∈C : |x| ≤ np}
with an error ≤ 2−np where zα is an arbitrary point in Bp

hξ(α),m
p
ξ,α

. It also

promises that f̊ξ will map yα (for α ∈ vp) into Bp
hξ(α),m

p
ξ,α

. The parameter

m in Bp
γ,m allows us a countable amount of freedom to choose f̊ξ(yα) (this

is useful to increase vp, see Claim 3.5(c) below).
For p, q ∈ Q, define p ≤ q iff:

• np ≤ nq, mp ≤ mq.
• up ⊆ uq, vp ⊆ vq and wp ⊆ wq.
• If ξ ∈ up, α ∈ vp, then mq

ξ,α = mp
ξ,α.

• Bq
γ,m ⊆ Bp

γ,m for all γ ∈ wp and m < mp.
• Whenever |z| < np, ξ ∈ up, zξ,α ∈ Bq

hξ(α),m
q
ξ,α

with α ∈ vq, we have

|fpξ (z, yα, zξ,α)α∈vp − f
q
ξ (z, yα, zξ,α)α∈vq | ≤ 1/2np − 1/2nq .

Claim 3.5. The following are dense in Q:

(a) {p ∈ Q : ξ ∈ up} for ξ < κ.
(b) {p ∈ Q : (γ ∈ wp) ∧ (np,mp ≥ N)} for N < ω and γ < κ.
(c) {p ∈ Q : β ∈ vp} for β < κ.
(d) {p ∈ Q : (∀m < mp)(∀γ ∈ wp)(diam(Bp

γ,m) < 2−N )} for N < ω.
(e) {p ∈ Q : (∀γ1, γ2 ∈ wp)(∀m1,m2 < mp)((γ1, n1) 6= (γ2, n2) ⇒ Bp

γ1,m1 ∩
Bp
γ2,m2 = ∅)}.
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Proof of Claim 3.5. Clauses (b), (d) and (e) should be clear. Let us check
(a) and (c).

(a) Suppose q ∈ Q with ξ? ∈ κ \ uq. If vq = ∅, then we can add ξ?
to uq and set f qξ?(x) = 0. So assume vq = {αi : 1 ≤ i ≤ k}. Define gi =

gi(x, x
′
αj , x

′′
αj )1≤j≤i for 1 ≤ i ≤ k recursively as follows:

g1 = x+ x′′α1
− x′α1

,

gi+1 = gi +
( ∏
1≤j≤i

(x− x′αj )
)x′′αi+1

− gi(x′αi+1
, x′αj , x

′′
αj )1≤j≤i∏

1≤j≤i(x
′
αi+1
− x′αj )

.

Define p ≥ q as follows. Set np = nq, mp = mq, up = uq ∪ {ξ?}, vp = vq,

wp = wq ∪ {hξ?(α) : α ∈ vq}, fpξ? = gk and fpξ = f qξ for ξ ∈ uq. Set

mp
ξ,α = mq

ξ,α and Bp
γ,m = Bq

γ,m if already defined; otherwise choose them

arbitrarily.
(c) Suppose q ∈ Q and β ∈ κ \ vq. By increasing nq, we can assume

|yβ| < nq. For each ξ ∈ uq, define fpξ by

fpξ = f qξ +
(∏
α∈vq

(x− x′α)
)x′′β − f qξ (x′β, x

′
α, x

′′
α)α∈vq∏

α∈vq(x
′
β − x′α)

,

where we take a product over the empty index set to be 1.
Let ε = min{|yβ − yα| : α ∈ vq} if vq 6= ∅ and ε = 1 otherwise. Set

up = uq, vp = vq ∪ {β}, wp = wq ∪ {hξ(β) : ξ ∈ uq}, np = nq + 1, mp =
mq + |uq|. For each ξ ∈ uq, choose mp

ξ,β ≥ mq such that ξ1 6= ξ2 implies

mp
ξ1,β
6= mp

ξ2,β
. We need to choose Bp

γ,m’s such that whenever |z| < nq,

ξ ∈ uq and zξ,α ∈ Bp
hξ(α),m

p
ξ,α

for α ∈ vp, we have∣∣∣∣(∏
α∈vq

(z − yα)
)zξ,β − f qξ (yβ, yα, zξ,α)α∈vq∏

α∈vq(yβ − yα)

∣∣∣∣ ≤ 1

2nq
− 1

2nq+1
.

For this it is enough to have

|zξ,β − f qξ (yβ, yα, zξ,α)α∈vq | ≤
εk

(2nq)k2nq+1

where k = |vq|. But this is easily arranged by first shrinking Bq
hξ(α),m

q
ξ,α

’s

for α ∈ vq and then choosing Bp
hξ(β),m

p
ξ,β

accordingly. 3.5

Let G be Q-generic over V . For γ < κ and m < ω, let aγ,m be the unique
member of

⋂
{Bp

γ,m : p ∈ G}.
For ξ < λ, define fξ : C → C as follows. Choose {pk : k < ω}

⊆ G such that ξ ∈ upk and npk ≥ k for every k < ω, and set fξ(z) =
limk f

pk
ξ (z, yα, ahξ(α),m

pk
ξ,α

)α∈vpk . Since we have uniform convergence on com-

pact sets, fξ is analytic. Note that the definition of fξ is independent of the
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choice of {pk : k < ω} ⊆ G. For suppose {qk : k < ω} ⊆ G is such that
ξ ∈ uqk and nqk ≥ k for every k < ω. Let rk ∈ G be a common extension of
pk, qk. Then, for every z ∈ C with |z| < k, we have

|fpkξ (z, yα, ahξ(α),m
pk
ξ,α

)α∈vpk − f
qk
ξ (z, yα, ahξ(α),m

qk
ξ,α

)α∈vqk | ≤ 2−k+1

since it is at most

|fpkξ (z, yα, ahξ(α),m
pk
ξ,α

)α∈vpk − f
rk
ξ (z, yα, ahξ(α),m

rk
ξ,α

)α∈vrk |

+ |f qkξ (z, yα, ahξ(α),m
qk
ξ,α

)α∈vqk − f
rk
ξ (z, yα, ahξ(α),m

rk
ξ,α

)α∈vrk |,

and hence the two limits must be the same.

Set F = {fξ : ξ < κ}. For ξ, α < κ, let mξ,α be such that for some p ∈ G
we have ξ ∈ up, α ∈ vp and mp

ξ,α = mξ,α. Note that, for every ξ, α < κ, by

considering a sequence {pk : k < ω} ⊆ G with α ∈ vpk , we can infer that
fξ(yα) = ahξ(α),mξ,α . Next suppose ξ1 < ξ2 < κ. Choose α < κ such that

hξ1(α) 6= hξ2(α). Then fξ1(yα) = ahξ1 (α),mξ1,α 6= ahξ2 (α),mξ2,α = fξ2(yα). So

fξ’s are pairwise distinct. Finally, for every uncountable µ ≤ κ, we have

|{fξ(yα) : α < µ, ξ < κ}| ≤ |{ahξ(α),mξ,α : ξ < κ, α < µ}|
≤ |{aγ,m : γ < µ, m < ω}| = µ.

So it suffices to show that Q is ccc. Suppose A ⊆ Q is uncountable.
Choose S ⊆ A uncountable such that the following hold:

• np = n?, mp = m?, |up| = n1? and |vp| = n2? do not depend on p ∈ S.
• 〈up : p ∈ S〉 is a ∆-system with root u?, and 〈vp : p ∈ S〉 is a ∆-system

with root v?.
• If ξ1 6= ξ2 are from u? and hξ1(α1) = hξ2(α2), then {α1, α2}∩ (vp \ v?) = ∅

for every p ∈ S. This uses the fact that Aξ1 ∩ Aξ2 is finite (countable
suffices).
• By possibly extending p ∈ S, we can assume 1 ≤ |v?| < n2? (so vp and
vp \ v? are non-empty).
• up = {ξp,j : j < n1?} and vp = {αp,k : k < n2?} list members in increasing

order, and r1? ⊆ n1? and r2? ⊆ n2? are such that u? = {ξp,k : j ∈ r1?} and
v? = {αp,k : k ∈ r2?}.
• For all j < n1?, k < n2? and m<m?, we have fpξp,j= fj(x, x

′
αp,k

, x′′αp,k)k<n2
?
,

mp
ξp,j ,αp,k

= mj,k and Bp
hξp,j (αp,k),m

= Bj,k,m where fj , mj,k, Bj,k,m do not

depend on p ∈ S.
• 0 < ε1 < 2−(n?+1), ε1 is smaller than the radius of every Bj,k,m, and
|yαp,k1 − yαp,k2 | > ε1 for all p ∈ S and k1 < k2 < n2?.

• Each point of X = {〈yαp,k : k < n2?〉 : p ∈ S} is a condensation point of

X ⊆ Cn2
? .
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Suppose p, p′ ∈ S and we would like to find a common extension q. This
boils down to constructing f qξ for ξ ∈ up ∪ up′ . For ξ ∈ (up ∪ up′) \ u?, this

is similar to the proof of Claim 3.5(c). To construct f qξ for ξ ∈ u?, we will
make use of the following lemma.

Lemma 3.6. Suppose:

(i) 1 ≤ n? < ω, 0 < ε1 < 0.5.
(ii) f = f(z, xk, yk)k<k? is a rational function in the variables {z} ∪
{xk, yk : k < k?} over the rational complex field which can be expressed
as a polynomial in z whose coefficients are rational functions of xk, yk
for k < k? over the rational complex field, satisfying f(xl, xk, yk)k<k?
= yl for every l < k?.

(iii) ak, bk ∈ C for k < k?, |ak| < n? for k < k?, and |ak1 − ak2 | > ε1 for
every k1 < k2 < k?.

(iv) If |a′k − ak| < ε1 and |b′k − bk| < ε1 for k < k?, then f(z, a′k, b
′
k)k<k? is

well defined (no vanishing denominators).
(v) v? ⊆ k?, v? /∈ {∅, k?}.

Then there exist 0 < ε2 < ε1/8 and g = g(z, xl, yl, x
1
k, x

2
k, y

1
k, y

2
k)l∈v?,k∈k?\v?

such that whenever |a2k−ak| < ε2 for k ∈ k?\v?, letting b2k = f(a2k, aj , bj)j<k?
we have |b2k − bk| < ε1 − 2ε2 for k ∈ k? \ v? and the following hold:

(a) g is a polynomial in z whose coefficients are rational functions of the
other variables over the rational complex field satisfying z = xl implies
g = yl for l ∈ v? and z = xjk implies g = yjk for j = 1, 2 and k ∈ k? \ v?

(b) Letting a1k = ak, b1k = bk for k ∈ k? \ v? we have the following. For

every cl, c
j
k satisfying |cl − bl| < ε2, |cjk − b

j
k| < ε2 for l ∈ v?, j = 1, 2,

k ∈ k? \ v?, we have

|f(z, al, a
j
k, cl, c

j
k)l∈v?, k∈k?\v? − g(z, al, cl, a

1
k, a

2
k, c

1
k, c

2
k)l∈v?, k∈k?\v? | < ε1,

for all |z| < n? and j = 1, 2.

Proof of Lemma 3.6. Set

g = f(z, xl, x
1
k, yl, y

1
k)l∈v?,k∈k?\v? +

∑
j∈k?\v?

Gj

where

Gj =
Fj(z)[y

2
j − f(x2j , xl, x

1
k, yl, y

1
k)l∈v?,k∈k?\v? ]

Fj(x2j )
,

Fj(z) =
∏

k∈k?\v?
k 6=j

(z − x2k)
∏
l∈v?

(z − xl)
∏

k∈k?\v?

(z − x1k)

Clause (a) is easily verified. We need to find 0 < ε2 < ε1/8 such that
clause (b) holds. Note that for all sufficiently small ε2 < ε1/8, if |a2j−aj | < ε2,
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then |b2j − bj | = |f(a2j , ak, bk)k<k?−f(aj , ak, bk)k<k? | < 3ε1/4 < ε1−2ε2. Fix

cl, c
j
k as in clause (b) and consider

|f(z, al, a
j
k, cl, c

j
k)l∈v?, k∈k?\v? − g(z, al, cl, a

1
k, a

2
k, c

1
k, c

2
k)l∈v?, k∈k?\v? |.

This is at most

|f(z, al, a
1
k, cl, c

1
k)l∈v?, k∈k?\v? − f(z, al, a

2
k, cl, c

2
k)l∈v?, k∈k?\v? |

+
∑

j∈k?\v?

|Gj(z, al, cl, a1k, a2k, c1k, c2k)l∈v?, k∈k?\v? |.

The former term is easily bounded by ε1/2 by choosing sufficiently small ε2.
For the latter, notice that ∣∣∣∣ Fj(z)Fj(a2j )

∣∣∣∣ < (4n?
ε1

)2k?

.

So it suffices to ensure that

|c2j − f(a2j , al, a
1
k, cl, c

1
k)l∈v?, k∈k?\v? | <

ε2k?+1
1

k?(4n?)2k?
.

The expression on the left side is at most

|c2j − b2j |+ |b2j − f(a2j , al, a
1
k, cl, c

1
k)l∈v?, k∈k?\v? |.

Recalling our choice of b2j , this is bounded by

ε2 + |f(a2j , al, a
1
k, bl, b

1
k)l∈v?,k∈k?\v? − f(a2j , al, a

1
k, cl, c

1
k)l∈v?,k∈k?\v? |.

It is clear that this can be made arbitrarily small by choosing sufficiently
small ε2. 3.6

Fix p ∈ S. For each j ∈ r1?, using Lemma 3.6, we get ε2 = ε2,j and

g = gj for f = fj , ak = yαp,k , bk = the center of Bj,k,mj,k and v? = r2?. Let

ε3 = min{ε2,j : j ∈ r1?}. Choose p′ 6= p from S such that |yαp,k − yαp′,k | < ε3
for each k < n2?. We will construct a common extension q of p, p′.

Set nq = n? + 1, mq = m? + n1?n
2
?, uq = up ∪ up′ , vq = vp ∪ vp′

and wq = wp ∪ wp′ ∪ {hξ(α) : ξ ∈ uq, α ∈ vq}. Choose mq
ξ,α’s such that

{mq
ξ,α : (ξ ∈ up \u?∧α ∈ vp \v?) or (ξ ∈ up′ \u?∧α ∈ vp′ \v?)} are pairwise

distinct integers in [m?,mp). Next choose f qξ , Bq
γ,m for ξ ∈ uq, γ ∈ wq and

m < mq as follows:

• If ξ ∈ up\u?, let f qξ be as in the proof of Claim 3.5(c) applying the process

|vp′ − v?| times. Define Bq
hξ(α),m

q
ξ,α

for α ∈ vp by shrinking Bp
hξ(α),m

p
ξ,α

and

choose Bq
hξ(α),m

q
ξ,α

for α ∈ vp′ \ v? accordingly.

• If ξ ∈ up′ \ u?, we define f qξ and Bq
hξ(α),m

q
ξ,α

analogously.

• If ξ ∈ u?, choose j ∈ r1? such that ξp,j = ξ and set f qξ = gj . Obtain b2k for

k ∈ n2?\r2? as in Lemma 3.6 for a2k = yαp′,k . For k ∈ n2?, choose Bq
hξ(αp,k),mj,k
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to be a rational disk contained in a disk inside Bj,k,mj,k with center bk and

radius less than ε3. For k ∈ n2? \ r2?, choose Bq
hξ(αp′,k),mj,k

to be a rational

disk contained in a disk with center b2k and radius less than ε3 (so it is con-
tained in Bj,k,mj,k). Notice that if ξ1 6= ξ2 are from u? and {α1, α2}∩(vq\v?)
6= ∅, then hξ1(α1) 6= hξ2(α2) so there is no conflict in doing this. 3.4

4. Regular continuum. We conclude with the following.

Question 4.1. Is a positive answer to Question 1.1 consistent with
2ℵ0 = ℵ2?

One way to get this would be to construct a model where 2ℵ0 = ℵ2 and
for some A ∈ [C]ℵ1 , for every X ∈ [C]ℵ1 , there is a non-constant entire
function sending X into A. We do not know if this is possible.
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