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II [Sh 355]
R,+1 HAS A JONSSON ALGEBRA

§0 Introduction

We advance our knowledge on the cofinality of products of regular cardinals
and give several applications; for example there is a Jonsson algebra on
No41 and R, 1-c.c. is not productive.

This chapter introduces pp (using pcf’s) as our substitute to exponenti- ‘

ation and advances our understanding of pef to have a considerable number
of applications. For singular A, pp(}), [or ppr(A)] is the supremum of tcf
[1a/I where A\ = supa and J2¢ C I and |a] = cf) [or I € T7J; particu-
larly important are I'(§, ) = {I : o-complete ideal on a set of cardinality
< 6}, T(r) = I'(r*,1) (so T regular) (on basic properties see 2.3). Now
pp’s are hard to change by forcing, to say pp(\) > u is a strong way to say
“S<ca(A) is large”, but we can show in a wide family of cases that they
capture A}, and saying A%* < is a strong way to say S<cea(A) is small;
so together we get much. For this a sufficient condition on A is

A>cfA>Ro & A p <
<A

(see 85). However, also if A < 2% we get a similar theorem replacing A°fA
by cf (S<eea()), C); generalizations of this to cov(A, i, 6, o) are the subject
of §5.

Note a recurrent difficulty: for countable cofinality theorems are harder
and rarer (but forcing arguments easier — two sides of the same phenom-
ena).

Wh?m crucial advance made in §1 is showing that the set on which we
take supremum in the definition of ppp(}) is an initial segment of the set
of regular cardinals > A. This means that there is no point to define pp(A)
as a set of cardinals (as we have done in pcf(a)). We also complete our
understandirig why in the definition of the pcf(a) we use the cofinality of
[]a/D for D an ultrafilter by showing cf([] ) = max pcf (a) (and similarly
for cf([Ta/I), — see §3).

We now turn to the applications and the history.

The simplest case of 1.5 is that for some ultrafilter D on w, I1 R,/D has

n<w
cofinality N,1; this (and a more general case) was asked in [Sh68] and
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proved under the additional assumption 2% « R,,. We use in its proof 1.3
which tries to answer: does an <;-increasing sequence of fo € "Ord(a < §)
have an exact upper bound when cf§ > . Previous versions of this Lemma
appear in [Sh68], [Sh71], [Sh11l], [Sh-b,XIII§5] all with 2" < cfé, and
[Sh282,14] which we represent in {Sh345a,2.6A].

See more in [Sh430,6.1].

The question “can 8 be represented as the true cofinality of [Ja/J29”,
which appeared in [Sh282], has some positive answers ( At when cf(A) > A
and Vi < A, pf* < )) but did not seem to have significance, which it
acquired by [Sh345] (see below). Here we get a strong positive answer for
AT, when X\ > cfA > Rg in 2.1: there is an increasing continuous sequence
(Xi @ < cfX) such that [, s\ A} /JES has true cofinality A*; (this will be
used in the proof of pp R, < R,, in [Sh400,§2]). We return to this theme

in [Sh371,81].

An application, Em?\vkﬁmn_ mainly in §6, concerns the property NPT(), )
which means that there is a family of X sets, each of cardinality < &, which
has no transversal, but every subfamily with < A members has a transver-
sal (a transversal is a one to one choice function; we deal also with some
variants of it, for example, for any subfamily of < A sets we can omit from
each < k elements to make them pairwise disjoint; in some articles each
member was required to be of cardinality < «). This property in some
sense says A is not compact, and has a long history, (see below), its nega-
tion is denoted by PT()\, x). We prove that if pp,.(x) > A = c¢fA > x > &,
cfx <  then NPT(), k) (in 1.5A getting a stronger version as above), this
is a case where the negation of (a variant of) GCH has a consequence. This
shows that, if we have a universe with a supercompact (or just compact)
cardinal s, and we force a failure of SCH (the Singular Cardinal Hypoth-
esis = A® < At + 2%) above &, or just for some singular A > x we have
pp(A) > At then we cannot resurrect the supercompactness of x without
collapsing At (see 2.2B). This also gives a generalization of Solovay’s theo-
rem that SCH holds above a compact cardinal. Also pp(A) > A contradicts
appropriate instances of Chang’s conjecture, see 2.2.

The question when does PT(), &) hold was first asked by Gustin and
mentioned in Erdés Hajnal’s list of problems [EH| as problem 42C. By
[Sh40] if & < A, cf(\) = R then PT(), &) holds and by Milner and Shelah
[MISh41] for regular A\, NPT(), &) implies NPT(A*, ) hence NPT(R,, Ro).
It is clear (see [EH1,p.279]) that if A is a regular cardinal and has a non-
reflecting stationary subset of members of cofinality x then NPT(}, K).
Later the author notes that this is similar to the problem of the existence
of a non-free abelian group (or group) of cardinality A which is A-free, those
problems have a long history of their own, and then to general varieties,
see the book of Eklof and Mekler [EM] (the similarity is great indeed as
by [Sh161] NPT(), Re) is equivalent to the existence of a non-free, A-free
abelian group). By [Sh52] A > cf(\) + & implies PT(), k). By [Sh108], if
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for example R, is strong limit then NPT(N,+1,No) and we continued in
[BDJ: it is consistent that for every A PT (), 2%). By Magidor and Shelah
[MgSh204] it is consistent that (GCH and) PT (R,241,Ro), moreover, let-
ting x be the first fixed point (i.e. cardinal x such that x = R, > Rg), it
is consistent that for every A > x we have for example PT(),Ro). On the
other hand by {MgSh204], we know NPT(R,,, +1, Ro) and in fact NPT(}, Ro)
for arbitrarily large A < x (i.e. those results are provable in . Those
results were first proved assuming weak versions of GCH, but after the ad-
vances made here were improved to ZFC results (and so they will appear
in the final version). See somewhat more in [Sh523]

In 4.1-4.1D, 4.7, 4.8 we get quite strong colouring theorems on successor
of singular. For example,

®; for A singular Pri(A*,cf)), i.e. there is a two place symmetric function
from AT to cf), such that: if u;(i < A*) are pairwise disjoint subsets
of A*, Ju;| < cfA and v < cf) then for some i < j, ¢ is constantly v
on u; X uj.

Relying on the later chapter here [Sh365] (or the earlier {Sh280], [Sh327])

®q for A > Ry, Pro(A*,Ng). (Prg is stronger than Pry, see Appendix §1).

An example of a conclusion is

®s if X\ is singular then the product of two topological spaces with cel-
lularity A may have cellularity > ); equivalently A*-c.c. of Boolean
algebras is not productive (i.e. for some At-c.c. Boolean algebra B,
the A*-c.c. fails for B x B).

On the history see Appendix 1.
In 4.3-4.6 we deal with Jonsson algebras. We prove that

®4 on N4 there is a Jonsson algebra. The first regular Jonsson cardinal
is a limit cardinal.
[a Jonsson algebra M is one such that for every subalgebra N,

N # M= [N < {[M];

if not said otherwise M has < Rg functions; M is on A if this is its set
of elements, ) a Jonsson cardinal if no Jonsson algebra on A exists|.

Keisler and Rowbottom [KR] proved that if V = L then in every (infinite)
cardinal there is a Jonsson algebra. Erdés and Hajnal [EH2] proved that
2%e = R, implies there is a Jonsson algebra in R,.1, also they proved
that in R,, there is a Jonsson algebra.

By [Sh68] if 2% < N1, then there is a Jonsson algebra in R,41, and
generally under weak assumptions on cardinal arithmetic the induction of
the proof that successor cardinals have Jonsson algebras does not stop in
SUCCESSOors. o
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Independently, Tryba [Tr] and (earlier but unpublished) Woodin proved
that for A successor of regular there is a Jonsson algebra on At.

In 4.9-4.14 we deal quite extensively with entangled linear orders (and
very far linear orders) _” a linear order 7 is entangled if for any m < n < w
and distinct t{, € Z(¢ < n,a < |Z|) we can find a < B such that

>?w <thy=tL<m].
i<n

We prove for example that if A < 2%¢ is singular then there is one in A*,
and for ) singular there is a sequence of cf) linear orders of cardinality A+
which is “entangled” (i.e. exemplifies Ens(At, cf))) (if pp is large we get
wcnw examples in regulars in (A, pp*(A)). For historical notes see Appendix
In 5.11 we prove for A regular, if 2<* < 2*, and for no u € (},25%],
cfp = X, ppr(x) () =* 2* then for any regular x < 2, there is a tree with
A nodes and > x A-branches. Also
®s fcfA <k <A <Aand A< p<ppf())
then there are 0 = ¢fo < k and a tree T with < X nodes and > u o-
branches; moreover, for some strictly increasing sequence (\; : i < o)
of regular cardinals < X, we have T C J, .5 [I;<q N> the a-th level
of the tree is C [], ., A and has cardinality < A,.

[Let A1 € (Ao, A] be the minimal singular cardinal of cofinality < s with
ppi (A1) > p, equivalently, > A-by 2.3. Similarly

[A2 € (Mo, A1) & cfAy < k= pp,(A2) < Aq).
Let a exemplifies pp} (A1) > 1 and use 3.4; well, we need
# € a = 6 > maxpcf(ang).

So either use [Sh345a, 1.12] to change a, or quote [Sh371,§1] to get

PPha (A1) > A

nnyu

Turning to history, consider the relation A(x, \, 1, s) where x > A >
i 2 K, meaning there is P C [A]* of cardinality x, such that

[A#BeP=|ANB| <k
"The investigation of this began in Sierpinski [Sr1] and Tarski [Ta], continued

in Baumgartner {Ba] (and earlier [Bal]). He completed its solution in the
case GCH holds.
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Let D(x, ) [let D(x, A, )] mean that there is a tree with A nodes and > x
branches [of order type ] (there is an equivalent form speaking on density
of linear orders). He proved for example that

if 2% < 2% & 2% < R, then A (2%,R1,R1,Ry) and D (2%, Ry, Ry).

AN
Mitchell [Mi] has independence results concerning D, and Wmﬁsmgnoa
[Bal] — concerning A. For example it is consistent to have

MZo = wAE: MZH = %E: JbAzwwawsz. -D AZE~+TZ~Vq J&.AZNuzrwAHvzﬂv.

By [Sh12, 3.2 and 3.3(C)] respectively:
(a) A(2*, A\, Ro) = 3 regular R, < A[2* = 2lol 4 28],

(b) if A = oy, NgcsRE < Roy, Agey Rorg 2 6+ (cBO)t +1BI*, 2

K +cf(6)T + |y|* then —A(A*, A, i, &)
rephrased this means:
(b') if AT, A 1, K), A=Rspy, Nges R < R, & regular, Ro < cf(6) < Rs
then there is 3 such that 8 = Rs4p < X (i-e. a fix point in (Rg, A}).
We shall return to those problems in [Sh410,4.3,4.4 and 6.1], [Sh430,3.4].
In §5 we consider a generalization cov(}, 4,8, ) of cf(S<e(}), ©), it is

min{|P| : P C [\|<# and every a € [A]<? is included in a union of < ¢
members of P}.

The main result (5.4) is characterizing it when o > Ry,

Qe if A > pu >0 =cfd >0 = cfo > Ro then A + cov(A, p1,0,0) =
X+ sup{pPr(p,)(X) : X € (1, A], and cf(x) € [0, 6]}

In §7 we prove that if X is singular of cofinality > Ry, then there are
models of cardinality A which are Lo, x-equivalent not isomorphic, and if
cf(A) = R; < A it is true in most cases (maybe all).

This has a long history. Scott [Scl] proved that a countable model (with
a countable vocabulary) is characterized up to isomorphism by a single sen-
tence from L, .. Karp [Ka] generalized the Ehrenfeucht-Fraisse games to
Loo,w, and Benda [Be], Calais [Ca] and Shelah {Shll,Lemma 4] indepen-
dently generalized them to L », as quoted here in 7.2, and presented in
[Di], [Definition 4.2.3, Theorem 4.3.1, pp.352,3]; so 7.2 can serve as a defi-
nition of Lo, x-equivalence of models.

The problem arises when (*)y holds, where:

(*) if the models M, N are Lo x-equivalent of cardinality A then M, N
are isomorphic.

Morley constructs a counterexample to () for A regular uncountable,
using trees; (see [Ch p.45]). Chang [Ch] proved that if A has cofinality Ro,
then (*)x holds, so the case left open was A > cf(A) > Ro. By [Sh188] if

2
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A = Ao then —(x)y, so under GCH the problem was resolved. Here we
prove in §7 that A > cfA > Ry = —(x), (see more [NS], [Sh220}, [Di]).

We can also mention an inverse monotonicity of pp (see more in 2.3)

®7 if A < p < ppr(g,r)(A) and A, p are singulars with cofinality in the
interval [0, 6) and cf(6) = 8 V cf6 < o then ppf, .y (1) < PPr(g,0)(N)
(we also have appropriate behavior in limit).

* * *

Notation: An ideal I here is a family of subsets of its domain, Dom(I),
closed under union and subsets; usually I is proper i.e. Dom([) ¢ I.
For an ideal I let

gen(I) = min {|J| : J C I, J generates I (as an ideal) }

limy \; = min {sup{); : ¢ € A} : for some B € I, A=Dom(I) \ B}
tlimr)\; = X if for every ideal J extending I (which is proper)
EE.N \/w =A
I, J denote ideals (usually over a cardinal)
if f, g are functions from Dom(I) to the ordinals, then
f<rgand f/I <g/I and f < g mod I all mean

{t € Dom(I) : f(t) 2 g(t)} € I

for a set A of ordinals with no last element,
J8 = {B: B is a bounded subset of A}.
For a partial order P,
cf(P) =cfP =min{|A4|: AC P, (Vp e P)(3qg € A)[p < q}}
tcf(P) is k when there are p; € P for i < « such that K = cf &,
>ﬂ.Au. pi <p;and (Vp€ P)V,p < pi.
J<ala] is {b: b C a,maxpcf(b) < A} (see [Sh345a,1.2])
it is called J2,[a] in [Sh345, Def 5.2(2)].
I+ A={B:BC Dom(l) and B\Ae I}
I =PDom I\ ={A: AC Dom I,A ¢ I}
H(x) is the family of sets with transitive closure of cardinality < x
<}, is some well ordering of H(x)
['(8,0) =: {I : for some cardinal §; < 6, I is a o-complete (proper)
ideal on 65}
(but we use it also for the class of ideals isomorphic to such ideals
according to convenience)
[(o) = T(c™t,0)
S<x(N) is {a C X : |a] < &}, also called [A]<*.
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§1 Existence of lub in products, and representations of A\t as
true cofinality

This is a central section in the book: we introduce the pseudo power pp,.()),
this can be thought of as a fine measure of S<(A) = {a C A:la| <k}. A
major theme in the theory is expressing the other relevant measures by it
(and some variants). If pcf was a replacement to product, pp mm@_mnmn_mbn
for power; pp,.(}), for A > « singular of cofinality < «, is the supremum of
the true cofinalities of [] a/J with A = sup a, |a| < &, and J containing all
bounded subsets of a. The reader may reproach me for not following the
idea of the previous chapter; i.e. defining the set

PPq(u) = {tcflla/J : |a| < &, p=sup a, J2¢ C J}.

This is a good question but there is a good answer:
®1 PP(p) ={6:p < 6=cf0 <* pp.(u)}

(we have a problem if the sup is not obtained, this is the meaning of the
“4+” in <¥). To prepare for this is the main aim of the section.
Note the following simple consequence: as easily for u singular, PP, (1)
is not empty, necessarily u* belongs to it. Now even the case u = N, i.e.
“is there an ultrafilter D on w such that the (true) cofinality of [, ., Rn/D
is Ry,4+1” was not known.
In fact our theorems give stronger results than necessary for computing
PP, which are good for other things:
®2 suppose I is an ideal on a, extending J?4, 4 = supa > |a|; and u <
A = cfX < tef [Ja/T (or just [Ja/I is At-directed). Then we can
find regular Ag < 8 for 8 € a such that:
(a) impdg=p(ie. g/ <pu=>{fca:rg<py'}el)
(b) Ilpca*o/I has true cofinality A
(c) [Ta/I has an <;-increasing cofinal sequence which is p*-free in the
sense that: if A C A, |A] < u then we can find ¢, € I for a € A such
that f,[(a\c,) for o € A is really increasing
(le.0€a\ea\eg & ac A& Pe A & a<fB= f.(6) < fs(9))
(d) so every <j-increasing cofinal sequence (f; : @ < A) in []4c,As/I has
this property when restricted to some unbounded subset of A.

In fact, the main proof (1.3) goes by constructing such a sequence of f,
(@ < X)) in []a, finding an exact upper bound f then “replacing” each
F(6) by its cofinality {so Ag = cf[f(6)]) and changing accordingly the f,’s.
For this we need to know that exact upper bound exists (in 1.2), and to
use the “silly square”. The silly square P = (P, : a < A) looks like a very
serious demand at the first glance: members of P, are closed subsets of «,
o € C € Pg = CNa € Py, Py has in it a club of order type cfa unbounded
in o; but its existence is trivial as we allow |Pq| = A.
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Note that, as usual, we also deal with some variants of pp(A), the most
important are pprg,,)(A) when we restrict ourselves to a o-complete ideal
of cardinality < § (so ¢ < cfA < 6) and ppr(g)(A) = PPr(s+,e)(A) (so
cfX = 6); in fact ppp(err)(A) has, in my mind at least, a strong claim to be
the natural power operation.

* * *

Definition 1.1 (1) For X a limit cardinal, x < A, I an ideal on « let
pp}(A) = sup {tef([T,< M, <1) : A = cf(A;) < A =sup;, A and
for each p< ), {i: \i<pu}e I and
(ITi<x Xi> <1) has true cofinality}.
(Note that without loss of generality A; > k).
pps(A) =sup{pp%(A) : I C J and Dom J = Dom I}.
(2) In (1) if T is a property of ideals (or a family of ideals), we let:
pP(A,T) = ppr(}) =
= sup TVRC,V :k < A, I is an ideal on « satisfying H,v
PP(A, 6,T) = ppcr(A) = ppr,(A) where I'y is: I is an ideal on &
satisfying T’
(3) ppx(A) = pp(A, {I : [Dom I| < &}), Pp(A) = PPes(a) (A)-
(4) Those sups are not necessarily obtained (for example if A is singular
strong limit, 2* singular).?
Then for example x <* pp;(A) will mean: x < pp;{)) or x = pp(A)
and for some (); : i < k) and J we have x = tcf([] i, <s) (and
I C J, J an ideal, tlimy\; = )). Similarly pp;(A) <* x will mean:
not x <* pp;(A).
(5) Alternatively let
ppy (M) = min{u : u = cfy and for every ideal I satisfying I, and
sequence {\; : t € Dom I) of regulars such
that tlim(); : t € Dom I) = A and (J], Ae/I)
has true cofinality we have tcf ([[, Ae/I) <

p}-

Question: Can pp,()\) = u but pp.(\) #1 u (so p is (weakly) inaccessi-
ble)? See §5 and [Sh400] for partial positive answers.

Claim 1.2 Assume cf(§) > ™, I is an ideal on » and suppose (fa : @ < 8)
is a <j-increasing sequence of members of *Ord. Then exactly one of the
following holds:

(i) for some ultrafilter D on k disjoint from I we have:
(*)p there are sets s; C Ord, |s;| < & for i < & and (o : ¢ < cf(6))

increasing continuous with limit &, such that for each ¢ < cf(6) for

3This is known to be consistent: make some x measurable with 2* singular and then
make x singular.



Sh:355

42 II: R,+1 has a Jonsson algebra

some h¢ € []; ., si we have:
.\..Rn\b < }A.\U < .x.nnt\b
(ii) (**); some f € "Ord is a <; —eub of (fo : @ < ),
(i.e. f satisfies () + (B) below) and (7) holds:
(a) fora<é, fa<s f ,
(B) if g € *Ord, g <y f then for some ¢, g <1 fa
and
(7) cf[f(@)] > kfori< s
(iii) condition (i) fails and
(x*x)1 for some unbounded A C § and t, C sfora € Aand g € “Ord
we have:
(o) for a < Bin A, tg\ta € I but to\tg ¢ I
(ie. (ta/I : @ € A) is strictly decreasing in P(x)/I).
(B) ta ={i <k: fa(i) < g(9)}.

Remark 1.2A (1) See slightly more (and more details) in 1.6.

(2) Suppose for simplicity that I is a maximal proper ideal, Kk = w; then
what kinds of Dedekind cuts, with the cofinality of the lower part
being > R, does Ord*/I have? Some are Dedekind cuts of w* /D
(where D is the ultrafilter on w dual to I) or “copies of it”, and
about them we cannot say much. Others are defined by one element.

(3) If 2% < cfé necessarily in 1.2, possibility (i) holds (why? case (@) is
impossible as for the chosen (s; : i < &) there are < 2 possible h¢’s
and [¢ < € = h¢ # he] and case (iii) is impossible as the number of
possible t,’s is again < 2%).

(4) What if (f, : @ < 6) is only <j-increasing? Well, there are three cases.

Casel: A V fo<:1fs
a<b pB<é
Then for some club E C 8, {f, : @ € E) is <;-increasing and we can apply

1.2

Case 2: For some a <8, A\ —fa <1 fg, (so not case 1) and
B<é

> < J.\4H~\u.

B<Sye(8\B)

Then for some club E of 8, for a < B in E, ~f. =1 f3 & —fa <1 fp. For
a € Elet ty =: {i < k: fa(i) = fmine(i)}. They are as required in (% * %)
of 1.2(iii) so (iii) holds.

Case 3: For some a*, a* < B < 6§ = fg3 =1 far- Then far is eub of
(fo : @ < &) mod I, similar to (ii) of 1.2.

Proof: First Stage: We prove that (i) and (ii) are contradictory. Suppose
for (fa : @ < 6) we have {a¢,h¢ : ( < cf6), D and (s; : i < k) which
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exemplify (i) and f which exemplifies (ii); by () of (iii) A; (i) > 0. Let
s; be the closure of s; U {0}, so |si| < &, and let f’ € *Ord be defined
by f'(i) = sup(s; N f(i)). As cf[f(i)] > &, clearly A; . f'(3) < f(i); on
the other hand for { < cf(6), h¢ <p f' (as h¢ <p f, h¢ € [lic.5)
80 fa, <D h¢ <p f'; but for every a < 6 for some {, @ < a¢ hence
fo <D far <p f' <D f, contradicting the choice of f. So at most one
of the conditions (i) and (ii) holds. Conditions (i), (iil) are contradictory
trivially.

Second Stage:

Now we prove that the conditions (ii), (iii) are contradictory. Suppose
not and f exemplifies condition (ii) and g, (t, : @ € A) exemplify condition
(iii). Define g’ € *Ord:

o [ 900) i () < £3)
g'() = Ao otherwise.
As for i < k, cf(f(4)) > & hence f(i) > 0 clearly ¢’ < f, hence (by (**)1(8))
for some «, g’ < f, mod I; without loss of generality a € A.
Choose 8, a < B € A; as ¢’ < fo < fg mod I clearly

s=:{i <kK: not g'(3) < fo(i) < fs(i) < f(i)} € I,

and by the definition of ¢’ clearly

i € k\s = [fald) < g(3) & f5(3) < g(3)]

Mpmbnmv ta\tg C s (see (B) of (x * *)1) but as s € I this contradicts (a) of
¥ %k k)7,

We have proved that in 1.2, at most one of the conditions holds. So it
suffices to see that at least one of the conditions holds. Assume (i), (iii) fail
and we shall prove (ii).

Third Stage: It suffices to find f € *Ord satisfying () + (8) of (ii). Why?
HFA={i<k:cf[f(i)] <k} €I, let

= {H A0 >

kT otherwise.

As Ael, f' = f mod I hence f’ is as required in (ii). So assume A ¢ I,
hence there is an ultrafilter D on & disjoint from I for which A € D; let s;
be a set of < « ordinals such that if i € A then f(i) =: sup(s;) and if i ¢ A,
.M.,.VH“ k. Now D, (s; : i < k), f will yield (¢, h¢ : ¢ < cf(8)) as required in
i).
Fourth Stage: Note that it suffices to find f € *Ord such that:
(@) fa<fmodIfora<é
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some he € [1;, 8i we have:
.\,.Qh\b < ?h\b < .%Qn+_\b
(ii) (**) some f € xOrd is a <7 —eub of (fo : @ < 8),
(i.e. f satisfies (o) + (B) below) and () holds:
AvaoHQAP.wnA~% ‘
(B ifge xQOrd, g <1 f then for some &, g <1 fa
and
(v) cE[f(@)] > K fori <K
(iii) condition (i) fails and
(x*x*) for some unbounded A C § and tq C sfora € Aand g € *Ord
we have:
(a) for a < Bin A, tg\ta € I but ta\tp ¢ I
(ie. {ta/l: € A) is strictly decreasing in P(x)/I).
(8) ta = {i < & : fald) S 9D}

Remark 1.2A (1) See slightly more (and more details) in 1.6.

(2) Suppose for simplicity that I is a maximal proper ideal, kK = w; then
what kinds of Dedekind cuts, with the cofinality of the lower part
being > i, does Ord"/I have? Some are Dedekind cuts of w*/D
(where D is the ultrafilter on w dual to I) or “copies of it”, and
about them we cannot say much. Others are defined by one element.

(3) H2* < cf6 necessarily in 1.2, possibility (ii) holds (why? case (i) is
impossible as for the chosen {s; : i < k) there are < 2~ possible h¢'s
and (¢ < &= h¢ # h¢] and case (iii) is impossible as the number of
possible to’s is again < 2%).

(4) What if (fa:a<6)is only < [-increasing? Well, there are three cases.

Case: N V fe<1Tp

a<d f<6
Then for some club £ & 6, (fa:a€E)is < ;-increasing and we can apply
1.2.

Case 2: For some a < 5, N\ ~fo<1 fg, (so not case 1) and
B<é

A \ ~fy=17s

B<6v€(6\B)

Then for some club E of 6, fora < B in E, ~fe =118 & ~fo <1 fp- For
acEletty={i<K: fa(i) = fmin E(3)}- They are as required in (** %)z
of 1.2(iii) so (iii) holds.

Case 3: For some o, ot < B < 6= fp=I far- Then far is eub of

(fo: < 8) mod I, similar to (i) of 1.2.

Proof: First Stage: We prove that (i) and (ii) are contradictory. Suppose
for (fo : @ < 6) we have {a¢,h¢ @ ¢ < cf§), D and (s; 2@ < K) which
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exemplify (i) and f which exemplifies (ii); by () of (i) A; f(i) > 0. Let
s, be the closure of s; U {0}, so |s}| < &, and let f' € *Ord be defined
b F(i) = sup(si N F(0)). As cElfD] > 5, clearly Aicy f/(D) < £(0); on
the other hand for ¢ < cf(8), h¢ <p f' (as h¢ <D f, he € [licksi)
80 fa, <D he <p f'; but for every a < § for some (, a < thwmuam
fa <D fac <D f' <D f, contradicting the choice of f. So at most one
of the conditions (i) and (ii) holds. Conditions (i), (iii) are contradictory
trivially.
Second Stage:

Now we prove that the conditions (i), (iii) are contradictory. Suppose
not and f exemplifies condition (ii) and g, (to : @ € A) exemplify condition
(iit). Define g’ € *Ord:

/- {10120 < 76

0 otherwise.

As for i < k, cf(f(3)) > & hence f(i) >0 clearly ¢’ < f, hence (by (x*)1(8))
for some @, g' < fo mod I; without loss of generality o € A.
Choose 3, a < B € A;as g’ < fa < fp mod I clearly

s={i<k: not g'(1) < fali) < fa(i) < f@)} €1,

and by the definition of g’ clearly

i € K\s = [fali) < 9(i) & fo(i) < g(d)]

M_mbomvnn/ﬁm C s (see (B) of (x * %)) but as s € I this contradicts (a) of
* k)7,

We have proved that in 1.2, at most one of the conditions holds. So it
suffices to see that at least one of the conditions holds. Assume (i), (iii) fail
and we shall prove (ii).

Third Stage: It suffices to find f € Ord satisfying (o) + (8) of (ii)- Why?
A= {i<k:cf[f(i)] <r} e, let

= { (1>

kT otherwise.

As A eI, f' = f mod I hence f' is as required in (ii). So assume Aé¢l,
hence there is an ultrafilter D on & disjoint from I for which A € D; let s;
be a set of < & ordinals such that if i € A then f(3) =: sup(s;) and if i ¢ A,
.M.@.VH“ k. Now D, (s; : i < &), f will yield {ac, he : ¢ < cf(8)) as required in
i).
Fourth Stage: Note that it suffices to find f € #Ord such gwﬁ

() fo < fmod I fora<é
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(B) if g € "Ord and f. < g mod I for every a < § then f < gmod I.
Why? We try to show that f is as required in (#)1 of (ii); now (a) of
(*)1 holds, so by the third stage we can assume that (B) of ()1 fails;
ie. there is g € *Ord, g <1 f but for no a < 5 do we have g < fo mod I.

~ Let to = (i <r: fali) £ g(i)}. Clearly @ < B = t, D-tg mod I (as

fo < fg mod I); if Ao Vpla<B& tg\ta ¢ I] we can satisfy (%) of (i)
(with g, {8 <6 Nacpta 18 mod I} standing for g, A respectively). So
without loss of generality for some a(*) < § we have

HQA*V ..AI a< % = &DA*V = &D BO& N_.

Now let g’ € ©Ord be defined as glta(s) U F1 (K\tax)-
So

a<é=> .ﬂﬂ _.an?v < .\.Q+_. :D?v < bzﬁ?v = Q\ :Q?v mod I.

Hence a <8 = fa <9’ mod I.
Soby (8) f<4¢ mod I, but this implies ta(x) € I (as g < f mod I
contradiction.
So it suffices to find f satisfying (@) +(8)'-
Fifth Stage: We define, by induction on ¢ < k*, a function g¢ € %Qrd such
that: [£ < ¢ = 9¢ <1 9¢)s [ =£&+1=> g =1 9¢] and (@ < &= fa <19
We let go be defined by go(?) = Ua<s(fal®) + 1). If{ge : € < ¢) are
defined, and there is a g € ®0rd, fo <1 g for a < 6, =(g =1 g¢) and
g <r gc then choose g as g¢+1; if we cannot, we have gotten “a) + (B)
are satisfied by g¢”, as desired [i.e. we should show that (@)’ + (B)’ holds
for g¢ taking the role of f. Why does (o)’ hold? As fo <1 fo+1 <1 9¢-
Why does (8)’ hold? Suppose ¢’ € *0rd, fo < g mod I for every a < )
and we should prove g¢ < g’ mod I: if this fails let g € *Ord be defined
by ¢"(6) = min{g'(§),9¢())}; clearly fu < g" mod I (8s fo < ¢’ mod I
(by assumption) and fa < 9¢ mod I (by (¢')) and ~g" =1 g¢ (otherwise
g <4d mod I which we assume fails); so g” satisfies the requirement on
g¢+1- ]

If ¢ is a limit ordingl, ¢ < k', let mm ={ge(3) : £ < ¢}, so mm is a set of
< |¢| ordinals. For a <X, let £ € *Ord be defined by

£(6) = min{y € 8§ : fali) <7}

(well defined as fo(i) < golid) € mmV If ¢ <'k* and there is a¢ < & such
that @ below holds then < . can serve as g¢ and we choose it, where:

@QAMQAmnvhmnhmn mod I.
Clearly, for any limit { < wt:

@HQAQHU%QM%M
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and also
@iﬁAmAmnvxmmwa

©s < <6 & fS <1 £ fo < 15 <1 f < S5

Let ¢ < k% be minimal such that g¢ is not well defined (note: if ¢ = skt
then g, cannot be well defined). Clearly ¢ is a well defined limit ordinal
< kT,

Case I: ¢ < x* and (Va < 6)(36 < Na<B&f§< bm mod I]. Then for
every ultrafilter D disjoint to I, (*)p of (i) bolds by ®s.

Case IL: ¢ < &+ and for some o(*) <§:

(#)1 (V6 < 8)[ not f5,, < f5 mod I
but
(¥)2 Vo < 6,38 < §[a < B & not «fé < £ mod I”].

Let for a < 8 <6,

sep = (i< r: fali) < fa(i)} € I and

ta,p = (i < s: fp(i) < FE@}-
Clearly
e <az<azLoy< § implies ta, 04 € taz,as mod I.
Now when a(x) < a < 8 < § we have: (tap C & and) ta,p ¢ I [why? as
i € K\Sa(e),a = fali) 2 fam() = £4(3) 2 £5,)(3) (second implication by
the definition of f$, \M?VX hence

i € K\tag\Sa(wo = F8(0) > Fo()) & 1 € Sa(.e =

550 > £06) & i ¢ a(n.a = £50) > Fom ()

50 tap € I contradicts the assumption (x); of the case 1I (remember
Sa(x),a € Nv_

For a € (a(*),8) the sequence T=(tap:a<B<bis decreasing
BOQ~ABQAmuvpr\uBoaC.
Now we split to subcases.

Subcase Ila: For some a, a(x) < o < §and {tap: B> 0B < ) is not
eventually constant mod I.

Sog = f$ A= {B:a<pB<é and Ny<ptas # ta,y mod I}
exemplify (x * *); from condition (iii)-

Subcase IIb: For some a < 6§, A tas=F mod I.
B>a
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SoB>a= fg < f$ mod I hence by the definition of \m (and as
f50) € s$) we have
B>a= f§< fimodI

contradiction to second assumption of case IL.

Subcase Ilc: Neither ITa nor IIb. S
By “not Subcase IIa”, for every a € [a(*),0), there is Bo € (a,6) such
that: Ba < B <6 =>ta,p = taba mod I. By &4 clearly

QA*V < QAHV < QAMV <b=> ﬂﬁﬁvqmnﬁv - wQAwYmDGV mod I

and by “not Subcase IIb”, (as {tap: @ S B < 6) is decreasing mod I
clearly tqp, # & mod I. Hence there is an ultrafilter D on & such that
IND=0and tap, ¢ Dforac (a(%),6)-
Now as D is an ultrafilter disjoint to I, (fo/D :a < 6) and (f$/D:a < 6)
are non-decreasing. Also fo < f§ hence fq /D < f$/D. Lastly
o c (a(),8) > (i< fa.() < f5@)} = tap. ¢ D
= f$ < fa, mod D
= f < fg. < f5, mod D.

Together, (¥)p (from (i)) holds, contradiction.

Case IIL: ¢ < x* and both previous cases fail.

So for some o = a¢ we have (V3 < Na<B=> S =1 bﬁL
We let g¢ be f§ (5 1-e. we can continue the induction on ¢, contradicting the
choice of ¢.

Case IV: ¢ = k™.

So (ge : € < k') are defined and for limit £ < &, (f& : o < &) is defined
and o is defined and g¢ = £
Note that a* =: U{ag 1 § <kT}is <6 (because cf(8) > ).
Note that for each a < 6, i <&, F4(5) € 8% = Ugcrn s5. [Note: mC+ st is

<K

not necessarily closed, but B.E?m/ fald)) is decreasing in £ as the set mm is
increasing in &, hence Aawb?m/ fa(i)): €< kT)is eventually constant, and
this value is min(s$\fa(%))]- So for some £ = &(a,i) < k¥, fE(0) € .w.m?b.
Let £() = supjcs (o), it s < k+, and as (s} : € < &%) is increasing,
f5() € s§@® . Clearly then, for example, £a)tw _ ph(@rete; hence if
a > A", gela)+w = 9E(a)twtw mod I hence gea)+wtl S 9e(a)+w mod I,
contradiction to the choice of g¢(a)+w+1- Oi2

Main Claim 1.3 Suppose A is singular, for i < K, ); is a regular cardinal
and Kk <\ < A, Iis gamm_oczwsmmgmén%tA\/T.nv:‘m:wmﬁ
Then:

Representations as true cofinality 47

(i) for some B € I+, (i.e. B ¢ I) we have (IL;iep Mi> <11B) has true cofi-
nality A+

or

(ii) there are (A]: 1 < K), F = (fa: @ <AT) such that:

(@) M, =cf Xj < X

B mOntAyémrw.éT.”Kmh@mw

(7) Tli<x Xi/1 has true cofinality At as witnessed by fiie fa €
[Licc A for a < A+, fis <j-increasing with f = (AL :i < K)
the <7 —eub of (fo 1 <A*).

(6) Moreover (fa:a < At) from () satisfies: if 6 < AT is limit,
then for some club C C § and (s : 0 € C), so € I we have:
i<k=>{fald)acli€ K\Sq) is strictly increasing].

(¢) In (6) if cf(6) > gen(I), then without loss of generality sa = §;
but we replace C by an unbounded subset (or a stationary subset).

Proof: Suppose that (i) fails.

Choose for each limit § < A+, a closed unbounded subset Cs of & of
order type cf(§). In a sense we will be using the following “silly” weak
square: ({CsNa:a € Csd < A+, 6 limit} : o < A).

Now we choose by induction on & < A%, (g8 : 6 < AT limit) and f8, fa
such that:

AHV QW € :....Ax. ys.
va \m..\.ﬁ € :Q..Aa v:.
(3) if B < e, then fg <1 e
(4) if @ € C5, § < X* s limit then f0 < g3 (ie. fa(i) < g8 (4) for every i)
(5) f BeCsnex (8 limit) and a € Cs then:
i<k&X>|Csnal= .Qm?.v < g8 (i)
(6) fa</fa
(7) if a € Cs, 6 < A* is a limit ordinal then g4 <7 fa-

For each c, first define f satisfying (3) (and (2)) (easy as [Txi/1is X*-
directed or see below). Next define (g8 : 6 < AT limit) such that (4) + (5)
and (1) hold. This is trivial. Next define f such that (6)+(7) holds (and (2),
of course), for this it suffices to show that (TT;cx X < 1) is Xt -directed.
By [Sh3458,1.5] C.:v:. 1< Kh<J_ 4+ :Z:.Az:v is A\T+-directed; hence it
suffices to show:

#BCrand {M:i€B}eJaorl{hizi< k}] then B € I.
This holds by “not (i) (of 1.3)” + Hmrwﬁmmh.mﬁz.lmrwpmmh.wﬁbC.S.

Now we apply claim 1.2 to (fa : @ < At) so (i) or (if) or (iii) there

holds.

|
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We next show that (i) of Claim 1.2 is impossible. So suppose that D is
an ultrafilter on x disjoint to I, and (s; : i < &), {a¢: ¢ < At =cf(At)),
(h¢ : ¢ < AT) exemplify (¥)p (of (i) of 1.2)).

Let § < AT be a limit ordinal of cofinality > &, such that

§ = sup{a¢ : ( < 6}
So let
C° C Oy, C° = {Bse: e <cf ), &1 <2 Bse < Preal
be such that: for each € < cf(6) for some ¢ (€), £(€) < 6 we have

Boe < (o) < Ag(e) < Poer1
so we have
fagey <D he(ey <D fagon <1 fagle)
By (5),
|ICsl < A = Gw?g : € < cf(6)) is strictly increasing.
Also
QMPA AN .\mm.n AN .\.Qhﬁmv Ab *whﬁmv Ab .\Qm?v AN .\.QOQ.n.Tu AN QM&.A.*L

and {j : |Cs] = Aj} € I (by an assumption on I in 1.3 for p = |Cs| =
cf(8) < A since A is singular), so for some t. € P(x)\D (hence x\te ¢ I) we
have:

i € K\te = g5, .(8) < he(o(3) < 5,002 (0)-

Choose for each ¢ < cf(§) an ordinal ic € k\te such that X;, > |Csl;
so as cf(8) > k, for some i(x), {e < cf(6) :ic = i(x)} is unbounded. Now
@m& (i) e < cf(8), 4 = i(*)) is strictly increasing hence

(heey(ic) : € < cf(8),ic = i(x))
is strictly increasing, hence

{he(ie) €< cf(6),1e = i(*)}
is a subset of s;(x) of cardinality cf(6) > &, contradiction to the choice of
(s 11 < K) above (see Claim 1.2(i)).

Next we show that (iii) of Claim 1.2 is impossible. So suppose that
ge"0rd, (to € A)yand AC A+ exemplify (x * *) of (iii) from 1.2. Let
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5 < A be a limit ordinal of cofinality > & such that § = sup(A N §), and
let Cs = {8 : € < cf6}(f. increasing in €).
So b, <1 fo. <1 ffups S1 Ghnr bR

s = ? <K: not Tm,c.v < f5.0) < .&%ai el

Let a={i < k: X <|Csl}, clearlya € I.
Now as € < ¢ < cfé = mm, () < mma (4) for i ¢ a, clearly the set

ty, = {i <r:5,() <g(i)i ¢ a}
decreases with ¢, so as cfé > k for some e(x) < cfé we have
e(x) <e<cfb=tp = t5, -

However, by the choice of s, we have:
i€ \sa = [95,6) < Ja.) < g5, ()] &ifa
= Tmﬂwm —idts & &ﬂwmmlﬂmwmuiu_

(on i ¢ tg, see (B) of (¥ **)r of (iii) of 1.2) hence

Tw,/mm/g Dtg\se\a2th,,\se\ L .

Hence, if € > €(x) then t3 \sc\a = tg \se\a = ﬁwm?v/mm \a, but seUa €I
hence (tg, : € < cfé) is eventually constant modulo I. But {tg : B <
6) is monotonic mod I, hence it is eventually constant mod I, but this
contradicts § = sup(A N &) (and clause (o) of (* = *) of 1.2(iii)). So also
(iii) of 1.2 is impossible in our case.

We conclude that when we have applied Claim 1.2 to (fa:a < AT),
possibility (ii) of 1.2 holds; say for f. Without loss of generality f (@) €N
for every i < k. Let A} =: cf[f(i)] (so A} = Ai). Let E; be a club of (@)
of order type cf[f(5)]. Let fa € [lic. Al De: f2(5) = otp(fald) N Ex)- So
clearly for some club C of At [a <8 &BeC= fr<yfpland (fa €
C) is <j-increasing and witnesses (IMicx Xis < 1) has true cofinality AT IE
B=:{i: X =X\}¢I claly{)\:i€ B} € Joa++({Ai i < «}) hence
condition (i) of our Claim 1.3 holds so without loss of generality Aj < Ai. .

If for some g < A, B = {i : cf[f(i)] < p} ¢ I, choose an ultrafilter
D on k disjoint to I such that B € D. Now we can repeat the previous
argument (that condition (i) of 1.2 is impossible in our case) (using as
{a¢ : ¢ < AT) an enumeration of C, s; aclub of f(i), otp si = cf(f(¢)) and
choosing § < A¥, cf(6) > p and § = sup{ag : ¢ < 6}). So (AF i < K)
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satisfies (@) + (B) of (ii) of Claim 1.3. Now () is quite easy, witnessed by
(f2: € C), as well as () [for a limit ordinal § < A\t of cofinality > &,
we know that for i < k, such that \; > |Cs| we have (g3() : @ € Cs)
is strictly increasing so, as above, we can find s4 € I for @ € Cs such
that for each i < &, (fali) : @ € Cs,i ¢ Sq) is strictly increasing hence
(f2(3) : a € Cs, 1t ¢ s,) is non-decreasing (see the definition of fr). Soif C
is as above, § = sup(é N C), using the club Cs N C and increasing the s4’s
we get (6)]. Lastly (¢) is trivial.
So assuming (i) of 1.3 fails, we have proved (ii) of 1.3 holds, thus mbwmr_wucm..
1.3

Claim 1.4 (1) Suppose in Claim 1.3 we assume also 4 = cf(p) > A and
(Tlice Mis < 1) is p-directed. Then in the conclusion we can replace
A+ by p (except that in (6) of (ii) we should restrict ourselves to 6 of
cofinality < A).

(2) In (7) of (ii) of Claim 1.3 we can add: {(fo 1@ < At) is <-increasing
where J = {AC x:sup{X;:i € A} < A}

(3) In (1) (ie. 1.4(1)) it follows that when possibility (ii) bolds, if ACp,
4] < ) then we can find s € I for o € A such that: for each
i < k and ¢ we have: [{a € A:i ¢ Safali) = ¢H € 1; and
(fo(i) 11 ¢ Say @ € A) is strictly increasing.

Proof: 1) Same proof as of Claim 1.3.

2) Easy.

3) By induction on otp(cl(A)). Oia
We can conclude by 1.4:

Theorem 1.5 If A is singular, cf A = kK, then for some strictly increasing
sequence (X : i < k) of reqular cardinals, A = 3 ;< M and ([Ticx Mo <gea)
has true cofinality A*.

Proof: Choose (i 11 < k) a strictly increasing sequence of regular car-
dinals > cfA with 2, A = A and I = Jbd; now apply 1.3. If (i) of 1.3
holds, say for B € I+, (ie. BC &, |Bl = k), let {j(3) 4 < k} enumerate
B in increasing order and now AL =t N (fori < x) are as required. If (if)
of 1.3 holds, say for (A; 1% < k) then (X; 11 < k) are almost as required.
We know that [];.. Ai/I has true cofinality AT, and

?Ayuv?“ymm:vm:

hence for every i < K for some j; < K, A}, > ); and without loss of
generality ji > U{ji, 141 <i}. As I=Jb, {ji:i<kK}€E It so

T /1= TN/ (0 + G\Gs 26 < D)

<K <K
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which has true cofinality A*. Ois

Claim 1.5A If ) is singular, ppj(A) > p and I an ideal on K < A, then
wecan find fo:k— Afora<pu such that:
for every A C p, |A| < A there is a sequence (sq : @ € A) such that:

(i) sa €1
(ii) (Rang[fal(K\Sa)]: € A) are pairwise disjoint.

Proof: If p < X this is trivial: use fo being constantly c, so they have
pairwise disjoint ranges. If p = cf(u) > A by the assumptions there are \;
(for i < k) such that A = cf\; < p, tlimr; = A and [L;<x Ai/I has true
cofinality > p. Now we apply 1.4(1) (so read 1.3 again); now possibility (1)
cannot hold ([];c. Ai/T is pt-directed), so we have

N:i<h), f={fara<ih)

as in possibility (ii). Clearly fo : £ — ), the fo's are as required by 1.4(3).
Lastly if p > cf(p) + A we can combine the results for the regular uw<p
(and a pairing function on ) to get the desired result.

Le.let p=3 o t.n_, with tM. < u, 8 = cfp < p; by what we have proved
for each ¢ < 0 there is a sequence (f§ : @ < pg) of functions as required in
the claim, and similarly (f¢ : ¢ < 6). Let <,> be a pairing function on A.
Now we define fo : & — A as follows:

if U tM <a< tM we let for i < K : fa(i) = (fc(@), £&(2))-
£<(

Check. Oysa

Remark 1.5B (1) If for some A; = cf(\) < Afori <k, K+ cf(A) < i,
I an ideal on , tlimsA; = X and QH <M < Hv does not have true
cofinality At, then pp.(A) > At and, replacing I by some proper
ideal I’ D I, condition (ii) of 1.3 holds.

(2) If in addition (Micx Xir < 1) is p-directed but does not have true cofi-
nality p then pp,(A) > p.

(3) In 1.4(1), if ([Ticx Air < 1) is pt-directed, then the possibility (ii) holds.

(4) In 1.5A, we can add to (13) :
QAR%Qm\»bmmkpmms.mz/mncmmnvxaA&vA?S.

(5) If for & < pi, fa € [Licnbin 6 < 9, = cfb;, (fo 1 < p)is < j-increasing
with <7 —eub (8; : i < &), p = cfp > xt, then for every regular
o < p for stationarily many 6 < g, cf§ = o and for some unbounded
subset A of §, {(fo:x € A) isasin 1.4(1) clause (ii) (see 1.3).




Sh:355

52 II: Roy1 hos a Jonsson algebra

Proof:
1) Without loss of generality A; > . Let a =: {Mi:i <K}, by [Sh345a,1.8]
the assumption implies that
J<x++]a] is a proper ideal while
(I1a,<s_y4s [a]) s At+-directed.
Hence, letting J is the ideal generated by

MC?mz;v&ns_m&m.ﬁyi?ﬁ

we have
(T M <) is At -directed.
i<k
Now use Claim 1.3.
2) Same proof.
3) Left to the reader.
4) Easy.
5) Same proof as 1.3. OhsB

Claim 1.6 (1) For (fo : @ < 6), K, I as in the hypothesis of Claim 1.2
such that cf(6) > k¥, the following are equivalent:
(a) there are A C 6 unbounded, and s, € I for a € A such that:
(fald): a€ A,i€K\sq) is strictly increasing in o for each i< K,
(b) (x*); of Claim 1.2 holds for some f and

{i<r:cf[f(@)] #cfotel

(note: f/I is unique as a <y —lub of {fa:a < 6))-
(2) If cf6 > gen I, in clause (a) above without loss of generality sq = 8
for @ € A; if I = J°¢ without Joss of generality so =8 = [i(%), &) for
some fixed i(*).

Remark 1.6A Note that the assumptions of 1.6(1) imply
{i < k:cf[f(3)] > cf(8)} € I,
and if condition (b) of 1.6 holds then for every u # cf(6),
{i < k: cf[f(8)] = p} m 1.

Proof: (a) = (b).
So let so € I, A C 6 be as mentioned in (a). We shall show that (b)

holds and in particular (¥*)r from Claim 1.2 holds.

S W

i
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We define f € "Ord :

@) =sup{fa(i) ;€ A1 € K\Sq}-

‘We shall show that f is as required there.

Condition o : Suppose 8 < & then we can find a € (8, 8)NA, now: fg <1 fa
[by assumption] and fo <1 f [as fal(K\Sa) < fI(k\Sq) by the definition
of f, remembering s, € I] hence together fg <1 f as required.

Condition 8 : Suppose f' € *Ord and let B = {i € £ : (@) < f(i)}; and
assume k\ B € I. For each i € B let

a; = min{a € A:i € K\Sq, fal) > @k

by the definition of f and B, a; is well defined and belongs to A. As
cf(8) > K, a(*) =: sup;ep e is well defined and is < §; choose o € A,
a > afx) (a exists as § = sup A), so by the assumptions on sq, A we have

i € K\Sq & i € B = f'(i) < fa;(i) < fali);

80 S, (k\ B) € I hence f' <1 fa as required in (8).

Condition v : We prove more: the additional condition from clause (b) of
1.6.

Let B={i <k:{ax€A:i€r\selis bounded in A}. Clearly for

i € (k\B), cf[f(i)] = cf(6). Let a; =: sup{B € A:i€r\spg}soli€ B&

a; < 6]; and let o* =sup{o; +1:i <KL € B} and let a = min(A\a"), so

ais < & (as cf(6) > k). Now [i € K\sq => @ < ;] hence, by o’s definition,
B C s, hence B € I. But i € (k\B) = cf(f(¢)) = cf(6), (and “cf(6) > <"

is an assumption of 1.6) so we finish.

(b) = (a)

Let B={i<x: cf[f(§)] = cf 6}, s0 B = s mod I, and for i € B let
Aqm : ¢ < cf §) be a strictly increasing continuous sequence of ordinals with
limit f(z); for ¢ € x\B let Qm. = 0. Define for ¢ < cf(6) a function g¢ € *Ord
by g¢(i) = Qm.. Let {a : ¢ < cf(6)) be an increasing continuous sequence
of ordinals with limit 6. Now clearly f' <r f & (3¢ < cf(8))[f’ <1 gc) but
dwm@mv._wo know f' <1 f & (3¢ < cf 6)[f’ <r fa.]- Hence for some club C of
c :

for ¢ < ¢ from C : g¢ <1 fae & fac <1 -

Let us enumerate C in increasing order: C' = {((€) : € < cf 8}; let

A= {og(3er) 1 € < cf(8)}

ga w&. a = Qﬁﬂmm.*uwv




Sh:355

54 II: Wy41 has a Jonsson algebra

s = {i < mti ¢ Borge@ad) 2 facaun (i) or fageern (@) 2 ge@ern(®)}-

We leave checking to the reader.
(2) Left to the reader. : Chie

We can unite 1.2 and part of the proof of 1.3 to

Claim 1.7 Assume fa € ~Ord for o < 8, I an ideal on &, f=({fa:a< )
is <-increasing and cf§ > p=cfu > k.
Then

f hasa <y —eub f (see () + (B) of (¥*)r1 of (ii) of 1.3) and

{i: cf[f()] < p} € Iif
® the set of @ <& satisfying the following is stationary in § : cfa 2 p and
flo satisfies condition (a) of 1.6,
ie.
®o there is an unbounded A C o and gg € “Ord for B € A such that: for
B < 7 in A we have:

gp < g andfp <198 <1 fy

(or gg <1 fa <1 9v)-

§2 Omn pp instead of the Singular Cardinal Problem

Here we shall get some conclusions of the basic advances in §1. The .B.Omﬁ
direct is 2.3 where we get basic properties of pp, here we have explicitly
(2.3(1),(3)), the characterization of PP in &1 Woa.gm mo.nmﬂmam Om. 81,
(for any family T of ideals). Conventional cardinal m.:.aramﬁo. has o.dSocw
monotonicity properties which are not shared by pp; in fact a kind of inverse

monotonicity is gotten (2.3(2),(3)):

®1 if A < p < PPr(e QVC,V and A, p are singulars with cofinality in the
interval [o, ) and cf(f) =0Vvcif <o then Ewws,qvﬁtv < pPre.)(A)-

So in such a situation the minimal member has the largest pp! (see 2.3(6)

for exact formulation).

We still have some continuity (2.3(4)):

o if 0 < 6, cfd = 0V cff < g Vb 7t fr € [0,0), 0 <X <X
and for arbitrarily large X' < A, cEN € [0,6), EVWQEC« ) > x then

PP (g,0y(A) > X-

%
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If we have been happy to get in the first section a representation of At
(X singular) as the true cofinality of TLi<ess Ai/ JBS.+ we should be even more
happy to get a better representation even at some price: A of uncountable
cofinality:
®3 ifA>cfA >R, (Ai:i < cf)) increasing continuous then for some club
E of A, [Licg M /J5° has true cofinality AT

We would be even more happy to add
“and A > maxpcf{)\; : i € ENa} fora € £,

but do not know how to do that. We shall return to “good” representations
in [Sh371,81].

Another direction is that we are used to proving things from instances
of GCH, but rarely from their negation. By the result of §1 we can (in 2.2)
show that pp(}) > AT (our version of failure of an instance of GCH) implies
the failure of corresponding instances of Chang’s conjecture. This general-
izes Solovay’s theorem (on SCH above supercompact), we shall return to
it in §5.

* * *

Claim 2.1 Suppose X is singular of uncountable cofinality . Let (s : 4 <
k) be strictly increasing continuous with limit A. Then for some club C of &,

Aﬂ..mo A, < um.av has true cofinality At. (So At = max pcf{\f i€ C}).

Question 2.1A Can we get (fa: 0 < At) witnessing the cofinality such
that, for each i € C we have |{fali:a < AH < Aip1?

(this is equivalent to the formulation after ®3 by later theorems)

Proof:

Without loss of generality for every i, X > st and )\ is singular; let
a = {\} :i < &}; and apply [Sh345a, Def. 1.2(2)] so the sequence

(J<ula] : p € pef(a))

is well defined. Clearly, (see [Sh345a, 1.3(4)]) Jaa+la] & Jbd (as if D an

ultrafilter on a such that p <A =>{#€a:0> p} € D, then cf([] a/D] >

A). Now we know by [Sh345a,3.2(2)] that for some b, € J<x+la]

(i) for @ < A, [a < B = ba S by mod Jox+al]

(ii) if ¢ C a\b, c € J<x+[a] then for some a < A, ¢\ b, is included in a
countable union of members of J+[a], but this ideal is included in

JPd which is k-complete, x > Rp, hence in our case this implies that
¢\ by, belongs to J& (as cf(A) =~ > Ro).

|
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Let
I={ACk: monoanE,cmOmmmmeA>+L.m>uvs.mm V i € bal}.

If k € I we are done, so assume not. Let I be the ideal of non stationary
subsets of K, Ba = {i: A} € ba}, s0 Ba is increasing mod Ip, hence
I={A:VacxA\Ba € Io} is a proper normal ideal on &; tlimz A = A; we
apply Claim 1.3. If 1.3(i) holds, then for some B Crk, [I{} :i€ B}/IIB
has true cofinality AT, which contradicts the choice of (ba : @ < A). So (ii)

of Claim 1.3 holds for some A} < A} for i < k, hence Mo< X (as A s

regular). So (by Fodor’s Jemma, i.e. I’s normality) for some i(*) we have
S = {i < k: X < A(w} is stationary; but this contradicts (8) of (ii) of
1.3. Uz2a

Conclusion 2.2 Suppose A is singular > & and

(*) for some p <A, p2 K2 cf) and 9+,yvﬁ€+,5

(if you do not know the notation, use (*)’),

or even

(x) if Misa model with universe A* and x > cfA many functions, then
for some submodel N € M, A = |N|| > [N NA|+&.

Then

(1) statement (ii) of Claim 1.3 holds for no I, (X : i < &), as there (so
A= nﬁﬂ:yﬂ.vw

(2) pp()) = A"

(3) More generally, if p< A< A% < ppe(A) (O, \) == (ut, p) (or the
parallel of (+)') then 2.2(1) holds.

Remark 2.2A (1) This generalizes Solovay’s theorem on SCH above su-
percompact cardinals.
(2) So XA =X+ if (Vi < At < Al, cfA > Ro and (x)’ holds.

m.u..oom (1) Clearly (%) = (%)’ so assume (*)'. Suppose (ii) of 1.3 holds for
I, (\i:i<k) and let (fo:a <At) exemplify this. Let F' be the following
two place function from AT to A

ﬂn;.vu A%ﬁ@ %“Mn

Now M =: (A*,F,i)icx 15 88 required in (*)’ (each i < k is an individual
constant), so there is a submodel N of M satisfying X > [N | > INOAL
As A > ||N||, by 1.4(3) we can find (s : @ € N) such that:

(i) sa €1
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(ii) Rang(fal(%\Sqa) for @ € N are pairwise disjoint (even more).
But € N, i < k= {a,i} € N = fa(i) € N; hence

a € N = Rang(fa) & N.

So (Rang((fal(k\4a)) : @ € N) is a sequence of || N|| pairwise disjoint non-

empty subsets of N N ), contradiction to “}V | > INNAP.

(2) Easy (see 1.5B).

(3) Easy 0.2
The following is an application not used later, so if you have not heard

on supercompact, just ignore this.

Conclusion 2.2B (1) Suppose in the universe V, p is supercompact, A >
p, A singular and cfA < p. If V' is an extension of V (so V is a
transitive class of V/, they have the same ordinals and both are models
of ZFC) and V' | ppA > AT, V" an extension of V' and in V”
the ordinal At (i.e. (A\T)Y) is still a cardinal then in V", p is not
supercompact.

(2) This holds for “compact cardinal”, too.

Remark 2.2C The condition “cfA < p” in 2.2B can be omitted by 2.4(1)
below.

The No Hole Conclusion 2.3 (1) Ifcf A<k < A, then

TﬁtnomtgamOamoBmEmENoamwba (Mii<K)

we have: each ); is regular and tlimzh; = A and

= tef (Te ey <1) )
is of the form {g : A < p < pp.(A) and p is regular}, (see
Definition 1.1(4))-

(2) If A < p are singulars of cofinality < & (and & < A) and pp.(A) = ¢
then pp,. (1) <* PPL(})-

(3) We can in (1) [in (2)] restrict ourselves to I' (so pp, is replaced by
ppr), any set of ideals on K [closed under sums; i.e.: assume IeT
with domain without loss of generality x, I; € I' fori <& with domain
without loss of generality x; and J* =3, Li (thus

Dom J* = CQ& X Ki),

.N*HTAMUOB.N*“@“AENCAzﬂ.“?._u.vmkﬁmbmeWV

then for some A € Jt, J*A is isomorphic to a member of I'}.
(3A) If o <G and cfd =0V cif <o then T'(6, o) is closed under sums.
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(4) Tf cf(N) € k< X and

(Vp < NEk <y <1 & cf(') < & & X < pPulk)]
then x <t pp:(A)- Also if o < 0, cfd =0V cf8 < o, cfX € [0,0),
x>\ >0 and for arbitrarily large p' < A we have X <* PPr(s,0) ()
then x <¥ PPr(a,0)(N): [We can even use any T closed under sums as
in (3)].
() lfxe pefr(e,)(a)s X ¢ a, then for some fi,

p = sup(anp)and X < PP (9,0 ()

(hence 0 < cfp < ). This is true mop,wb%vmovmm@ﬁ &8&5&9

restriction (ie. f €T, A€ I+ then I + (Dom I\A) € T), and even
weakly closed under restriction (i.e. f I €T, A e I, then for some
Belt,BCAandI IBis (isomorphic) to & member of T').

(6) Assume: 0 <fh<h<A<A fg=0vcfd<o, SE Mo, A1] @ set of
cardinals, A a limit cardinal, and for every X < X for some p € S we
have cfp € [0,0) and PPr(e.0) (W) Z X
Then for some g € 5, cfp € [0,0) and E:AP&AE > A. (In fact, the
minimal p € S with cf(w) € [0,0), PPr(s,0) () 2 A, is as required).
[We can use any T closed under sums].

Proof: (1) Basily every p in the set is regular and > X and by definition
1.1(4) is £F pp(A). The absence of “holes” follows from 1.4(1).

(2) Follows by (3). .

(3) The parallel to (1) has the same proof. So, it suffices m.._,o prove: if 6 <
pp;-(p) then 9 < ppf()). So assume [ < 8 = cff < ppf (), s0 by the
definition of pp* for some ideal I € T with domain say &, for some sequence
(Ai:i<r)of regular cardinals with tlimph; = p we have [licx Xi/I has
5 true cofinality g* and 6* > 0. As tlimy\; = p and A< p without loss of
generality NA <A < pe As \; < p necessarily A; < ppi (M), and as said
above A; > A, s0 by the parallel to 2.3(1) here, there is an ideal I; € r over
say ki and a sequence (hijtJ < k;) of regular cardinals < p and with
tlimy, of it being A and [lcn: \; j/Ii having true cofinality \;. Now clearly
if (Ai,<i) I8 2 linear order of true cofinality A; then []; <x(Ai; <;)/I has

true cofinality 8*, see Mmrwpmmh.w@f hence [li<x Q.r < Nind \h.v /I has
true cofinality 6*. Let I" = Y i<w Ii e the ideal on A% = Ui {i} X 50
(i.e. this Dom I*) defined by

Bel*if BC A" and: ?.AKTC.Azwu?bmkﬁ*wmbwmw.

et 1 J R RS A
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HH Xij/I* is isomorphic to z H—. /L /1

(4.)EA" i<k \j<Ki

hence has true cofinality 6*. But by assumptions for some A C Dom I*,
A +# 0 mod I* and I* lA is isomorphic to some I' € . So we have shown
gﬁiyv > §* > 8, as required.

(3A) Check.

(4) Like (2),(3)-

(5) So a is a set of regular cardinals, o < la| < 8, |a| < min a, and for some
ideal I on a, x = tcf [a/I, and I'is o-complete. Let p be the minimal
cardinality such that a Ny ¢ I.Now @’ = any, I' = Ila’ exemplify the
desired conclusion.

(6) By (2), (3)-

Claim 2.4 Suppose (\; : i < K)is increasing continuously, £ = cf(x) > Ro,

A=Y dand k< Xo-

Q) UES={i<k: pp(A;) < A} is stationary then pp(X) < AT.

(2) If J is an ideal on &, pps(Ni) = yu.i&. then pp;{A) £ 2Bl (see
2.4A(2)).

(3) IE X =Rgys >0 then pp(X) < Rat(jsi)+ (remember cf(8) = & > Ro).

(4) If XA =Rays, K= cf(8) > Ro, > 25+ sup{x" : cfx = K, X < 8} then
PP(A) < Ratp

Remark 2.4A (1) Part (1) of 2.4 generalizes Silver’s theorem.

(2) Part (2) of 2.4 generalizes the Galvin Hajnal Lemma. Remember that
for a function h from x to ordinals,

|Al| = sup{||F]| + 1 : b < hmod Dy},

where D, is the filter generated by the closed unbounded subsets of
x. Similarly ||h||s is defined for any ideal J on k; the rank is < oo if
J is Rj-complete.

(3) Part (3) generalizes the Galvin Hajnal Theorem [GH].

(4) Part (4) generalizes [Sh71] (which followed [GH]); see representation in
Erdos Hajnal Maté Rado [EHMR 47.6, p.296].

On generalizing [Sh111], [Sh256], see [Sh371] and [Sh386].

Proof: Now 2.4(1) holds by 2.1. [Why? W.lo.g cf(\;) < & for every i, and
tef([IAS/J89) = A*. For simplicity first assume PP x(As) = A} assume

a C Reg N A, A = sup(a), |a] < &, let a. (¢ < k) be increasing lae > &,

a= | a.. Nowfori€ § and € < K, if A; = sup(acNA;) then mAwanmv\.\ww

e<K
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(4) If cf(A) <k <X and
(Ve < N)EW)p < 1 < X & cf(1) < 5 & x <7 pp.(1)]

then x <* pp.()). Also if o < 8, cfd = 8 V cff < g, cf € [0,0),
x > A > 6 and for arbitrarily large ' < A we have x <* PPr(s,0) (1)
then x <* pprg,«)(A). [We can even use any T closed under sums as
in (3)].

(5) If x € pefpg 0y (@), X ¢ a, then for some 4,

g = sup(a N ) and X < PPFg.5) (W)

?mbnmqMnmtAmV.H_EmmmnEmmgmb%EovoR% ﬁ&o%&cﬁaﬁ.
restriction (i.e. if I € T, A € I'* then I 4+ (Dom I\A) € '), and even
weakly closed under restriction (i.e. if I €', A€ I't, then for some
Be I+, BC A and IIB is (isomorphic) to a member of T').

(6) Assume: 0 < 6 < Ap <A1 < A, cff = 6V cff < o, S C [Ao, A1] a set of
cardinals, A a limit cardinal, and for every x < A for some u € S we
have cfyu € [0,6) and pPr(s,0) (1) 2 X-

Then for some u € S, cfu € [0,8) and ppr(s,s) (1) = A- (In fact, the
minimal g € S with cf(i) € [0,8), PPr(s,)() = A1 is as required).
[We can use any I closed under sums].

Proof: (1) Easily every u in the set is regular and > A and by definition
1.1(4) is <t pp()). The absence of “holes” follows from 1.4(1).

(2) Follows by (3).

(3) The parallel to (1) has the same proof. So, it suffices to prove: if 8 <
pp; (1) then 8 < pp(A). So assume pu < 6 = cff < pp; (), so by the
definition of pp* for some ideal I € T with domain say &, for some sequence
(A; : 1 < K) of regular cardinals with tlimrA; = p we have [, . A:/I has
a true cofinality 6* and 6* > 6. As tlimgA; = pand A< p without loss of
generality A, A < A < p. As A < necessarily \; < ppg (), and as said
above \; > ), so by the parallel to 2.3(1) here, there is an ideal I; € T over
say k; and a sequence {A;; : j < k;) of regular cardinals < p and with
tlimy, of it being A and ], Ai,j/1i having true cofinality A;. Now clearly
if (A;, <:) is a linear order of true cofinality A; then [Tic(Ai, <i)/I has

true cofinality 8%, see [Sh345a,1.3(6)], hence []; ASQ.A?. v:.a‘\h.v /I has

true cofinality 6*. Let I* = 3, . I; be the ideal on A* = Ui {i} X &,
(i-e. this Dom I*) defined by

Bel*ifiBCA*and: {i<w:{j<ki:(5,j)€A}¢ L}l

- ey 1 P R, Jey I
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I 2:s/1 isisomorphic to J] | [T /% | /1,

(i,j)eA* i<k \j<mi

hence has true cofinality 6*. But by assumptions for some A C Dom I*,
A # 0 mod I'* and I*[A is isomorphic to some I’ € I'. So we have shown
EV.ATNQCV > 6* > 0, as required.

(3A) Check.

(4) Like (2),(3).

(5) So a is a set of regular cardinals, ¢ < |al < 6, |a] < min a, and for some
ideal I on a, x = tef [[a/I, and I is o-complete. Let i be the minimal
cardinality such that anp ¢ I. Now a’ = any, I' = Ila’ exemplify the
desired conclusion.

(6) By (2), (3)-

Claim 2.4 Suppose (); : 1 < &) is increasing continuously, £ = cf(x) > Ry,

A= MU.MAZ\/m and K < Ag-

(1) If S = {i < & : pp(A;) < Af} is stationary then pp(A)

(2) If J is an ideal on &, pp () = \/m_.is, then pp (A
2.4A(2)).

(8) If A = Ryys > 6 then pp(A) < Noqy(isix)+ (remember cf(6) = & > Ro).

(4) If XA = Ryqs, £ = cf(6) > Vo, p > 2% + sup{x” : cfx = &, x < 6} then
UHvA\/v < Zp+t.

<At
v < ARl Ammm

Remark 2.4A (1) Part (1) of 2.4 generalizes Silver’s theorem.

(2) Part (2) of 2.4 generalizes the Galvin Hajnal Lemma. Remember that
for a function h from x to ordinals,

||k|| = sup{||W'|| + 1 : &’ < h mod D,},

where D, is the filter generated by the closed unbounded subsets of
k. Similarly ||h]|s is defined for any ideal J on k; the rank is < oo if
J is Nj-complete.

(3) Part (3) generalizes the Galvin Hajnal Theorem [GH].

(4) Part (4) generalizes [Sh71] (which followed {GH]); see representation in
Erdés Hajnal Maté Rado [EHMR 47.6, p.296].

On generalizing [Sh111], [Sh256], see [Sh371] and [Sh386].

Proof: Now 2.4(1) holds by 2.1. [Why? W.L.o.g. cf(\;) < & for every i, and
tef(JTAF /Jbd) = A+. For simplicity first assume pp,(\;) = Af; assume

a C RegN A, A = sup(a), |a] < &, let a. (¢ < &) be increasing |ac| > &,

a= |J a.. Now fori € S and € < k, if A; = sup(a.NA;) then EA?DQL\&H‘

e<K
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has true cofinality A} so for some x.; < Ac we have acN); \Xe,i € Joy+la],
but J,+[a]/J_,+[a] is x*-directed so there is b; € J<y+[a] such that
e N A \ Xe,i \ bs € J,+[a], but J_,+[a] C Jbd, . and cf(\;) < &, no
neccessarily aN A; \ b; C x; for some yx; < \;; now we can apply [Sh345a,
1.10] with D; = {6 C a : sup(a N X; \ b) < p;}, for i € S, E={aCxk:
sup(S’ \ a) < &} (would be slightly shorter if pp,()\;) = A;). Why can we
assume pp.(A;) = Af? By [Sh371, 3.6].]

We can prove (2) by induction on ||A]| ;. Now (3) follows by 2.3 and also
(4). For more details — see [Sh371,1.10]. Oa.a

§3 The cofinality of [Ja
The reader may remember that promising clarity we have passed in [Sh345a]
from cf[] a to cf([]a/D) for D an ultrafilter (and various ideals), but it
may seem the original cofinality, that of the partial order [] a, was forgot-
ten. Not so, in 3.1 we prove:
®1 cf([]a) = maxpcf a.
So, of course, we could have used cf([] a) as the central notion.
Another way to say this is that: by “looking in a single direction”; i.e.
dividing by an ultrafilter, we do not decrease cofinality in general, i.e.
®} there is an ultrafilter D on a such that the linear order [] a/D has the
same cofinality as [] a itself.
We can similarly characterize []a/I (I an ideal on a, see 3.2). We then
return to a recurrent theme: nice representation of A* — (in 3.3) if \
singular:
®2 if A singular, Ag < A, & = At then there is a strictly increasing sequence
{(Ai : i < &) of regular cardinals, § limit < cf ), such that:
(a) 6 = maxpcf{);:i< 8}
(b) for a < §, Ay > maxpcf{Ag: § < a}
(the gain is (b) whereas the main price is that possibly § < cf]; of course, if
cfA <k < Xo <A <0 =cfd <ppf(A) we can get the same with § < xT).
In 3.5 we get something for such A, i.e.
®3 if A = (\; : 4 < 6) is a sequence of regulars > |6] satisfying (b) of ®a
and 6 = maxpcfa then we can find a sequence (f, : @ < 6) which
is <jo{rii<s}-increasing and cofinal in [T, s Ai/Jco{{Ni : i < 6}]
satisfying
(x) for i <6, {fali: a < 8} has cardinality < A,
[if we just demand max pcf{)\g: B8 < a} < U, <s Ay then we get
corresponding restriction]. [We can add “{f,[i:a < 6,i < 6} is
a tree”]. .
For this we need 3.4, the second central Lemma of this section, in which
another recurrent theme appears: computing the characteristic function
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(sup(N N 6) : § € a) for suitably closed elementary submodel N of some
fragment H(x) of set theory.

Another use of 3.4 is computing cf (S<a,()), ) when A = M a < A
as max pef {A+(6+1) . g < a}. This is part of our program to compute the
natural measures of variants of the power set by pp’s.

We shall return to such problems in §5 and in [Sh400,§3,85].

* * *

Lemma 3.1 Suppose |a|t < min a. Then
cf([] a, <) = max pcf(a).

Proof: We prove by induction on A € pef(a) that for every b € J<ala],
cf(I] b, <) = max pcf(b). Suppose we have proved it for every X' < A and let
b € J<a[a]. Without loss of generality a = b. By the induction hypothesis
without loss of generality b € Jca[a]\J<a[a]. Let (fa : & < A) be such that:

(i) fa€]lb

(ii) @ < B8 = fo < fg mod J.x[a]

(iii) for every g € [ b for some o, g <Jcxfa] fa-

Using {fa : @ < A} easily A < cf([] b, <); i.e. max pcf(b) < cf([1b, <). For
each ¢ € Jc,[a], let Fe C [] ¢ be cofinal (i.e. (Vg € [[e)(3f € F)lg < fD)
and |F¢| = maxpcf(c) < X; it exists by the induction hypothesis. (If 2lel
were < A, the proof would be easier). Let x be large enough regular, and
we now define by induction on i < |a|t, N;, g; such that:

(A) (i) N < (H(x),€,<%)
(@) [[V:]) = A
(iii) (Nj : j < 4) € Niyy
(iv) (NV; : i < |a|*) is increasing continuous
(V) {i:4 <A+ 1} C Ny, b€ Ny, (fo: @< A) € Ny and the function
¢ — F; belongs tu Np.

(B) (i) g: €[]band g; € Nyyy
(ii) for no f € N;N[] b does g; < f (equivalently, for no f € N;nI]b,
we have ¢g; < f)
(i) J <1 = Npeqgi(6) < 9i(6).

There is no problem to define N;, and if we cannot choose g; this means
that N; N []b exemplifies cf([Tb, <) < X as required. So assume (N, g; :
i < |a|*) is defined. For each i < |a|* for some a(i) < ), g; < faqiy mod
Jeala] hence a(i) < a < A = g <Jcxla] fo- Choose a < A such that
a > Cs.A_n_+ a(i). Let ¢; = {8 € b : g;(6) > fa(0)}; s0 {¢; : i < |a]t) is
increasing with 4 (by (B)(iii)), hence for some i(*) < |a|*, ¢; = ¢y for

every i € [i(+),|a]*). Note that ¢;) € Jcala] (as g; < f, mod Jeald]

A
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hence F, ,, is well defined. Now Ci(x) € Nigs)+1 (85 fa,is) € Niny+1)
hence mu:Tv C Ni(x)+1- Now

Git0+11(0\€i0)) = Giy+1 1B\ €s(ay41) < fal(B\esayp1) = fa [(b\cix))

(the < : by the definition of Ci(+)+1) and (as c;(,) € J<y[a] and Fe,., C
Ni(xy+1) we know Gi(x)+1¢€x) s < f for some f € m,:?v C Nix)+1- So
Gitx+1 < max{f,, f} € Nj(xy41, contradiction to the choice of Ji(x)+1-

O34

Conclusion 3.2 For any ideal I on & and sequence (J; : i < k) of regular
cardinals such that \; > k¥, we have
cf(ITicx Mi» <1) = sup {cf([T A, <p): D an ultrafilter on x
disjoint from I w

Proof: By [Sh345a,1.8], for some A € I, the right hand side is
max pef({}; : 1 € K\ A}).

Now

nmAE?;ANVHoA : Ai A:?{»L

<K i<n,i¢A

and by 3.1 the latter is < maxpcf{\; : i € k\A}. The other inequality is
even easier. (We have quietly used [Sh345a, 1.3(8))). Os.2

Claim 3.3 (1) Suppose A is singular, A\g < A. Then we can find a limit
¢(*) < cfX and an increasing sequence of regular cardinals (); : i <
¢(*)) such that:

(1) maxpef{\;: i < {(¥)} = A+
(ii) for 7 < ¢(x), nm:uré. Ay <) < A

(2) If (A; : 4 < 6) is a strictly increasing sequence of regulars > |§| with
limit A, pcf{A; : 4 < 6}N6 C U, 5\ and 6 = tef ([T, 5 A/ J29), then
for some a C {A; : i < 6} with no last element, # = max pcf(a) and
o € a=maxpcf(anyg) < o.

Proof:

1) By 1.5 there is (A* : ¢ < cf()\)), an increasing sequence of cardinals, Ag <
A% X =37,y A such that ﬁomAE AL A.:ﬁv = A% and each \! is regular.

By [Sh345a,1.8] without loss of generality A* = max pef{\* : § < cf(A)}.
Try to choose by induction on ¢ < cf A, i(¢) < cf X such that:

PUCYN max pef{AH8) ; ¢ < ¢}
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Suppose i(¢) is defined iff { < ¢(*). Necessarily, ¢ () is a limit ordinal < cf),
also AHe) € pef{X®) : ¢ < ¢} if e < ¢ < ¢(x), hence (A : ¢ < ¢(%) is
strictly increasing.

We have still to get that At = maxpef{A 9 : ¢ < ¢(x)}. If ¢(*) = cfA
this is clear, otherwise max pcf{\¥¢) : ¢ < ¢(¥)} is > Uicesa At (as we
cannot choose ((*)) hence (as {A*9) : ¢ < ¢(*)} C {A : 4 < cfA}, AT =
max pef{\’ : i < cfA}) we have A\t = max pef{A(©) : ¢ < ¢(x)}.

2) A similar proof. O35

Lemma 3.4 Suppose |a|* < min(a), where a is a set of reqular cardinals.
Then we can find a family F, F C [1a, of cardinality max pcf (a) such
that:
() If
(a) x is regular > 22°° (N; : i < &) is an increasing continuous
sequence of elementary submodels of (H (x)he<3), i <i=
2.». € 2.—.? A.N.J. ﬂw € 20» aC »2.? __N<<s= < min a, and _P_ <
cf(6) < min(a),
then
(b) for some f € F, (V8 € a) [£(6) = sup(8 N Uics Ni)]-

Proof: For every b C a let A(b) = max pcf(b); so by 3.1 there is FCT]e
of cardinality A(b) such that (Vf € [[b)(3g € FO)[f < g]
(ie. Ages £(6) < 9(6)).

Subfact 3.4A For every b C a thereis (f®: a < A(b)) such that:

() faellb

Qwv a< = \M < \.M mod .NA\/?LE

(iii) if |a] < cf(e) < min(a), then for § € b
f3(8) = min { Ugec f5(8) : C a club of a}

(iv) for every f € []b, a < A(b) for some B, @ < B < A(b) and f < .\w
(and not just f <Jcalp] 9Y)

Proof: Immediate by 3.1 [for (iii) note that if ( bw : B < a) has been
defined, and we define f° as there, then for each 8 € b, for some club Cy of
o we get the minimum, hence C =y, Cs is a club of a (as cf(a) > |al);
so f§ € []b (as |C| = cf(a) < mina) and f5 < fE for B € C, hence (ii)
holds (remember o is limit)]. Us.qaa

Continuation of the Proof of 3.4: Now, for b C a, we define Fy by
induction on max pcf(b), (using (2 : a < A(b)) from 3.4A).
Fo = U{(f21(b\c)) Uglec: v < A(b) and for some a < 8 < A(b),
¢= A.\.M?\.WV and g € .mﬂnv

where ¢(fg, f§) = {6 € b: £5(0) > £5(6)}.
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Note: Fy is well defined as for a < g < max pef(b), ¢(f3, f§) € Jeae)[b]

(by (ii) of 3.4A) hence A Anqﬁw:\wvv < A(b), so0 no vicious circle arises.

In particular, Fy is defined and we shall prove that F' =: F, is as required
in 3.4. We rather prove that Fy is as required there with b instead of a,
by induction on max pcf(b). So suppose (N; : i < 6) is as mentioned there.
Now ;

(¥)1 for each 6 € b, (sup(N;Ng):i<é)isa strictly increasing
continuous sequence of ordinals < 6.
[Why? sup(V; N 6) < 6 as |V;]| < mina and for i < j,

sup(N; N6) < sup(N; N6) as {6, N;} e N;

hence sup(N; N 8) belongs to N;].

Clearly

(¥)2 letting g; € [T b be 9:(6) = sup(N; N §); then i < j = 9i < gj

(*)3 gi € Niyq

(*)4 (sup(N; N A(B)) : 4 < 6) is strictly increasing continuous.

Let y(i) = sup(N; N A(B)).

(*)5 There is B(i) € Nj41 such that Y(0) <B(3) < ¥(i+1) and g; < fhey
[Why? As N; € Nt hence 5, g; € Ni+1 and use 3.4A(iv)].

(*)s if f € N;N]]6 then f < g;.

Now for some club C; of 7(6), for every 6 e b, \w@A& = Ugsec, F5(6)

[by 3.4A(iii); and see its proof]. As we can decrease C1, without loss of
generality Cy = {«(i) : i € C} where C is a club of cf(6).
By (*)s + (*)s,
(¥)7 fori; <ip < i3 < é we have \w:: < gi, < \wﬁmv
hence (by (%)2) we have ( bw?.v (0) : i < &) is strictly increasing for each

6 € b; also \ma:v <Jeaenl6] \%3 (by 3.4A (iii) and the choice of C; and C)
hence

i =:{0€b: f5,(0) > £o5 ()}
is a member of Joxw)(b] and (¢; : i < 6) is increasing, and ¢; C b C a. As
cf(8) > |af, for some i(*) < § we have

i(x) <i<é=¢ = Citx) s

and for the same reasons (see (*)7)
A*vm SA*V <i1<6=> Ci(x) = A% : .QsA%v > .\\wﬁmv%w
It is also clear that [ € b\c;() = £35)(8) = g5(8)).

P B

Hr
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[The inequality > follows from 8 € b\ci(.) and (*)s (and g5(6) = uCAm 9s(8)).
<

The inequality < follows from f25(0) = mCO F5(8), f5(6) € Ng).
eCh
Next let j(x) € C (see above) be such that B(i(*)) < ~(j(*)) hence

.\.M?.Aivv < .\..\WCA*VV mod ..NAVAEV:.L“ hence
. £b b
€ = (f5ta Fyen) = {0 € 02 5,00 (8) 2 £20y (0)}

belongs to J.(e)[b]. As (j(*) € C and) MITRYIRS ~(6)» hecessarily ¢ in-
cludes ¢;(.

Now ¢ € N; for i < 6 large enough, hence without loss of generality F, €
N; (that is, there is always some function e F, satisfying the same
requirements, including F}, = Fy, which belongs to N;). Now apply the
induction hypothesis and the definition of Fg. Uag

Conclusion 3.5 Suppose § is a limit ordinal, (A; : i < §) is a strictly
increasing sequence of regular cardinals > |6]*, and for a < 6,

Aa > maxpef{); : i < o}.

Then we can find f, € []; s\ for @ < max pef({A; : ¢ < 8} such that:
(a) for ¢ < € < maxpcf{\; : i < 6} we have

fe < fe mod Jemax pet(niicsy[{Xi 1 < 6)]

(b) for o < & we have |{f¢li: ¢} < A; (in fact < max pef{}; : § < i})
(B)* fe(@) = fe(B) = fela = fe1B (and so a = B; i.e. we have a tree).

Proof: For each o < 6 let F,, C II;<o As be as guaranteed by 3.4. Let
F* = {f: f belongs to II;csA; and for every a<d fla€ F,}.

By (x) of 3.4, applied simultaneously to a; = {X;:i<j} (forj < .wv for
every g € []; s Ai we can find f € F*, g < f. [Why? Let x = (27"")7 and
for 2 < |6]* we choose N; < (H(x), €, <%), INell = 18], g € Ny, 6+1 C Np,
i <i=N; <NjJ,[j <i= N; € Ny, and {F*, F, : « < 6} C N,
Let N* = CA.AET N;. So for each a < 6 for some f, € Fy we have (V3 <
a)[fa(Xg) = sup(N* N Ag)]. So f =: Ua<s fa is as required.]

Now it is easy to get (f; : { < maxpcf{); :i < 6}) as required in (a) +
(b), choosing f; by induction on .
As for ()1, let

Nﬂw”*.\.mnnmAtﬂA\/Dw
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and let us define

7€ TT M+ 248 = s X 7o)+ € () where f,1i fiw(€ Fy).

i<§

a5

Question 3.5A Suppose |a|* < min a, A = max pcf(a); then is the idea]

J<a[a] generated by < A sets? (See [Sh371,§2)).

Theorem 3.6 IfFA=)% a< Ao, then:
of (S<30(A), ©) = max pef ?Jétv B < & .

Remark 3.6A Remember Scr(A)={aCA: lal < Ao}, this is partially
ordered by C (in fact is A -directed), hence its cofinality is well defined.

Proof: By 3.4. [Without loss of generality, Ag > Ng, let F be as in 3.4 for
a={\t A+l B < a}, let M be the model with universe A, and functions:
/9, such that {fa,9) :i < al={j:j< lef}, g(e, f(a, i)) = 4; now for
hePF let

Na =) {Skolem Hull (3 U Colu:Caacubor sa+ssm 3

B<a

Now {N, :h e F} exemplify the inequality <; the other is easier], (3¢

84 Applications

We have claimed to have applications of the theory, and this section is an
implementation of this theme. First, we deal with colouring theorems (in

of cardinality ) is aoogﬁmomama:, Epk.ﬂk.&. As a conclusion we get the
non-productivity of A*-c.c. for Boolean algebras [see 4.2].

cardinals). Note, however, that there may be Jonsson cardinalg < 2Re,

In 4.10, we define an (A)-entangled linear order (4.10(5)) and an (A)-
entangled sequence of linear orders; so our aim is to prove in ZFC that
there are such objects. So if A > cf) there is an entangled sequence of
linear orders of cardinality A+, of length cf (by 4.9, and more in 4.11). We
then give sufficient conditions for the existence of such a sequence (4.12)
which gives, for example, there is one in A+ if A is singular < 2Ro,
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%* x *
We first get some strong negative partition relations.

Conclusion 4.1 If ) is singular, then:

(8) Pri(A*,cf(N), cf(\))

(b) Pra(A*, cf(X), cf(N)) if (Va < A(la] < < z)
(c) 2°2 > X implies Pro(At,Rg, Ro)

Remark 4.1A (1) Pry(, &, 6) is defined in the Appendix, Definitions 1.1,
1.2,1.3 for £ = 0, 1,2 respectively but will be clear in the proofs.

(2) Historically note: by [Sh282, Lemma 40] we have that part (b) follows
from 1.5 for almost the result and part (c) follows by part (a) +
[Sh282] (or [Sh327,Lemma 1)).

Proof: a) By 4.1B below, we have that Pr, (A*, cf(X), cf(N)) follows from
1.5.

b) Follows from 1.5 by 4.1D below (and 2.1).

¢) This follows from part (a) by [Sh365,4.5(3)], so the reader is allowed to

ignore it.

(In details, let AF, At ef(N), R, cf(A) here stand for ), K, 0, 6, X there,

so the assumptions there hold, as:

(i) Pri(\ 4,0, ) there means @E@ﬁ»ﬁoﬁ\c,z& and it holds because
of part (a) and monotonicity of Pr;,

(i) x<° < o means cf(A)%0 = ¢f(A), which obviously holds,

(li) o = 0<% means cf(A) = cf(A)<Re which holds,

(iv) cf(u) > x<% means cf(A*) > cf(A)<Mo je A+ > cf(A) which obviously
holds.

So the conclusion of [Sh365, 4.5(3)] holds; it says Pro(A, i, 0, 8) which means

m:.o?/f\/ﬁni\c,z& as required. Note: if cf(\)<? = cf(A) then we can

replace Ny by 8.)
Uy

Lemma 4.1B Suppose:
¢ is a set of regular cardinals, |¢| < min(c),
tef AD <, Mkwuv =],
¢ has no last element so (Vi€ e)(u < A) and
let x = min{jc\y|: p e ¢} <supec.

Then Pry(A, x, cf(c)).
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Remark 4.1C 0) Remember: for a set A of ordinals with no last element
Jd={BCA:supB< sup A}.

1) Every unbounded ¢ C c satisfies all the assumptions (though: maybe
with a smaller x). So without loss of generality |¢] = .

2) cf(c) is the cofinality of the order type of .

Proof: Let (f, : a < )) exemplify tcf ([]c, Sppa) =X (e i < X) a
partition of ¢ to x sets, each ¢; is an unbounded subset of ¢. Let A ey
be such that § € Ch(6)- :

Let us define two symmetric two-place functions 0, e from X\ with range
of cardinality  : for a < B <A, let 8(e, B) = sup{f : f,(6) > fo(0)} (so if
there is a maximal 8 for which fa(0) > f5(9), it is 6(a, B)) and let:

e(e, f) = h(6(a, B)).

Suppose £ < cf(c), (apc:¢<¢€)isa strictly increasing sequence of ordinals
< A for each # < ) and the ag ¢ pairwise distinct. Now for any given
i(*) < x we should find g < 7 < A such that Ue @p¢ < @y 0 and for every
¢ G2 <& 0 (ape,, ) belongs to ¢;.).

Let x* be a regular large enough cardinal. Let M, be an elementary
submodel of (H(x*), €, <*) where <* is a well ordering of H(x*), to which
A (< e ¢ <E>: B <), (faia <)) belongs, £ U ¢ C M,,
and || Myl < supec. As the @i are distinct, by renaming without loss of
generality i < o, ¢ for every 1.

Let ¢ = {8 € ¢ : sup(Mp N ) < 6}, so ¢ = ¢ mod JPd. Define a
function g € [ ¢ by: 9(0) is sup(Mo N @) for § € ¢ and zero otherwise.
As (fg : B < A) exemplify tcf (I, <gva) = A, clearly for some B(0) < A,
9 < fpoy mod JP9, and B(0) > sup(Mo N A).

As ag),¢ > B(0) for each ¢ < ¢, clearly for some mm € ¢,

[ <becec=go) < Fapo.(8)].
Let 6(0) = sup{6 : ¢ < £}, so as cf(c) > £ clearly 6(0) < sup(c). Let

6(1) € c;(x) be such that ¢ \ 8(1) C ¢ and 6(1) > 6(0). Let for 8 < A
f5 € I ¢ be defined by

f5(8) = min {fa, (8): ¢ < £}.
Easily f5 < f5 mod JP9 (as 8 < ag,¢ and cf(otp(c) > £). Let
={fcc: sup{fz(0) : B < A} =6}.

So ¢* = ¢ mod Jbd ?\mv\w otherwise define g* € IIe

s
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. m:@QASNQA\S. iffec)\e
g°(6) = Ao e otherwise.

So for some B < A, ¢g* < fg mod JP?, and we get a contradiction easily].

So we could have chosen 6(1) such that it belongs to ¢*, (8(1) > 4(0),
8(1) € €iqay, €\8(1) C ¢’ and) 6(1) > || Mo| and then we can choose B(1) < X
such that:

7 = fp1)(0(1)) > sup { fay, (6(1)) : ¢ < £}

Let M; be the Skolem Hull of M, U {7} (in (H(x*), €, <*)). Now &mm&.&a
(H(x™), €, <*) | (38 < A)f5(8(1)) = 7; as A, {f3:8 <), 6(1), v are in
M, there is 3(2) € M; N A such that f52)(0(1)) =7. So

[61,C2 <€ fayer, (1)) <y = Fay(8(1))
= £32)(0D) < fape, (001))].

Easily, for every regular cardinal o € My, if o > 6(1), then
sup(Mo N o) = sup(M; N o).

As 5(0) > sup(Mp N X), also B(0) > sup(M; N X), but B(2) € M,
so B(0) > B(2), and similarly 2s(2),6; < B(0) < ap),, (for (1, G < £).
Also for every 6 € ¢, if § > 8(1), ¢1, 2 < &, then fapay,, (8) € My hence
Fapay ¢, (6) < sup(Mon6) hence fu,, . (6) < g(6), but §9) < Fascoye, (6)-
S0 8 (p(2),6,,@p(2),¢;) = 6(1), but A(8(1)) = i(*), so we finish. O418

Claim 4.1D Assume

(i) A=maxpefa, A\ ¢ a

(ii) for p € @, p > [max pef(an w))<

(i) Pra(u,0,,4,) for u € a.

(iv) 6 <cf(a), = UpcaOu = tlim;s{8, : pca) =9

(v) J a 6-complete proper ideal on a extending J.[a]

(vi) o = Upea@u, where |a,| = o, and for each € < o and ¢ < 6, we have

{pea:eca,and<6,} ¢ J

Then Pry(), 0,6).

Proof: Let (f, : a < A) bea <;_ AlaJ-increasing cofinal sequence of MEWB-
bers of [T a such that for every i € a we have H{fel(anuy):a < A}<% < p
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(see 3.5, using assumption (ii)). Let ¢, be a two place function from U to
@y, exemplifying Pry(u, Ou,8,). Define

e(B,0) =min{u € a: fo(u) # f(u)}

o8, @) = cuip,a) (f5le(8, )], fale(B, ).

Given ¢ < ¢ and ((a(Bi¢) : ¢ <€) : g < A), age < X with no repetition
where £ < 8, then for each B < X for some He € a, (foaoylug : ¢ < &)
are pairwise distinct (note § < cfa) and without loss of generality for every
B <A pg=u* (as la] < X = cf())) and fa(s,c)[(a N p*) does not depend
on 4 (use condition (i) and the choice of (fa 1< X)), As ) is regular,
without loss of generality B<y<A .|.v.>DbAm a(B,¢1) < a(v, (2). Define
/5 € [Ta as in the proof of 4.2A: fa(u) = min{fo5.0)(1) : ¢ < £}, and
define

b=Suca:pu= sup f(u) for every B < A
B<y<A
Again, clearly a\b € J, choose # € b, u > u* such that: 0, >&Nec a,
and by induction on v < & choose B(y) > U{B(Y) : v < 7} such that
f5¥(u) > . By condition (i) and the choice of (fa 1 0 < A, without loss of
generality \nﬁ,:c I does not depend on +.
Now use (iii) (i.e. the choice of Cu)- O41p

Claim 4.1E Assume @), (iv), (v), (vi) of 4.1D and
(i) J = gbd

(iii)’ Pre(u,0,, 6,) where ¢ € {0, 1} is constant
Then Pry(), o, ).

Proof: like 4.1A.

Conclusion 4.2 If ) is singular then for some Boolean algebra B, B sat-
isfies the A*-c.c. but B x B does not (also A* — L spaces and A\t — §
spaces).

Proof: By the Appendix 16A(7).

smaller cardinality than the cardinality of M. Usually the universe
of M is the cardinality of M and unless stated otherwise L(M) (the
language of M) is countable.

(2) Xis a Jonsson cardinal if there is no Jonsson algebra on ).

We present the known:

Theorem 4.4 (1) If on X there is Jonsson algebra then on A+ there is
a Jonsson algebrg (and on Ry there is Jonsson algebra).,

Applications 71

which there is a Jonsson algebra, (Yu < A)[{i: p < A} € D] and
(s Ai/D) has true cofinality A*, then on A* there is a Jonsson
algebra (really the “true” is not necessary).

(3) If X is the successor of a regular cardinal, then on \ there is g Jonsson
algebra.

(4) If on X there is a Jonsson algebra M with [LM)|* < A, then on A
there is Jonsson algebra.

(2) If D is a filter on K, 8 S Afori < g, )\ isa regular cardingl on

Proof: 1) Let M be a Jonsson algebra on A, and Fy, F} be two place
functions from A*+ to A+ such that for @ € [\ AY) let Fy(a, -), [F, (o, =)]
be a one to one function from \ onto a [from « onto A]. Let N be the
model with universe A* with: the functions of M and F1, Fy (in the places
those are not defined — give zero as value). The rest should be clear and
a similar one is done in the proof of 4.5 below.
2) By the proof 4.5 below only: use the ideal dual to D instead of JPd,
defining M* we expand it also by individual constant Aj for j < & (no
harm done by 4.4(4) below).
3) Let A = pt.

Let x > 2%, M be the model with universe A and all functions from
A to A definable in Qﬁ:xv“m.Amv. Suppose N C M, M # N, |IN|| = A,
SO E={6<)A:6= sup(6 N A)} is a club of A. In (H(x), €, <%) there
is a sequence € = (Cs:6 < \§ limit) where Cj is a club of § of order
type cf(6), such that [o € C5 = cfa < cfs], C definable hence Cj is
definable from 6. So the function F(6,%) = min(Cs\i) if i < 6, & limit,
is a function of N. If § ¢ E, cf§ = p then min(N\6) = § (otherwise
Q:;iz./& N & has cardinality < 4, hence is bounded in § hence there is
i € (sup(Cs N 6),6) N N, so F (min(N\6),1) is necessarily in [min(V\6), 6)
but this interval is disjoint to V). So it is enough to find a function A : A — )
such that {a < ) : cf(a) = A and h(a) = ¢} is stationary for every ¢ < A
(as then there is such A definable in (H(x), €, <%))- There is such h by a
theorem of Solovay; really, as we can restrict ourselves to one cofinality,
known earlier from Ulam’s proof, i.e.

Observation 4.4B If \ > # are regular cardinals then for some A : \ —» A
for every ¢ < X we have {6 <A:h(8) =¢and cf(6) = u} is stationary.

Proof: Why does such h exist? For (C5 : 6 < ) as above define for each
1<, @ < A the set

A, = {5: the ith member of Cs is a}.

Clarlya <<= A%, N A% = 0 hence it suffice to find { such that
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Bi={a<): 4! isa stationary subset of A}

has A\ members. If this fails, then i < g = |Bi| < X hence

IUBil<uxu<a

i<p

so (J; <u Bi is bounded by say a*;sofori<pu, o€ (a*, ) there is a club
Eio of A disjoint to A% ; for § < K a <o let E; o = A Hence

E = {6: 6 a limit ordinal A?mVQ*muQS.At%QAmUmm@ﬁaw

is a club of X; let § € E, cf(6) = p, now 6 = sup Cs so there is a € Cj,
> a*, let i = otp(anNCs), s0 6 € Al buté e Ei o, contradiction. [l 4p

Continuation of the Proof of 4.4: (4) Define a model NV, with universe
A, |L(N)| = R, <¥ the usual order, N has Skolem functions and (letting
& =Ro+ |L(M)|, (fF:i < o, < &) be the n-place functions of M), and
F is the (n + 1)-place function defined by:

. Moy, emay) fi<kg
ﬁﬂRHA&.QHu...“Qﬁv”AMmTA 1 9 3.v HM&VR.. .

Without loss of generality N[x** is a Jonsson algebra (by part (3), note
that A > x++) and &, &t, k*+ individual constants. ENCN,N#£N
and ||N’|| = X then Decessarily £ Z N’ (otherwise we contradict “M is
a Jonsson algebra”), hence x++ Z N, hence sup(N' N KTH) < kt+. Let
N" be the Skolem Hull of N’ U {i 1 i < k}; so easily sup(N’' N gt+) =
sup(N” N x**) so N’ contradicts “M is a Jonsson algebra”. Og4q

Conclusion 4.5 The first regular Jonsson cardinal is a limit cardinal.

Proof: Suppose not, so the first regular Jonsson cardinal is a successor,
say AT, by 4.4(3) X is singular. Let x = cf)\. We can easily find a model M
such that:

(a) M has universe A* and countable vocabulary.

(b) if 4 < A* and on 4 there is a Jonsson algebra, N a submodel of M ,
tmzmn_.)\)t_”?gmbtmg.

(c) for some function symbols f, g, for every o < At fla, —) is a one to
one function from |a| onto o and 9(a, f(e,i)) =i for i < o).

By 1.5 there is a strictly increasing sequence Aiti<k= cf(A)) of regular
cardinals with limit A such that ITicc Ai/J%9 has true cofinality A* and let
(fa 1 @ < A*) exemplify this. Let J — Jbd,
Let M+ be M expanded by two functions:

Applications 73

(i) H, two place such that H(a,i) = fo(i) for a < At, i < &.

(i) h, one place such that h(e) = min{); : i < £, A; > a} if the minimum
exists.

Suppose N is a submodel of M+ of cardinality A*. Necessarily |N| is un-

bounded in At hence for some a < At INNna] = A, so without loss of

generality o € N. Now f(a, ~) is a one to one function from « to A, 80

INNA| > _ﬁ\AQ,&“s.m.Z.DQZM\/.

Hence N is unbounded in ) and using h we see A = {i < k: \; € N} is
unbounded in k. Let B={ic A: ); = sup(N N A}

So using H,h and the choice of (fa : @ < A*) we have: B # 0 mod J
hence is unbounded in s (ie. let f € [Tic Xi be: f(3) is sup(IV N ;)
if sup(N N X)) < Ny, f(3) is zero otherwise, Let B < A% be such that
f < fp mod J and without loss of generality 8 € N, hence A\, fa(i) € N
and the contradiction is easy).

For every i € B, \; = sup(N N X;) so as ), is regular A; = |N N Ayl
As A\ e N (assBC A) by (b) above, \; C N. So Uicg Ai € N; but B is
an unbounded subset of &, (Ai 11 < K) increasing with limit A, hence A =
Cmmmv:.. so A C N. Now for every a < A+ forsome e N,a <3 & ) < B;
so f(B,a) is well defined and < A hence f(B,a) e N. As B, f(8, @) are in
N, sois a = g(8, f(B,)). As a < A+ was arbitrary we have A\* C N, as
required. Oys

Conclusion 4.6 Suppose that ) is singular and
(@) A < first inaccessible
or

B) {p:p<risa (weakly) inaccessible Jonsson cardinal}
is bounded in A

or

(7) for some regular non-Jonsson cardinals Ai < A (for i < cf()) = k),

A= and et ([T a, <pp0 ) = o+

i<w i<s
or
(6) for no pu(*) <A, A = D iceta Mis Ai < A, ) is inaccessible do we have:

(i, ¥) — (Mg, ) when i < cf(A) and p € (u(), \;) is regular

or
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(6) {1 < X:put satisfies one of (@) — (6) (or just has a Jonsson algebra)}
is stationary in \.

Then on A* there is a Jonsson algebra.

Proof: Note that for each A we have (o) = (8) = (v) Why? (a) = (8)
trivially; (8) = (v) we prove by induction on ), in the induction step use
1.5+ [a C pef(b) & [b] < min b & la] <min a = pcf(a) C pcf(B)] — (see
[Sh345a,1.12] and 4.4(3).

We prove the statements by induction on A. Now use 4.4(2) (for (7) this
is all, and for (¢) use 2.1, for (6) repeat the proof of 4.5). Oy

True book readers should ignore meanwhile the following conclusion as it
depends on later chapters (or even worse: on outside work).

Conclusion 4.7 Pro(A*,A*,Rq) (see the Appendix, Definition 1.1, 1.5)

provided that A regular > R, or is singular and (a) V (8) of 4.6 holds or A

is singular and at least one of the following hold:

(@) X < first inaccessible

B) {p:pu<Ais weakly inaccessible and =Pro (4, £, o)} is bounded
below ).

(7)" for some regular Ai (i < cf) = g)

A=,

i<s

AT = tef( [ Xi/7%%) and
i<k
Pro(As, A, Rg)

(6)" {m < X:Pro(ut, ut, No)} is stationary.

In case (v)’ we can replace A* by any regular. We can also replace Pry by
Pr 1.

Proof: We prove this by induction on A.

If A > R, is regular use [Sh365,4.8(1)]. Let \ be singular. In order to have
Pro(A*, A*,Ry) use the following: our Conclusion 1.5 and 4.8 below. [,

Fact 4.8 Suppose 7 < cfé, (\i:i<é)isa strictly increasing sequence of
regular cardinals, § < )\ fori < § Pro(As, 04, 71), the sequences (o; : 1 < §),
(15 11 < 6) are non-decreasing, 7; < 6 < g; <A, o= Uics i, T = Uics ™
and tef (T, 4 A, <sp¢) = A Then

(1) Pro(A, 0, 7) where o = Uicsoi, 7= Uics
(i) if A = pt, p = p<r = Uicsoi = Uics i and 7 = Uics7i then
Pro(A, A, 7).
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Remark 4.8A (1) If 6 is a limit cardinal < &, (6; : i < 6) increasing with
limit 6 < cfé, and we assume Pro(X;, 0,6;) we can get Pro(A*,0,0).

(2) We can in 4.8 replace Pro by Pr; (in the assumption and the conclu-
sion). The proof is the same, except the natural change in the choice
of e;.

(3) We can use ¢; an ordinal, and note: Pry(), o, 7) iff Pry(A, o], 7).

Proof: Let ¢ = {); :i < 6}.

Let (fo : @ <)) exemplify tef ([T;cs M, <ypa ) = X and let us define
for @« < B8 < X an ordinal 6(ct, B) : it is the maximal cardinal § in ¢ such
that f,(6) > f5(6) if there is such 6 and undefined otherwise. Next let ¢,
(for ¢ < 6) be a two place symmetric function from Ai to o exemplifying
Pro(X;, 04, 73). For proving (i) define a two place function e from A* to o
by: for a < 8 < \+:

e(a, B)= AMA\DA&V“ fs(?)) if X\ = (e, B)

otherwise.

For proving (ii) let for B < A, gg be a function from 4 onto B; and we let
fora < < A\

e(a, p) = AW@TQ\EA&, .\Q?Vz if \; = mAthv

otherwise,

For proving (i) repeat the proof of 4.1D.

For proving (ii) we need a short preliminary argument.
Now suppose for 8 < A the sequence (ag¢ : ¢ < ¢*) is increasing (where
¢* < 7), and for any P1 # B2 the sequences are disjoint. Let A be a two place
function from {¢ : ¢ < ¢*} to A. Without loss of generality ag . > max
Rang h and ag¢ > p. For each B<AE<(¢ and ¢ < ¢*let V8,60 <
be such that Gag,c (V8,6,c) = h(E, ¢). So, as p = p<T > pl¢" without loss of
generality for some 7, ¢ for every 8 we have yg ¢ = Ye,¢, and let i(x) < §
be such that >m_n Ye.o < Aigx) and * < Ti(s)- The rest is as previously by
the proof of 4.1D. Oy

Lemma 4.9 Suppose ) is singular then Ens(A+, cf A) where:

Definition 4.10 (1) Ens(), p, £) means: there are linear orderings (Z,, :
a < K) witnessing it, which means:
(a) I, is a linear order of power \
b)ifn<w a1 < <aqp <k wC{l,.,n}t T, for { <,
£=1,.,nand [(; £ (= té # t¢,] then for some ¢ < £ < s

lew=T, =t <tf
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rm«m:imsUNs >l

(1A) In this case wecall (7, : o < K)a (), #)-entangled sequence (of linear
orders). ,

(2) Ens(), 4, k) is defined similarly but <k
Mnma?,tvv Imeans Ens(), y, x).

(3) If we omit # this means )\ — 4.

(4) A linear order 7 js (y, n)-entangled if: for every pairwise distinct wm €T
(1 <é<n¢ < #) such that te < t2<... < t¢ and w C {1,..,n}
there are ¢ <€ < u such that:

(*) Hm«m:uvxmsﬁﬂnﬂm <tf].

(5) We omit B T) = 4, we omit nif 7 is (g, n)-entangled for all , < w.

(6) The linear orders 7, 7, are k-far if they have no isomorphic subsets of
cardinality s,

(7) Z* is the inverse of 7,

We shall brove 4.9 later.

Fact 4.10A Suppose (Aii< ) is strictly Enwmmmmbm Sequence of regular
cardinals, NicsAi < A = cf(A), A > 16, D a filter on § containing all
cobounded subsets, tcf (Iics A /D) = A

Le. there is {f, : o < A} C I1;<5 i such that:

(1) a<B<A=f, <p fs

GC A(.\. € :s.Am \/s.v AMQ < \/VA\. <p .\.Qv.

Suppose 4; C 6(i < k) are such that:

InP(8)/D, {4; : ; < £} is independent and for i < §, H{fali:a< AH < A
Then Ens(), K).

Proof: Let 7 — {fao:a< A}. For each ¢ < & we define » linear order <t
of Z:
Ja <¢ \mﬁmoamoams.Amu

.\.D?.V wm.\.b?v & fali = .\.m? & m n?.v < .\m?v = ic \»Q.
Let n < w, ¢, <. < (< g, tf = fa(t,y) be pairwise distinct for
£=1,...n and Y < A; and let o C{1,..,n); we should find ¢ < &< Aas
in 4.10(1)(b). Let
9y (3) =: min{f,,.(3): ¢ e {1,...,n}},

iy =: min {i: Qs?& li:£€e {1, - N}) are pairwise distinct }.

Without loss of generality ¢, = * for every v < A,

Applications 7

Let
B={i<6:for every § < A;, there are A ordinals Y<A

such that g,(i) > Q.
We shall prove
Claim 4.10B B¢ p.

Proof of Claim 4.10B: Suppose that B € D. Then, since
bHDﬁu“bmﬁmbmm.mmmuaﬁw&emnoz&,

there is an ultrafilter &7 on ¢ such that B ¢ Fand DC F. S0 C =:6\B e F.
From the definition of B,

A<s € QXM@ < \/s.xw‘vm. < \/VA<QVA\$ <<= .Qe?.v < msv
Let, for i ¢ C, &, be as stated. Define h ¢ Iics Ai by:

N f&+1lificc
h(@) =: Ao ifigC
(fa/D:a < A) is cofinal in [Iics X:/D, hence (fa/F:a< A) is cofinal in
ILics Mi/F, so there exists # < A such that:
h < fs mod F

Without loss of generality (J, ..y, < B(since C C s, 6] < X = c¢f()) and
Nicolr < A))- Since af(e, 0, (1<t<n¢< A) are v&wimm. distinct, and
B < ), there exists ¢ < A such that Ne=ila(e,¢) > Bl. Without loss of
generality Uiecr < ¢.

So Apey (fs < fa(e,) mod F). That means

E={i<s: \ fa(i) < fateo)()} € F.
=1

So
B={i<6:f5(i) <ge(i)y e F

using the definition of 9¢- Since h < f3 mod F, it now follows that
{i<é:n() < 9c(i)}eF

and so
Cn{i<é:n@) < gc(®)} e F
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Choosing i in this (non-empty) intersection, one obtains
9¢(8) & <&+ 1=h(3) < ge(d)

— a contradiction. So B € D, proving the claim. Oa4.108

Continuation of the Proof of 4.10A: Now choose i < § as follows. First
note that since |[{fali: a < A} < A; for each i < §, and cf([];c5Xi/D) =
A, D cannot contain any bounded subsets of §. By a hypothesis,

A=: () 4, N () (6\Ac) # 9 mod D,

ew L¢w

so 6\A ¢ D and there exists an ultrafilter F on é such that D C F and
A € F. Hence
C={i<é:i*"<i}NANBEeF
and one can choose i € C.
So we have chosen i:

*<ieBn[)A,n [) (6\Ay)

lew 1<e<n,¢w

For each £ < A; choose 7¢ such that g,, (i) > £. For some unbounded S C A;
we have: £1 < & € S = A, fa(tre,)(1) < fa(mre,) (i) Without loss of
generality (fo(e,q) 1% : € € S) is constant (by a hypothesis). The conclusion
should be clear now. O4.10

Fact 4.10C If (\; : i < 6) is a strictly increasing sequence of regular
cardinals, A, ;X < A = cf A, A; > [6|, D an ultrafilter on § containing
the cobounded subsets of &, tcf(J[,.5Ai/D) = A, and there is (fo/D :
a < A) <p-increasing cofinal in []; s Ai/D such that for i < § we have
i =: {fali : @ < A} < A; and Ens();, p;), then there is an entangled
linear order of power A.

Proof: Let (fy : @ < )) be as mentioned above. Let (Z} : n € [];) where
[1; = {fali: a < A}, witness Ens(;, p;); without loss of generality Z;, has
universe A;.
Define <* onZ =: {fo: @ < A}:

foa <" fs iff there is i < § such that:

fali= fgli

Tt 1 B fa(i) < fa(2).
Clearly <* linearly orders Z, and Z has cardinality A.
Proving 7T is as required, is easy, choosing ¢ € {1 < § : i* < i} N B and
S C ); in the notation of the proof of 4.10A. O4.10¢
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Remark 4.10D So we have another way to get:
if A = J) > cf ), then for some regular k € (A,2*] there is an entangled
order of cardinality &.

Fact 4.10E Suppose (\; : i < §) is strictly increasing, D a filter on §
containing the cobounded filter on &, tcf([JA:/D) = A, p < |6] = 6 < A,
p <o < Ujcs M < Ded p, 2# < X. Then Ensy(|6],A) (remember that

Ded p=U{|Z|*:Z a linear order with a dense subset of cardinality < u}).

Proof: Let J be a dense linear order of power | J; <5 with a dense subset Z
of power p. Let t}(i < 6,¢ < A;) be distinct members of J. Let (fo : @ < A)
witness tcf([]; .5 Ai/D) = A. For each a let T, = {t} ;) :i <6} Fora <A
let Ay =: {8 : I, Zs are not |6|-far or Z,, Zj are not |6|-far}. We shall prove
that |A,| < A, suppose not. Now for each § € A, there are Ko 5 C Za,
Log C Ip each of power § and hq g an isomorphism or anti-isomorphism
from K, p onto Lq g; let My g be a dense subset of K, g of power < p
such that if z € 7 and min{y € K, p : y > z} is well defined then it is
in M, g; similarly with max{y € K, g : y < z}; similarly for am‘mAgﬁmv,
Lq g [possible as |Z| < p).
Assume |A,| = X. As 2# < X for some A), C A,, |AL] = X and for some
M}, ho we have: [B € A, = My g =M} & hag[ M} = ho]. Essentially hq
defines uniquely hq g(z) where z € Dom hg, g. More fully, let
I* =:{z € I, : there is y € J, z,y are single in the Dedekind cut each
realizes over M2, h.(M2) respectively, and
(Vz € M2)[z <y = ha(z) < 2]}
Now [ € AL, = Dom hyp C I* C Z,] and h* =: Cumk. he,p is a function
from Z¢ into J.
Now define g™ € []; .5 Ai : g*(4) = sup{¢ < X; : t; € Rang(h*)}, g%(d) <\
as [Rang h¥| = Dom h® = [T%] < [To| < 6] < Ao < A 50 [8 € A = f3 <
g%]. But |Aj| = A; contradiction.
Hence for each a < A we have |4,| < A, so we can find an A* C A such
that A* unbounded in A and:

a<f & acA &PeA =P ¢ A

I.e. we have X linear orders, each of power § > p, any two are |§|-far and
even one is |6|-far to the inverse of the other. By 4.10(2) we finish. 4108

Claim 4.10F In Fact 4.10A suppose in addition g is a limit cardinal,
Ilics i > p > cfu = A Then
(1) Ens(p, &).
(2) Moreover, there are (Z; : 1 + ¢ < k) exemplifying Ens(u, &) such that:
(a) for each § < u there is a linear order of power § embeddable in
every T;.
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(b) each Z, has dense subset of cardinality Yics N < b

Proof: 1) Let p = Uycp Bas Ba < s [@ < B = pa < pgland (fo/D:a<
) be <p-increasing and cofinal in [T Ai/D and be as in 4.10A. So for each
a,as [[;cs{C: fali) < ¢ < A} has cardinality [J;.5 A > p, it hasa subset
F, of cardinality uf; as (fo/D : @ < A) is cofinal in [Ti<sAi/ D, for some
Yo < A,

F! =:{g € Fy:9/D < fy,/D} has power 2 pa,

and without loss of generality v, = @ + 1. Let T = Uy« Fy and proceed
as before (in 4.10A).

2) Without loss of generality A =: Neen A is such that [[;ea M 2 b
[Why? Let us use (A} : { < &) where: A, =: Ao U Arye if [Liga, M 2 &
and A, = (6\Ao) U Aryc if [lica, M < tm. Now, as above, we can choose
F., C ] A such that:

(i) |Fa| = pa

Qwv for some Yq <X\ g€F, = fo < 92D fra

(iii) g,h € Fo = gl(6\A) = h[(6\A).

So on F, all orders <7 are the same, and 50 ((Uger Far <¢) : ¢ < k) are
as required. O4.10F

Fact 4.10G In 4.10E, suppose in addition cfy = cfé < x < Uics X
Then we can find (Z¢ : ¢ < A) such that:

(a) I is a linear order of power X with a dense subset of power p.
(b) The linear orders {Z¢ : ¢ < A} are pairwise far (and Z¢, Z7 are).

Proof: Use 4.10E, D = {A C § : 6\A is bounded}, x = Y ics Xis Xi >
. j<i Xj; replace t} by x: elements. Oa.10a

Proof of 4.9: By 1.5 there is X = (N i <cf)) a strictly increasing
sequence of regular cardinals each > cf(}), A = Y icoir Aiy and

At HﬂomA E v,_?A.wwmw v

i<cfA

Case I: For some unbounded A C cf(}) for every i < cf A,
X\; > maxpef{); : j €iN A}.

We have (fo : @ < At) with fo € [Tiea X and a # B = fo # fp, but
{fali : @ < AT} < X, by Conclusion 3.5. By Appendix 1.7, there is a
sequence (A; : & < 291 of subsets of cf()) independent modulo J5g,)-

By 4.10A we know that Ens(A\ T, m&CJ which is more than enough.

St
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Case II: Not Case L. Let p = AT, k =cf A
Then, by Claim 3.3(2), we can choose by induction on a < K = cf(A),

aq © {Xi @4 < cf A} such that:
(i) aq is a set of regular cardinals,
(ii) sup ACQ <a nuv < min aq
(i) supaa < A
(iv) At = maxpcf(aq) and J8d C Jopt[aa]
(v) for 6 € a,, maxpcf(aqs N <6
By 3.5 for each a < k we can find (fff : i < AT) which is increasing
mod Jex+[aa], cofinal in C.A Ao, <J_,+ ?Lv and for 8 € a, we have

{filg:i< At} <86
Now use Lemma 4.11 below. 040

Lemma 4.11 Suppose ) is regular and (ag, I : € < k) are such that:

(i) ac a set of regular cardinals (such that lac|t < min ac) with no last
element.

(i) I = Jexlad include Jb4, X = max pcf(ac)

(i4i) tcf(I] ae <1 ) = A, moreover there is a <j,-increasing and cofinal
sequence f¢ = (f§:a< \) such that for 8 € ac we have

{f10 : o < A} has power < 6

(iv) if &1 < €2 < K, then sup ac, < SUP Ge,-
Then Ens(A, ).

Remark: For the existence of such A, a.'s see the proof of 4.9 above or
3.3(2)+3.5. If A = p*, pp(p) = p+ then there are necessarily many suitable
a’s.

Proof: For € < k, let Z, be the set {f : & < A} ordered by <¢s (ie.
f < g iff for some 7, flv =gIv and f(7) < g(7))- To prove our conclusion,
let k < w, €k < ... < €1 < K, let w be a subset of {1,...,k} and tt e I,
(£=1,..,n,and i < )) be pairwise distinct. We have to find ( < < A as
demanded in 4.10(1)(b).

Of course, we can look for { < ¢ in any subset S of X of cardinality A.
Let a., = {A : i < &}, Af increasing with and let A\ = sup; <5, Ni- Now
choose e < Mforf,1 <<k such that pe > A+! when £ < k and
e > 6¢. We can choose by induction on £ < k, Se and i(£) < &¢ and g% such
that:

So=AX
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Ser1 C St
1Sel = A
for £ >0, ¢ € Sy, \M;MS =g
Mgy > He
Next now define for £ < k, Tp and (Sy : v € Ty) such that:
To = AAVT

T, is a set of sequences of length 2¢ ;
if p € Tp41, then pl2¢ €Ty ;
for v € Ty, S, is a subset of Sk of cardinality A;
for p € Te41, Sp C Sprae 5
if£>0, v € Te, then (Ip € T1)[pl28 = v] and
for some j, < 8¢ and h, € Cqm ;%.\ : ¢ € Sy}, we have:

(Vp € Te)(¥C) T = pl28 & C € 5p = hy = fEIN, & p(26) = hv

& p(2e+1) = FEO4,)];
if £ >0, p € Ty then {p'(2¢ - 1):p €Ty, p'128= pl2¢}
is an unbounded subset of A5 (where v = ph(2¢ — 2)).
We do this by defining T, (Sy 1V € Ty) for £=0, ...,k by induction on £.
For £ = 0 — no problem.
For £ + 1 — also easy.
By the pigeon hole principle for trees of finite height (see [RSh117}), re-

membering € < ... < €1, We can assume that j,, hy for all v € T, are the
same.

Then we can get the conclusion. Cla1r

Lemma 4.12 (1) Suppose a is a set of regular cardinals satisfying |a|™ <
min a, A = maxpcf(a) and [f € a = § > maxpcf(f N a)]. Suppose
k= |a| and fore <K a. S a are pairwise disjoint, not in Jealal.

If 2% > X or just 9% > sup a, then there is an entangled linear order

of cardinality A; equivalently a A-narrow Boolean algebra of a linear
order.

(2) We can replace “g = |a|” by “cf(supa) < Kk and a has no last element”.
Clearly a has no last element.

Proof: 1) Let (fo: @ <) be as in 4.11(iii).
We can find for each 6 € a, sets Fy (¢ < &) such that:

.Num._n - A.\.Q _.w < \/T

and for any finite disjoint subsets X, Y of {falb:a < A}, for some ¢ < &,
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(possible as 2% = H{falb:a< A}-see Appendix 1.7). As a can be partition
to k pairwise disjoint sets each not in J<afa], and as Jed cJc a[a], clearly
we can find {(85,¢s) : 0 € a) such that: 8, € 0,0 2 B5,le < K and)

() for each 6 € a, ¢ < k the set
Aqmo...mqum.mqnﬁ
is # 0 mod Jcalal-

Now we define a linear order <et on {fa:a < A}
fo <et fp iff for some o € a, we have

%Q:QDQV = .meﬂDQY

falo) # falo) and
Fal0) < fo(0) & falbo € Foocc-
Now the set T = {fa 1@ < A} linearly ordered by <et is a8 required: note
that in the definition of fo <et fp We have fal0s = I8 1, as 0, < O and
check by cases. The proof is similar to that of 4.11. As for the Boolean
algebra — see Appendix 2.8. o
2) Same proof only in (%) we replace “for each § € a” by “for arbitrarily
large 0 € a”. Oa12

Claim 4.13 (1) cfA <A < oRo then there is an entangled linear order
of cardinality A*, equivalently — 2 \*-narrow Boolean algebra of a
linear order.

(2) IfAis singular, k = ¢fA < A < 2%, A<F = ) then there is an entangled
order of power A*, equivalently — 2 A\+-narrow Boolean algebra of a
linear order.

Proof: 1) The equivalence is by Appendix 2.3. The conclusion follows by
4.12 above for k& = o (and 1.5) when cfA = Ro. So assume cfA > Ro, and
let (\; 14 < cf)) bean increasing continuous sequence of singular cardinals
with limit . By 2.1 without loss of generality AT = max pef{ N i< cfA}.
Of course, for some A C {i < cf)\ : cfi = Ro} with no last element, we have

s.mbnvyu.vﬁwx@oiywnu.midmv

At = maxpcf{\} :i € A}
By the case we already proved (cfA = Vo) for every ¢ € A there
is an entangled linear order of cardinality K_. hence by Appendix 2.2(5)
Ens(\],A\f). So apply 4.10C.
2) By 4.12 (and 1.5). [Note: A = A<* is in order that for @ & X of power
< K, max pcf a < X (hence < ) Oaas
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Remark 4.14 We can:
(1) Generalize 4.11: supa,, < supa,, is replaced by

supd., =supa,, = a,, Na., € I, NI,.

(2) On generalizing 4.13 to the theorem saying: for many \'s; see [Sh371).

(3) In4.12,if k<9 = £, o < cf(otpa) then we can demand on the entangled
linear order Z we get that Definition 4.10(4), (5) we have “n < o”
instead “n < w”.

§6 Covering numbers, pp

Another major player makes it appearance now - cov(\, i, 6, 0), covering
number. One of our themes is trying to measure S<.(A) (= [A]S*) in various
ways (looking at its cardinality, \*, as the most rough, and at PPr(cty) (1)
as the most fine). So probably the most natural of these is just the cofinality
of (S<x(A), ©), now cov(A, p, 0, 0) is a finer dissection of this to finer parts,
see Def. 5.1 below.

Note for example that, as everyone knows:

X% = 25 4 of (S<u(N), C)

You may think this cofinality is in some sense the roughest one below the
actual cardinal exponentiation, but min{|S| : § C S<.(}) is stationary} is
rougher (where S C S<,.()) is stationary if for every model with universe
A and < & relations and functions, there is N < M with universe € S).

In 5.2, 5.3 we give some basic properties, including monotonicity, com-
putation in degenerated cases, various interactions including for example
(5.3(10)):

® fA>p>0=cfd >0 >N, cfu € [0,8) then for some u; < p,
cov(A, u,8,0) = cov(A, u1,0,0)

(in a sense, the cases A = u > § = o+ are sufficient, see 5.3(7)).
Then comes the section’s main theorem which says that indeed cov(), u, 8, o)
can be expressed by pp’s (when o is uncountable)

® if A > pu > 60 > 0 > Ny then cov(A,u,8,0) is the supremum of
PPr(s,0)(A*), A* € [, ], cfA* € [0,8) (or both are “degenerated”,
ie. <A).

You can ask about more strict equality considering attainment of the sup’s,

if 4 = 6 we get this. Of course, the case ¢ = Ry is missing, mainly for the

case of fix points (i.e. there is Rs = § € [u, \]) as otherwise 3.6 tells us

something. (We shall return later in the book to those points).
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We then draw some conclusions; mainly expressing PPr(s,0) .v% PPr(r)’S
(5.8(1)) and so saying more on the parallel to cov Am.m.ﬁwv .wn.wvnowmwﬂ m%hdvm
expressing SuPrerg,s) T1(}) (supremum of the ow.aﬁwrawm of Em les _w
almost disjoint functions modulo an ideal, Eo.BEmbn in O&ﬁb .&EM s
work). In 5.12 we investigate another problem: is ﬁw@.m m.yﬁmm with A nodes
and > x A-branches (for x < 2* regular) when 2<* < 27,

* * *

iti i i h that:
Definition 5.1 cov(), &, 8,0) is the first np&E&. t suc
there is a family P of u subsets of A, each of cardinality < s, such that

“m\;m_“_AmnvaT\mﬁEEAqu\m&.

<<mm~€mv~mmmm=9mywmw9zwzo*mVH.QVH.

k> 0V [kt =06 &cfo <o),

so cov(\, K, 8, 0) is well defined. .
HWM Mo«mw._nm numbers, pp and cardinal arithmetic are very closely re-

lated. In fact the covering numbers and pp carry almost the same Emoﬁ:wm.
tion; cardinal arithmetic may deviate because (2" for k Hmmc_g.a are p:.nm
arbitrary and) exponentiation by Rg is less clear to us, and this unclarity

spreads.

Observation 5.2 (1) cov(),x,6,0) is monotonically increasing in A and

8 and monotonically decreasing in k, 0.
MK, 0,0)is 1iff A < k.

MMW M,Nﬁmwbmawa W: cov(, K, 8,0) is cfA Hff A = K, cfA ¢ [0,0), (ie.cf(N) <o
or cf(A) > 0).

?Cooiv:x;m,qvwmmy%»HZNnQNmo~yA korf < oor
A=xr>cfA ¢ [0,0).

(5) cov(A, k,0,0) is > Aiff Ais regular > K or A > K or

A=k > cf()\) & cf(A) € [0,6).

(6) cov(A,k,k,2) = cf (S<x(A), ). ‘o)

7) cov(), K, 0,0) <Aifdx<kor A=k>cf) ¢ o,

™ A iff cov(), &, 0,0) € {1,cfA}\ {A}

(8) cov(Ay, k1,601,01) < cov(Aa, K2,02,02) if A1 < g, K1 2 K2, 6, < 0,
[*5} 2 o9.
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Convention 5.2A Dealing with cov(), &, 8, o) we usually assume A > & >
8 > o > 2 (for example in 5.3(3)). Note that otherwise by 5.2(2)+(4), we
know cov(}, ,8,0) < A for “uninteresting” reasons.

Observation 5.3 (1) If cfA > 6 then

cov(\, K, 6,0) < MU cov(|al, k,0,0) < X+ sup cov(A, ., 6,0).
a< Ar<A

(2) cov(M,k,0,0) < cov(At, k,0,0) < AT +cov(A &, 8,0).

(3) cov(, k,8,0) < cov(, k*,0,0)+KT < cov(\, k,0,0)+kT and if £ < A,
equality holds.

(4) If XA > k(> 6> 0), o regular then

cov(\, k,0,0) = MU cov(p, p, 0,0).
pE[x,A]

(5) 6 + cov(, k,8,0) = 6 + sup{cov(, &, 67 ,0) : 61 < 6}.
(6) fA> K> 61 262 203, cfk ¢ [63,62) and X* = cov(A, K, 61, 02) then
cov(, &, 81, 03) < cov(X*, &, 02, 63).

) IfFA>&>0>0=cf(o), ctk > 6, Ao = A,
Ant1 = sup{cov(p, g, 7t T) ik S p < A, cfu=7E€ [0,6)}

then
cov(\ k,8,0) < C An-
nw
(For more on this see 5.8(2)). :
(8) Suppose A > £k > 6 > o, ¢ a limit uncountable cardinal and cff # cfo.

Then

cov(\, k,8,0) = M_mm. cov(\, k,0,01)

[check first if 8 successor].
(9) cov(X, k,8,Ro) = cov(A, k,6,2) when cov(, k,8,Rg) > Ro.
(10) If A > p> 6 > 0, cfp € [0,0) and cf(u) # cf(9) then for some py < p
we have
cov(\, i, 8,0) = cov(A, p1,6,0).
Proof: Check. For example:
6) Let P* be a family of subsets of A each of cardinality < &, |P*| = A%,
P* exemplifying the definition of A* = cov(\, &, 61, 02). Let

P* = {4; i < A"}

Let P be a family of subsets of A\* each of cardinality < & exemplifying
the definition of cov(\*, k,82,03). If k is regular then AC&ma Az e ﬁv

Covering numbers, pp 87

exemplify cov(), &,601,63) < |P| giving the conclusion. Otherwise we let
K= et Bir Ki < K, and use

ﬁcﬁb_.;.ma,_xr_Azu@“amﬁL.AoT&.

7) Let x be regular large enough, by induction on n choose Np < (H(x),€)
of cardinality A, such that

AZQ‘ ....23IH- y. R.: %qu U Ays. + Hv c 23,

and
P, ={A€N,:|Al <K, ACA}

and P,, = U, ., Pn- Suppose X C A, |X| < 6 and for no PC P, |Pl<o
is X CUaep A; let I be the o-complete ideal on X generated by {XNnA:
AeP,},s0X ¢1I. Let

?nnﬁcﬁ_émﬁ: U mgxm%
A€EP

cov(An, K, On, 05)), contradiction.
10) Let p = > {pa : @ <cfu}, [@a < B = 8 < po < g < pl. By 5.2(8) we
know cov(\, 4, 0,0) < cov(], pta, 8,0) for every a < cf(u). Let P exemplify
cov(X, u, 8, 0), so the bad case is

now 8, < |X| < 8 and cff, > o and Opni1 < On (use 5.3(4) applied to

> cov(, p, 8,0) < cov{, Hay 8,0)
a<cfu

so for each a < cfp,
P, = {A € P:|A| < pa} cannot exemplify cov(, pa,8,0)

so some A, € [A|<? exemplifies this. As |Agl < u, cf(u) # cf(8) for some
6, <8, B=:{a<cfu:|As] <bi}is unbounded in cfa. So A =: J,ep Aa
contradicts the choice of P because cf(n) € [0,0). Os.3

Remark: Concerning 5.3(7), on the other direction see 5.8(2).

The cov vs pp Theorem 5.4 Remember

[ =T(6,0) =: {I: for some cardinal 1 < 8, I is a o-complete ideal on 61
(proper of course) }

(and T'(c) =T(o+,0)).

Suppose ¢ is regular > Ro and A > k>8>0, then:
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(1) sup{ppp(\*) : A*€ [k, \] (and o <cf(A*) <)} +A=cov(], &, 6, a)+A.

(2) Moreover, if p =: cov(A, k,0,0) is a regular cardinal > ) then for some
I €T(0,0) and (A, : @ € Dom I) we have: p < tcf([] A, <) (hence
we can also get equality) and 8 < A\, < A4

(3) In (1) for the inequality <, “c > Ro” is not needed.

(4) In (1), if both sides of the equation are > X then we can replace sup
by max.

Proof of 5.4(1):
The inequality <.

If p < sup{ppr(M1) : & < A1 < A} then for some \* € [k, Al we
have 4 < ppr(A*) so for some 6* < § and o-complete ideal I on 6*, and
(Xi 11 < 6*) we have:

X = cfA;, A* = tlimg(\ i < 6%), and p < u* = gA I . <: v

<"

So let (f, : & < p*) be a <;-increasing sequence from [;<g- Ai cofinal in
it. Suppose P exemplifies ' = cov(], k, 8, ), so for every o < u* for some
Ax €P, {1 < 0" : fo(i) € Ap} # @ mod I.

If 4 < p*, without loss of generality 4, = A* for every a < p* (re-
member that u* is necessarily regular), but |A*| < k < \*, so for some
t € I we have |A*| < min{)\; : i < 8* and i ¢ t}. Now for every i < §*

9(%) =: sup[{fa(i) : fa(i) € A*, @ < 6* and i ¢t} U{0}]

is < A;, hence g € E,.Am. Ai, but for each a < p* we have —(g <; f,)
(by the choice of Ay = A* as t € I); so we get a contradiction to u* =
tef ([Ticq- Mi» <1 )- So p* < i/, ice. p* < cov(, &, 6, o).

As u was an arbitrary cardinal < sup{ppp(A*) : £ < A* < A} and p* > u
we conclude

cov(A, K, 0,0) > sup{ppr(A*) : A > A* > k}.

The inequality >

Without loss of generality A = x (by 5.3(4)), X singular (by 5.2(4)) and
cfx € [0,0) (by 5.2(3)).

Suppose u is regular, A < u < cov(, s, 8,0). We shall prove that for
some I € I'(f,0) and (Aq : @ € Dom I) we have: tlim;{)\, : @ € Dom I)
is in [k, 1], i.e. is A (remember k = X) and tcf([J e, <) is > p or p
is (weakly) inaccessible and for every regular u; < p we have this. We
assume that this fails.

4We have not required here “sup, Aq € [k, A]”

e bR
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Let x = Awu»v._., and choose an elementary submodel N of (H(x), €, <})
of power < p, such that N N x is an ordinal and (g, \, %,8,0) € N. Now
by the assumption on u, P =: {A: A C A\ A € N,|A| < &} does not
satisfy the requirements in Definition 5.1, hence there are 8* € [¢,6) and a
function f* : * — X such that for no ¢* < o, A¢ € P (for ¢ < ¢*) is (Rang
F) CU¢cen A¢- We let

I={B:BC6*and {f(a):a<6*,ac B}isincluded in the union
of some < o members of P}.
So I is a o-complete ideal on 6*, 8* ¢ I (but singletons belong to it). Let
H = {h: his a function with domain 6*, k() a subset of A which
belongs to N, {i: f*(¢) € h(:)} = 6* mod I and for some
¢* < o, and (X¢ : ¢ < (*) we have: X; € N, X a subset
of P()), | X¢| < £ and Rang(h) C U Xc¢}-

G= A g : for some h € H, g is a function with domain 6* and
9(i) = A}

Now G # @ (by the choice of H and G the constant function with domain
6* and value A belongs to H and to G, for H with witness (X¢ : ¢ < ¢*),
¢* =1, X = {A}). Clearly g(i) is a cardinal < A for each i < 8*, g € G. As
I is o-complete, o > Rg, there is g* € G such that for no g € G, do we have
g < g* mod I. So we can find h* € H such that (Vi < 6*)[g*(?) = |h*(3)|];
as h* € H we have Rang h* C N, Dom h* = 6*, h*(i) a subset of A and
{i: f(i) € h*(3)} = 6* mod I. Let \; = cf(g*(2)), so )\; is regular < A
Let {X; : j < j(*) < o} exemplify h* € H.
Now for each y € P()), let (y!¢ : € < cf|y|) be an increasing continuous
sequence of subsets of y of power < |y| with y = [J, yl¢l. Without loss of
generality the function y — (ylfl : € < cfly|) for y € P()) belongs to N,
hence for X € N, X C P()\) we have ((y! : e < cfly|) : y € X) € N. Let
forr <k and X CP(N):

X"=XUu{gl:ye X, cf(ly|) <7, and €< cf(ly])}-

Xm0 — X, xTntl — A;N!J.:.vﬂw X7 = C X",

n<w

Clearly for ¢ < w: |X]°| < |X;|+7 < s and X]* € N (as X; € N,
T€AXCN).
Let 7* = sup, | Xj|. As A = « has cofinality > o > j(x), and each X;

has cardinality < , clearly 7* < x. Now ANM..E : j < j(*)} satisfies all the

5We could have noted:
(*)o 0 ¢ I* ={AC 9" : for some g € G, g < g* mod (I 4+ (6\A))},
I* is g-complete, and for no g € G, {i < 0* : g(i) < g*(3)} # @ mod I*.




Sh:355

90 II: ¥,41 has a Jonsson algebra

requirements on {X; : j < j(*)}, so without loss of generality X; = N.M,..e
for each j < j(*).

Now if for some 7 < K, A, =: {i < 8*: \; < T} is = 6* mod I (remember
Ai = cf[g*(i)]) we shall easily contradict the choice of g* as follows. Define
\N***Q** .

Dom h** = ¢* = dom g**, and for each i < §*, if cf(g*(d)) > 7, h**(3) =
h*(1); if cf(g*(4)) < 7 let h**(i) = h*(4)!l for the minimal € < cf(g*(i)) such
that f*(i) € h*(i)lel; and let g**(s) = |h**(3)]. Now g** € G (as exemplified
by h** which belongs to H, which in turn is exemplified by (X HEN R ICNE
but g** < g* mod I contradicting the choice of g*. We conclude:

Ar ={i <0*: A =cf(g*(4)) < 7} # 6* mod I for every T < k.

Let J be the ideal which J U {A, : 7 < } generates. As [k; < k2 =
Ag, C© Ag,] and as cfk > o (we have assumed A = Kk hence this holds
because of 5.2(3)) clearly J is o-complete and 8* ¢ J and tlims\; = A = k.

We can suppose

(¥)1 if J' is a o-complete (proper) ideal on * extending J with
W =t ([ 2o <)
well defined, then u’ < u

(otherwise such a J' is as required).
Now {A; : i < 6*} does not necessarily belong to N, but

b; =: {cfly| : y € X; and cfly| > |X;[}
belongs to NV for each j < j(x) and letting
t={i: N =1=g"(1)}
we have
tel, {M:ied\t}<|Jb; and |bj| < &.
J

[Why? The last clause is totally trivial: |b;| < & as |b;| < |X;| and we have

assumed |X;| < . For the one before last, first remember X; = X7 e
hence ¥y < cf{g*(i)] < 7* is impossible, and even

cflg"(D)] < 7 = g*(E) = 1.

Now t = {i < 6* : g*(i) = 1} belongs to I (as Rang(f[t) C Cu.Ai*v Y;
where Y; = {a < A: {a} € X} is a subset of A from N of cardinality < \;
and see definition of /). So together
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t={i:cflg"(®)] <T*}el

as required].
Let J9 =:{b:b C b;,supb < }.
By [Sh345a,2.12(2)] there is a (o-generating) sequence

Avu.n..m re<TE Uw - @omﬂﬁuvv. vu.,ﬁm - Gu.

such that Gu.n._m € .NML@.L and:

(%)2 (a) for each € < 7 € b}, the o-complete ideal JI . on b; generated by
JIU{bjr,¢: ¢ <1 <7 &7 €b5}U{bj\bjr} is proper and
satisfies ([]b;, < 5, ) has true cofinality 7.
(b) if J' is a o-complete ideal on b; extending J7 and 7/
= tcf([] b, <y) is well defined then:
(i) 7 € b3
(i)Teb&e<T<T by
(iii) b;\b;,r,e € J' for some € < 7’
and without loss of generality (b;,;.¢ : { <7 € b}) € N for each j < j(x).
Let b}* = {7 € b} : for some { <7 and ? C bj ¢, [0 < 6" and D is not
in the o-complete ideal generated by
JIU{bj e:e<m €b},1 < T}}.
Suppose the o-complete ideal .@: generated by

JIU{bjr¢: ¢ <TEb}, T <u}

does not include {d C b; : [o| < 6*}.
So by [Sh3452,1.8] for some ¢ C b;, we have

[6,\¢| < 6" and Ql.— bj, <uy+c) has true cofinality (and Ji + ¢ is proper)

hence this true cofinality is > u (as bj,rc € JJ' C J/ +¢); as tlimyyc(b;) =
k= A (as J7 C J +c) we have (as |b;\c| < 6*) vv%@.qvg > u, as desired.
So we assume that

(x)3 every ¢ C b, of cardinality < 6* belongs to the o-complete ideal

generated by J9 U {b;,¢:{ <T€b}*, 7 <pu}
Let 7(j) be minimal such that for some x; < x we have {A; : i < QJDF./.E.
is included in a union of < ¢ sets from {bjr¢:{( <T€bjand 7 < (5}
say (bjr ¢ @ € < €5(*)), €(x) < o. Now 7(j) exists and is < u by
the Eoﬁm:m paragraph. Note that 7(j) has cofinality < ¢ or 7(j) € b] &
pcf(b;) hence by (x)3 we have 7(j) < .
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So we have 7(j) < p, note that {b;r, . ¢, . : € < €;(*)} is not necessarily in
N. But by 3.1° for each ¢ < 7 € bj there is Fj, ¢ C []bj,r¢ of cardinality
< 7 such that: for every f € [] b;,,¢ there is a partition (¢q : @ < a(*) < o)
of bj,r¢c and fo € Fjjr ¢ for a < o) such that f < U,<a(s) falta- Without
loss of generality (F} ¢ : ( <7 € b}) belongs to N. Hence:
($)a ¢ <TEb;&T <sup(NNpu)= FjcCN.
Define a function f; € [] b, :

fi{7) = min{~y : if for any ¢ < 8%, f*(i) € h*(i) and 7 = cf[|h*(3)|]

then f*(i) € h*(i)M}.

So clearly there is ! C U., ., Fimseitie » [F5| <0 such that

AV fHiD) < f).

TEb;\r; fFEF]

If F} C N for each j, we let (for j < j(), f € F}):
Nw = u&.& U A@S&_e_v_ ry€ X;and cf(ly]) € F@.

Now we can easily get a contradiction to the minimality of g*. Does F} C
N? By ()4 above and the assumption 7(j) < p above, if sup(bj* Np) < p
then yes; this occurs if u is a successor cardinal, but this case is enough for
5.4(1) (check definition of b}* and see (x)2(a)).

Proof of 5.4(2): We have almost proved it in the proof of the “ > ” in

5.4(1). The remaining case there, is that for some j, € we have 7 ¢ N, so
not only sup(b}*) = sup(bj N p) = p; ie.

sup {7 € b} : for some ¢ C b, || < 6" and c is not in the o-complete
ideal generated by {bj,r, ¢ : { <71 € b} N7}}

is u, but u is not in the set. It is quite unclear whether this case is consistent
with ZFC. However, tlimy{)\, : @ < §*) = X is not required for 5.4(2): just
< A. Now for proving 5.4(2) we will repeat the proof of 5.4(1) with a change
that makes it easier: redefining H we make it:
H = {h:Dom h = 6*,h(i) is a subset of ) of cardinality < &

and {i: f*(i) ¢ h(?)} € I and there are j(*) < o

and X; € P(P(A)) NN for j < j(*) such that: | X;| < 6* and

{i <6 :h(i) e U; X;} = 0" mod I}.

After defining );, yl, instead of proving A, # 6* mod I, for 7 < &,
we shall just let A = {i < 6* : \; > 6*}. For i € 8*\A let (i) = min{7y :

60f course, more holds by 3.1
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£7(5) € h*(1)} (so v(5) < 6" as for i € 6*\ A we have cf[h*(i)] < 67). Let
¢; = {cfly| : y € Xj,cfly| > 6*}, so ¢; is a set of regular cardinals > 6*
of cardinality < 6*, ¢; € N. Let the function y — (¥ : e < cf(ly])) (for
y C ) be defined as there and for C a subset of |J; J<u[e;] of cardinality
<o, t=(tc:c€C),tc e NNJ[]¢, let h} be

Rh*(i)lt<(cfa” @l if § € A, ¢ € C is <}-minimal such that:
Bi) = (g (i) € <,
MO otherwise

g: (1) = |z (3)]-
Let X} = X7 U {yltfwDl ;¢ e C, cf(ly]) € ¢,y € X;}-
If for some j < j(*) pefr(p,0)(c;) has a member > u, we finish; if not,
then this set has a sup with cofinality < o hence is bounded below p.

Hence for each j < j(*), we can find (c¢c : € < €5(*)), €j(*) < 0, €5 & ¢
max pef(cje) < p and ¢ = J, c¢.e- We let

C = CTDM € < e;i(x) and j < j(*)}

and for each ¢ € C choose t. large enough and continue as in the proof of

5.4(1).
3) Read the proof of “ <” of 5.4(1).
4) By 2.3(6) — use X* € [k, A] minimal with ppp(A*) > A. Os.4

Conclusion 5.5 cov(}, A, (cfA)T, cfA) = pprsay(A) for A singular of un-
countable cofinality (remember I'(c) =T'(c*,0)).

Lemma 5.6 (Cardinal arithmetic vs cov). Suppose A > k> 6 > o, cfx >
o and [cff > o v 2<0 < AL
Then

A<l = cov(), k,8,0)<7 + M | <C.

a<k

For the other direction, A > & implies A<¢ > k<8 > Yoacx |a|<?, and
P ={a C X: |a] < 8} exemplifies A<? > cov(A, &, 8, 0); hence it suffices to
have (A<?)<¢ = A<f_ This holds if cf(§) > o; and also if (36(1) < f)[(N<? =
MM which holds if 2<% < X (by Hajnal [H] and later and independently
[Sh233,2.12)). Os.o

Proof: The proof of “ <" is straightforward by the definition of cov.
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Conclusion 5.7 Assume cf(A) > Ry, then:

2 if A < 2¢
N={ o aM if cEA > 6 or (IA1)(As <A<AE)
cov(A, A, (cfA)F, ¢fA) =ppr(cr) (A) otherwise

Lemma 5.8 (1) Suppose ¥o < 0 =cfo <8, [ =T'(6,0) (see 5.4).
Ifcf(\) € [0,0), A > 8 then ppp()) is
sup {u : there are (< e, 0¢ >: £ < n) such that (for £ <n)
6p = cffy = cfuy € [0,8), po = A, and for £ <n we
have pies1 < PPro,)(pe) and p < pprg,,) (kn)
(meaning that, if equality holds, the sup is obtained,
Def.1.1)}.
(2) In 5.3(7) equality holds when o = cfo > Ny.

Proof: (1) Easy by now: ppr(]) is at least as large as the sup by repeated
use of 2.3(2),(3) (for @ singular, it is enough to do it for every 8, = cff, €
[0,6)). For the other inequality use 5.4(1) (to translate it to a problem on
cov) and 5.3(7).

(2) Easy too. Os.8

Remark 5.8A Also for ¢ = Ry Lemma 5.8(1) is true (by [Sh371, §1]).
Conclusion 5.9 For A > 2<%, 8 > ¢, 0 = cfa > Ny, ' = I'(§, o) we have
cov(),8,8,0) =sup{ppr(A*) : 8 < A* < A (and o < cfA* < 6)}

=Tr(\) = TF (V)

where, remember:

Definition 5.10 (1) For an ideal I,
Tr(A) =sup{|F|: F is a set of functions from Dom I to A such
that fi # fa€ F = {i: fi(s) = fa(i)} € I}.
(2) For a family I of ideals Tr()) = sup{T7(A) : I € T'}.
(3) For a family I of ideals,
T# (A) = sup {u : there are (6;, fi, I;) for i < y such that I; an
ideal on 6;, I; € T and f; a function from 6;
to A such that for 7 # j,
AQ < 0;: .\mAQv € Rang .\...gw (S .N.ﬂw

Proof of 5.9: First equality by 5.4, second term is < third term easily, third
term < fourth term by Definition 5.10 and fourth term < cov(A,8,6,0) as
2<8 < )\, so we finish. Os.o
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Lemma 5.11 For every regular \ at least one of the following holds:

\n y 22 —9<A

(b) for some p, A = cf(u) < u < 2<*, and PPr(») (1) =t 2* (of course, for
any such g, pproyy(p) < p* = 2%).

(c) (i) there are f; : A — X for i < 2* such that for i # j fi, f; are
different on a cobounded subset of A and

(ii) for each regular x < 2* there is a dense linear order T of power A

with x Dedekind cuts with cofinality \ both sides (equivalently, a tree
of cardinality A with > x A-branches).

Remark 5.11A (1) It is known that part (c) here implies: for every x <
2* and normal filter D on X in P(A)/D there are x pairwise disjoint
elements.

Proof: Without loss of generality A > Rg (otherwise (c) holds). We assume
not (a) nor (b). Let x be a cardinal, 2<* < x < 2}, cf(x) > 2<*. Let p
be the minimal cardinal such that there is F, |F| > x satisfying (x)(F)
below where p stands for the constant function with domain A and value
U, and for g : A — Ord we let:

(*)(F) F is a family of functions from X to ordinals, such that

F#AheF = 3a<)\V8,7< A [a<B & a<y = g(B)> f(B)#h(7)].

Now u = 2<* is O.K. [Let H : *>2 — 2<* be one to one, so if we let for
n € *>2, f, be the function from A to 2<* defined by fy(a) = H(nla),
then F =: {f, : 7 € *2} has power 2* > x and is as required)].

Let I' = {I : I a A-complete ideal on A}.

By 5.4(2), applied to cov(2<*,At,At ), it is < 2* (remember we are
assuming that (b) fails because as in 5.4(4) (i.e. using 2.3) the sup is max).
So for some A C u C 2<%, |A| = A, {n € F : |Rang(f,) NA| = A} has power
> x. This exemplifies (c)(i) (well if 2* is singular, we can glue the various
examples using a pairing function on A).

As x was an arbitrary cardinal < 2* with cofinality > 2<*, we have finished
the proof that (a) or (b) or (c)(i) holds.

We want to get (c)(ii) in the case that (c)(i) is proved. Let us consider
(*2, <¢z), where <, is lexicographic order; it is a dense linear order if we
omit the eventually zero sequences; let 7; € *2 for i < 2* be distinct not
eventually constant; and let f; : A — *>2 be fi(c) = n;[a. By the proof
above if (a), (b) fail then: for each x, 2<* < x < 2*, x regular there is
T C *>2, such that |{T| = X and:

Y =: {i <2 : |TNRang(fy,)| = A} has cardinality > x;

now let

|
|
,,
|

i
i
§
¥
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T+ = {v € *2: for some n € T, and a < A we have:
vie = nla, (Y8 € (o, A)) v(8) = 0}.

So T'* is a linear order, and for each i € Y we have a Dedekind cut as
required, and the cuts are distinct. Os.11

Claim 5.12 Suppose u = cov(y,61,601,02), 61 > 62 are regular uncount-
able. Then we can find a family P of u subsets of u, each of power < 6,
such that: for any model M of universe u, with vocabulary of power < §;,
there is N < M (of cardinality < 6;) whose universe is the union of < 8,
member of P.

Remark 5.12A If p; = cov(ug,61,61,02) then for u = pg, we can find
such P of power u; see 5.3(7) + 5.8.

Proof: Easy. Choose by induction on n, N, < M, P, C P such that
.2: m C>mﬂ= A m 23+H. :2:.__ < %H, _‘U:._ < %w. Dm.uw

§6 A-Freeness

We give here other applications: for example, to the problem of the exis-
tence of a family of A sets, each of cardinality < s, which is M-free not free
(this property is called NPT(), )). Here, free means having a one-to-one
choice function, and A-free means having all subsets of cardinality < ),
free. (We also can have versions with more parameters, which we ignore
for simplicity.) remember that for x = Rg this has an equivalent algebraic
form — there is an A-free not free abelian group. It is also known that for
A singular this cannot occur (none of the results, except as elucidation, are
used in this book).

Note that again failure of remnants of GCH gives us information.

Now by 6.5 we get

®;1 if A > cfX = &, pp(A) > AT then NPT(), s) holds
more than this:

®2 if A > & > cfA, pp.(A) > u > A, we get a family of p subsets of X,
which is A*-free, trivially not free, and more.

Still there was a gap in 5.4 for the case ¢ = Ry, so exactly for the case
A > Kk =:cfA =N, cov(A, A, Ry,2) > p > X we get nothing. But by 6.3, for
p = At we get the conclusion of ®: and this is generalized in 6.8. In 6.2
we collect some basic facts and in 6.7 investigate the relations between the
cases of the NPT.

In 6.9 (and 6.9A — 6.9E) we deal with the following problem: let for
simplicity A be singular strong limit of cofinality Rg, 8* < A. Is there
T C“A(ie. T is a set of w-sequences of ordinals < ) which has cardinality

ns ket R
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ARo(= 24} but has no perfect subset of density character §*? Of course, it

would be better to partition “) to two sets with this property and to have

#* = Rg; it then comes close to a well known topological question: can you

divide a topological space to two, each part with no compactum. What we

get is that

®3 for some 8*, for every strong limit A > 6* of cofinality ®o there is
T C “\ of cardinality A® = 2* with no perfect subset of density
character > 6*.

Note that the results involving an ideal I gotten from an assumption of the
form pp()) > p, give better conclusions when (see more cases in [Sh371, §1])
we can represent cardinals u = cfu € [\, pp())) in the form p =[] a/ Jbd,
A = sup a, by results like pp jea(A) = pp()) for suitable A > cfA = Kk > Rq.

* * *

Definition 6.1 (1) NPT(), &) means: there is a family P of X subsets of
) each of which has cardinality < &, P has no transversal (= one
to one choice function) but every P’ C P of cardinality < A has a
transversal.

(2) NPT (), k), where J is an ideal on , means: there is a family P of A
functions from k to A, such that:
(i) if P C P, |P'| < A then P’ is J-free;

i.e. there are (sy : f € P'), sy € J, and:

F#AgeP &icr\ss\sy= (i) #g(d)

(ii) P is not J-free.

(3) NPT (u, A, 6, ) where J is an ideal on 5, g > A > 6 > &, means: there
is a family P of u functions from & to A, P not J-free, but every
P’ C P of cardinality < 0 is J-free.

(4) In (3) if J = JP9, we omit it; if § = X we omit it.

(5) NPT (i, A, 61,02,K) where J is an ideal on &, p > A > 6, 2 8 + kK,
means: there is a family P of u functions from & to A such that:
(a) P is (81, 62)-free which means: for P’ C P, if |P| < 61,

then there are (s; : f € P’), sy € J and for each f € P/,

HgeP': (Fi <w)[i ¢ 55Usg & g(i) = F(O)]} < b2

(b) for P’ = P the condition above fails, i.e. P is not (u*,82)-

free.
e ——
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(6) NPT (u,A,01,62,k) is defined similarly replacing (a) by:
(a™) P is weakly (61, 62)-free which means: for every regular
6 € [02,61] and P’ C P of cardinality 0 there is a J-free P C P’
of cardinality 8.

Fact 6.2 (1) In the definition of NPT (u, ), 0,k) if 4 > A then “P not
J-free” follows, assuming J is proper.

(1a) Similarly for NPT ;(u, A, 61, 65, k) and NPT (u, A, 64,02, 5).

(2) If u = A, NPT (u, ), 8, &) is equivalent to

@V < A* < X & NPT,(2%, A%, )", ).

(3) If A > cf()) + &, J an ideal on «, then NPT (), &) fails [by [Sh52] or
see [Sh161,80] but we shall have no essential use of it]. ,

(4) NPT(), Ro) iff there is a A-free, non-free abelian group of power A [holds
by [Sh161] but we shall have no essential use of it].

(5) NPT (p, A, 6, s) iff NPT ;(u, A, 8,2,k).

(6) If 6; <63 <03, cf(f2) = 62, p> X and for £=1,2, NPT (u, A, O¢t1,0e, K)
then NPT ;(u, A, 83,61, )
[iffor £ =1,2 (f¢ : @ < p) is a witness for the corresponding assump-
tion use (f, : & < p), fo(i) = (f1(3), f2(4)) and an injection from
A x A into A].

(7) If 0 < 8 are regular, kg <0 <8 < A} < A2 < A3 and NPT, (A1, Ae,
6,0,k¢) for £ =1,2 and J = J; x J, then NPT ()3, A1, 8, 0, k1 + K2).

(8) If 4 > XA > 0 > k, and there is a family P of u subsets of A, each
of power < k with no transversal but such that every P’ C P of
cardinality < 6 has a transversal then for some regular ideal J on
k NPT (u, A 60,&%, k).

(9) We can in (8) allow u = X if we weaken somewhat the definition of
NPT (calling it NPT’ (u, A, 81, 62, k) : instead of P being a family of
p functions f from « to A, it is a family of u sequences f = (fy : £ < n),
fe a function from & to A, P is (61, 2)-free (which means: for P/ C P
of cardinality < 61 we can find (£7,57) for f € P/, 25 < tg(f), sy € J
such that for every z we have

|{f € P": 2z € Rang(Flt7]1(k\s7)} | < 61 and F # g = 7] # 3lts),

but P is not (ut, 82)-free).
(10) Also the inverse implication holds in (8) (even if 4 = \) and (9).
(11) If A > p > cfA + 0 and NPT(XN, 44,6, 0, k) holds for every A’ < A then
NPT(A, i, 6, 0, k) holds.
Proof: (7) Let F; = {ff : @ < Agy1} exemplify NPT, (Aey1, Ae, 6,0, Ke)
for £ =1,2 so k, = Domf’. Let for o < A3, fo be the following function;
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its domain is &1 X K2, fa((i,5)) = f72(;(4)-
(8) Let {w; : i < s} list the finite subsets of &,
Jo={AC«: for somei, (Vje€ A)w; Z w,]}
forz={af:(<(;<K}eEPlet
fold) = {07 1 jewin G}

(so fz(?) is a finite subset of £ C A rather than a member of A, this is
minor), and let Fy = {f; : z € P}.

We shall finish by proving that Fy exemplifies NPT 5 (1, A, 8,67, ).
First we prove (8, x)-freeness. Suppose

FiCF, |[F| <6, i={f: :¢(<(" <8},

so {z¢ : ¢ < ¢*} has a transversal h; now we shall define s; € Jp for f € Fy
such that: for each z the set

{f € F1 : z € Rang(f(x\s¢))}

is finite: for x = x¢, we let s;, = {j < x: h(z) ¢ {af : { € w;}}.

So we have proved the (8, x*)-freeness. As for the non-freeness part, as

here u > A use 6.2(1). .
(9) Use P whose existence is proved in [Sh161,§3] (so we shall not use it)
(or see [EM]). Us.2

Remark 6.2A By the analysis in [Sh161,83], if © = A, part (8) of 6.2 may
fail.

Theorem 6.3 Suppose A > cf(\) = Ro, cov(\, A, Ry,2) > AT (for ezample
Ao > A+ & (Vu < A) (R0 < A). Then NPT jpa(At, Ro).

Remark 6.3A In fact we prove NPT jea(A+, A, A¥, Ro).

Proof: Let A = 3 . An, Ay < Ang1 < A For each o < Alet a =
Un<w A% where [AZ] < A, A§ = 0, AS C Ag ;. Now we choose by
induction on a < A%, z, such that:

(a) z4 is a countable (infinite) subset of A
(b) for no B < At, n < w is 7, a subset of U{z, : v € A8 Na}.
There is no problem to carry the induction: at stage «,

{U{zy:v€ A8na}:in<w,B <At}

is a family of AT subsets of ), each of power < A, so as \/+ < cov(A, A, R1,2),
there is z, as required.

|
|
|
|
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Now

(*) for each 8 < A*,n < w, there is a transversal f8 of {z, : @ € AP},
[Simply define f2[(A8 N a) by induction on a; for a = 0, and o limit we
have no problem; for o successor use (b) above].
It is also clear that (again by (b)):

(#x) for o1 # a2, Ta, # Ta,.

Let 7, be an w-sequence enumerating z, (for @ < At). Now for each
B <At forace xﬁt/\»m let k = kg(a) be such that f8(a) = na(k). It
is easy to check that for every v € ¥> ) {a < 8: v = n4l(ks(e) + 1)}
is countable (has at most one member in each AP +1\A%). We define a
graph on {a: a < 8} : a;,a, are connected iff {Nay 122 k() < £ < W},
{Nes 1€ : kg(a2) < £ < w} are not disjoint. So every node has valency
< Ry, 50 the connected components of the graph are countable (as by (xx)
ay # ay = g, # 7lag ), S0 We can find a function hg : f — w such that
{nall: hg(a) < £ < w}, for a < B, are pairwise disjoint. Os.3

Remark 6.4 1) Note: if (z, : @ < p) is a sequence of countable subsets
of A A<pand [ACp&|A|<80=(z,:a€ A) has a transversal] (for
example NPT ;(u, X, 6, o)) then NPT(y, ), 6, No).

2) We can replace in 6.3, 6.4(1) w by 6 > w but use 1.54 + 5.4 to get (*)
below concerning 6.3, and add (Vx < A)[x<¢ < Al for 6.4(1).

(*) if A<p=cfu<cov(), A, (cfA)Y*, cfX) and cfA > Rg then NPT(u, A, A, cfX).

3) So if cf(A) > Ny we can get a stronger conclusion in 6.3; however, if
cf(A) = Rg (and Ry = A) we do not know whether:

[cov(A, A, R2,2) > At & pp(A) > At].
4) So generally, we pay less attention to the case N PT(...,0), 0 > N,.

Claim 6.5 (1) Ifp <+ pP(A), u regular and 8, = (2/Pem T+ g, < 9, <
63 < X, then NPT (u, A, 81,65, |Dom J)).

(2) If p < pp%(N), p regular > X and A+ > 6,
then NPT ;(u, A, 61,2, |Dom J|).

(3) If A < pu <* pp%(N), u regular, & < A+ and {6 < p:cfs <6} e Iy
(see [Sh345a,2.3(5)]) then NPT (u, A, 6, |Dom Jh.

(4) In part (2), “4 < pp%(}), u singular” suffice.

(5) If u < pp%(N), u singular > X then NPT, (u, A, A, |Dom J|).

Remark 6.5A Any (6,6;) such that (+) below holds will do in 6.5(1).

(*) 62 < 61 < X, and for 0 = cfo € [6,8], if £, € PmI)(N) for a < o,
and (f,, : a < o) is <;-increasing then in 1.6(1) statement (a) holds.
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Proof: (1) Straightforward (use (*) of 6.5A which holds by 1.2A(3)+1.6).

(2) Remember 1.5A.

(3) Easy, too. [Let (Cq : & < p) be such that Cy C a, f € Co = Cg =

anCg, otp(Cy) < A, E aclub of p, [§ € E & cf(6) < A = 6§ = sup Cs]. By

assumption there is X = (\; : i < &), where \; < X = tlims);, and m AifJ

1<K

is p-directed. Now choose by induction on a < x4, fo € [ A; such that:
<K

(@) fa<s faforf<e,

(b) .x.mﬁsv < .\.QQV if B € Ca, |Cal <.

Now {fs : @ < p} is as required: check as in the proof of clause (6) of

1.3(ii).]

(4) See the proof of 6.9B. .

(5) Use part (2) on many regulars < p and combine. Ue.s

Conclusion 6.6 If every A-free abelian group is free, then:

p singular & p > A = pp(u) = pt & cov(p, p, (cfu)t, cfp) < pt.

Remark 6.6A Zog,gwﬁ for u singular,
cov(p, i, (cfp)t, cfp) < pt = cov(u, p, (cfu)*,2) < p*
[as if P C [u]<* exemplifies cov{u, p, (cfu)t,cfu) < pt,let P={As:a <

ut}, let for a < pt, go be a one to one function from p onto 1+ o; and
now

P = AH U{Ag. ) 11 <i*,]gs(@)| < p*}:a<pt,i* <pand p* < .:v
exemplifies cov(u, u, (cfu)t,2) < ut].
Proof: By 6.2(4) [x > A = “NPT(x, Ro)], hence by 6.3
(6> X & cfu = Ro = cov{p, 4, Ry, 2) < ptl.
For the first conjunct (in the conclusion), by the above and 5.4(3)
(1> X & cfp = Ro = pp(p) = p],
now by 2.1 (see more 2.4(1) and [Sh371, 1.10]) the first conjunct in the

conclusion holds also when cfu > Ng. Lastly the second conjunct holds also
when cfu > Ng by 5.4 (and 6.6A). Oe.6
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Claim 6.7

(1) Suppose 4, is regular > X, (or 62 is 2), Zwﬂ.\wa;w,yf@?mu,s and
ZHU‘HJ.NWnAv,m. \/wq%T %wiﬁv E “ZHV-H_.Nwa A\/w, v&_ mu; mmgﬁv.

2) NPT jsa(u, A, 6,81, Rg) is equivalent to NPT jza(p, A, 0,2, R0) is equiv-
alent to NPT(u, A, 8, %) (even by the same families).

(3) NPT (i, X,61,02,0), > A, cf(A) > o, (Va < N)[|la]<? < )] implies
Z@HQWQAI,Y.%TQNvQV.

(4) If NPT (u,A,01,604,%), J is a o-complete ideal on K, K < 6% < 6y,
B> A2 01 >0z then pu < cov(), 8%, kt,0).

Proof: 1) Note that without loss of generality A3 > A2 > Ay, the case
61 < Ny is trivial so we shall ignore it. So for £ = 1,2 there is (ff a < hyr)
which exemplify NPT 784(Aes1, Mg, 01,02, w). Now we define for o < A3 a
function f, from w to “>(X;) :

.\.Q?sv = A.\..\H.WANVA\QV = Ow H' ceny ﬂuv.
Now (fo : @ < A2) exemplify Zm._stnA»w.yr 01, 62,w) (if you are bothered
by the f,’s having “wrong” range, rename it).

[Why? As for “not J2d-free” use 6.2(1). As for “(81,0)-free”, let A C
A3, |A] < 6, and we shall find finite s, C w for a € 4 such that for every
BeAd

Go>HryeA:EOU<w& E¢ss & l¢ sy & f5(8) = fr(O)]}.

By the choice of (f2 : @ < A3) there are finite s2 C w for a € A such
that for every f € A, Ew_ < 62 where

\ww = {yed:(AW)t<wktg mm &1t¢ mw & \WQV = \wﬁvﬁ
Let B = U{Rang f2 : a € A}, this is a subset of Ay of cardinality

< |Al x Ro < 61, hence by the choice of { fl: a < Xp) there are finite
84 C w for a € B such that for every 8 € B, |Aj| < 62 where

Ay={veB:(@)t<wikigsi&ig 3 & £5(0) = £2(0))}.
For each o € A choose n(a) as the minimal n > sup s2, and let
8q =: WW U %.WWA\DADVV U AO“ ..J.;AQVW.

We assume 62 = 2. Now suppose

() £ <w, 8¢ 55,0 ¢ 5y, f5(€) = £(£),n(B) = n(y) but B # 7 € A.
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Then £ > n(f), so fg(£) is a sequence of length > n(B) + 1, with

the n(G)-th member being DWA n(py)(€)- Similarly £ > n(y) so f,(£) is a
sequence of length > n(vy) + 1, with n(vy)-th member being \m« (n(x)) (). As
n(B) ¢ s3, n(7) ¢ 53 (and n(6) = n(y)) we have f3(n(8)) # f2(n(7)), and
asl ¢ m.ww (n(g)) (remember mwm (n(8)) S 8 by its definition) and £ ¢ mwﬁi )
(similarly) we have .\\Hm ey (O # .Qm?gv@v. But we have assumed in ()

that n(8) = n(y), and the two ordinals above are the n(8) = n(v)-th
members of f3(£), f,(£) respectively; contradiction. Now (*) is enough just
for NPT jea(A3, A1,601,82,w) but by 6.7(2) we get the desired conclusion
(the instance of (81, 62)-freeness).

So next assume 82 # 2, hence it is regular uncountable. Let us define for

BeA
Ap =: C Agye
<w

where

Ape=1{y€A: L& sp,L ¢ sy, fp(f) = fy(£) and n(B) = n(7)}.

It is enough to prove |Ag| < 63 hence it is enough to prove |Ag 4| < 62. For
each ¢ € AL, and m < w choose v({, m) € A such that \NR my(m) =¢
£2n(8)) ~(C,
and m ¢ mm\?. m)» if there is such a y({,m). So assume v € Ap,, then

. 1 1
we can deduce frs,0(£) = flani) (@ £ & Siaia(ey Y Sha(n(y)) hence

f(n(7)) € \Awm (n(8))" Therefore

v E CT&RB& :C€ xﬁﬁ?ﬁ:. m < w,¥({,m) is well defined}.

So
2 . 1 .
|[Ag,el < M:\»i?&_ = \w\w?%vis < w,v({,m) is well defined} < 2

(as 6 is regular).]

2) Easy (see in the proof of 6.3 starting with the choice of the 74 ’s).

3) Similarly: if {fa : o < p} exemplifies NPT s(u, A, 61,62, 0), f is defined
by: fa(v) = falv for v < o, then

{fa : @ < u} exemplify NPT joa(s, A, 61,602,0).

4) Suppose u* =: cov(A, 8%, k1, 0) and P exemplifies this and let {fa : @ <
u} exemplify NPT ;(u, A, 6, 0;, 5). For each o < u, Rang(f,) is a subset
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of A of cardinality < x < 6%, hence there is t(a) C P such that |t(a)| < o
and Rang(f,) C U{A: A € t(a)}. As J is o-complete, for some A, € t(a),
Yo=:{i < K: fa(i) € A} # @ mod J.

If u* < p, for some A € P

Ha<p:Aq=A} > 6,

(remember 6; < A < ).
This contradicts the (81, z)-freeness of {f, : @ < p}; so u* > u as desired.
Os.7

Lemma 6.8 Suppose

(a) cf(A) =Rg < A

(b) p=ct(u) > >0, >0, 6 regular
(c) cov(p, A, 0:,02) < cov(A, A, Ry, 2)
Then ZHUH,.\wa At. y.\ %T %w, Zov.

Remark 6.8A (1) If A is strong limit ( or just (VA; < A)[A}? < A]) then
clause (c) is equivalent to cov(y, A, 81,62) < ARo,
(2) If 62 = R; we can change it in the conclusion to 2 (by 6.7(2)).

Proof: Let P exemplifies x =: cov(, A, 61, 82). We now define by induction

on a < u aset , such that:

(a) T4 is a countable subset A,

(b) for no B € P is z, a subset of U{z,:y € BNa}.

There is no problem to carry the construction as [P| = x < cov(}, A, Ry, 2)

and [B € P = |B| < A]. Also as in the proof of 6.3 for B € P, (z, : a € B)

has a transversal which we call fg. Now if A C u, |A| < 8, then by

the choice of P there are i(x) < 62 and B; € P for i < i(x) such that

A € Ui Bi- Now define f : Dom(f) = A, and if « € AN B;\ U,<i Bj

we let f(a) = fg,(c). So f is a (< 82) to 1 function. The rest is easy, too.
Ue.s

Lemma 6.9 Suppose A is strong limit, cf(\) = Rg. Then there is T C ),
|T| = AR with no perfect subsets with density character 6*, where Case a
or Case b holds:

Case a: 6F < O30 < Opy1, 0* =, n < A, 6* strong limit.

Case b: \¥o = )\ §* = (QRo)+,

Remark: The conclusion fails (for lack of 8* < A) for at most w many \'s
(which are strong limits of cofinality w).

Proof: First we show 6.9A, 6.9B.
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Fact 6.9A If 6+ < 8% < ), cf()) = Ro, A¥° regular and for every p < ANo
we have cov(u,8t+,61+,6%) < AR then there is T C “A, [T} = AR, T
contains no perfect subsets of power > 8+ and density < 6.

Proof: By the hypothesis for each a < AY° there is a family P, of subsets of
a, each of cardinality 87, |P,| < A%e such that: for every A C o, |A| =6+
for some B € P,, |[BN A| = 0*. Now we choose by induction on o <
ARo n. € “) such that:

(%) if 8 < o, A € Pg then 7, is not in the closure of {n, : v € A}.

This is easily possible as AR¢ is regular and for 3 < a:

_CAQOmEd?Q ty € A}: Ae P} <18l (87)% < A%,

Now {7q : @ < A} is as required because 87 < g%, Ue.oa

Fact 6.9B If AR is singular, (VA; < A)[AY < A < A¥], (hence cf()) =
No) and 62 < 0; < A, 62 regular and cov(p, A,61,02) < ARo for every
p < A% then we can find T C “A, |T'| = A® which is (61, 62)-free.

Proof: Let x = cf(A"), AY =37, p;, each p; regular > X + x. For
pe {pii<x}

by 6.8 (and see 6.8A(1)), we can find {n* : @ < p} C “X which is (61, 82)-

free. Combining we get a (01, 6;)-free T C “A, |T| = A¥o. je. we let for

a < A, 1, be as follows: .

let i(a@) be minimal such that yu; > a, and 74(¢£) = Admwvﬁv.dn.@ (£)).
Us.om

Proof of 6.9: If A" = A%, then, by 1.5, for some strictly increasing

sequence (\, : n < w) of regular cardinals < A\, A =Y, An and At =

aomﬁzyﬂ..A.ﬁ Vm let (fo : @ < A1) exemplify it. Now for any 6; > 6; as

in (*) of 6.5A, {fa : & < At} is weakly (61, 02)-free which easily implies

that it contains no subset of power 2 with density < 6. Clearly 8, =

(2Ro)*++, gy = (2%0)* satisfies (*) of 6.5A so we have proved 6.9 under this

assumption (more exactly, when Case b of 6.9 holds) (not using “X strong

limit” ). Really we use just pp()\) = A% (and 2" < X, but note that the

case 280 = A7 is trivial).

So assume A¥° > \7*, hence we are in Case a of 6.9.

First assume that there is n < w such that:

()n [ < AR = cov(p, A, 65F,68) < AFe].

Then, if AR is regular by 6.9A our conclusion holds and if ARo g singular

by 6.9B our conclusion holds. So assume (*),, fails for each n; choose the
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minimal p < AR such that: u > A and for some o < 6%, PPr(g+,x,)(B) 2
ARe (exists by 5.4(4)). Choose the minimal such o (for the p already chosen)
hence for any 7 < 6* we have [A < u/ < g = PPr(rn,)(#) < AR(T as in
5.4) hence by 5.4 [A <y’ < p = cov(p/, A, 7,R1) < ARo].

For simplicity note that cf(AR¢) > X (as X is a strong limit) hence for some
R;-complete ideal J on &, pp% (i) > A%, If Ay € (s, A%] and Ay <* pp3(p)
then by 6.5(1) (more exactly 6.5A) and 6.5(5), NPT (A1, 1, 61, 62,0) for
any regular uncountable 8; > 62 in the interval [Ry,8*) satisfying (%) of
6.5A, for example (2°)*+, (27)*. We next prove that NPT (A1, p, 61, 62,0)
holds for A; = A%e.

case (i): A®e is singular.

Combining the result on A;, for cf(AR?) + u* and for a sequence of regular
cardinals converging to AR, we get NPT (AR0, 1, 61,8, 0), like in 6.9B.
case (ii): A%e successor.

We can apply the above directly for Ay = Ao

case (iii): At inaccessible.

By 5.4(2) AR <+ pp%(p) and we act as in case (ii).

So, now we have NPT (A®, 4, 01, 65,0).

Also necessarily cfu < o (as u < AR, pp, () > ANo) 50 let

t“MUta: P < H-

a<o

So cov(pa,b1,62,0) < ARo 50 by 6.8 NPT (ia, A, 01,62, Ro) (see 6.8A(1));
as o < A we easily get NPT(i, ), 61, 62, Ro) hence NPT jea(p, A, 81,02,R0)
(as in the proof of 6.7(2)). By (monotonicity of NPT and) 6.9C below
(with Ao i\ 61,02,0,R0 here standing for x, u, A, 01,62,0,7 there) we
can put together NPT sea(u, A, 01,62, R0) and NPT} (ARo, 11,61, 62,0) to
get the desired conclusion. Oe.9

Fact 6.9C Ifx > > A > 6, > 62 > 0 > 7, NPT (x, 1,61, 02,0),

NPT(u, A 61, 02,7) and (Ya < N[|aPom 7l = jolo < A, 7 = cf(),
cf (i) # 7, 82 regular, (> Ry for simplicity) then ZHu_H.wluw (x; A, 01,02, 7).

Proof: We concentrate on NPT m

Let (fa : @ < X) exemplify NPT .ﬂ:x. 1, 01,82, 0); without loss of general-
ity ({fa(i) : @ < x} : i < o) are pairwise disjoint and let (g : B < m)
exemplify NPT (u, ), 81,02,7). Without loss of generality for each i <
T mEuQuS”mAtwAyAs.g\wmmwﬂMMqA»;mnA\(”s.Aﬁv
be an increasing sequence of regular cardinals > 7 with limit A, if cfu > 27
letting hg : T — T be hg(i) = min{j : A; > gg(i)}, without loss of general-
ity hg = h for all B, then easy; if cfu < 27 decompose the problem}.
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For each a@ < x we define a function h, : its domain is 7 (like for the
functions gg) and for i < T we let hqa(3) = (g5, (¢)](i + 1) : ¢ € Dom J); so

[{ha(i) : o < x} < L) : ¢ < mfiPom T <,

j<i

so except for a need to rename, (hqy : @ < ) are of the right kind.

Now suppose A C ¥, |A| < 61, so there are (s, : a € A) (for NPT, we
have to shrink A) and an equivalence relation E' on A, with each class of
cardinality < 6; such that: s, € J and

[i € (Dom J)\sa\sg & a€ A&k e A& ~aE = foli) # fa(@)] -

Let B = | cqRang fo, it is a subset of p of cardinality < 61, hence
(as by an assumption NPT (u, A, 01,02, 7)) there are (t; : ¢ € B), and an
equivalence relation E?2 on B with each equivalence class of cardinality < 82
such that: t¢ € I and

[i € (Dom I)\t¢ \te & (€ B & £ € B & ~( E% = ga(i) # g¢(i)] -

We define an equivalence relation E* on A: it is the minimal equivalence
relation, such that for each o, € A :

[a E'8 = o E*f);

[¢ € Rang(fa[(Dom J\s4)) & & € Rang(fs[(Dom J\sg)) & (B¢ =aE*g)].

As |Dom J| = ¢ < 62, 6, regular, also the E*-equivalence classes have
each cardinality < 6, (remember that without loss of generality
{{fa(i) : @ < x} : i € Dom J) are pairwise disjoint).
Letforac A:

j{a) =: min T. +1:5<7,and for some i€ 0\Sq,j ¢ a?@y.

Now {ha![j(@),o) : @ € A} are as required to prove that {ha : @ < x}
exemplify NPT joa (X, A, 61, 02, o) for the case we chose A: for each a € A:

{8 € A: Rang[hal[j(@),0)] N Ranglhs N [§(B),0)] # 0}

has cardinality < 6;. Ue.oc

Claim 6.9D (1) In 6.9C, instead of assuming (Yo < A)[la]Pom It < A,
we can weaken the conclusion to NPT sy (X, &, 61,02,0 X 7).

(2) We also can note that if § < A* < A, 6 a limit cardinal, § > 7 > Ry,
6 < p < cov(\, A*,0,7) then for some A** € [#,]], o € [7,6) and 7-
complete ideal J on ¢ (containing the singletons) NPT j(u, A**,6,0).
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Proof of 6.9D(2): As @ is limit, A > 8, clearly

cov(A, A%, 6,7) = M cov(A, A*, 0%, 1),

o<é
o>T

so for some o € [r,6) we have
p < cov(A, A0t 7).

By 5.4+5.8 for some regular 7* € [r,0*] and 7-complete filter J on 7* and
A"t € [6,], ppy(A**) > p.
Now use 1.5A. Us.op

Claim 6.9E If A < i < cov(\, A, Ry, 2), A > cfA = Ro then
NPTy(p, A A*,2,0) for some o < A and ideal I.

Remark 6.9F (1) If cfA > R, 6.4(2)(*) gives more.
(2) As X is singular, NPT(u, A, A*,2,0) implies NPT(u1, A, A, 2,0) (like in
6.2(3) — compactness for singular cardinals).

Proof: If cov(u, A\, A, Ry) < cov(), A, Ry, 2) then by 6.8 (with 6, = X, 6, =
N1) we have NPT(u, A, A, Ry, Rg) hence NPT(u, A, A, 2, Ro) by 6.7(2). This
works when u is regular. when u is singular, we obtain the same result by
combining NPT (u1, A, A, 2, Ro) for many regular pu; < u, as we did before
in this section.

So assume not, so u < cov(u, A, A, Rq), hence by 5.3(5) (as cfA < A < )
for some 6; < A, u < cov(p, A, 81, R;). Let 4* be the minimal cardinal satis-
fying: thereis 6; < Asuchthat A < p* < p < cov(u*, A, 01, ®;); choose such
61, hence by 5.4 for some o € [R;,6;) and p** € [A, u*] and R;-complete
ideal J on o, pp7(1**) > y; by the minimality of u* (again by 5.4) necessar-
ily p** = p*. Now for u’ < u* we have cov(u’, A, \,X;) < i (by the choice
of pu*) hence by 6.8 and 6.7(2) we have NPT(i/, A\, ), 2, Rg); as necessarily
cf(u*) < o, clearly by 6.2(10) we have NPT(u*, )\, A, 2, o). By 1.5A (as
ppj(p**) > p) (if p is singular — its proof) we have NPT s(u, u*, \, 2, o).
Assuming 6.9E is true for u*, and u* < u by 6.9C, NPT(p, A A, 2, 0) for
some ideal I.

If 4 = p*, the conclusion trivially follows by NPT (u, p*, A, 2,0). Ueor

§7 Existence of L., y-equivalent non-isomorphic models of sin-
gular cardinality A

We give here an application to model theory (not used later). The reader is

not supposed to know anything on the logic Ly » (though he is expected

to know what is isomorphism), as the following can serve as definition (it

is usually a Theorem).
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Definition 7.0 Models 21, B with the same vocabulary are called Lo, »-
equivalent if there is a non empty family £ of partial isomorphisms from A
to B (i.e. each L € £ is a one to one function, Dom L C 2, Rang L C B, and
for any n-place predicate R from the vocabulary and aq, ..., a1 € Dom L
we have 2 |= Rla,...,an-1] & B k= R[L(ao), ..., L(an_1)], similarly for
function symbols F' and satisfaction of F(ag, ...,an—1) = b), which satisfies

(*) fLel, AC U has cardinality < A, B C B has cardinality < ), then
for some L', LC L' € £, and A C Dom L/, B C Rang L'.

So our aim is to prove that there are non-isomorphic but very similar (i.e.
Lo, x-equivalent) models in the singular case; why not the regular? Too late.
So why is the singular case harder? Trying to build the models and family
L of partial isomorphism, without loss of generality their universe will be
A, so we do not have to consider all 4, B C ), a cofinal family is enough.
So, if A is regular, we can consider only A such sets. But we have \ singular
and so we cannot use such a list of a cofinal set of such subsets. Now if A
is strong limit (singular, cfA > Ng) we can still for each A’ < A count the
AN XN + the “type” of A for A C ), |A] < A; but it is too late for this,
too. What we do is, if A > ¢fA > Ny, using mainly 2.1, to get a sequence
of regular cardinals (); : i < x) increasing to A such that for “many 6 < &
of cofinality Ng” for some unbounded a = a5 C 6, maxpef{A;:i €a} < A
(see.7.6A). Probably even if cfA = R; we can get such a sequence, we know
how to prove it in many cases but not generally; for cfA = Ry there are no
such models. The information on such sequence of cardinals (Ai i <cfA)
together with “nice” families F5 C [Lica, X (in particular cofinal and of
cardinality cf A I1ic as Ai) < ) is then summed up in a “parameter” (all this
is 7.1 — 7.4). All this prepares the ground to build such models from the
parameters (7.5). We build a model M = Ctu.‘f : f € UF5}, on each Ps we
put an abelian group, but do not make + as a function of the model, we just
give each function z +— = +¢ (c € PM), i.e. we do not “say” who is the zero
(this is a widespread trick) and we essentially can compute automorphism
groups so far and they are quite large. But then via projections we restrict
it till it becomes trivial, but still for a #£ b € PM, (M, a), (M,b) are similar
enough, i.e. Ly, x-equivalent.

So the idea is in the exact fitting of the families Fs with the partial iso-
morphisms.

* * *
From 2.1 we easily conclude:

Claim 7.1 Suppose A is singular, R; < & =: cf()\), (A; 11 < k) is a strictly
increasing continuous sequence of cardinals with limit ).

(1) For 8 < & regular the set
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Sg =:{i < :cf(i) =6, and there is a sequence (4% : a< 9)
such that: A, 475 <Jjj <t i= Ua<o Ja
and tcf( [Tpcq Af; /J5?) is well defined and < A}

is stationary.

(2) Moreover, (k\ U {S : 6 < k,8 regular}) N § is not stationary in § for
any § < « of cofinality > Rg.

(3) Moreover, if 8 > Rq then {i < x: cf(i) = 0, ¢ Sp} is empty.

Conclusion 7.2 If X is singular, R; < k =cf X and 8 = cff < 5, then we
can find (); : ¢ < k) strictly increasing sequence of regular cardinals with
limit X and S C & such that:
Sy ={i<K:cf(i) =0,i ¢S, and there are Cw t @ < 6) such

.ﬁwﬂm.ﬁ .QMR S .mv >9AQ.QN < HW < &u 1= CQAQ.QQ

and 32 Iaco yuw\,\%av is \/L
is stationary, moreover: if § > Ro then [i < k & cf(i) = 6 nv.&_m _mﬁ. and if
6 = Rg then for every § < k, if cf(6) > Ro then Sj N § is stationary in 6.

Proof: Let (A0 : i < &) be as in 7.1 with A? > &+,

Choose by induction on i, A;, £; such that:

(a) A; is regular

(b) A < X<

(c) 4 € {0,1} . . .

(d) if 4 is limit, cf(i) = @ and there is (jo : @ < ) strictly increasing,
i = Uy Jortef( [T Aju/Jg?) < A (and is well defined) and £;, =1

a<é

for o < cf(i) then let \; = tef([Joco Min/J5?) and £; = O ( not
necessarily for the same (j, : & < cf(4)))

(e) if 4 is limit and cf(i) # 6 or there is no (j, : a < cf(i)) as above then
v& = ACQ.AS. v,u‘v.*. and N\... =1.

+ » » .
(f) if ¢ is non-limit, A; is A\/wevv where j(i) = min{j : A} > »m+MunAﬁ. Act
Or.2

Now use 2.1.

Definition 7.3 Call p = (\;, a4, F; : 1 < 6(x)) a suitable parameter if:

(i) (A : 4 < 8(+)) is non-decreasing sequence of regular cardinals > 5()
which is not eventually constant

(i) i€a; Ci+1

QMC J €a; = a; “Q&DC..THV

(iv) F; € :umn.. Ajy |Fi| < Muu.ms. Aj = A

(v) for each f € [[,¢,, A; for some f* € Fi, f < f*

(vi) if f € Fj, j € a; then fla; € Fj
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(vii) for every f € [Tics(q Ai for some f* € [Licsy X £ < f* and
Ai(F*la; € F)

(viil) §'=: {6 < 8(x) : for some i > 6, sup(a; N ) = 6} is stationary.

(ix) for each o < §(*), the set
{6 < 8(x) : for some 8 we have & € as and 6§ = sup(6 Nag)}
is stationary.

We write v,w , aw , m,w , 6(%)? for the \;, a;, Fj, §(*) respectively and

FP=U{F] i <6(+fP}, N =3 {N:i< 57}
lastly S? is as in (viii).

Fact 7.4 1) If

($)a A > cfA > Ro, (A 14 < cf)) is a strictly increasing sequence of regular
cardinals, (cfA)* < Ao, § C {i < cf()) : cf(5) = Rg} is stationary and
for each i € S there is a strictly increasing sequence of successor
ordinals (5} :n <w), U, i =i, \; = tef ([T Az, <gsa ),

then there is a suitable parameter 5, A\? = A, §(x)? = cf(A).

2) If X > cfX > Ry, then (*) above holds for some (Ai:i<cf()\)) and S as

above.

Proof: 1) By easy manipulations (as in Definition 7.3 we require (A; 1§ <
6(*)) only to be non decreasing). For finding the F}’s use 3.4 as in the proof
of 3.5.

wv W% 7.2. Dﬂ.h

Main Lemma 7.5 Suppose 5 = (\;,a;,F, : i < 6(*)) is a suitable pa-
rameter, A = AP, §(x) = k = of kK > Ny. Then there are Lo, x-equivalent
non-isomorphic models (with vocabulary — just one binary relation).

Proof: Stipulate as.) = {i:i < §(»)},

Foy=A{f:fe [] X and (Vi < 6(x)[fla; € F}.
i<8(*)

We let, for ¢ < 6(x):
Ly ={(4,f) : j < i and for some g € F;, f = g|(j,i]}

.mmu = AAA.N.Q..\.OV“ A.w.f.\.wv, AR C.:.IT .\levv Fn<w, C.?.\mv € H‘s.t
g < iy <9, a4, C @z, je < Jeur1 and

Uer1 < a € ai, = fi(a) < frr1(a)]}
and if § < 6(x)
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[t AAA.“Q» .\.Ov“ LRRE] A.w.z.lf .\.alavg.w..av : Ac.ou .\.OV. ey C.:.l_; .\.Hlu.vv € rm«%
and 8(x) > jp > i}

.m.s. = mn.n U .,st
Note that S?, S; are defined only for i < §().

We define a partial order <; on S;:

n <i v if i is an initial segment of v or

n= AA.Q.O‘.\..cvu LN A.w.zlr.\ﬁluv?w.:v and

v = AQ? .\ov_ tee QSIH..%SIHY QE .\.avv

Let F'={J; 4 Fi and T = CRE;V Ti. For (4, f) € T let i(4, f) be the
unique 7 such that (4, f) € I'; and for f € F, i(f) is the unique i such that
feF,.

Let g < (4, f) mean g1 [(5,6(x)) N Dom f] = gtDom(f) < .
Let for f € F
Sy =:{n:1= (o, fo), - (Jn—1,fn-1),T) € S; such that:
T = C.:,.\.:v = f< C.:;\.:vw.
Let for f € F;, G 7 be the abelian group of order 2, generated freely by

?.“u:m_mww

We can assume that the G’s are pairwise disjoint.
If g1 < g are from F (so Dom g; is a subset, maybe proper, of Dom g2) we
define a homomorphism A = hg,,g; from Gy, to Gy, by defining its value
on the free generators of Gy, :
ifn= (o, fo)y -y Q:IT.\.:IHV“HV € _wmu, Z is (fn, fn) OF jn, let:

£91,92 = £g1,9,(n) = min AN ‘91 < (Je, fe) or £ = Lg(n) - 1= 3@

and g1 € .mﬂw:

and gs € F,;; (so 4; < iy as a;, C a;,, equivalently, ¢, € ai,)
then h(zf?) = 2§ where

Case L: iy =1ip: v = ((Jo, fo) : £ < €91,6:(m)) and if g, g,(n) = n then we
mean v =7 (even if z = j,).

Case 2: i3 < io: let
Mgy,99 = Mgy ,g, Adv = min AS 'Jm 2t orm= NQAGV - Hw’.
Note that £y, ,, <n and Mg1,92 < N I myg, o < 4, o, we let
v= AQ? felay,) 1 £ < Shfmuv>c.35.5v,
and if mg, g, > £y, o, (s0 £y, 4, < 1) we let

v= AA.Q.T .\.&ﬁﬁ‘:vv 4 M N.S.bwv.

So we have finished defining hgi g2

i B B

b S b i ol

R
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It is easy to check that
(Roifg1 <go < g3 are all in C&Am?v F; then hg, 4, o hgs .92 = hgy,g2-
Now we define a model M :
(i) its universe is | ter Gy
(ii) it has: the relations Py = Gy, the partial functions A f1.f2 from Py, to
Py, for fi < fo from F, the partial functions Fl(feFyeqg ¢) with
domain Py and Ff(z) = z + y (the addition in & #) (all one place).

Fact 7.5A M has no non-trivial automorphisms.

Proof: Suppose L is an automorphism of M. For each f € F, L maps Nums
onto Numx, let @w =: L(0g,); as L commutes with ﬁw for each y € Gy, we
can show:
(¥)1 for y € Py, L(y) = y + y*
(remember: +4 ; 1s not a function of M).
For fi < f; from F, as L commutes with 4 f1,f2 We can show:
(*)2 if f1 < f, are from F then hy, f, (vf) = @.N
As yf € Gy, it is just a sum of a finite set of generators, let nZ(f) be
their number. For each ; < 6(x), F; is Ao-directed (as each X; is regular
= Ag; see 7.3(i),(v)). Now hy .t @wv = @N implies nL(f;) < nL(f); so by
(*)2
fi < f2 = nf(f1) <nl(f).
So for each i < §(x) for some f¥ € F;, i Sf€F=nl(f) =nl(fr). Let

F={feF:f<f}.
So we can let for feF, N\w = ﬁ.ﬂ pFe-+ Hmi f (no repetition) where
n=nl(f;) and
hsheF sh,p@l)=a, ..
Hence, without loss of generality:
h<fheF&1<t<nl(f) = u(f) < ve(f2)

(see after the definition of 5:). By a similar argument, increasing f}* we can
have:

FeF = N t9wef) = g(nel£})) & walf) = w(f?).

£=1,...,nL(f)

We next show that ve(f}) € SP; if not choose f € F/ large enough and
get a contradiction to the definition of S £
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Let
i = max{ve(f7)[lg(ve(f;)) — 1] : 1 < £ < nl(f2)}

which is < 6(*) (note: the max is on a finite set of ordinals, (< §(%)) as
ve(f}) € SP; hence it is well defined).
As §(*) is an uncountable regular cardinal, the set

C={6<6(x):i<é=q; <6}

is a club of §(x) hence there is a limit ordinal § € C N 5P, 50 (see 7.3(viii))
for some J € [6,6(x)), 6 = sup(ag N 5). We can find f € Fjs such that for
every i € agNé,

(Valla € a; = fi(a) < f(a)]

(remember, Fj is Ao- directed and A\ > 6(*)). Look at @w , it has the form
Mm_ +- 4 .s.ms. The set w of j's appearing in some p, for ¢ € {1,...,m};
iLe.
w = {j : for some £ € {1,..,m} and f we have

(3k) [pe(k) = (4, F) V pe(k) = 5] })

is finite, hence there is i € ag N § above max(w N §); now
Ly _,L _  fla: flai
Pttas WF) = Yfta, = T, (frag + + 0 100y

where n = nZ(f¥); but each ve(fla;) is a sequence with last element an
ordinal in [4, §()), (because vy(fla;) € S¢ because flai € Fj) but < § (as
6 € C), so we get an easy contradiction, unless n = 0. So .Sm?,. = 0 for large
enough ¢ € § Nag, hence (by the choice of fllgeF = @% = 0. But for
every g1 € Fj there is g, € F, such that g; < go hence hg: .92 @%nv = @% s0:
ge = @% =0.Ifi€agNdwecanfindj,i < je agNé, j large enough,
so by the previous sentence [f € F; = .cw = Og,), now for any f € F, we
can find g € F;, f < g, hence using hys 4 we know @w = 0g,. By 7.3(ix) this
holds for every i < §(*) (using some 6§ € CN 5%, and B) so every Sm = 0g,
(f € F) thus we have proved 7.5A.

O75a

We define a family £ of partial automorphisms of M :
L is the family of functions L,, v € m?v, where, for v = ((jo, fo), ...,
(Jn—1, fn—1)) we define L, by induction on n.

ifn=0:L, is the empty function
fn>0:Dom L, =U{P;: f< (Jn-1,fn-1) and f € F};
(note: if f € F;, i < §,_, then P C Dom L.).
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Now if i < §(%), f € F;, we let
Ny, f = BEAS < Nmﬁtv :f < Qﬁv\avw

and define:

Puif= AAQ.? H.h—.gs.v :f < 3t~m\,/\v wm.w“.:.\...:‘. As )
e AG.? .\.mv < 3\3_.:3 C.:.\.a..sv if Juif 2t

Lastly for y € Py, f € Fi, f < (jn-1, fa-1) we let L(y) =y + Hms,.;.
Now

Observation a : L, is a partial automorphism of M

[preserving Py — clear; commuting with A f1,f» — see the definition of hy, ¢,
and of L, remember that j, < jg;1 in the definition of S%; commuting with
Ff-check the definitions].

Observation 3 : if v, € w?v, vy = va[m then L,, C L,, [check definition].

Observation +y : for every A C M, |A| < Aand v, € m?v there are j < 8(x)
and f € Fy,y such that vy = v,"((4, f(a;\(j + 1))) belongs to 5(e) and
ACDomL,,.
[Choose j bigger than the first coordinate of each v1(£), (€ < £g9(v1)) and
such that A; > |A[; choose f € Fy(,) (i.e. for each i < §(*) we have fla; € F}
and) such that:

(@) € (4,6(x) & geF & P,NA£D=> 9l(4,a] < flaq,

(b) £ < lg(1) & v1(8) = (7', f) = f' < £ :
Observation § : There are v € m?v such that L, is not the identity. [Easy].

So for some b # ¢ € Nums (for some f), (M,b), (M,c) are as required,
except for a too large vocabulary, which can be corrected by coding (for
example see [Sh189)). Uz
Conclusion 7.6 If A > cf()\) > R, then there are M, Sl Mo,

IMi]] = || Ma]| = X, M; % My,
(and L(My) is just one binary relation).

Remark 7.6A The remaining case is ¢f A = R; and if (); : i < R;) is
increasing continuous with limit ), then for some club C of w1,

: AF/{w :w C C,|w| < Ro} has true cofinality A+
ieC
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[why? let

S = {6 < wy : 6 limit, and some 8§ € (A, ) is in

pcf{\] : a < i < 6} for every a < 6}.

If S is stationary then as in the proof of 7.2 we can find a parameter an
apply 7.5. :
If S is not stationary for some club C of A, C N S = §. We next assu
[Ticc M /{w € C : jw| < Rg} is not A-directed then for some counta
a C C, [Lica M /{w C a : |lw| < Ro} has true cofinality § € Reg N A (jus
choose a minimal 6 € pcf{\] : i € a} such that Jea[{\] : i € a}] is n
included in {w C a : |w| < No}). Let j, = nth member of a, so |, jn €
but | J,, jn € C, contradiction] . :
Note that by 7.1 the class of counterexamples reflects in no A (and mor
So probably counterexamples are very rare. It is an open question whet;
the existence of such A is consistent with ZFC (assuming, of course, suitah
large cardinals; it is clear that the consistency strength of this is Emrv.‘

In fact, in the remaining case, if A; = cfA; < A increasing for i < &
and A =sup{A; : i < w;} then for some a < w;

Il [Sh 365]

"THERE ARE JONSSON ALGEBRAS IN MANY
INACCESSIBLE CARDINALS

ntroduction

re we prove (in ZFC) that there is a Jonsson algebra on A if: ) is an
ccessible not w-Mahlo or just ) is an inaccessible (not necessarily strong
yiit) cardinal which has a stationary subset not reflecting in any inac-
ble cardinals. We also prove this for many successor of singulars. The
od is “guessing clubs”. We prove stronger theorems (strong colouring
ns) in almost all those cases. In particular if A > N, is regular not
o (or just has a stationary set which does not reflect in inaccessi-
hen for some Boolean algebra B, B satisfies the A-c.c. but B x B
not (on the quite long history of this problem see Appendix §1). So for
A > Ry there is a topological space (in fact, coming from a Boolean
ra) having cellularity A\ but its square has cellularity > ). Note: on
ors of regulars we know more so we usually ignore them.
the history of Jonsson algebras, see introduction to [Sh355,80], on
ng theorems see Appendix §1 and on guessing clubs see [Sh-e, 7.8A-
t the presentation here is self contained. We use an indecomposable
fer, see for example Kanamori Magidor [KM]. In the proof of the colouring
rems we use Todorcevic walks ([To2]). We use also Claim 3.2A which
Yvariant of Kanamori [Kn], Ketonen [Ke] (here: for filters which are not
ssarily ultrafilters see 3.2A).
he structure of this chapter is as follows: in the first section we define
- of guessing clubs and show their connections to the existence of
on algebras. In the second section we prove the existence of various
gD guessing C’s, we also repeat a theorem from [Sh-e, III 6.4], [Sh351]:
regular, {6 < A* : cf6 < A} € I[A*]. In the third section we prove the
nce of the promised Jonsson algebras and in the fourth section— the
uring theorems.
continuation, saying more on higher inaccessibles and successors of
lars, see [Sh380], [Sh413] and [Sh535].

{6 < wi : pef{A; : @ < i < &} is disjoint to AC Ai, M)}
i<é

contains an end segment of w; (as in 7.3(ix)).

Question 7.7 Does 7.6 hold for A > cfA = R; too?




