Notre Dame Journal of Formal Logic Volume 22, Number 1, January 1981

On the Number of Nonisomorphic Models of Cardinality λ $L_{\omega\lambda}\text{-Equivalent to a}$ Fixed Model

SAHARON SHELAH

A well-known result of Scott [6] is that if \mathfrak{M} and \mathfrak{N} are countable and $\mathfrak{M} \equiv {}_{\infty}\mathfrak{N}$, then $\mathfrak{M} \cong \mathfrak{N}$. Later, Chang [2] extended this to show that if $cf(\lambda) = \aleph_0$, \mathfrak{M} and \mathfrak{N} have cardinality λ and $\mathfrak{M} \equiv {}_{\infty\lambda}\mathfrak{N}$, then $\mathfrak{M} \cong \mathfrak{N}$. More recently, Palyutin [5] has shown that if V = L, \mathfrak{M} has cardinality \aleph_1 , and $K = \{\mathfrak{N} : \mathfrak{N} \equiv {}_{\infty\omega_1}\mathfrak{M} \text{ and } \mathfrak{N} = \aleph_1\}$, then, up to isomorphism, K contains either one member or 2^{\aleph_1} members. It has long been known that the first case was not exclusive (cf. [4]).

For $\lambda = \aleph_1$ Palyutin needed the fact that V = L implies \diamondsuit_S for every stationary $S \subseteq \omega_1$. In the Theorem below, we extend Palyutin's result to most other uncountable regular cardinals. Our proof, however, requires a stronger combinatorial principle of Beller and Litman [1] which does not hold in the case of λ weakly compact, and so the restriction in the Theorem.

By Shelah [6] the *GCH* is not enough to guarantee the conclusion even for $\lambda = \aleph_1$, because the "theorem" would imply the following. For λ regular and G a λ -free group of cardinality λ , up to isomorphism Ext(G, Z) has either $\underline{1}$ or 2^{λ} members. However, by [6], "ZFC + GCH + Ext(G, Z) = Q for some $G, \overline{G} = \aleph_1$ " is consistent.

We now proceed to the theorem and its proof. The result was announced in [8].

^{*}This research was partially supported by the NSF and by the United States Israel Binational Science Foundation grant 1110.

Theorem (V = L) Let λ be regular and not weakly compact. Let \mathbb{R} be a model of cardinality λ and $K = \{ \Re : \Re \equiv_{\infty \lambda} \Re \text{ and } \overline{N} = \lambda \}$. Then, up to isomorphism, K contains either 1 or 2^{λ} members.

Proof: We may assume without loss of generality that \mathfrak{M} has universe λ itself. For $\alpha < \lambda$ we use α^* to denote the sequence of length α whose β^{th} entry is β . We use \overline{x}_{α} to denote the sequence of variables of length α whose β^{th} entry is x_{β} . It is well-known (cf. [2]) that for any sequence m^* of length less than λ there is a formula φ_{m^*} of $L_{(2^{\lambda})^{+}\lambda}$ such that for any model \mathfrak{N} and sequence n^* of the same length as m^* , $\mathfrak{N} \models \varphi_{m^*}(n^*)$ iff $(\mathfrak{M}, m^*) \equiv {}_{\infty\lambda}(\mathfrak{N}, n^*)$. In other words, φ_{m^*} describes the $\infty\lambda$ -type of m^* in \mathfrak{M} , $tp_{\infty\lambda}(m^*, \mathfrak{M})$.

We now define a set S of ordinals less than λ that will be used for the rest of the proof. Let

$$S = \left\{ \alpha < \lambda \colon \ \Re \ \models \forall \, \overline{x}_{\alpha} \left(\bigwedge_{\beta < \alpha} \varphi_{\beta} * (\overline{x}_{\beta}) \to \varphi_{\alpha} * (\overline{x}_{\alpha}) \right) \right\}.$$

The proof divides into two cases, depending on whether or not S is stationary. At first, the definition of S may look a bit puzzling since the situations for limit and successor ordinals seem different. However, because we only care whether S is stationary, we are essentially only interested in the limit ordinals anyway. We consider first the case in which S is not stationary. The proof does not differ from that in [5] in any material way, but we include it here to make our paper self-contained.

Claim If S is not stationary, then all members of K are isomorphic.

In this case there is, by definition, a closed set C unbounded in λ and disjoint from S. Since λ is regular we may write $C = \{\delta_{\alpha} : \alpha < \lambda\}$ where δ_{α} is increasing and continuous in α .

Let \Re ϵ K. Again we may assume \Re has universe λ . For each $\alpha < \lambda$ we will define a partial isomorphism f_{α} from \Re to \Re . The domain and range of f_{α} will each include α . In addition, if $\beta < \alpha$, f_{α} will be an extension of f_{β} . Thus $f = \bigcup \{f_{\alpha}: \alpha < \lambda\}$ will be an isomorphism from \Re onto \Re . It will also be arranged so that for $\alpha > 0$, f_{α} has domain δ_{β} for some $\beta > \alpha$, and so that $(\Re, \delta_{\beta}^*) \equiv {}_{\alpha\lambda}(\Re, f_{\alpha}(\delta_{\beta}^*))$, where $f_{\alpha}(\delta_{\beta}^*)$ is the sequence of length δ_{β} whose ξ^{th} element is $f_{\alpha}(\xi)$.

First, for $\alpha = 0$, we let f_0 be the empty function.

Next, suppose $\alpha = \beta + 1$ and f_{β} has been defined with domain δ_{γ} so that $(\mathfrak{M}, \delta_{\gamma}^{*}) \equiv {}_{\omega\lambda}(\mathfrak{N}, f_{\beta}(\delta_{\gamma}^{*}))$. First, by the back-and-forth property, there is some $\xi < \lambda$ such that $(\mathfrak{M}, \delta_{\gamma}^{*}, \xi) \equiv {}_{\omega\lambda}(\mathfrak{N}, f_{\beta}(\delta_{\gamma}^{*}), \beta)$. Now, choose $\rho > \gamma$ such that $\xi < \delta_{\rho}$. Next, choose a sequence $\langle a_{\nu} \rangle_{\nu < \delta_{\rho}}$ such that $(\mathfrak{M}, \delta_{\gamma}^{*}, \xi, \delta_{\rho}^{*}) \equiv_{\omega\lambda} (\mathfrak{M}, f_{\beta}(\delta_{\gamma}^{*}), \beta, \langle a_{\nu} \rangle_{\nu < \delta_{\rho}})$. Now, define f_{α} so that $f_{\alpha}(\nu) = a_{\nu}$, for $\nu < \delta_{\rho}$, and f_{α} will extend f_{β} .

Finally, suppose α is a limit ordinal. This is the more interesting situation. Let us suppose that for each $\beta < \alpha$ we have defined f_{β} as required with domain $\gamma_{\beta} \in C$. Let $\mu = \bigcup_{\beta < \alpha} \gamma_{\beta}$. Then $\mu \in C$ since C is closed. We will let $\delta_{\alpha} = \mu$ and define $f_{\alpha} = \bigcup_{\beta < \alpha} f_{\beta}$. We must show that this choice will satisfy our requirements. First, the requirements on the domain and range are satisfied by induction. Since $\mu \in C$, $\mu \notin S$. Thus, $\mathfrak{M} \models \forall \overline{x}_{\mu} \left(\bigwedge_{\beta < \mu} \varphi_{\beta} *(\overline{x}_{\beta}) \rightarrow \varphi_{\mu} *(\overline{x}_{\mu}) \right)$. Since $\mathfrak{M} \equiv \mathbb{R} \times \mathbb{M}$, $\mathfrak{M} \models \mathbb{R} \times \mathbb{M}$

 $\forall \overline{x}_{\mu} \left(\bigwedge_{\beta < \mu} \varphi_{\beta} * (\overline{x}_{\beta}) \rightarrow \varphi_{\mu} * (\overline{x}_{\mu}) \right). \text{ Furthermore, since for each } \beta < \alpha \left(\mathfrak{R}, \gamma_{\beta} * \right) \equiv_{\infty \lambda} (\mathfrak{R}, f_{\beta}(\gamma_{\beta}^{*})), \text{ we also have } \mathfrak{R} \models \varphi_{\beta} * (f(\gamma_{\beta}^{*})|\beta), \text{ and hence } \mathfrak{R} \models \bigwedge_{\beta < \mu} \varphi_{\beta} * (f(\gamma_{\beta}^{*})|\beta).$ Consequently, we must also have $\mathfrak{R} \models \varphi_{\mu} * (f(\mu^{*})). \text{ Then, of course, } (\mathfrak{R}, \mu^{*}) \equiv_{\infty \lambda} (\mathfrak{R}, f(\mu^{*})), \text{ and this finishes the proof in the first case.}$

We now must consider the more difficult case in which S is stationary. Our object is to prove the following:

Claim If S is stationary, then K has 2^{λ} nonisomorphic models.

For each $\sigma \in 2^{\lambda}$ we will construct a model $\mathfrak{A}_{\sigma} \in K$ with universe λ such that if $\sigma \neq \sigma' \in 2^{\lambda}$, then $\mathfrak{A}_{\sigma} \not\cong \mathfrak{A}_{\sigma'}$. This will, of course, prove the claim.

In order to carry out the above, for each $\alpha<\lambda$ and $\eta\in 2^\alpha$ we will define ordinals $\delta_\eta,\,\rho_\eta<\lambda$ and a function $f_\eta\colon\delta_\eta^\frac{1-1}{\mathrm{onto}}\rho_\eta$. We regard f_η as defining a model \mathfrak{M}_η with universe δ_η . The isomorphism type of \mathfrak{M}_η is obtained by letting $tp(\delta_\eta^*,\,\mathfrak{M}_\eta)=tp(f_\eta(\delta_\eta^*),\,\mathfrak{M}),$ for quantifier-free formulas. We also need to control $\tau_\eta=tp_\infty(f_\eta(\delta_\eta^*),\,\mathfrak{M}).$ The idea is to view \mathfrak{M}_η as an approximation to \mathfrak{M}_σ with universe λ where $\eta=\sigma|\alpha$. In order for this to make sense, we must arrange things so that if $\alpha<\beta$, then $\tau_{\sigma|\alpha}\subseteq\tau_{\sigma|\beta}$, though not necessarily so that $f_{\sigma|\alpha}\subseteq f_{\sigma|\beta}$. In fact, this last requirement would create serious problems when we had to "split" so as to obtain nonisomorphic models at the end. On the other hand, a certain amount of this sort of extension is necessary in order to have $\mathfrak{M}_\sigma\equiv_{\infty\lambda}\mathfrak{M}$.

In the construction we will use two combinatorial principles which hold in L. The first is that \Diamond_X holds for each stationary $X \subseteq \lambda$. We state \Diamond_X in the following form:

For each $\alpha < \lambda$ there are $\eta_{\alpha} \neq \nu_{\alpha}$ and g_{α} : $\alpha \rightarrow \alpha$ such that for any $\sigma \neq \sigma' \in 2^{\lambda}$ and $g: \lambda \rightarrow \lambda$,

$$\{\alpha \in X : \sigma | \alpha = \eta_{\alpha}, \sigma' | \alpha = \nu_{\alpha} \text{ and } g | \alpha = g_{\alpha} \}$$

is stationary in λ .

The second is due to Beller and Litman [1]:

Let X be stationary in λ . Then there is a set $X_0 \subseteq X$, and for each limit $\alpha < \lambda$ a set C_{α} such that:

- (i) X_0 is stationary in λ
- (ii) for all $\alpha < \lambda$, $X_0 \cap \alpha$ is not stationary in α
- (iii) C_{α} is closed unbounded in α
- (iv) $C_{\alpha} \cap X_{0} = 0$
- (v) if γ is a limit point of C_{α} , then $C_{\gamma} = C_{\alpha} \cap \gamma$.

Now, since S is stationary we may apply the Beller-Litman principle and obtain sets S_0 , C_{α} , $\alpha < \lambda$ as described. Now we begin the details of the argument. Leaving the construction for the end, let us assume that for each $\alpha < \lambda$ and η , $\nu \in 2^{\alpha}$ we have defined δ_{η} , $\rho_{\eta} < \lambda$ and f_{η} such that

- (1) f_{η} : $\delta_{\eta} \xrightarrow[\text{onto}]{1-1} \rho_{\eta}$
- (2) if $\beta < \alpha$, then $\delta_{\eta|\beta} \le \delta_{\eta}$, $\rho_{\eta|\beta} \le \rho_{\eta}$, and $\tau_{\eta|\beta} \subseteq \tau_{\eta}$
- (3) if $\alpha \notin S_0$, α a limit ordinal, and δ is a limit point of C_{α} , then $f_{\eta | \delta} \subseteq f_{\eta}$
- (4) $\alpha \subseteq \delta_{\eta}, \alpha \subseteq \rho_{\eta}$

(5) if $\alpha \in S_0$, $\delta_{\eta_{\alpha}|\beta}$, $\rho_{\eta_{\alpha}|\beta}$, $\delta_{\nu_{\alpha}|\beta}$, $\rho_{\nu_{\alpha}|\beta} < \alpha$ for all $\beta < \alpha$ and g_{α} : $\alpha \stackrel{1-1}{\text{onto}} \alpha$, then $\langle f_{\eta_{\alpha}}(g(\alpha^*)) \rangle$ and $\langle f_{\nu_{\alpha}}(\alpha^*) \rangle$ realize contradictory $L_{\infty \lambda}$ -types.

We may now form models \mathfrak{A}_{σ} for each $\sigma \in 2^{\lambda}$ as described earlier. We show now that these models behave as claimed.

A. If
$$\sigma \neq \sigma' \in 2^{\lambda}$$
, then $\mathfrak{M}_{\sigma} \ncong \mathfrak{M}_{\sigma'}$.

Suppose to the contrary that g is an isomorphism from \mathfrak{N}_{σ} onto \mathfrak{N}'_{σ} . In particular then, $g\colon \lambda$ $\frac{1-1}{\mathrm{onto}}$ λ . It is then easy to see that the set $A=\{\alpha<\lambda\colon g\colon \alpha$ $\frac{1-1}{\mathrm{onto}}$ $\alpha\}$ is closed unbounded in λ . By assumption, the set $B=\{\alpha\in S_0\colon \sigma|\alpha=\eta_{\alpha},\sigma'|\alpha=\nu_{\alpha}$ and $g|\alpha=g_{\alpha}\}$ is stationary in λ . Furthermore, by condition (2), the set $C=\{\alpha<\lambda\colon \delta_{\eta_{\alpha}\mid\beta},\,\rho_{\eta_{\alpha}\mid\beta},\,\delta_{\nu_{\alpha}\mid\beta},\,\rho_{\nu_{\alpha}\mid\beta}<\alpha$ for all $\beta<\alpha\}$ is also closed unbounded in λ . Thus $A\cap B\cap C$ is not empty. Now, for $\alpha\in A\cap B\cap C$, by condition (5) $\langle f_{\eta_{\alpha}}(g(\alpha^*))\rangle$ and $\langle f_{\eta_{\alpha}}(\alpha^*)\rangle$ realize contradictory types. Since these are respectively just the types of $g^{-1}(\alpha^*)$ in \mathfrak{N}_{σ} and α^* in $\mathfrak{N}_{\sigma'}$, g is not an isomorphism, contrary to our assumption.

B. If
$$\sigma \in 2^{\lambda}$$
, then $\mathfrak{M}_{\sigma} \equiv \mathfrak{M}_{\lambda}$.

Consider the set

$$F = \{ f_{\alpha \mid \delta} : \delta \text{ is a limit of } C_{\alpha} \text{ for some } \delta < \alpha < \lambda, \alpha \notin S_0 \}.$$

By definition of \mathfrak{A}_{σ} , F is a set of partial isomorphisms from \mathfrak{A}_{σ} to \mathfrak{A} . By conditions (3) and (4) and the properties of the Beller-Litman family, F is seen to have the Karp back-and-forth property corresponding to $L_{\infty\lambda}$, since λ is regular.

C. The construction can be carried out.

The proof is by induction on $\alpha < \lambda$. For $\alpha = 0$ and η the empty sequence we may take $\delta_{\eta} = \rho_{\eta} = f_{\eta} = 0$. For $\alpha = \beta + 1$ and $\eta \in 2^{\alpha}$, we may disregard condition (3) and by a previous observation, since without loss of generality we may assume S_0 contains only limit ordinals, we may also disregard (5). It is quite easy to satisfy conditions (1), (2), and (4). Simply let $\delta_{\eta} = \delta_{\eta|\beta} + 1$, $\rho_{\eta} = \rho_{\eta|\beta} + 1$ and $f_{\eta} = f_{\eta|\beta} \cup \{\langle \delta_{\eta|\beta}, \rho_{\eta|\beta} \rangle\}$. The above conditions will then hold by induction.

For α a limit ordinal we will consider two subcases separately, determined by whether or not C_{α} contains a last limit point. Before doing this we make the following subclaim.

Subclaim Without loss of generality we may assume that for every $\alpha \in S_0$, C_{α} has no last limit point.

Proof: First, we consider the case in which $\lambda = \aleph_1$. It is easy to see that without loss of generality we could have assumed that S_0 contained only ordinals γ such that $\gamma > 0$ and if $\xi < \gamma$, then $\xi + \omega < \gamma$. Now, if $\alpha \in S_0$, choose $\alpha_n < \alpha$, $n < \omega$ such that $\alpha_n + \omega < \alpha_{n+1}$, α_n is a limit ordinal, and $\alpha = \bigcup_{n < \omega} \alpha_n$. Now let $C_{\alpha} = \{\alpha_n + k : n \in \omega, 1 \le k \le \omega\}$. Then $C_{\alpha} \cap S_0 = 0$ and C_{α} has no last limit point.

Now we consider the case in which $\lambda > \aleph_1$. First we consider the easy case in which S_0 contains only ordinals of cofinality $\geqslant \aleph_1$. Now if γ were the last limit point of C_{α} , then since C_{α} is closed unbounded in α we would have $\gamma = \gamma_0 < \gamma_1 < \ldots$, an ω -sequence of elements of C_{α} , viz., the successors of γ in

 C_{α} increasing to α , and contradicting the assumption that α has cofinality $\geq \aleph_1$. Next we consider the more general case.

Stage A: We define by induction on $n \in \omega$, for every increasing sequence v of length n of ordinals $<\lambda$, a closed, bounded subset C_v of λ with last element a limit such that

- 1. $C_{v|l}$ is an initial segment of C_v , for l < n
- 2. the last element of C_v is bigger than the last element of v (for n > 0)
- 3. the set $S_v = \{\delta : \delta < \lambda, C_v \text{ is an initial segment of } C_\delta, cf(\delta) = \aleph_1 \}$ is a stationary subset of λ .

The C_v 's may be defined as follows. First let $C_{\langle \cdot \rangle} = \phi$. Assume C_v is defined. For each $\alpha < \lambda$ and for every $\delta \in S_v$, except for $<\lambda$ many, there is an initial segment $C_{v,\alpha,\delta}$ of C_{δ} with last element $\gamma(v,\alpha,\delta)$ a limit $>\alpha$, and bigger than the last element of C_v . By Fodor's Lemma there is some γ such that $\{\delta \in S_v : \gamma(v,\alpha,\delta) = \gamma\}$ is stationary. Now define $C_v \cap_{\alpha} = C_\gamma$.

Stage B: Now we redefine the C_{δ} 's to satisfy the requirements. We let

$$C^* = \{\delta \colon \text{if } v \in \delta^{<\omega}, \text{ then } C_v \subseteq \delta\}$$

$$S_0^* = S_0 \cap C^*$$

$$C_\delta^* = \begin{cases} C_\delta & \text{if } \delta \notin S_0^* \text{ or } cf(\delta) \geqslant \aleph_1 \\ \\ C_\delta^* = \begin{cases} C_{v|n} & \text{if } \delta \text{ not as above, where} \\ \\ v \in \delta, \text{ increasing and unbounded.} \end{cases}$$

It is easy to check that the sets S_0^* , C_δ^* , satisfy the requirements for S, C_δ .

We now may return to the limit case of the construction. We consider first the case in which C_a has a last limit point β . We may write $C-\beta$ as $\{\beta=\beta_0,\beta_1,\beta_2,\ldots\}$ with $\beta_n<\beta_{n+1},$ $n\in\omega$. By the subclaim we may assume $\alpha\notin S_0$ and so we need not be concerned with the "splitting" condition (5). Let $\delta=\bigcup_{n\in\omega}\delta_{\eta|\beta_n},$ $\rho=\bigcup_{n\in\omega}\rho_{\eta|\beta_n}$ and $\tau=\bigcup_{n\in\omega}\tau_{\eta|\beta_n}$. Then τ is an $L_{\infty\lambda}$ -type realized in \mathfrak{M} . To see this we use the fact that for n< m, $\tau_{\beta_n}\to\exists \vec{x}\tau_{\overline{\beta_m}}(\vec{x})$, where \vec{x} is the sequence of variables $\langle x_\xi\rangle_{\delta_{\eta|\beta},\leqslant\xi<\delta_{\eta|\beta_m}}$, to construct a realizing sequence (recall that τ is equivalent to a formula in $L_{\mu\lambda}$ for some fixed μ sufficiently large). Then $\tau_{\eta|\beta}\models\exists\vec{x}\;\tau[f_{\eta|\beta}(\delta^*_{\eta|\beta}),\vec{x}]$, where \vec{x} is the sequence of variables $\langle x_\xi\rangle_{\delta_{\eta|\beta}\leqslant\xi<\delta}$. Now, select a sequence $a^*=\langle a_\xi\rangle_{\delta_{\eta|\beta}\leqslant\xi<\delta}$ of elements of \mathfrak{M} such that $\mathfrak{M}\models\tau[f_{\eta|\beta}(\delta^*_{\eta|\beta}),a^*]$. Now, define f'_η so that f'_η extends $f_{\eta|\beta}$ and so that $f'_\eta(\xi)=a_\xi$ for $\delta_{\eta|\beta}\leqslant\xi<\delta$. Now, let ρ_η be large enough to contain range $f'_\eta\cup\rho$. Next, choose δ_η so that $\overline{\delta_\eta}-\overline{\delta}=\overline{\rho_\eta-(\mathrm{range}\;f'_\eta\cup\rho)}$. Finally extend f'_η to f_η taking the elements of $\delta_\eta-\delta$ 1-1 onto the elements of $\rho_\eta-(\mathrm{range}\;f'_\eta\cup\rho)$ in any way whatsoever. This will satisfy conditions (1)-(4), by induction.

We now consider the case in which C_{α} has no last limit point. First, in view of condition (3) we may define a function f by $f = \bigcup \{f_{\eta|\beta} : \beta \text{ is a limit point of } C_{\alpha} \}$. Now, if $\alpha \notin S_0$ we may define $f_{\eta} = f$ and δ_{η} and ρ_{η} in the obvious way.

Finally let us suppose $\alpha \in S_0$ and condition (5) does apply, with all notation as in the condition. Let us also assume that $\langle f(g(\alpha^*)) \rangle$ and $\langle f_{\nu_{\alpha}}(\alpha^*) \rangle$ do realize the same type, where f_{ν} is defined (without having any difficulties) as

 $\bigcup \{f_{\nu_{\alpha}\mid\beta}\colon \beta \text{ is a limit point of } C_{\alpha}\}$. If they realize different types then we can just let $f_{\eta_{\alpha}}=f$, etc. Now we must "split". This is no problem since $\alpha\in S_0$. Simply choose a sequence $\langle a_{\xi}\rangle_{\xi<\alpha}$ of elements of $\mathbb R$ such that for each $\beta<\alpha$, $\langle a_{\xi}\rangle_{\xi<\beta}$ realizes $\tau_{\eta\mid\beta}$, but $\langle a_{\xi}\rangle_{\xi<\alpha}$ and $\langle f(\alpha^*)\rangle$ realize contradictory types. Now, define $f'\colon \alpha\to M$ by $f'(\xi)=a_{g^{-1}(\xi)}$. Finally, let $f_{\eta_{\alpha}}$ extend f' and be from some ordinal 1-1 onto another ordinal containing $\bigcup_{\beta<\alpha}\rho_{\eta_{\alpha}\mid\beta}$ in its range. Then $f_{\eta_{\alpha}}$, along with the obvious choices for $\delta_{\eta_{\alpha}}$ and $\rho_{\eta_{\alpha}}$ will satisfy all conditions since $\alpha\in S_0$ and so condition (3) is vacuous.

NOTE

1. Remark added in proof: Now we know that the theorem is false for λ weakly compact; it is possible to get any number of models between 1 and λ^+ . See [9].

REFERENCES

- [1] Beller, A. and A. Litman, "A strengthening of Jensen's □ principles," *The Journal of Symbolic Logic*, vol. 45, no. 2 (1980), pp. 251-264.
- [2] Chang, C. C., "Some remarks on the model theory of infinitary languages," pp. 36-63 in: *The Syntax and Semantics of Infinitary Languages, Lecture Notes in Mathematics*, 72, ed., J. Barwise, Springer, 1968.
- [3] Hiller, H. L. and S. Shelah, "Singular cohomology in L," *Israel Journal of Mathematics*, vol. 2 (1977), pp. 313-319.
- [4] Nadel, M. and J. Stavi, " $L_{\infty\lambda}$ -equivalence, isomorphism and potential isomorphism," Transactions of the American Mathematical Society, vol. 236 (1978), pp. 51-74.
- [5] Palyutin, E. A., "Number of models in $L_{\infty\omega_1}$ theories, II," pp. 443-456 in *Algebra I Logika*, vol. 16, no. 4 (1977); English translation in *Algebra and Logic*, vol. 16, no. 4 (1977), pp. 299-309.
- [6] Scott, D., "Logic with denumerably long formulas and finite strings of quantifiers," pp. 329-341 in *The Theory of Models*, North Holland, 1965.
- [7] Shelah, S., "The consistency of Ext(G,Z) = Q," Israel Journal of Mathematics, to appear in 1980.
- [8] Shelah, S., "Various results in mathematical logic," Notices of the American Mathematical Society, vol. 25, no. 2 (1978), p. A-247.
- [9] Shelah, S., "On the number of non-isomorphic models of power $\lambda \equiv_{\infty \lambda}$ to a model of power λ , when λ is weakly compact," to appear in this *Journal*.

Department of Mathematics Hebrew University of Jerusalem Israel