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Abstract

If cfx = K, kT < cfA = A then there is a stationary subset S of {6 < A:cf(8) = K}
in I[A]. Moreover, we can find C = (C5:6 € 5), Cs a club of ), otp(Cs) = K, guessing
clubs and for each a < A we have: {CsNa : a € naccCs} has cardinality < A.

We prove that, for example, there is a stationary subset of Scx, (A) of cardinality
cf (S<x, (A), €)-

We prove the existence of nice filters where instead of being normal filters on w;
they are normal filters with larger domains, which can increase during a play. They can
help us transfer the situation on R,-complete filters to normal ones.

We consider ranks and niceness of normal filters, such that we can pass, say, from

PPr(u,)(I‘) (where cfp = R;) to PPaormai (4)-
We consider some weakenings of G.C.H. and their consequences. Most have not

been proved independent of ZFC.

1 I[)] is Quite Large and Guessing Clubs

On I[\] see [6], [5], [7, §4] (but this section is self-contained; see Definition 1.1 and Claim
1.2 below). We shall prove that for regular &, A, such that kt < A, there is a stationary
S C {6 < A:cfd =k} in I{A]. We then investigate “guessing clubs” in (ZFC).

Definition 1.1 For a regular uncountable cardinal A, I[A] is the family of A C A such that
{6 € A : 8 = cfé} is not stationary and for some (Pa : @ < A) we have:

(a) P is a family of < X subsets of e;

(b) for every limit a € A such that cf(a) < a there is z C a, otp(z) < @ = supz

such that
Aznge Py
B<a 7<e
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We know (see [6], [5] or below)

Claim 1.2 Let A > Ry be regular.

(1) A € I[)] iff (note: by (c) below the set of inaccessibles in A is not stationary
and) there is (Cg : B < ) such that:

(a) Cp 13 a closed subset of B;

(b) if a € naccCp then Cq = CgNPB (nacc stands for “non-accumulation”);

(c) for some club E of A, for everyd € ANE: cfd < § and 6 = supCy,
and cf(8) = otp(Cs);

(d) nacc(Cjp) is a set of successor ordinals.
(2) I[)\] is a normal ideal.

Proof.
1) THE “IF” PART:

Assume (Cj3 : B < M) satisfy (a), (b), (c) with a club E for (c). For each limit a < A
choose a club e, of order type cf(a). We define, for a < A:

Po=:{Csg:B<a}U{eg:B<a}U{eyNa:y <min(E\ (a+1)}.
It is easy to check that (P4 : @ < A) exemplify “A € I[)A]”.

THE “ONLY IF” PART:

Let (P, : a < A) exemplify “A € I[A]” (by Definition 1.1). Without loss of generality if
C € Py, and ¢ € C then C\( € P, and CN( € P,.

For each limit 3 < A let eg be a club of 3, otp(eg) = cf(B) and cfB < B8 = cf < min(ep).
Let {7; : 1 < A) be strictly increasing continuous, each v; a non-successor ordinal < A, v =0,
and Yi41 = % 2 Ro + |Uagy, Pl + vl and 7 € A = of (i) <%

Let F; be a one to one function from (UaS'r.' 'Pa) xyinto {(+1:7 <(+1<7u}
Now we define C, C a as follows.

Assume a is a successor ordinal, and let i(a) be such that 7o) < @ < Yig)+1- If
a € RangFy(,), let Cq = 0. If @ = Fq)(z,B) (soz € UES'r;(a) Pe, B < Yi(a)), let Ca be the

closure (in the order topology on ) of:

[ (i) C€x,
(i) otp(zN() € eg,

(iii) 7 < i(a) is minimal such that zN¢ € |J P,
e<7;
Fizné.p): (iv) if£€zn{, otp(zNE) € es then
@) <pznée |J P
£3%5(1)

[ (v) B < minz.

Now for a < ) limit, choose Cy: if possible, naccC, is a set of successor ordinals, Ca
is a club of @, [8 € naccC, = Cs = B N C,); if this is impossible, let C5 = 0. Let
E =: {7; : i limit < A\}. Now we can check the condition in 1.2(1).
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2) By Definition 1.1 I[}] is an ideal; by 1.2(1) I[A] includes the ideal of non-stationary
subsets of A. By the last phrase and Definition 1.1, clearly I[)] is normal. O 9

Claim 1.3 If x, A are regular, S C {§ < X:cf6 =k}, S € I[)\], S stationary, k¥ < X then
we can find P = (P, : a < A) such that for 6(*) =: k we have:

[ (1) Pq s a family of closed subsets of a, |Pq| < A;
(ii) otpC < 6(%) for C € UaPq;
(iii) for some club E of A, we have:
[« ¢ E=> Py =0] and

25(x) [@ € E = (VC € Py)(otpC < 8(%))];
P :« [@ € E\(SNaccE) = (VC € P,)(otpC < §(*))];
PS [ € SNaccE = (C € Pa)(otpC = 6(¥))];

[x € SNaccE & C € Py & otpC = é(*) = a =supC)};
(iv) C € Py & B €naccC = pFNC € Ppg;

(v) for any club E of A, for some é € SN E and C € Ps we have
| C C E & otpC = §(*).

Proof. Let (Cy : @ < )) witness “S € I[A]” as in 1.2(1); without loss of generality
otpCy < (). For any club E let us define P§ by induction on o < A:

Pg =: {aNgl(Cs,E) :a € Fanda < f < min[E \ (o +1)]}
U{CU{B}: forsomeB € E,f < a,CE 'Pg and otp(C) < 6(*)}

where
gl(Cs,E) =: {sup(EN (y+1)) : v € Cgand 7 > min E}.

Note that |[Pg| < |min(E \ (@ +1))] < A\. We can prove that for some club E of A
(P& : @ < )) is as required except (v) which can be corrected (just by trying successively
xt clubs E¢(¢ < x*) decreasing with ¢, see [13]) and (iv) which is guaranteed by demanding
E to consist of limit ordinals only and the second set in the union defining Pg. O13

The following lemma gives a sufficient condition for the existence of “quite large”
stationary sets in I[A] of almost any fixed cofinality.

Lemma 1.4 Suppose
(i) A > &> Rg, A and & are regular,
(ii) P = (Pa: a < k), Po a family of < X closed subsets of a,

(iii) Iz =: {S C k: for some club E of k, for no § € SN E is there a club C of 8,
" such that C C E and [a € naccC = C Na € Ugc, Ppl} is a proper ideal on «.

Then there is S* € I[\] such that for stationarily many § < A of cofinality , S* N § is
stationary in §; moreover for some club E of § of order type K,

{otp(aNE):a€ E\S*} € 5.

et i i s i o S it S s 1



358 SHELAH

Remark 1.4A: The “for stationarily many” in the conclusion can be strengthened to: a
set whose complement is in the ideal defined in [13], §2.

Proof. Let x be regular large enough, N* be an elementary submodel of (H(x), €,<5) of
cardinality A such that (\+1) C N*,P € N. Let C = (Ci : i < A) list N*"N{A C A : |4] < &}

and let
S* = {6 < X:cf(6) < xandforsome A C 4, § =sup A,

otpA < kand (Va < 8)[ANa € {C;:i < d}]}.

Clearly S* € I[\]; so we should only find enough § < A of cofinality k as required. So let
E$ be a club of \. We can choose inductively M¢({ < &) such that:

(a) M¢ < (H(x),€,<})s

(®) IMcll < A, M¢ N X an ordinal,
(c) M is increasing continuous,
(d) N,x,P,C,E§ belongs to My,
(e) (M::e<() € Mcqa.

Let 6; = sup(M¢ N ), so {6 : ¢ < k) is strictly increasing continuous, so § =: §, has
cofinality x. Hence there is a strictly increasing continuous sequence {a¢: ¢ < k) €N*
with limit 6, and clearly E = {{ < k: a¢ = ¢} is a club of k. We know that

T =: {¢ < & :  limit and for some club C of ¢, C C FEand /\[CHEE U'Pg]}
e<¢ £<¢

is stationary; moreover, k\T € Iz (see assumption (iii)) and clearly T C E. Clearly it
suffices to show

(+) (€T =5, € 5.

Suppose ¢ € T, so there is C, a club of ¢ such that C C E and A [CNe € Ug<cPel-
Let C* = {6, : £ € C}, so C* is a club of 8¢ of order type < ( < K (which is < 8o < &¢). It
suffices to show for £ € C that {8, : € € ENC} € {Ci: i < §}. For this end we shall show

(@) {Sc:e€CnE}e{Ci:i<A},
(B) {0::e€CNE}E My
This suffices as (C; : 1 < A\) € Mg < Mgy and Mep 1 0{Ci:i< A}={Ci:i€ ANMen} =
{C',' 1 < 554.1}.
PROOF OF (a): Remember {(a, : € < k) € N*. Also (P:: € < k) € N* hence U, <xPe &
N* (as & < A, [Pe| < AjcfX = A) and CNEE U.cxPe; hence CNE € N™. Together

{a.:e €ENCY €EN* asceC=>ec€E=a. =4 (frongEandthedeﬁnitionofE),
and from the definition of {C; : ¢ < A), we finish.

PROOF OF (3): We know P e My as [Pe] <A ks <Xand M,NAis an ordinal, clearly

U.<x Pe € My (remember |Pe| < A, £ < A). So for € < ¢, CNe € Uy Py © Mo € Mgy
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As (M; : i < €) € Mgy clearly (§; : i < £) € Mgy hence by the previous sentence
(0i : 1 € CNE) € Mgy, as required. D14

Conclusion 1.5 If k, A are regular, k¥ < A then there is a stationary S C {6 < X : cfd = }
in I[M].

Proof. If A = k*+ — use [9], 4.1. So assume A > «k*+. By [9], 4.1 the pair (k,xt)
satisfies the assumption of 1.3 for S = {§ < k¥ : cf§ = k}; (i.e. , ) there stands for x, x++
here). Hence the conclusion of 1.3 holds for some P = (P, : a < k), |P,| < |k*t|. Now
apply 1.4 with (%, ) here standing for (k, ) there (we have just proved I is a proper
ideal, so assumption (ii) holds). Note:

(x) {6 <Kkt :cfd =k} ¢ L.
Now the conclusion of 1.4 (see the “moreover” and choice of P, i.e.(*)) gives the desired

conclusion. O

Conclusion 1.8 If A > & are uncountable regular, st < ), then for some stationary
S C {6 < A:cfd =k} and some P = (P, : @ < A) we have: @;\—)"; from the conclusion of
1.3 holds. '

Proof. As x is regular apply 1.5 and then 1.3. Oie

Now 1.6 was a statement I have long wanted to know, still sometimes we want to have
“Cs C E,otpC = 6(*)”, §(x) not a regular cardinal. We shall deal with such problems.
Claim 1.7 Suppose

(i) A > k> Rg, A and £ are regular cardinals,

(ii) Py = (Pra : a < &) for £ = 1,2, where Py 4 is a family of < X closed subsets of ,
Pa,a is a family of < X clubs of @ and [C € Pa,a & B € C = CNP € Uyca Pinls

(iii) I5, 5, = {S € & : for some club E of k, for no § € SN E is there C € Py,
C C E} is a proper ideal on k.

Then we can find P, = (Pio:a<A) for t=1,2 such that:
(A) Pi, is a family of < X closed subsets of a;
(B) B€naccC & CE€Pl,=>CNBEP]4;

(C) P55 is a family of < A clubs of § (for § limit < A) [B € naccC & C € P35 =
CNp e Pl

(D) for every club E of A, for some strictly increasing continuous sequence (6¢ : ¢ <
k) of ordinals < A\ we have
{¢ < k: { limit, and for some C € Py ¢ we have:

{6 :c€C} e P35 (hence [€ € naccC = {6, :e €CNE} € Pf,éel)}

= k mod I;,-h:ﬁz;
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(E) we have es a club of § of order type cf(8) for any limit 6 < A; such that for
any C € UqycrPrq for some § < A, cfs = k and C' € Upgc,P2,p we have
C = {y€es:otp(esnv) €C'}.
Proof. Same proof as 1.4. (Note that without loss of generality [C € Pia & f<a <
k= CNpPEePg)). [

Conclusion 1.8: If () is a limit ordinal and A = cfA > |6(*)| then we can find P, =
(Pio:a<A) fort=1,2 and stationary S C {6 < X : cf§ = cf6(*)} such that:

( (A) Pi, is a family of <A closed subsets of o each of order type < 8(x);
(B) B€naccC & C€Pi,=CNPEP4

@ : (C) P34 is a family of < X clubs of § (yes, maybe = \) of order type é(x),
— e ﬁ and [8 € naccC & C € P55 = C NP € Piyl;

(D) for every club E of A, for some § € EN S, cfd = cf(86(x)) and there is
CeP;p such that C C E.

\

Proof. If A = |§(*)|** (or any successor of regulars) use 3], 11, 6.4(2)] or [13], 2.14(2)
(©)&(d)). If A > |§(*)| 7+ let x = |6()[** and let S = {6 < T+ : cfd = cfé(+)}; applying

. P ++ §(* . pe
the previous sentence we get -73;,_’}5*2 satisfying @%. S0) , hence satisfying the assumption
1

7.73; W1
of 1.7 so we can apply 1.7. Oi8
Definition 1.9 * @%f(-;-)z s is defined as in 1.8 except that we replace (C) by:

(C)F P35 is a family of < A clubs of & of order type 8(*).

Remark 1.9A Note that if Pa = P1aUPsa, [P2al S 1, Pra={C € Pa: otpC < 8(+)},
Pra={C € Pa: otpC = 6(x)} then + e%:f(%)a g %,65('*)'

Claim 1.10 Suppose A = cfA > [6(*)|*, 6(x) a limat ordinal, additively indecomposable (i.e. i

a<d(x)=>ata< 3(*)), -;;f(%)z s from 1.8 and

(¥) @ € S = |P2a| < |e]-

(Note: a non-stationary subset of S does not count; e.g. for A successor cardinal the o with

la|t < A. Note: +@%’ff1—";)2 s holds by () Td if A is successor then +®%f,(%)2’ s suffices).
Then for some stationary S; € S and P = (Py : @ < ) we have: Pa & Pl,a UP2q and:

( (i) Pq is a family of closed subsets of a, |Pal < A

A6(*) (i) otpC < 8(*) if C € Pa, a & S1;

* ® : ﬁ (ili) ifa € S; then: Pa = {Ca}, otpCq = 8(¥), Ca a club of a disjoint to Si;

PS5 (iv) C € Pa & B € naccC = BNC € Pg;

| (v) foranyclub E of X for some & € S; we have Cs C E.

Remark: Note there are two points we gain: for a € 51, Pa is a singleton (as in 1.3), and

an ordinal o cannot have a double role — Cq a guess (i.e. @ € S1) and C, is a proper .

initial segment of such Cs . When §() is a regular cardinal this is easier.

e

|Q

su
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Proof. Let Py o = {Ca,i : t < o} (such a list exists as we have assumed [P2al < |al, we
ignore the case P2 o = 0). Now

(*)o for some ¢ < A for every club E of \ for some § € SN E we have Csi\ E is bounded in
a. [Why? If not, for every i < A there is a club E; of A such that fornod € SN E is
Cs,i \ E bounded in @ . Let E* = {j < A : j a limit ordinal, j € Ni<j Ei}, it is a club
of A, hence for some § € SN E* and C € P, 5 we have C C E*. So for some i < Q,
C =C;j,4,50 C C E* C E; Ui hence Cs;\i C E;, contradicting the choice of E;.]

(*)1 for some i < X and y < 8(*), letting Cs =: Cs;\{¢ € Cs,i : otp((NCj,) < v} we have:
for every club E of A, for some § € SN E we have: C5 C E. [Why? Let i(*) be as
in (*)o, and for each v < §(*) suppose E, exemplify the failure of (*); for i(*) and 7,
now [, <5(x) £y is a club of A exemplifying the failure of (*)g for i(+), contradiction.
So for some v < §(*) we succeed.]

(*)2 Without loss of generality [Poo| < 1, so let Pag = {Cy}. [Why? Let 4,7 and Cj
(for 6 € S) be as in (*); and use P{ , = {C\{¢ € C : 0tp((NC) < 7} : C € P1a},
Pé,i = {CJ}-]

(¥)3 for some h : X — |6(x)|*, for every @ € S we have h(a) & {h(B) : B € C,}. [Why?
Choose h(a) by induction on «.]

(*)4 for some B < |6(x)|*, for every club E of A, for some 6§ € SN h~1({B}), Cs C E.
[Why? If for each § there is a counterexample E5 then N{Eg : 8 < [6(x)|1} is a
counterexample for (x)2.]

Now we have gotten the desired conclusion. 0110

Claim 1.11 If SC {0 < A: cfd =k}, S € I[A], k¥ < A = cf)\ , then for some stationary

S1 C S and P; we have *@;\—)’f(;z.

Proof. Same proof as 1.3 (plus (*)3 , (*)4 in the proof of 1.8). O111

Claim 1.12 Assume A = pt, |6(*)| < p, cf(8(x)) # cfu. Then we can find stationary
S C {6 < A:cfd =cfé(x)} and P such that *®%165f').

Remark: This strengthens 1.8.

Proof.
CASE (a): 4 REGULAR.
By (3], II1, 6.4(2)] or [13], 2.14(2) ((c)&(d)).

CASE 3: u SINGULAR.

Let 6 =: cfu, o =: |6(*)|*7 + 6% and p = Yoc<o B¢y (B¢ 1 € < 0) strictly increasing, po > o
and for each @ < Alet @ = ;g Aay, (Aay : ¢ < 0) increasing, |Aqc| < pe.

By 1.6 there is a sequence P = (P, : @ < ) and stationary S; C {§ < A : cf(8) = o}
such that @-;\5';,] of 1.3 holds. Let U{Pq : @ < A} U {8} be {Cq : @ < A} such that C, C
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[a € S; = a=5upCqs & Cy € Pa & 0tpCo = o] and [ € S1 = otpCq < o]. For some club
i E} of A [a € Ef = UpcaPs ={Cs: B < a}l.
| Looking again at 69%’;,1, we can assume S; C E] & (V8)[6 € S; = Cs C Ef]}, hence
because we can replace every Cq by {8 € Cq : otp(BN C,) is even }, without loss of
generality

= (+) [6 € $1 & @ € naccCs = aN C; € {Cp : f < Min(C; N @)}].

. Without loss of generality [8 € Aqc = Cg C Aq ] (just note |ICs] < o < p¢) and
i a € Agc = Aa¢ C Apg¢. Fora € Sy let Co = {Baye : € < 0} (Ba, increasing in ) and
A let 85, € [Ba,es Bae+1) be minimal such that Cq N Bae+1 = Cgy, (exists by (*) above).
‘ Without loss of generality every C, is an initial segment of some Cg, B € 51 (if not, we
1 redefine it as 0).

4l (), there are v = () < @ and stationary Ss C S; such that for every club E of A, for
some 8 € S we have: C;5 C E, and for arbitrarily large € < o, Bie € ABs cpr v [Why?
If not, for every v < @ (by trying y(*) = 7) there is a club E, of A exemplifying the
failure of (*); for v . Let E =(\,cg EyNE},s0 Eisa club of A, hence

S =:{6:< )€ Si(so cfé = o) and C5 C E}

is a stationary subset of A. For each § € S’ and € < o, for some v = ¥(d,€) < 6 we
have 85, € Ag;,,, butaso = cfo # cf6 = @ for some 7(8), {€ < o : €7(§,€) = 7(d)}
is unbounded in 0. But § € E (), contradiction]. ‘

(¥)2 Without loss of generality: if 8 € naccCy, a < X then (3§ € Ag )8 > £ >
sup(BN Cq) & BN Cq = C¢]. [Why? Define C! for a < A

€9 = {3 : B € naccCy and (I € Ag)[B > & 2 sup(BN Ca) & BN Ca = Cel}-

C is: ) ifae.sz,a>sup02,
a a N closure of C% otherwise.

Now (Cy : @ < A) can be replaced by (C; : a < N

(¥)3 For some 71 = 71(*) < 6, for every club E of )\, for some § € E : cf(8) = cf(6(%)),
and there is a club e of & satisfying: e C E, otp(e) is 6(+), and for arbitrarily large
B € nacc(e) we have eN B € {C¢ : ¢ € Asqy }. [Why? If not, for each 71 < 6 there
is a club E,, of A for which there is no § as required. Let E =: N\, <9 Ey, s0 B is
a club of A, hence for some a € acc(E) N Sz, C, C E. Letting again Co = {Bage :
£ < o} (increasing), Ca N Pa,c = Cs,5;, where 85, € Ag; .1 ,4() clearly & =: Bq 5(x)
e = {Bse : € < 8(x)} satisfies the requirements except the last. As cf(6(x)) # cf(p),
for some 71 (x) < 8,71(*) > 7(*) and {e < &(x) : G5, € Ap; sym (x} 18 unbounded in
§(%). Clearly 8 =: B4 5(x), € =: Ca N § satisfies the requirement. Now this contradicts
the choice of E., (x)]-

(¥)4 For some club E? of A, for every club E? C E® of ), for some é € E® we have:

(a) cf(8) = cf(6(+));
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i (b) for some club e of § : e C E®, otp(e) = §(+), and for arbitrarily large
B € nacc(e) we have eN B € {C¢ : € € As, (0}

(c) for every B € As,,(x) We have: C3 C E* = C3 C E® (we could have
demanded Cg N E® = Cy N E®). [Why? If not we choose E; for i < ;1,7 %)
by induction on i, [j < i = E; C Ej], E; a club of A\, and E;;; exemplify
the failure of E; as a candidate for E®. So N; E; is a club of A hence by
(*)3 there are § and e as there. Now ({8 € A;,,x) : C3 C E} :

T (*)) is a decreasing sequence of subsets of A;,, (x) of length p7 () and
|45 (s)| £ Hyy(x)> hence it is eventually constant. So for every i large
enough, § contradicts the choice of E;y;].

Let § = {6 < A : cf(d) = cf(6(x)), and there is a club e = e; of § satisfying: e C E°,
otp(e) = d(x), @ € nacce = e N a € A, () and for arbitrarily large B € nacc(e) we have
eNPB € {C¢: & € As4(x)}}- So S is stationary, let for § € S, C; be an e as above. For a < )
let Pl,a = {Cﬁ <L a,pE Aa,'yg(*)}-

(*)s
(a) for every club E of A, for some é € S, Cj C E;
(b) Cj is a club of 4, otp(C§) = &(*);
(c) if B € naccCj (6 € S) then C; NG € P1g;
(d) IP1,8l £ py(s)> P1,s is a family of closed subsets of B of order type < ().

[Why? This is what we have proved.]

Now repeating (*)3, (*)4 of the proof of 1.10, and we finish. Oj.12

Claim 1.13

(1) Assume A = pt, |6(x)] < p, Ro < cf(8(x)) = cf(p)(< /A), then we can find [
stationary S C {6 < A : cf§ = cf(6())} and P such that *® S , ezcept when:

@ for every regular o < p, we can find h : ¢ = cf(u) such that for no d,¢ do
we have: if § < o, cf(8) = cf(u), € < cfu then {a < §: h(a) < €} is not a
stationary subset of 4.

(2) In 1.12 and 1.13(1) we can have p > sup,<y |Pal-
(3) If1.13(2), if pu is strong limit we can have |P,| < 1 for each a.
Remark Compare with [7], §3.

Proof. Left to the reader (reread the proof of 1.12 and [7], §3).

Claim 1.14 Let k be regular uncountable. We can choose for each regular A, .73'\ =
(P2 :a < \) (assuming global choice) such that:

(a) for each A, P2 is a family of < \ of closed subsets of a of order type < k.
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(b) if x is regular, F is the function A — P (for A regular < x), Ro < & = cfk,
xt+ < x, z € H(x) then we can find N = (N; : i < &), an increasing continuous
chain of elementary submodels of (H(x), €, <5}, F), (Nj : j < i) € Niyq, ||Ni|| =

| Ro + |i|, ¢ € Ng such that:

(*) if st < 0 = cfd € Nj, then for some club C of sup(N, N 0) of order type k,
. Jor any j} < 3 < Kk we have:
C Nsup(N; N 0) € N4y and otp(C Nsup(N; N6)) = j.
\
: Proof. Let (C, : a € S) be such that § C {a < s*1 : cfa < «} is stationary, otpCy < &,
) [8 € Ca = C = BNCL,), Cq a closed subset of e, [ limit = a = sup Co), {a € S: cfa = &}
stationary, and for every club E of x*+ there is § € S, cf(d) = k, C5 C E. Fori € x*+\§

let C; = §. Now for every regular A > k¥ and a < ), let e} C @ be a club of a for a < A
limit and let

52 = {{i € e5: 1 < a,otp(es Ni) € Cp} : § < A has cofinality k%, and B € S}.
Given z € H(x), we choose by induction on i < ™+, M;, N; such that: |

Ni < M; < (H(x),€,<}, F),
I Mill = 5] + Ro,

IVl = Gl + o, i
M;(i < s*1) is increasing continuous,

T € My,

(Mj:j <1) € My,

N; is the Skolem Hull of {(N; : j € C¢) : ( € Ci}.

We leave the checking to the reader. D114

2 Measuring Sc.())

We prove that two natural ways to measure Sc,(A) (k regular uncountable) give the same
cardinal: the minimal cardinality of a cofinal subset; i.e. its cofinality (i.e. cov(},%,,2)) -
and the minimal cardinality of a stationary subset. The theorem is really somewhat stronger:
for appropriate normal ideal on Scx()), some member of the dual filter has the right
cardinality.

The problem is natural and I did not trace its origin, but until recent years it seems (at
least to me) it surely is independent, and I find it gratifying we get a clean answer. I thank
P. Matet and M. Gitik for reminding me of the problem.

We then find applications to A-systems and largeness of I[)].

Definition 2.1
(1) (C,P) € T*[6,r] if

(i) Ro < kK =cfr < 0 = cfé,
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(i) C=(C5:6€8),P=(P;:6€8),
(iii) S €6, S is stationary (we shall write S = S(C)),
(iv) Cjs is an unbounded subset of § (not necessarily closed),

(v) id*(C) is a proper ideal (i.e. for every club E of 8 for some § € S,
CsCE )s

(vi) AsesotpCs < & (hence [§ € S = cf(d) < &]),

(vii) Ps is a directed family of bounded subsets of Cj, Uzep, 2 = Cs, and
[Ps| < k,

(viii) for every a < 0 the set
=: {aNa: for some § € S we have a < § € S,a € Ps and a € C;}

has cardinality < 6 or at least
(viii)~ for some list (a; : i < ) of |, Po we have: P, C {a; : j < a},
(ix) for'z € Uses Ps, [{y € Uses Ps : y C z}| < &.

(2) C € TY[0,x) if (C,P) € T*[8,x] with P; = {Cs N : a € Cs} or at least
= {Cs Na:CsNa has a least element}.

(3) C € T6,x] if (C,P) € T*[8, ] with P5 = Sci,(Cs).
Note that:

Claim 2.2
(1) If = cf > k = cfx > 0 = cfo, then there is C € T'[0, k] such that:

{6 € S(C) : cf6 = o} # B mod id*(C).

(2) If S C {6 < 6 : cfé < &} is stationary, C an S-club system, |C;| < &, and |
id®(C) a proper ideal, then C € T[9, x]. | ;

(3) In (2) if in addition |{CsNa: a € Cs,6 € S}| < 6 then C € T[9, k). :

(4) In part (1) if 0 is a successor of regular then we can demand C € T[4, &) each {
Cs closed.

(5) In part (1) if 6 = cf0 > k = cfx > 0 = cfo then there is C € T°[9, /s:] such that:
{6 € S(C) : cfé = 0} # @ mod id*(C).

Proof.

(1) By [13], §2 and then part (2).

(2) Check.
(3) Check.
(4) By [3], III, 6.4(2) (or [13], 2.14(2) ((c)&(d)).
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(5) By 1.5 and 1.11 (so we use the non-accumulation points).

Remember (see [Sh52], §3)

Definition 2.3 (1) D%, ()) is the filter on S<.(A) defined by: 1
for X C S<x(N):
X € D%, (X) iff there is a function F from U¢<x [S<k(N)] to S<x(A) such that: if a¢ €
S<x() for ¢ < k, is increasing continuous and for each ¢ < x we have F ((...,a¢, .. '))ESC c
ac41 then {¢ < k : a¢ € X} € Dy (D the filter generated by the family of clubs of ).

Similarly

Definition 2.4 For A > 8 = cfd > k = cfx > Rq, (C,P) € T*[0,x] we define a filter
Dz 5)(A) on S<x(N); (let x = u41(A)):

Y € ’D@-f)()\) if Y C Scx(A) and for some z € H(x), for every (No,Ng : @ < 6,0 €
Uses Ps) satisfying @ below, and also s € Ps & € S&a <k =z € N} & z € N,
there is A € id*(C) such that: § € S(C)\A = U,ep, Na NA €Y, where I

([ () Na=<(H() € <}

(i) ||Na)l < 8, No N0 an initial segment;

(i) (N3 : B < &) € Nas;

(iv) N, increasing continuous;

(v) Np<(H),€ <) for a € Uses Ps

R (vi) |INZ|| < &, Ng Nk an initial segment;

(vii) bC a (both in Uses Ps) implies Ny < Ng;

(viii) if a € a € Useg Ps then (Ng, Ny : B < o, b C o, b € Uses Ps) .

belongs to Ny; £

(ix) (Ng,Ny:B<a,bCa+1,b€ UsesPs) belongs to Nat1;

—

(x) aC N}and a€a=aNa€ Ng; H
| (xi) a Coa,a€UsesPs implies Ny € Nay1 (remember (viii) of 2.1). (
Clearly 7
y P
Claim 2.5 ;
(1) Any x > 2* can serve, and z = (Y, ), C,P) is enough. ?j
(2) ’D(—C— 1—,)()\) is a fine normal filter on S<.()) when (C,P) € T*[6,x], A > 0, hence é
it estends De<x()). (Remember id*(C) is a proper ideal.) " i
Theorem 2.6 Suppose A > k = cfx > Rg. Then the following three cardinals are equal for g
(C,P) € T*[x%, ) | a
pc
/"’(0) = Cf(8<n(k)a g)) m
p(1) = cov(), K, k,2) = min{|P| : P C S<x(}), and for every a C A, la| < &, h
there is b € P, a C b}, h
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£(2) = min{|S| : S C S<x(}) is stationary},
p@) = pgp) =wmin{lY|:Y € Dz 5 (N}
Remark 2.6A
(1) It is well known that if A > 2<% then the equality holds.
(2) This is close to “strong covering”.

(3) In the proof we may replace “6 = k*” by “A > 0 =cff > k" ifa < § =
cov(a,k,k,2) < 8.

(4) Note if A = &, then p(1) = u(2) trivially.

(5) Note that only x(3) has (C,P) in its definition, so actually x(3) does not depend
on (C,P).

Remark 2.6B
(1) We can weaken in Definition 2.1(1) demand (ix) as follows:

(ix) there is a sequence {a;, P : 1 < A) such that
(a) lai| < k, P} is a family of < & subsets of a;;
(b) for every é and = € Ps, for some < 4, a; = z and

(VO)[bEPs & bCa=beP]]
In this case 2.6, 2.6A(3) (and 2.5) remain true and we can strengthen 2.2.

(2) We can even use another order on Pjs (not C).

Proof. Clearly A < u(0) = p(1) < p(2) < u(3) (the last by 2.5(2)). So we shall prove
1(3) < u(1), (suffices by 2.2(1)) and let P exemplify p(1) = cov(), &, &, 2).

Let x. be e.g. 33(A)*, My} be the model with universe A+ 1 and all functions definable in
(H(x), €, <%, A, &, u(1)). Let M* be an elementary submodel of (H(x), €, <) of cardinality
p(1), P € M*, M} € M*, (C,P) € M* and p(1) +1 C M* hence P C M*. 1t is enough to
prove that M™* N Sc.()) belongs to D(E,?)(*)-

So let N; (for i < s%), NS (for a € UscgPs) be such that: they satisfy @ of 2.4
and My, M*, P, A, Kk, C , P belong to every N,, NX. It is enough to prove that
{6 <kt : ANUzep, N € M*} = x* mod id*(C).

For each ¢ € S there is a set a; such that (UyG’P; N;) N X C a; € P; so without loss of
generality a; € N;;1. Let a; =: RegNa; N At\k¥T, s0 a; is a set of < k regular cardinals
> k* and a; € N,y too, so there is (by[a;] : A € pcfa;) as in [13], 2.6, without loss of
generality it is definable from a; (in (H(x),€,<%)). Alsoa € P C M* so a € M*, so
a € M*. Hence (by[@] : A € pcfa;) € Nit1 N M*, and also there is (fg' : a < 6,0 €
pcfa;) as in [13], 1.2, and again without loss of generality it belongs to Ni+1 NnM*. As
max pcfa; < cov(), k, k,2) < p(1) (first inequality by [10], 5.4), clearly each fg"'a € M™. Let
h be the function with domain U;cg @i, h(8) = sup(6 N U; <.+ Ni). So by [13], 2.3(1) each
hla; has the form max{f;’ :£ < n} hence belongs to M*. Let e be a definable function

0¢,0
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in (H(x),€,<},A,k), Dome = A+ 1, eq is a club of & of order type cfa, enumerated as
(ea(¢) : ¢ < cfa). Now for each 6 € |J; .+ @i,

Eg=:{i <% : (V¢ < £T)[[en) () € Ni & ¢ < i], 1 is limit,

6 € |J a; and sup(N; N 6) = sup{ex(p) (¢) : ¢ < i}]}
j<i

is a club of kT, hence
E = {6 < k% : 6 limit and [GG(U{Ny: for some € Sand ( € CoNé

we have supy < (, y € Po}) & 6 € RegNAT\s** = § € Ey] and Nsn k™t = §}

is a club of k* (note: we use (viii) of Definition 2.1(1)). For each § € E N S such that
Cs C E, let 6" = sup(k N Uyep, Ny) so 6" < k, and we define by induction on n models

M, 5. for every y € P;s (really, they do not depend on §). Now M, 5 is the Skolem Hull in
Myof {i:ie€y}U{j:j <8} Mysnt1 is the Skolem Hull in M7 of

MysnU{es(¢): 0 € (RegNAT\sT)N My, and ¢ € y}.
Now (A), (B), (C), (D), (E) below suffice to finish.

(A) We can easily prove by induction on n that:

(a) for y € Ps we have M, 5, C UyGPa Ng;
(b) for 2 C y in Ps we have M, 5, C My sn;
(c) for y € Ps and m < n we have My 5m C My s5n;
(d) assume i € y (hence i € E), {y,z} C Ps, supz <1, 2 C y and
6 € Uicx+ NiNReg N AT\, then:
6 € NN N; = ep(p) (i) = sup(§ N N;) € Ny and
6 € M, 50N Ni = sup(M;5,N0) < ep)(?) < sup(MysnN0).
(B) We can also prove that (My s, : n < w,y € Ps) is definable in (H(x), €, <})

from the parameters §, M}, (C,P) and hla;, all of them belong to M*, hence
the sequence, and Uy <. yep; My,s,n belongs to M *.

(C) (Un<wyep;s Mysn) NRegN (%, A1) is a subset of a; (use (A)(a) and definition
of a;,a;).

(D) if 0 € Uncw yeps Mysmy 0 € RegN At\k then 0 N U, <, Mysn is unbounded in
o NUyep; N5 [when o > k% use (%), for 0 = kt as Cs is equal to Uyep, y and
6 = sup Cy, for 0 = & see (d), choice of My 50).

(B) Uncwyer; Mygn N A= Uyep, N3 N (See [14], 3.3A, 5.1A). Oa.6

Conclusion 2.7 Suppose A > k > Rg are regular cardinals and (Vi < A)[cov(p, &, k,2) < Al
If for @ < X, aq is a subset of A of cardinality < k and S € Dx()\) (or just S # 0
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' @ mod D%, (X)) then we can find a stationary T C{§ < A:cf6 =k}, cC A and (bs: 6 €T)
‘ such that:
as Cbs€S fordeT
and

bsNé=c fordeT.
Remark: See on this and on 2.9 Rubin Shelah [2] and [12], §6.

‘ Conclusion 2.8 If A > & > Wo, A and & are regular cardinals and [k < p < A =
cov(p, k,K,2) < A] then {8 < X :cf(8) < k} € I[A].

Proof. Use u(3) of 2.6.
Claim 2.9 Let (), mean: if a; € Scx(A) fori € S, S C {6 < p: cf§ = k} is stationary,
then for some b € S<x(}), {i € S : a;Ni C b} is stationary. Let (), , . be defined similarly
but {i € S : a; C b} only unbounded. Then for Rg < k < A < u regular we have:

COV()H K, K, 2) <pu= (*)p,z\,ni = (*);,/\,:c
= (VN <A< XN <X &cfN < k= ppe N < pl
Remark So it is conceivable that the = are «. See [12], §3.

Proof. Straightforwz;rd.

3 Nice Filters Revisited

This generalizes {11] (and see there).
See [15], §5 on this generalization of normal filters.

Conventions 3.1

(1) We use R; rather than an uncountable regular « for simplicity.

(2) Let p* be > Ry and Vi = {i} X (Uucps #)s ¥ = Uicw, Vis t(y) = ¢ when y € Y.

(3) Let Eq denote a set of equivalence relations e on ) refining U;,,, Vi X Vi with
< p* equivalence classes, each class of cardinality |V|. We say e; < ez if e2
refines e;. If not said otherwise, every e is in Eq. Let Eq, be the set of all such
equivalence relations with < u equivalence classes. Let ¢«(z/e) = ().

Definition 3.2

(1) Let FIL(e) = FIL(e, ) denote the set of D such that:

(a) D is a filter on Y/e,
(b) for any club C of wi, U;ec Vife € D,

s AR 2 0 L A, 5 e 55 A 5 S o S s O s 22 s b g b i
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(c) (normality) if X; € D for i < wy then {(,7)/e: (8,7) € Y, 6 limit and
1 <4 = (4,5) € X;} belongs to D.

(2) FIL(Y) =FIL(Eq,)) is Ueegq FIL(e,Y). For D € FIL(Y), let e = e[D] be such
that D € FIL(e, ).

(3) For D € FIL(e) let DM = {X C YV : {y/e: y/e C X} e D}.
(4) For D € FIL(Y) and e(1) > e(D), let DM = {X C ¥/e(1) : X € DM},
(5) For AC Y/e, AM =, /0c4 2 /e, and for e(1) > e let

AWl = {y/e(1) : y/e € A}.

Definition 3.2A For D € FIL(e, V), let D¥ be {Y C Y/e:Y # @ mod D}.

Definition 3.3

(0) For f: Y/e = X let f1: Y — X be f¥(z) = f(z/e). Wesay f: YV = X is
supported by e if it has the form g* for some g:Y/e—= X. Let e,e3 € Eq,
fe:YV/ee = X; wesay fi = 2[“] if fl[*] = f2[*].

(1) Let Fe(“w,e) = F¢(“w,e,Y) be the family of §, a sequence of the form (gn:n €
u), u € fo(“w) = the family of non-empty finite subsets of “>w closed under
initial segment, and for each 1 € u we have gn € Y0rd is supported by e. Let
Dom g = u, Range § = {g, : 7 € u}. We let e = e(g), an abuse of notation.

(2) We say g is decreasing for D or D-decreasing (for D € FIL(e,I)) if na v =
9v <D 9n-

(3) If u = {<>}, g = g<> we write g instead of (gn: 71 € u).
Definition 3.4

(1) For e € Eq, D € FIL(e,Y) and D-decreasing § € F.(“w,e) we define a game
G*(D,9,e,Y) (we may omit ). In the nth move (stipulatinge_; = e, D_; = D
g-1=79):

’

player I chooses e, > e,_1 and A, C V/e,, Ap # 0 mod foill and he
chooses g" € F(“,e,) extending g,_; (ie. g*~! = g*|Dom 7,_,),

g" supported by e, and " is (DLE "]+A,,)-decreasing, player II chooses
D,, € FIL(en,Y) extending DEf:ll + A,.

In the end, the second player wins if |, .., Dom g* has no infinite branch.

(2) G7(D,g,e,Y) is defined similarly to G*(D,7,e,)) (Dom ¥ = Dom g) but the
second player has, in addition, to choose an ordinal ap for n € Dom g™\
Ue<n Dom g such that [p < v & v € Dom g ! = a, < ay] and a, = 7,
for.n € Dom 3.
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(3) wG*(D,g,e,Y) and wG7(D,g,e,)) are defined similarly but e is not changed
during a play.

(4) 7 = (v<>), § = (g<>) we write 7<> instead of ¥, g<> instead of g.

(5) If E C FIL(Y) the games G, Gz are defined similarly, but player II can choose
filters only from E (so we like to have A€ DY, D€ E= D+ A€ E).

Remark 3.4A Denote the above games Gy, Gg-. Another variant is
(3) For e € Eq, D € FIL(e,Y) and D-decreasing § € F.(“w) we define a game
Gi(D,g,e,Y). We stipulate e_; =e, D1 = D.
In the nth move first player chooses ep,e,—-1 < e, € Eq and D] € FIL(e,,))
such that:
(%) for some A, C Y/en—1, An # 0 mod D,_) we have:
(i) (Dn-1+ An)le] C Dy;
(ii) D! is the normal filter on YV/e, generated by (Dn-1 + Ap)lesl U
{4} : ¢ < (3} where for some (C¢ : { < (a) We have:
(a) each C¢ is a club of wy,

(b) if (< ¢ for £ < w, 1 € Ngew Copy T € Y/€n-1, and 1(z) =
i, then for some z’ € Y/en, we have 2’ C z, 2’ € Ny, 47,

First player also chooses §" extending §"~! D/,-decreasing and the
second player chooses Dy, D), C D, € FIL(en, Vn).

(4) We define G;’-(D,E,e, Y) as in (2) using G7 instead of Gj.
(5) If player II wins, e.g. GZ(D,?,e,y) this is true for B/ =: {D’ € G : player II
wins GL.(D', f,e,Y)}. v
Definition 3.5

(1) We say D € FIL(Y) is nice to § € F¢(“w,e,)), e = e(D), if player II wins the
game G*(D,7,e) (so in particular g is D-decreasing, g supported by e).

(2) We say D € FIL(Y) is nice if it is nice to g for every g € F.(“w,e,Y).

(3) We say D is nice to « if it is nice to the constant function a. We say D is nice
to g € MOrd if it is nice to gle(D)],

(4) “Weakly nice” is defined similarly but e is not changed.

Remark “Nice” in [11] is the weakly nice here, but formally they act on different objects;
but if z e y & 1(z) = 1(y) we get a situation isomorphic to the old one.

Claim 3.6 Let D € FIL()) and e = e(D).

(1) If D is nice to f, f € Fo(“w,e,Y), g € Fe(“w,e,Y) and g < f then D is nice to
[

e e e e
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(2) If D is nice to f, e = (D) < e(1) € Eq then DM} 45 nice to fleM]

(3) The games from 3.4(2) are determined and winning strategies do not need
memory.

(4) D is nice to § iff D is nice to g<> (when G € Fe(“w,e,Y) is D-decreasing).

(5) If E¢ C Eq and for simplicity U;<u, {i} x Vi € Eq' and for every e € E{,
e < e(1) € Eq for some permutation ® of Y, n(e) = e, m(e(1)) < e(2) € E¢
then we can replace Eq by Eq'.

(6) For Eq = Eq, (where p < p*) there is Eq as above with: |Eq'| countable if p
is a successor cardinal (> ®1), |Eq’| = cfp if p is a limit cardinal.

Proof. Left to the reader. (For part (4) use 3.7(2) below.) O3

Claim 3.7
(1) Second player wins G*(D, 7, e) iff for some ¥ second player wins GV(D,g,e).

(2) If second player wins G7(D, f, e) then for any D-decreasing g € F.(“w,e,)),
g supported by e and A, ; gy(z) < f(z), the second player wins in G7(D,7,e€),
when we let

yp=7x[ max (L(v)—Lg(v)+1)].
n<dveDomg

(3) Ifui,uz € fe(*?w), h:ui — uz satisfies [n 4 v & h(n) <4 h(v)] and for £ =1,2
we have 3 € Fy(*>w,e2,Y), gh = Gy (forn € wi), ¥ = (= m € wa) is
<-decreasing sequence of ordinals, '7,1’ > 'yﬁ( ") and the second player wins in

G7'(D,g%,e,Y) then the second player wins in G7 (D,7%,e,Y).
Proof.
(1) The “f” part is trivial, the “only if” as in [11].
The following is a consequence of a theorem of Dodd and Jensen [DoJl:
Tﬁeorem 3.8 If X is a cardinal, S C X then:
(1) K[S], the core model, is a model of ZFC + (Vu > M)2# = pt.

(2) If in K[S] there is no Ramsey cardinal g > X (or much weaker condition holds)
then (K[S],V) satisfies the p-covering lemma for p > A+ Ny; ie. if BEV i3
a set of ordinals of power < p then there is B' € K[S], BC B,V = |B'| < p.

(3) IfV E (3p 2 N)(3r)p" > pt > 2%] then in K[S] there is a Ramsey cardinal
p>A.
Lemma 3.9 Suppose f € MOrd, A > X =t Lacy glel™ 4 [T, o, |£() + 1| + | Eq|, and
for every A C Ao, in K[A] there is a Ramsey cardinal > g, then for every normal filter
D € FIL(e,Y), D is nice to f.

tc

(v

ir
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Remark: The point in the proof is that via forcing we translate the filters from FIL(e,Y)
to normal filters on w; [for higher ’s cardinal restrictions are better].

Proof. Without loss of generality (Vi) f(i) > 2. .

Let § C Ao be such that [a < p* & A C 2le™ = A € L[S]], Eq € L[S] and: if g € MOrd,
(Vi < wy)g(i) < f(3) then g € L[S] (possible as [T;c,, |f(5) + 1| < Ag). We work for awhile
in K[S]. In K[S] there is a Ramsey cardinal s > Ao (see 3.8(3)). Let, in K[S],

I = {X:X C p,X Nw; acountable ordinal > 0, {w1,u} C X,

moreover X N \g is countable}.

Let
J ={X € I: X has order type > f(X Nwy)}.

Now for g € MOrd such that A;,, 9(3) < f(i) let § be the function with domain J,
§(X) = the g(X Nwj)-th member of X.

Let D = {A; : w; <i < 21%/¢l} and we arrange (4;:w1 <i < 2lY/ely € L[S], (as Y/e has
cardinality < p*, so 2%7¢l < Xg).

Let F be the minimal fine normal filter on I (in K[S]) to which Jp belongs where

Jp={X:X€Jandié€ (w,2PhnX = X Nw € A}.
Clearly it is a proper filter as K[S] = “u is a Ramsey cardinal”.

Observation 3.9A [in K[S]]. Assume P is a proper forcing notion of cardinality < |e[Re
for some @ < p* (or just P, MAC(P) € K[S] and {X € I: XN|MAC(P)| is countable} € F
where MAC(P) is the set of maximal antichains of P) and let FP be the normal fine filter
which F generates in VP . Then

(1) F-positiveness is preserved; ie. if X € V, X C I, F € FIL(Y) and V [
“X # ¢ mod F” then |-p“X # @ mod FF”.

(2) Moreover, if Q < P, (Q proper and) P/Q is proper then forcing with P/Q
preserve F9-positiveness.

Let P(¥/e) = {Ag: ¢ < 2P/el}.
Now we describe a winning strategy for the second player. In the side we choose also
(Pns Ty fo), 7, Wa such that! (where e,, A, are chosen by the second player):

(A) (1) Pn = [[<n Qe Qe is Levy(X1,Y/es) (we could use iterations, too,
here it does not matter);

(ii) pn € Pn;
(iii) pn increasing in n;

(iv) f is a Pp-name of a function from w; to V/en;

(v) palb-p, “fu(3) € Vifen”;

1By the homogeneity of the forcing notion the value of pa is immaterial.
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(Vi) Prsil-“fas1(i) C fi(5) for every i < wy”;

(vii) f is given naturally — it can be interpreted as the generic object of
Qn except trivialities.

(B) (i) ¥",7" has the same domain, Yo < B;

(ii) pnl-p, “Wa € Jp, Wat1 CWL7;

(iii) 7* =~"*1] Dom 7", Dom 7" = Dom §";

(iv) pn”"'Pn “{X € JD': fort € {0 sn} fl(xnwl) € AC and Aquom o .an(X) =
7y and for £ € {-1,0,. —-1} ¢ € X n2PV/ed we have: AC €D, =
FXNw) € AZ} DO W, #0mod FFPa»

(C) Dn={ZC V/en:pnl-p,“4X € Jp: fi(X Nw1) & Z} = 0 mod D= + Ww."}.

Note that D, € K[S], so every initial segment of the play (in which the second player
uses this strategy) belongs to K[S]. 7 Os.9

Remark 3.9B

(1) From the proof, instead K[S] |=“) is Ramsey”, K[S] =44 — ()5 for a < Ag”
is enough for showing 3.9.

(2) Also if TI(If(3)| + 1) < po, [ < po = |al® < ), it is enough: S C a < pg =
in K[S] there is p = (a)5“.

Theorem 3.10 Let D* € FIL(e,)) be a normal ideal on R;. If for every f : R; —
(Xy<ur x™)F, D* is nice to f, then for every f € MOrd, D is nice to f.

Proof. Asin [11], 1.7

Remark 3.10A So, the existence of p, u — (a)ié" for every a < (¥, <, x®1)*, is enough
for “D* is nice”.

Conclusion 3.11 Let )\ = Dx<pe 2x™ 4 |Eql, u* > No; if for every S C Ag there is a
Ramsey cardinal in K[S] above Ay then every D € FIL(Y) is nice.

Proof. By 3.9, 3.10.

Concluding Remark 3.12

(1) We could have used other forcing notions, not Levy(R;,Y/e,). E.g. if u = Ny
we could use finite iterations of the forcing of Baumgartner to add a club of wy,
by finite conditions. (So this forcing notion has cardinality R;.) Then in 3.9 we
can weaken the demands on Ag : Ao = X0, .0 2X + [T, |1 + F(3)| + | Eq|, hence
also in 3.11, Ag = 10, .« 2X is O.K.

(2) Concerning |Eg| remember 3.6(5), (6).
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(3) Similarly to (1). If Ao<ucov(8,R1,R1,2) < u then by 2.6 we can use forcing
notions of Todoréevi¢ for collapsing # < u which has cardinality < p.

(4) If we want to have Ao =: [];,, |f(5) +2| (or even Tp(f +2)), we can get this by
weakening further the first player letting him choose only A, which are easily
definable from the §*~1, we shall return to it in a subsequent paper.

4 Ranks

Convention 4.1 Like 3.1 and: g € F.(“w,e*)), n* € Dom §*, v* an immediate successor
of 7* not in Dom g*, D* € FIL(e*, ) is such that in G7 (D*,g*, e*) second player wins (all
consta.nt) FIL (e, Y) will be the set of D € FIL(e,)) such that e > e*, (D*)[) C D and in

—k

G7 (D*,g*,e*) second player wins. (So actually FIL(e*,)) depends on D*,7*,e*, too.)
Definition 4.2

(1) rk}(f) for D € FIL*(e,Y), f € Y/0rd, f <p gne will be: the minimal
ordxnal a such that for some Dj,e;, 7' we.have D&l C D, € FIL(el,y),
7' =7"Mv*,a) (ie. Dom ¥ = (Dom 7*) U {v"}, 7'|Dom 7* = 7*, 9. = a)
and in G7 (D,g*" (v*, f)) second player wins and oo if there is no such « .

(2) vkt H(f) is sup{rk +a(f): Ae Dt}
Claim 4.3

(1) rk}(f) is (under the circumstances of 4.1, 4.2) an ordinal < Yoo -

(2) 7k} (f) is an ordinal < Voo -
Claim 4.4 If D € FIL*(e,Y), h <p f <p gy then Tk} (k) < rk3(f).

Proof. Let e;, D) witness rk},(f) = a so e(D) < e;, D C D; € FIL*(e1,)) and
in GV ""‘>(D1 g M(v*, f),e) second player wins. We play for t;he first player: e = ey,
A = y/el, 7’ = g g v, f)A(V*A(O) g), now the first player should be able to answer say

e2, D2, 72. So 7,,.,\(0) < 7% = a, and by 3.7(3), we know that in G7 (D, g* (v*, g), e2)
where ¥ = " (v*, y2., «0y)» second player wins. D4y

Claim 4.5 Let e > e*, D € FIL*(e,)).

(1) Fore>e(D), Ac (DlEh+, fe Y/Ord, f <p gn we have:

kD () <tk 4 (F) < rhkpa, 4 (f) < rkb(f).

(2) If e2 > e1 > e(D), fo € YOrd is supported by ey, fi <p f2 <p g:;, then
kS (f1) < rkb(f2) for £ = 4,5.
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5 More on Ranks and Higher Objects

Convention 5.1

(a) p* is a cardinal > R; (using R; rather than an uncountable regular « is to save
parameters).

(b) Y is a set of cardinality 3 <, &-
(c) ¢ is a function from Y onto w1, le=1({a})| = |Y| for @ < w.

(d) Eq is the set of equivalence relations e on Y such that:

(@) yez=uy)=1u2),
(B) each equivalence class has cardinality |V,
(7) e has < p* equivalence classes.

(e) D denotes a normal filter on some Y /e (e € Eq), we write e = e(D). The set of
such D’s is FIL()).

(f) E denotes a set of D’s as above, such that:

(o) for some D = miﬁE €E,

(VD')[D' € E = (e, D) < (e(D'), D)},

(B) ifD € E, AC Y/e1,e1 > e(D), A# B mod D then Dlell4 A € E.
(g) Ell =: {D € E : ¢(D) = e}
(h) € denotes a set of E’s as above, such that:

(a) there is E = Min £ € £ satisfying

| (VE')(E' € E = E' C E),
() if D€ EEE then
Ep) = {D': D' €E and (e(D),D) < (e(D"),D"} €E.
Definition 5.2

(1) We say E is A-divisible when: for every D € E, and Z a set of cardinality < A,
there are D', j such that:

() D' €E;

(8) (e(D),D) < (e(D),D");

(v) j:Y/e(D') = Z;

(8) for every function h: Y/e(D) = Z,

{y/e(D') : h(y/e(D)) = (y/e(D")} # @ mod D'.
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(2) We say E has A-sums when: for every D € F € £ and sequence (Z; : { < ¢* < \)
of subsets of Y /e(D) there is Z* C Y /e(D) such that: 2*NZ; = § mod D and:

[if (e(D), D) < (¢, D'), ¢ = e(D'), D' € Eppj and A¢ Z¥1 = @ mod D, then
Z* € D).

(3) We say E has weak A-sums if for every D € E € £ and sequence (Ze:¢(<(¢* <
A) of subsets of J/e(D) there is D*, D* € E{p) such that:

(o) if (e(D),D) < (¢/,D'), D' € Eppj and Z; = § mod D' for { < (*,
e(D*) < e(D'), then D* C D', and

(B) Z; =0 mod D* for ¢ < (™.

(4) If A = p* we omit it. We say € is A-divisible if every E € £ is. Similarly we
define “£ has [weak] A-sums” by modifying clause [(3)] (2), replacing E by £
and D by E.

We now define variants of the games from §3.

Definition 5.3 For a given &, for every E € &:

(1) We define a game G5(E, 7).

In the n-th move first player chooses D, € E,_; (stipulating E_; = E) and
choose g,, € Fc(“w,e(Dy),Y) extending g,_; (stipulating g_, = g) such that g,
i8 Dy-decreasing. Then the second player chooses Ey, (Ex-1)[p,] € En € €.

In the end the second player wins if |J, ., Dom g, has no infinite branch.

(2) We define a game G;(E, g) where Dom ¥ = Dom §, each v, an ordinal,
[n < v = v > 9.] similarly to G3(D,g) but the second player in addition
chooses an indexed set ¥,, of ordinals, Dom ¥, = Dom §,,, ¥,[Dom 7,_; = ¥,_;
and [77 QY = Mg > 7n,l/]'

Definition 5.4

(1) We say € is nice to g € F.(“w,e,)) if for every E € £ with e < e(E) the second
player wins the game G3(E, 7).

(2) We say & is nice if it is nice to § whenever E € £, e < e(E), g € F.(“w,e,Y), g
is (min E)-decreasing, we have: £ is nice to g.

(3) If Dom g = {<>} we write g<~ instead of g.
(4) We say £ is nice to « if it is nice to the constant function a.
Claim 5.5
(1) If € isnice to f, f € F.(“w,e,Y), g € Fe(“w,e,Y), g < f then £ is nice to f.

(2) The games from 5.4 are determined, and the winning side has winning strategy
which does not need memory.

377
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(3) The second player wins G5(E,g) iff for some ¥ second player wins GJ 3(E,g).

(4) If the second player wins G}(E, f), 7 € Fe(“w,e(E)), g4 < f for n € Dom (3)
then the second player wins in G2 (E,g) when we let

Yp=7+[ max (fgv—Lgn+1)]
ndv€Dom g

Lemma 5.6 Suppose fo € ¥/90rd, € € Eg, Mo =: 5upeycee iy Macyye (fi3(e) +1).

(1) If there is a Ramsey cardinal > |J{f(z) + 1 : = € Dom fy} then there is a
pu*-divisible € nice to fy having weak p*-sums.

(2) If for every A C Ao there is in K[Ag] a Ramsey cardinal > Ao, then there is a
pu*-divisible £ which has weak p*-sums and is nice to f.

(3) In part2 if A\g = 2<H° then there is a p*-divisible nice £ which has weak p*-sums.

Remark: This enables us to pass from “PPrg,r,) 1arge” to “pppormal is large”.

Proof. (1) Define f; € ®)Ord, £,(3) = sup{fo(y/e) : «(y) = i}, let X be such that:
A = (sup;cy, f1(3))5“ (or just @ € D, — see below), let A, = (A*")+",
I, = {s: 3 C Ap,8sNw; a countable ordinal},
Jn = {s € I, : sN X has order type > fo(sNwy)}.
Let D} be the minimal fine normal filter on J,.
Let for n < w and e € Eq, Hp,e = {h : h a function from J, into /e such that
t(h(s)) =sNuw}.
Let P, ={p:p C Jn,p # @ mod D};}, P =, ., Pn and for p € P let n(p) be the unique
n such that p € P,.

Let p < ¢ (in P) if n(p) < n(g) and {sN A, : 5 € ¢} C p. Now for every e € Eq, n < w,
p € Py, h € Hy we let:

Dpeh = {A CY/e: h™}(4) 2 p mod D},

E“’eh {D" el bl :p < g € P,n! =n(q), and (n', e}, hl) > (n,e,h)},

where (n!,e!,hl) > (n,e,h) means: n <nl <w,e<el € Eq, h! € H,: .t and for s € Jin1),
hl(s)lel = h(sN A,). We define (p!, nl,e!, A1) > (p,n, e, h) similarly and let

Epeh = (BN p < g€ Ponl = n(g), (nl,e!,hY) > (n,e, h)}.

1.1 51 1.1p1
[Note: (p',n',e!,h!) > (p,n,e,h) implies D" D Dpeh, Bn <M C Breh and
1,131 .
En” M £ Now any £ = 1" (p € P) is as required.
A new point is “€ is p-divisible”. So suppose E-€ .€ = 5376,'1 so E = E;t’,e‘.h‘ for

some (g,n!,e!,h!) > (p,n,e;h). Let Z be a set of cardinality < u*, so (Ay1)12l = Ay, ; let
{he : ¢ < ¢* = |V/er|l?l < 2# < A1} list all functions h from Y/e; to Z. Let (S¢: ¢ <
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|y Je1|1Z!) list a sequence of pairwise disjoint stationary subsets of {§ < Antyy @ cfd = Ro}.
Let ea € Eq be such that e; < eg and for every y € Y, {z/e2 : ze1 y} = {z(y/e,t) : t € Z};
we let g2, ¢ < g2 € Pbe: gog = {s € Jy1y1 : sN A € g and sups € Uc S¢}s lastly we
define A% : J,1,q — Y/er by: h2(s) = z(h}(s N Ap1), hc(sN A1) if s € go, sups € S; (for
s € Jn141\g2 it does not matter).

The proof that go, e3, h? are as required is as in [2] and more specifically [8].

As for proving “8,’,"3"‘ has weak p*-sums” the point is that the family of fine normal filters
on J, has p*-sum.

(2) Similar to 3.9 (and 3.6(5),(6)).

(3) Similar to [11], 1.7. Os.6

6 Hypotheses: Weakening of GCH

We define some hypotheses; except for the first we do not know now whether their negations
are consistent with ZFC.

Hypothesis 6.1
(A) pp(A) = At for every singular X .
(B) If a is a set of regular cardinals, |a] < Min a then |pcfa| < |af.

(C) If ais a set of regular cardinals, {a] < Mina then pcfa has no accumulation point
which is inaccessible (i.e.: A inaccessible = sup(A N pcfa) < A).

(D) For every A, {u < A : p singular and ppy > A} is countable.
(E) For every A, {1 < XA : p singular and cfy = Rg and ppp > A} is countable.

(F) For every A, {s < A : pu singular of uncountable cofinality, ppp(cfu)(#) = A} is
finite. '

(D)g 5, For every A, {p < X:p>cfu € [0,0) and pprq)(#) 2 A} has cardinality
< K.

(A)r If p > cfu then ppp(u) = pt (or in the definition of ppp(x) the supremum is on
the empty set).

(B)r, (C)r Similar versions (i.e. use pcfp).

We concentrate on the parameter free case.

Claim 6.2 In 6.1, we have:
(1) (A) = (B) = (C);
(2) (A) = (D) = (E), (A) = (F);

(3) (E) + (F) = (D) = (B). [Last implication — by the localization theorem [13],
§2./

e it i A s B ML e 510 0 A B A U 7
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Theorem 6.3 Assume Hypothesis 6.1A.

At if ef(N) < &,

+ .+ 9) =
(1) For every A > &, cov(A, K7,k ’2)“{ A ifcf(A) > k.

(2) For every A > k = cfx > Ry, there is a stationary S C S<x(A), |S] = At if
cf(A) < & and |S]| = A ifcf(A) > & .

(3) For p singular, there is a tree with cfu levels, each level of cardinality < p, and
with > pt (cf(p))-branches.

(4) If k S cfp < p < 2° then there is an entangled linear order T of cardinality ut.
Proof.

(1) By [14], §1.

(2) By part (1) and 2.6.

(3), (4) By [10], §4.

Theorem 6.4 [Hypothesis 6.1(D)]. If A > % gnd A > 6 > cfA + 2% then
cov (A, )‘a9+’2) =* ppO(A)‘

Remark See [14], §3, §5 on earlier results; [16] for later results.

Proof. We prove by induction on ppe(A) (not on A!) for fixed 6. For a given A, let
O; = {p: A < p < ppf (N),cfu < 6,pp7 () =pP* (M},

6 =: {u: A < p < ppy(N), cfp < 6 and cov(p, 4, 6%,2) 2 ppy (W)}

As we know that [\ < p < ppf(A) & cfp <6 = ppi (1) < ppg (V)] (by [10], 2.3) and by
the induction hypothesis clearly 62 C ©;. But by Hypothesis 6.1(D) we have ©; countable
hence O is countable (really |©1] < 6 suffices). By [10], 5.3(10) ©2 is closed hence it
has a last element 0. By [10], proof of 5.4(1)—first part cov(a,ot,6%,2) < ppt(}) for
a < ppt()) (and as said above o € ©,). Now apply 6.5 below (we have Hypothesis 6.1(C)
by 6.2(3) + 6.2(1) with A, X, 6, x there standing for o,ppt()), 6, cf) here). Oe.4

Claim 6.5 Suppose
(a) A>cfA=K,A>02k,
(b) x = cfx > A and cov(a, A+, 0%,2) < x fora< X,
(c) pPs (V) < x5
(d) > 2% if =Ry,

(e) if x 18 inaccessible then Hypothesis 6.1(C).

Then
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(@) cov(A,X,6%,2) < x;
(B) moreover, for some Ao < X, cov(x, A, 6%,2) = x.

Proof. We concentrate on the case cfA = Ry, which is harder [if cfA > Ry it suffices to
choose f¢ for £ < w]. Note that in the conclusion, (8) follows from («) (by [10], 5.3 (10).
Let x* = 23(\)*, and choose by induction on ¢ < (2%)* a model M} < (H(x)*, €,<}+),
|MZIl < x, M{ N x an ordinal, M{ increasing continuous in ¢, {x,x,A,6} € Mg and
(Mg : £ () € My,. Let M* = M(*Q,,o)+. Let P; =: Sca(M) N M[, and P = Pgrg)+-
Clearly P is a family of < x subsets of A each of cardinality < A, so it suffices to prove:

(¥) ifa C A, |a] £ 6 then for some A € P, a C A.
Given a C ), |a| < 6, we define by induction on { < wy, f¢ such that:
(a) fc € M*, f¢ belongs to [T(A N Reg).

(b) For w C ( satisfying (34 € M*)[{f¢ : £ € w} C A & |A] < A}, let A, be
the <}.-first such A of minimal cardinality and we let N be the Skolem Hull
of {fe: € € w}in (H(x"),€,<%.) and N® be the Skolem Hull of 4, = A,U
{fe : € € w} in (H(x"),€,<}.). We demand for every such w that: for every
large enough o € A N Reg N N2 we have sup(c N N3) < f¢(o).

For defining f¢, let W, = {w C { : A, well defined} so W, C M™, |[W¢| < 2% hence
for some £(¢) < (2R0)+, W, C Mgy For w € W, let N} be the Skolem Hull of A, in

(H(x*), €,<x+), 50 N} e M1 (see its definition) and || N} || = |A,| hence
ay={0:0 € NI NANRegNN}\|Au|t}

belongs to Mg ()., and it includes an end segment of A\NReg N N}. Now by [14], 3.2,
cf<o(I] aw/ Jb4) < x (we use Hypothesis 6.1(C) if x is inaccessible). -

As @y, € Mg()4, there is f§ € (IT@w) N M), such that:
(x) for every large enough o € Nt N RegN A we have sup(c N N) < f§(0),
but N2 C N} hence
(x)! for every large enough o € N2 NRegN A we have sup(c N NJ) < f§ (o).

Now Mg(¢)4+1 € Mg(¢)+2, |Me(¢)+1ll < x hence there is a cofinal P! C Sca(|Meg)41]) of
cardinality < x in Mg()42; as M¢()+2 N x is an ordinal, necessarily P’ € M¢(¢)4+2 hence
there is A € Mg (¢)+2 such that A,epw, f$ € A and |A¢| < A So there is fr € [T(RegN A)
in Mg(c)4o satisfying (Vf)[f € AC & (30)[8 < A & f[ (RegN A\B) < fc]l.

Now there is A € M*, |A| < X, {fe : £ < w1} € A (by assumption (b) of the claim),
hence for some A € M*, |A| < A and w* = {{ < wy : f¢ € A} is uncountable. For each
¢ € w, for some Ae < A,

Ae <0 € ANRegN Nyupye = sup(Ng,.nf No) < fe(o).

As we assume cf\ = Rg, for some A(x) < A, there are {9 < €1 < ... <& <... in w* such
that Ae, < A(*). g
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Let N*= Skolem Hull of AU (A(*) + 1) in (H(x"),€,<}.); it belongs to M*, hence
N*N A € P. So it suffices to show that Nf&m <w} is a subset of N*, which is done as in
[14], 3.3A, 5.1A. O 5

Remark 6.5A

(1) We may want to omit the “A > 2% and 8 > cfA + 2%” in 6.4, 6.5. Of course,
this is used only in 6.5, and we may replace it by: for some Ay < A

(¥)xo if c is a two place function from Ag to & such that [a < 8 < v = ¢(a,7) <
max{c(a, B8),c(B,7)}, then for some ng < w and infinite w C A\ we have
ccw&pBew&ka<pf=ca,f)<ng.

Unfortunately, this is equivalent to
(=o=)')\0 there are functions fo € “Ord for a < Ag such that: a < 8= fg <y fa

[why? (+)), = (*)a, using c(e, 8) = min{n : (Vm)[m > n = fo(m) > fg(m)]}.
(*)x0 = (%)), as for each @ < A9 and n we define when fo(n) > ¢:
fa(n) 2¢ & AEBla < B & c(a,f) < n & fo(n) 2 €].
§<¢

Now fo(n) is the minimal value; if it is co we get contradiction to the choice of
¢, and [a < B & c(a,B) =n <m = fo(m) > fg(m)] is as required.

Claim 6.6 Assume (E) (or just (D)gn,0)-
If Kk <0 =cfu < u < 2" then there is an entangled linear order of cardinality put.

Proof. By [10], 2.1 for some strictly increasing continuous (u; : ¢ < 0), p = ;< #i and
pt = tef [ pf/J3%. Now note

(%) for some i < k, for every j € (i,&), pt & pcf{ul :i < a < j}.

Now we can choose by induction on ¢ < 8, #(¢) < 6 such that ¢({) strictly increasing and
piq) > maxpef{A; 1 i <j <Ugi(€)} - Now to (p?('o : ( < 8) apply [10], 4.12.
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