The Erdős-Rado Arrow for Singular Cardinals

Saharon Shelah

Abstract. We prove in ZFC that if $\mathrm{cf}(\lambda)>\aleph_{0}$ and $2^{\mathrm{cf}(\lambda)}<\lambda$, then $\lambda \rightarrow(\lambda, \omega+1)^{2}$.

1 Introduction

For every finite cardinal κ, the Erdös-Dushnik-Miller theorem, [1, Theorem 11.1], states that $\kappa \rightarrow(\kappa, \omega)^{2}$. Erdös, Hajnal, Maté, and Rado proved that $\kappa \rightarrow(\kappa, \omega+1)$ for every regular uncountable κ, (see [1, Theorem 11.3]). For singular cardinals, κ, they were only able to obtain the weaker result in [1, Theorem 11.1] that $\kappa \rightarrow$ $(\kappa, \omega)^{2}$. It is not hard to see that if $\operatorname{cf}(\kappa)=\omega$, then $\kappa \nrightarrow(\kappa, \omega+1)^{2}$. If $\mathrm{cf}(\kappa)>\omega$ and κ is a strong limit cardinal, then it follows from the General Canonization Lemma, [1, Lemma 28.1], that $\kappa \rightarrow(\kappa, \omega+1)^{2}$. Question 11.4 of [1] is whether this holds without the assumption that κ is a strong limit cardinal, e.g., whether, in ZFC,

$$
\aleph_{\omega_{1}} \rightarrow\left(\aleph_{\omega_{1}}, \omega+1\right)^{2}
$$

In [5] it was proved that $\lambda \rightarrow(\lambda, \omega+1)^{2}$ if $2^{\mathrm{cf}}(\lambda)<\lambda$ and there is a nice filter on κ (see [3, Ch.V]; it follows from suitable failures of SCH). Also proved there are consistency results when $2^{\mathrm{cf}(\lambda)}>\lambda$.

Here, continuing [5] but not relying on it, we eliminate the extra assumption, i.e., we prove the following (in ZFC).

Theorem 1.1 If $\aleph_{0}<\kappa=\operatorname{cf}(\lambda)$ and $2^{\kappa}<\lambda$ then $\lambda \rightarrow(\lambda, \omega+1)^{2}$.
Before starting the proof, let us recall the well-known definition.
Definition 1.2 Let D be an \aleph_{1}-complete filter on $Y, f \in{ }^{Y} \operatorname{Ord}$, and $\alpha \in \operatorname{Ord} \cup\{\infty\}$. We define $\operatorname{rk}_{D}(f)=\alpha$ by induction on α (it is well known that $\mathrm{rk}_{D}(f)<\infty$): $\operatorname{rk}_{D}(f)=\alpha$ if and only if $\beta<\alpha \Rightarrow \operatorname{rk}_{D}(f) \neq \beta$ and for every $g \in{ }^{Y}$ Ord satisfying $g<_{D} f$, there is $\beta<\alpha$ such that $\operatorname{rk}_{D}(g)=\beta$.

Notice that we will use normal filters on $\kappa=\operatorname{cf}(\kappa)>\aleph_{0}$, so the demand for \aleph_{1}-completeness in the definition is satisfied.

Recall also the following definition.

[^0]Definition 1.3 Assume Y, D, f are as in Definition 1.2.

$$
J[f, D]=\left\{Z \subseteq Y: Y \backslash Z \in D \text { or } \mathrm{rk}_{D+Z}(f)>\operatorname{rk}_{D}(f)\right\}
$$

Lastly, we quote the next claim (Definition 1.3 and Claim 1.4 are from [2], and explicitly [4, 5.8(2),5.9].

Claim 1.4 Assume $\kappa>\aleph_{0}$ is regular, and D is a κ-complete (resp. normal) filter on Y.

Then for any $f \in{ }^{Y}$ Ord, $J[f, D]$ is a κ-complete (resp. normal) ideal on Y disjoint to D.

2 The Proof

In this section we prove Theorem 1.1, which, for convenience, we now restate.
Theorem 2.1 If $\aleph_{0}<\kappa=\operatorname{cf}(\lambda), 2^{\kappa}<\lambda$ then $\lambda \rightarrow(\lambda, \omega+1)^{2}$.

Proof

Stage A. Given that $\aleph_{0}<\kappa=\operatorname{cf}(\lambda)<\lambda, 2^{\kappa}<\lambda$, we will show that $\lambda \rightarrow(\lambda, \omega+1)^{2}$. So, towards a contradiction, suppose that
(i) $c:[\lambda]^{2} \rightarrow$ \{red, green $\}$ but has no red set of cardinality λ and no green set of order type $\omega+1$.
Choose $\bar{\lambda}$ such that:
(ii) $\bar{\lambda}=\left\langle\lambda_{i}: i<\kappa\right\rangle$ is increasing and continuous with limit λ, and for $i=0$ or i a successor ordinal, λ_{i} is a successor cardinal. We also let $\Delta_{0}=\lambda_{0}$ and for $i<\kappa, \Delta_{1+i}=\left[\lambda_{i}, \lambda_{i+1}\right)$. For $\alpha<\lambda$ we will let $\mathbf{i}(\alpha)$ be the unique $i<\kappa$ such that $\alpha \in \Delta_{i}$.
We can clearly assume, in addition, that
(iii) $\lambda_{0}>2^{\kappa}$, for $i<\kappa, \lambda_{i+1} \geq \lambda_{i}^{++}$, and each Δ_{i} is homogeneously red for c.

The last is justified by the Erdös-Hajnal-Maté-Rado theorem for λ_{i+1}, i.e., as $\lambda_{i+1} \rightarrow$ $\left(\lambda_{i+1}, \omega+1\right)^{2}$ because λ_{i+1} is regular.
Stage B. For $0<i<\kappa$, we define Seq_{i} to be

$$
\left\{\left\langle\alpha_{0}, \ldots, \alpha_{n-1}\right\rangle: \mathbf{i}\left(\alpha_{0}\right)<\cdots<\mathbf{i}\left(\alpha_{n-1}\right)<i\right\}
$$

For $\zeta \in \Delta_{i}$ and $\left\langle\alpha_{0}, \ldots, \alpha_{n-1}\right\rangle=\bar{\alpha} \in \operatorname{Seq}_{i}$, we say $\bar{\alpha} \in \mathcal{T}^{\zeta}$ if and only if $\left\{\alpha_{0}, \ldots, \alpha_{n-1}, \zeta\right\}$ is homogeneously green for c. Note that an infinite \triangleleft-increasing branch in \mathcal{T}^{ζ} violates the non-existence of a green set of order type $\omega+1$, so,
(iv) \mathcal{T}^{ζ} is well-founded, that is we cannot find $\eta_{0} \triangleleft \eta_{1} \triangleleft \cdots \triangleleft \eta_{n} \triangleleft \cdots$.

Therefore the following definition of a rank function, rk^{ζ}, on Seq_{i} can be carried out. If $\eta \in \operatorname{Seq}_{i} \backslash \mathcal{T}^{\zeta}$ then $\operatorname{rk}^{\zeta}(\eta)=-1$. We define $\mathrm{rk}^{\zeta}: \mathrm{Seq}_{i} \rightarrow$ Ord $\cup\{-1\}$ by induction on the ordinal ξ as follows. We have $\operatorname{rk}^{\zeta}(\bar{\alpha})=\xi$ if and only if for all $\epsilon<$ $\xi, \mathrm{rk}^{\zeta}(\bar{\alpha})$ was not defined as ϵ but there is a β such that $\mathrm{rk}^{\zeta}(\bar{\alpha}\langle\beta\rangle) \geq \epsilon$. Of course,
if ξ is a successor ordinal, it is enough to check for $\epsilon=\xi-1$, and for a limit ordinal, δ, if for all $\xi<\delta, \operatorname{rk}^{\zeta}(\bar{\alpha}) \geq \xi$, then $\mathrm{rk}^{\zeta}(\bar{\alpha}) \geq \delta$. In fact, it is clear that the range of rk^{ζ} is a proper initial segment of μ_{i}^{+}, where $\mu_{i}:=\operatorname{card}\left(\bigcup\left\{\Delta_{\epsilon}: \epsilon<i\right\}\right)$, and so, in particular, the range of rk^{ζ} has cardinality at most λ_{i}. Note that $\lambda_{i+1} \geq \lambda_{i}^{++}>\mu_{i}^{+}$.

Now we can choose B_{i}, an end-segment of Δ_{i} such that for all $\bar{\alpha} \in \operatorname{Seq}_{i}$ and all $-1 \leq \gamma<\mu_{i}^{+}$, if there is $\zeta \in B_{i}$ such that $\operatorname{rk}^{\zeta}(\bar{\alpha})=\gamma$, then there are λ_{i+1} such ζ. Recall that Δ_{i} and therefore also B_{i} are of order type λ_{i+1}, which is a successor cardinal $>\mu_{i}^{+}>\left|\mathrm{Seq}_{i}\right|$, hence such B_{i} exists. Everything is now in place for the main definition.
Stage C. $(\bar{\alpha}, Z, D, f) \in K$ if and only if
(a) D is a normal filter on κ,
(b) $f: \kappa \rightarrow$ Ord,
(c) $Z \in D$
(d) for some $0<i<\kappa$ we have $\bar{\alpha} \in \operatorname{Seq}_{i}, Z$ is disjoint to $i+1$ and for every $j \in Z$ (hence $j>i$) there is $\zeta \in B_{j}$ such that $\operatorname{rk}^{\zeta}(\bar{\alpha})=f(j)$ (so, in particular, $\bar{\alpha} \in \mathcal{T}^{\zeta}$).
Stage D. Note that $K \neq \varnothing$, since if we choose $\zeta_{j} \in B_{j}$, for $j<\kappa$, take $Z=$ $\kappa \backslash\{0\}, \bar{\alpha}=$ the empty sequence, choose D to be any normal filter on κ and define f by $f(j)=\operatorname{rk}^{\zeta_{j}}(\bar{\alpha})$, then $(\bar{\alpha}, Z, D, f) \in K$.

Now clearly by Definition 1.2 , among the quadruples $(\bar{\alpha}, Z, D, f) \in K$, there is one with $\mathrm{rk}_{D}(f)$ minimal. So, fix one such quadruple, and denote it by $\left(\bar{\alpha}^{*}, Z^{*}, D^{*}\right.$, f^{*}). Let D_{1}^{*} be the filter on κ dual to $J\left[f^{*}, D^{*}\right]$; so by Claim 1.4 it is a normal filter on κ extending D^{*}.

For $j \in Z^{*}$, set $C_{j}=\left\{\zeta \in B_{j}: \operatorname{rk}^{\zeta}\left(\bar{\alpha}^{*}\right)=f^{*}(j)\right\}$. Thus by the choice of B_{j} we know that $\operatorname{card}\left(C_{j}\right)=\lambda_{j+1}$, and for every $\zeta \in C_{j}$ the set $\left(\operatorname{Rang}\left(\bar{\alpha}^{*}\right) \cup\{\zeta\}\right)$ is homogeneously green under the colouring c. Now suppose $j \in Z^{*}$. For every $\Upsilon \in Z^{*} \backslash(j+1)$ and $\zeta \in C_{j}$, let $C_{\Upsilon}^{+}(\zeta)=\left\{\xi \in C_{\Upsilon}: c(\{\zeta, \xi\})=\right.$ green $\}$. Also, let $Z^{+}(\zeta)=\left\{\Upsilon \in Z^{*} \backslash(j+1): \operatorname{card}\left(C_{\Upsilon}^{+}(\zeta)\right)=\lambda_{\Upsilon+1}\right\}$.
Stage E. For $j \in Z^{*}$ and $\zeta \in C_{j}$, let $Y(\zeta)=Z^{*} \backslash Z^{+}(\zeta)$. Since $\lambda_{0}>2^{\kappa}$ and $\lambda_{j+1}>\lambda_{0}$ is regular, for each $j \in Z^{*}$ there are $Y=Y_{j} \subseteq \kappa$ and $C_{j}^{\prime} \subseteq C_{j}$ with $\operatorname{card}\left(C_{j}^{\prime}\right)=\lambda_{j+1}$ such that $\zeta \in C_{j}^{\prime} \Rightarrow Y(\zeta)=Y_{j}$.

Let $\hat{Z}=\left\{j \in Z^{*}: Y_{j} \in D_{1}^{*}\right\}$. Now the proof splits into two cases.
Case 1. $\hat{Z} \neq \varnothing \bmod D_{1}^{*}$
Define $Y^{*}=\left\{j \in \hat{Z}\right.$: for every $i \in \hat{Z} \cap j$, we have $\left.j \in Y_{i}\right\}$. Notice that Y^{*} is the intersection of \hat{Z} with the diagonal intersection of κ sets from D_{1}^{*} (since $i \in \hat{Z} \Rightarrow$ $Y_{i} \in D_{1}^{*}$), hence (by the normality of $\left.D_{1}^{*}\right) Y^{*} \neq \varnothing \bmod D_{1}^{*}$. But then, as we will see soon, by shrinking the C_{j}^{\prime} for $j \in Y^{*}$, we can get a homogeneous red set of cardinality λ, which is contrary to the assumption toward contradiction.

We define \hat{C}_{j} for $j \in Y^{*}$ by induction on j such that \hat{C}_{j} is a subset of C_{j}^{\prime} of cardinality λ_{j+1}. Now, for $j \in Y^{*}$, let \hat{C}_{j} be the set of $\xi \in C_{j}^{\prime}$ such that for every $i \in Y^{*} \cap j$ and every $\zeta \in \hat{C}_{i}$ we have $\xi \notin C_{j}^{+}(\zeta)$. So, in fact, \hat{C}_{j} has cardinality λ_{j+1}, as it is the result of removing $<\lambda_{j+1}$ elements from C_{j}^{\prime} where $\left|C_{j}^{\prime}\right|=\lambda_{j+1}$ by its choice. Indeed, the number of such pairs (i, ζ) is $\leq \lambda_{j}$ and for $i \in Y^{*} \cap j$ and $\zeta \in \hat{C}_{i}$
(a) $j \in Y_{i}$ [by the definition of Y^{*} as $\left.j \in Y^{*}\right]$.
(b) $\zeta \in C_{i}^{\prime}$ [as $\zeta \in \hat{C}_{i}$ and $\hat{C}_{i} \subseteq C_{i}^{\prime}$ by the induction hypothesis].
(c) $Y(\zeta)=Y_{i}$ [as by (b) we have $\zeta \in C_{i}^{\prime}$ and the choice of $\left.C_{i}^{\prime}\right]$.
(d) $j \in Y(\zeta)[b y(a)+(c)]$.
(e) $j \notin Z^{+}(\zeta)$ [by (d) and the choice of $Y(\zeta)$ as $\left.Z^{*} \backslash Z^{+}(\zeta)\right]$.
(f) $C_{j}^{+}(\zeta)$ has cardinality $<\lambda_{j+1}$ [by (e) and the choice of $Z^{+}(\zeta)$, as $\left.j \in \hat{Z} \subseteq Z^{*}\right]$.

So \hat{C}_{j} is a well defined subset of C_{j}^{\prime} of cardinality λ_{j+1} for every $j \in Y^{*}$. But then, clearly the union of the \hat{C}_{j} for $j \in Y^{*}$, call it \hat{C}, satisfies the following.
(a) it has cardinality λ [as $j \in Y^{*} \Rightarrow\left|\hat{C}_{j}\right|=\lambda_{j+1}$ and $\sup \left(Y^{*}\right)=\kappa$ as $Y^{*} \neq$ $\left.\varnothing \bmod D_{1}^{*}\right]$,
(b) $c \upharpoonright\left[\hat{C}_{j}\right]^{2}$ is constantly red [as we are assuming (iii),
(c) if $i<j$ are from Y^{*} and $\zeta \in \hat{C}_{i}, \xi \in \hat{C}_{j}$ then $c\{\zeta, \xi\}=\operatorname{red}\left[\operatorname{as} \xi \notin C_{j}^{+}(\zeta)\right]$.

So \hat{C} has cardinality λ and is homogeneously red. This concludes the proof of Case 1.
Case 2. $\hat{Z}=\varnothing \bmod D_{1}^{*}$.
In this case there are $i \in Z^{*}, \beta \in C_{i}$ such that $Z^{+}(\beta) \neq \varnothing \bmod D_{1}^{*}$
[Because $Z^{*} \in D^{*} \subseteq D_{1}^{*}$ and $\hat{Z}=\varnothing \bmod D_{1}^{*}$, hence $Z^{*} \backslash \hat{Z} \neq \varnothing$. Choose $i \in Z^{*} \backslash \hat{Z}$. By the definition of $\hat{Z}, Y_{i} \notin D_{1}^{*}$. So, if $\beta \in C_{i}^{\prime}$ then $Y(\beta)=Y_{i} \notin D_{1}^{*}$ and choose $\beta \in C_{i}^{\prime}$, so $Y(\beta) \notin D_{1}^{*}$ hence by the definition of $Y(\beta)$ we have $Z^{*} \backslash Z^{+}(\beta)=$ $Y(\beta) \notin D_{1}^{*}$. Since $Z^{*} \in D_{1}^{*}$, we conclude that $\left.Z^{+}(\beta) \neq \varnothing \bmod D_{1}^{*}\right]$.

Let $\bar{\alpha}^{\prime}=\bar{\alpha}^{*} \leftharpoonup\langle\beta\rangle, Z^{\prime}=Z^{+}(\beta), D^{\prime}=D^{*}+Z^{\prime}$. It is a normal filter Claim 1.4, and by the previous sentence which makes sure that $Z^{\prime} \neq \varnothing$, as $D^{*} \subseteq D_{1}^{*}$. Lastly we define $f^{\prime} \in{ }^{\kappa}$ Ord by
(a) if $j \in Z^{\prime}$ then $f^{\prime}(j)=\operatorname{Min}\left\{\mathrm{rk}^{\gamma}\left(\bar{\alpha}^{\prime}\right): \gamma \in C_{j}^{+}(\beta) \subseteq B_{j}\right\}$,
(b) otherwise $f^{\prime}(j)=0$.

Clearly
(a) $\left(\bar{\alpha}^{\prime}, Z^{\prime}, D^{\prime}, f^{\prime}\right) \in K$, and
(b) $f^{\prime}<_{D^{\prime}} f^{*}$
[Because, as $Z^{\prime} \in D^{\prime}$ and if $j \in Z^{\prime}$ then for some $\gamma \in C_{j}^{+}(\beta)$ we have $f^{\prime}(j)=$ $\mathrm{rk}^{\gamma}\left(\bar{\alpha}^{\prime}\right)=\mathrm{rk}^{\gamma}\left(\bar{\alpha}^{*} \leftharpoonup\langle\beta\rangle\right)$ which by the definition of rk^{γ} is $<\operatorname{rk}^{\gamma}\left(\bar{\alpha}^{*}\right)=f^{*}(j)$, recalling (d) from Stage C.]
hence
(c) $\operatorname{rk}_{D^{\prime}}\left(f^{\prime}\right)<\operatorname{rk}_{D^{\prime}}\left(f^{*}\right)$
[By Definition 1.2].
But $\operatorname{rk}_{D^{\prime}}\left(f^{*}\right)=\operatorname{rk}_{D^{*}}\left(f^{*}\right)$ as $Z^{\prime}=Z^{+}(\beta) \neq \varnothing \bmod D_{1}^{*}$ by the definition of D_{1}^{*} as extending the filter dual to $J\left[f^{*}, D^{*}\right]$, see Definition 1.3. Hence $\mathrm{rk}_{D^{\prime}}\left(f^{\prime}\right)<\operatorname{rk}_{D^{*}}\left(f^{*}\right)$, so we get a contradiction to the choice of $\left(\bar{\alpha}^{*}, Z^{*}, D^{*}, f^{*}\right)$.

Clearly at least one of the two cases holds, so we are done.

References

[1] P. Erdős, A. Hajnal, A. Maté, and R. Rado, Combinatorial set theory: partition relations for cardinals. Studies in Logic and the Foundations of Mathematics 106, North Holland Publishing Co, Amsterdam, 1984.
[2] S. Shelah, A note on cardinal exponentiation. J. Symbolic Logic 45(1980), no. 1, 56-66.
[3] Cardinal Arithmetic. Oxford Logic Guides 29, Oxford University Press, New York, 1994.
[4] \longrightarrow Applications of PCF theory. J. Symbolic Logic 65(2000), no. 4, 1624-1674.
[5] S. Shelah and L. Stanley, Filters, Cohen sets and consistent extensions of the Erdős-Dushnik-Miller theorem. J. Symbolic Logic 65(2000), no. 1, 259-271.

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel, and Department of Mathematics, Rutgers University, New Brunswick, NJ 08854, USA
e-mail: shelah@math.huji.ac.il

[^0]: Received by the editors May 15, 2006; revised February 20, 2007.
 Research supported by the United States-Israel Binational Science Foundation. Publication 881
 AMS subject classification: 03E20.
 Keywords: set theory, partition calculus.
 (c)Canadian Mathematical Society 2009.

