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A NOTE ON HANF NUMBERS

SAHARON SHELAH

We show that for every ξ < (2*)+, there is a theory T and
set of types P in a language of power tc, such that there is a
model of T which omits every p e P of power λ if and only if
λ ^ Dέ. We also disprove a conjecture of Morley on the ex-
istence of algebraic elements.

The results which are proved here appear in [5].

1. On ηκ.

DEFINITION 1.1. ηκ will be the first cardinal such that for every
language L,\L\^κ, and set of types {p:peP} (in L) if T has a
model of power ^>ηκ which omits all the types in P, then T has such
models in every power ^ | T\. (A type is a set of formulas with the
variables x0, , xn only for some n < a). A model omits p if there
does not exist α0, , an in the model such that φ(x0, , xn) sp imp-
lies M^φ[a01 •••, αj.)

Chang showed in [2], by methods of Morley from [4] that Ύ]κ rg
Π[(2 |ΓI)^]. He also in [1] asked what is τjκ. We shall show that ηκ =
2[(2*)^]. For this it is sufficient to prove that for every ξ < (2*)~
there exists a theory T and a set of types P (in a language L = L( T}>
of power ^/r) such that T has a model of power λ which omits all
the types in P if and only if λ ^ 2 e .

The following theorem appears in many articles which deals with
finding lower bounds for Hanf numbers.

THEOREM 1.1. If there exists a theory T, \L(T)\ ^ £, and a set
of types P in L(T), such that every model of T which omits every
peP is well ordered in an order type fgf, and it has such a model
whose order type is ξ, then ηκ > 2ζ.

Proof. We adjoin to L the predicates Q^x), Q(x), x ey, the con-
stants cn, n < ω and the function F(x), and we get a language
L19 \LX I g it. We define T, = {fQ: ψ e T) [ψQ is ψ relativized to Q, that
is instead of (lx)φ we write (3x)(Q(x)Λφ) and instead of (Vx)φ we
write (Va?)[(Q(a?)->^)]. We also define Pλ = {pQ: peP}Ό{q}, pQ = {<pQt
φep}, Q = {Qi(»)} U {# ^ cw: ^ < ω}.

We add to ϊ7! an axiom of extensionality

ψι = (yxy)[(yz)[z ex<-*zey]—>x = y]
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and an axiom saying that F(x) is the rank of x

φ* = (Vx)Q(f(x)), φs = (Vxy)[x € y - F(x) < F{y)\

and an axiom saying that Qγ{x) if and only if the rank of x is minimal

and T2 = T^iφϊ.i = 1,4}.
Let Λf be a model of T2 which omits every type in P_. It is

-clear that QM is well ordered by <M in an order type <Ξς. Assume
•Q-v = {α̂ : i < i0 <̂  ξ}, where i < j implies α̂  < Ma5. Let us define
Ai = {α: F ¥ [α] = α j , and a function /, f(a) = {beM:be Ma). As ikf is
a model of ^ /(α) = /(&) if and only if α = 6, and as M is a model
of 9>2 and φi9 if α e i { then / ( α ) c U i « 4 , . From this it is clear that
| A 4 = |{/(α): α e A,}\ S 2 l ui<^i l. It is also clear that | Λ i = 20. From
this it is easy to prove by induction that |Ui<;A>l = -̂ ^ a n d so

On the other hand it is not hard to see that T2 has a model of
power *2~ which omits every pep^

So it is clear that ^ > 2ξ.

THEOREM 1.2. For every ζ < (2*)+, £fcere is a theory T, \L(T)\ <Ξ >c,
α βeί of types P (in the language L) such that for every model

M of T which omits every peP its set of elements is well ordered
by < ¥ , and its order type is <Ξ£. Also T has a model which omits
•every p e P, and the order type of the set of its elements is ξ..

Proof. For simplicity suppose | ξ \ = 2K (it is clear that this is
sufficient for proving rjκ = 2(2*,+).

Let S be the set of subsets of ic = {i: i < K). As | S | = 2K = \ξ\
we can order S in an order of type ζ. S — {a{. i < ξ}.

Let us define the language L. It will have tc one-place predicates
Qiy i < tc, and an order predicate < , and the equality sign. We define

Po = {(Qi(Xo) ^ Qi(Xi)m- i < κ } U { % o ^ x , } .

For every j , i < f,

Pί>j = {a?o ^ «i} U {Qλ(»o): Λ e s j U { -#*(&„): hgs^h < fc} U

{Q,fe): Λ e β,-} U { ^ f e ) : Λ ί sy, λ < ιc} .

We define P = {p0} U {piJ: j <i < ζ}.
If M is a model, which omits every peP, we define a function

/ from the set of elements of M to S by f(a) = {h:h < tc, ae Qf}.
As M omits p0, α Φ &=φ/(α) Φ f(b), and as jfcf omits p* '̂ for every

i < ΐ < f, it is clear that α < i ι ί6 if and only if f(a) <Mf(b). So it is
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clear that T = { } and P satisfies the conclusion of the theorem.

THEOREM 1.3. ηκ = (2K)+.

Proof. Immediate.

2* On algebraic elements* Morley in [4] conjectured that if T
is a complete denumerable theory in a language L, p a type in L,
and T has a model omitting p of power tc if and only if tc0 > Λ: ̂ > fc$0,
and Λ:0 > y^i, then T has exactly ^ 0 algebraic elements, where:

DEFINITION 2.1. (1) In a model ikf an element a is algebraic if
there is a formula φ{x) such that ikf f= <p[a] and | {6 e ikf: M \=

(2) A complete theory T has λ algebraic elements if every model
of T has λ algebraic elements.

We shall disprove this conjecture.

DEFINITION 2.2. K(T, p) is an infinite cardinal such that T has
a model of power tc which omits p if tc < K(T, p), tc ̂  | T|, and has
no such model of power ^tK(T, p), K(T, p) = ^> if there is no such
-cardinal.

Claim 2.1. Let T be a complete theory, pt is a type in the
variables x0, , xw._! for i = 0, , m, and T has a model of power
ic omitting p0, , pm if and only if tc0 > Λ: ̂  | T\.

Then there exists a complete theory Tu \ ϊ \ | = | Γ| 4- ̂ 0 and a
type j9 in the variable x0, such that K{TU p) = ΛΓ0 and TΊ has algebraic
elements if and only if T has algebraic elements.

Proof. Suppose M is a model of T. We define a model Λfj. whose
elements will be the elements of M and sequences of length n =
Σi<m % < y$o of elements of M. The relations will be the relations
in ikf, and QMί which will be the set of elements of ikf, the functions
Ffi for i < n such that Ff!(<(α0, , αΛ_!» = α̂  (when α0, , α%_! e ikf)
and Ff'{a) = α (when α e ikf). The theory 2\ will be the set of
sentences which hold for ikfx. It is easily seen, that T1 is a complete
theory, | TJ = | T| + fc$0> and that Tx has algebraic elements if and
only if T has algebraic elements.

We shall also define

<Ph(FΊh(x), , ̂ A+»A-i(»)): 9>A(a?0, , ^.-O e
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It is easily seen that Tι and p satisfy our demands.

THEOREM 2.2. // T is a complete theory, p a type, then there
exists a complete theory T1 and a type pι such that \ 7\| = | T\ + fc$0

and K(T, p) = K(Tι, p1), and T1 has no algebraic elements.

REMARK. Clearly this disproves Morley's conjecture.
Morley told me that between 1963 and 1966 he disproved his con-

jecture. Later some people wrote him that they disproved the con-
jecture, but he did not remember their names. Seemingly, the review
[3] is the first place the disproof was mentioned, but the proof does
not appear anywhere.

Proof. Let N be a model of T. We shall define M the elements
of M will be pairs of the form ζa, %y where ae N, and i is an integer*
If RN is a relation in N, then

RU = {«αi, ΐy, , <an, i » : <α ,̂ , αΛ> e RN, I is integer} .

We define ^M:(ax, i^y<LMζa2, i2y if and only if ix <g i2 (as integers.).
We define FM, FM(ζ^aί, ΐx>, <α2, i 2 » = <αlf i2>.

2\ will be the set of sentences that M satisfies.
Let us define

W/v. <Γ /y Λ Λ> <Z /v»

1/V Ô = "n + 1 / \ "n + l = *^i

Λ ί Φ "^ Φ f\ *y <C *y ^ \ * 'w <<̂  /'i i—iV^wfl = &% ι\ &i = *n+l))' 't' \ «/
ΐ = i

W. l.o.g. let 7/ be the only unbound variable which appears in the
formulas of p. We define ψ* by induction for subformulas of formulas
of p: if in φ no quantifiers appear, then <p* = φ, and ((3#)<p)* ~
(3x)[x Sy Ay Hx A φ*].

We define ^ — {ψ*: ψ e p}.
It is clear that for every integer i0, the mapping <α, f>—><(α, i + v>

is an automorphism of M. So for every element of M there exists
an infinite number of elements which are its image by some automor-
phism of Mt. So M has no algebraic elements. It is clear that if
M2 is a model of Tx which omits plf then for every a e M2, κ,x —
I {b e M2: M2 N b ^ a A a ^ 6} | < K(T, p). If M2 also omits p2, then,
the power of M2 is ΛΓ^O = fcL < if(Γ, >̂). On the other hand, for every
tc < K(T, p), ic ̂ > \T\, it is easy to construct a model of Tx omitting
pt and p2. By Theorem 2.1 the conclusion of 2.2 follows immediately.

The referee has informed me that a little later than I, James

Sh:6



A NOTE ON HANF NUMBERS 545

Schmerl (U.B.C.) independently discovered the same proof of Theorem
1.3. — TJΆ — 2[(2'c)+]. After writing this paper, I find in a review on
an article of Morley, that Morley has already disproved this conjecture
(see [3]).
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