Advances in Cardinal Arithmetic

SAHARON SHELAH*

The Hebrew University Jerusalem, Israel

Department of Mathematics Rutgers University New Brunswick, NJ USA

Abstract

If $cf \kappa = \kappa$, $\kappa^+ < cf \lambda = \lambda$ then there is a stationary subset S of $\{\delta < \lambda : cf(\delta) = \kappa\}$ in $I[\lambda]$. Moreover, we can find $\overline{C} = \langle C_{\delta} : \delta \in S \rangle$, C_{δ} a club of λ , $\operatorname{otp}(C_{\delta}) = \kappa$, guessing clubs and for each $\alpha < \lambda$ we have: $\{C_{\delta} \cap \alpha : \alpha \in \text{nacc}C_{\delta}\}$ has cardinality $< \lambda$.

We prove that, for example, there is a stationary subset of $\mathcal{S}_{\leq\aleph_1}(\lambda)$ of cardinality

 $\operatorname{cf}(\mathcal{S}_{\leq\aleph_1}(\lambda),\subseteq).$

We prove the existence of nice filters where instead of being normal filters on ω_1 they are normal filters with larger domains, which can increase during a play. They can help us transfer the situation on \aleph_1 -complete filters to normal ones.

We consider ranks and niceness of normal filters, such that we can pass, say, from

 $\operatorname{pp}_{\Gamma(\aleph_1)}(\mu)$ (where $\operatorname{cf}\mu=\aleph_1$) to $\operatorname{pp}_{\operatorname{normal}}(\mu)$.

We consider some weakenings of G.C.H. and their consequences. Most have not been proved independent of ZFC.

$I[\lambda]$ is Quite Large and Guessing Clubs 1

On $I[\lambda]$ see [6], [5], [7, §4] (but this section is self-contained; see Definition 1.1 and Claim 1.2 below). We shall prove that for regular κ , λ , such that $\kappa^+ < \lambda$, there is a stationary $S \subseteq \{\delta < \lambda : \text{cf} \delta = \kappa\}$ in $I[\lambda]$. We then investigate "guessing clubs" in (ZFC).

Definition 1.1 For a regular uncountable cardinal λ , $I[\lambda]$ is the family of $A \subseteq \lambda$ such that $\{\delta \in A : \delta = \operatorname{cf} \delta\}$ is not stationary and for some $\langle \mathcal{P}_{\alpha} : \alpha < \lambda \rangle$ we have:

- (a) \mathcal{P}_{α} is a family of $< \lambda$ subsets of α ;
- (b) for every limit $\alpha \in A$ such that $cf(\alpha) < \alpha$ there is $x \subseteq \alpha$, $otp(x) < \alpha = \sup x$ such that

 $\bigwedge_{\beta<\alpha}x\cap\beta\in\bigcup_{\gamma<\alpha}\mathcal{P}_{\gamma}.$

Partially supported by the BSF, Publ. 420.

[†]I thank Alice Leonhardt for typing (and retyping) the manuscript so nicely and accurately.

We know (see [6], [5] or below)

Claim 1.2 Let $\lambda > \aleph_0$ be regular.

- (1) $A \in I[\lambda]$ iff (note: by (c) below the set of inaccessibles in A is not stationary and) there is $\langle C_{\beta} : \beta < \lambda \rangle$ such that:
 - (a) C_{β} is a closed subset of β ;
 - (b) if $\alpha \in \text{nacc}C_{\beta}$ then $C_{\alpha} = C_{\beta} \cap \beta$ (nacc stands for "non-accumulation");
 - (c) for some club E of λ , for every $\delta \in A \cap E$: $\operatorname{cf} \delta < \delta$ and $\delta = \sup C_{\delta}$, and $\operatorname{cf}(\delta) = \operatorname{otp}(C_{\delta})$;
 - (d) $\operatorname{nacc}(C_{\beta})$ is a set of successor ordinals.
- (2) $I[\lambda]$ is a normal ideal.

Proof.

1) THE "IF" PART:

Assume $\langle C_{\beta} : \beta < \lambda \rangle$ satisfy (a), (b), (c) with a club E for (c). For each limit $\alpha < \lambda$ choose a club e_{α} of order type $cf(\alpha)$. We define, for $\alpha < \lambda$:

$$\mathcal{P}_{\alpha} =: \{C_{\beta} : \beta \leq \alpha\} \cup \{e_{\beta} : \beta \leq \alpha\} \cup \{e_{\gamma} \cap \alpha : \gamma \leq \min(E \setminus (\alpha + 1))\}.$$

It is easy to check that $\langle \mathcal{P}_{\alpha} : \alpha < \lambda \rangle$ exemplify " $A \in I[\lambda]$ ".

THE "ONLY IF" PART:

Let $\langle \mathcal{P}_{\alpha} : \alpha < \lambda \rangle$ exemplify " $A \in I[\lambda]$ " (by Definition 1.1). Without loss of generality if $C \in \mathcal{P}_{\alpha}$, and $\zeta \in C$ then $C \setminus \zeta \in \mathcal{P}_{\alpha}$ and $C \cap \zeta \in \mathcal{P}_{\alpha}$.

For each limit $\beta < \lambda$ let e_{β} be a club of β , $\operatorname{otp}(e_{\beta}) = \operatorname{cf}(\beta)$ and $\operatorname{cf}\beta < \beta \Rightarrow \operatorname{cf}\beta < \min(e_{\beta})$. Let $\langle \gamma_i : i < \lambda \rangle$ be strictly increasing continuous, each γ_i a non-successor ordinal $\langle \lambda, \gamma_0 = 0, \gamma_i \rangle = 0$ and $\gamma_{i+1} - \gamma_i \geq \aleph_0 + |\bigcup_{\alpha \leq \gamma_i} \mathcal{P}_{\alpha}| + |\gamma_i|$ and $\gamma_i \in A \Rightarrow \operatorname{cf}(\gamma_i) < \gamma_i$.

and $\gamma_{i+1} - \gamma_i \geq \aleph_0 + |\bigcup_{\alpha \leq \gamma_i} \mathcal{P}_{\alpha}| + |\gamma_i|$ and $\gamma_i \in A \Rightarrow \mathrm{cf}(\gamma_i) < \gamma_i$. Let F_i be a one to one function from $\left(\bigcup_{\alpha \leq \gamma_i} \mathcal{P}_{\alpha}\right) \times \gamma_i$ into $\{\zeta + 1 : \gamma_i < \zeta + 1 < \gamma_{i+1}\}$. Now we define $C_{\alpha} \subseteq \alpha$ as follows.

Assume α is a successor ordinal, and let $i(\alpha)$ be such that $\gamma_{i(\alpha)} < \alpha < \gamma_{i(\alpha)+1}$. If $\alpha \notin \operatorname{Rang} F_{i(\alpha)}$, let $C_{\alpha} = \emptyset$. If $\alpha = F_{i(\alpha)}(x,\beta)$ (so $x \in \bigcup_{\varepsilon \leq \gamma_{i(\alpha)}} \mathcal{P}_{\varepsilon}$, $\beta < \gamma_{i(\alpha)}$), let C_{α} be the closure (in the order topology on α) of:

$$F_{j}(x \cap \zeta, \beta) : \begin{cases} \text{ (i)} & \zeta \in x, \\ \text{ (ii)} & \text{otp}(x \cap \zeta) \in e_{\beta}, \\ \text{ (iii)} & j < i(\alpha) \text{ is minimal such that } x \cap \zeta \in \bigcup_{\varepsilon \leq \gamma_{j}} \mathcal{P}_{\varepsilon}, \\ \\ \text{ (iv)} & \text{if } \xi \in x \cap \zeta, \text{ otp}(x \cap \xi) \in e_{\beta} \text{ then} \\ & (\exists j(1) < j)[x \cap \xi \in \bigcup_{\varepsilon \leq \gamma_{j(1)}} \mathcal{P}_{\epsilon}], \\ \\ \text{ (v)} & \beta < \min x. \end{cases}$$

Now for $\alpha < \lambda$ limit, choose C_{α} : if possible, $\operatorname{nacc} C_{\alpha}$ is a set of successor ordinals, C_{α} is a club of α , $[\beta \in \operatorname{nacc} C_{\alpha} \Rightarrow C_{\beta} = \beta \cap C_{\alpha}]$; if this is impossible, let $C_{\delta} = \emptyset$. Let $E =: \{\gamma_i : i \text{ limit } < \lambda\}$. Now we can check the condition in 1.2(1).

2) By Definition 1.1 $I[\lambda]$ is an ideal; by 1.2(1) $I[\lambda]$ includes the ideal of non-stationary subsets of λ . By the last phrase and Definition 1.1, clearly $I[\lambda]$ is normal. $\square_{1.2}$

Claim 1.3 If κ, λ are regular, $S \subseteq \{\delta < \lambda : \text{cf} \delta = \kappa\}$, $S \in I[\lambda]$, S stationary, $\kappa^+ < \lambda$ then we can find $\overline{\mathcal{P}} = \langle \mathcal{P}_{\alpha} : \alpha < \lambda \rangle$ such that for $\delta(*) =: \kappa$ we have:

 $(i) \quad \mathcal{P}_{\alpha} \text{ is a family of closed subsets of } \alpha, |\mathcal{P}_{\alpha}| < \lambda;$ $(ii) \quad \operatorname{otp} C \leq \delta(*) \text{ for } C \in \cup_{\alpha} \mathcal{P}_{\alpha};$ $(iii) \quad \text{for some club } E \text{ of } \lambda, \text{ we have:}$ $[\alpha \notin E \Rightarrow \mathcal{P}_{\alpha} = \emptyset] \text{ and}$ $[\alpha \in E \Rightarrow (\forall C \in \mathcal{P}_{\alpha})(\operatorname{otp} C \leq \delta(*))];$ $[\alpha \in E \setminus (S \cap \operatorname{acc} E) \Rightarrow (\forall C \in \mathcal{P}_{\alpha})(\operatorname{otp} C < \delta(*))];$ $[\alpha \in S \cap \operatorname{acc} E \Rightarrow (\exists! C \in \mathcal{P}_{\alpha})(\operatorname{otp} C = \delta(*))];$ $[\alpha \in S \cap \operatorname{acc} E \& C \in \mathcal{P}_{\alpha} \& \operatorname{otp} C = \delta(*) \Rightarrow \alpha = \sup C)];$ $(iv) \quad C \in \mathcal{P}_{\alpha} \& \beta \in \operatorname{nacc} C \Rightarrow \beta \cap C \in \mathcal{P}_{\beta};$ $(v) \quad \text{for any club } E \text{ of } \lambda, \text{ for some } \delta \in S \cap E \text{ and } C \in \mathcal{P}_{\delta} \text{ we have } C \subset E \& \operatorname{otp} C = \delta(*).$

Proof. Let $\langle C_{\alpha} : \alpha < \lambda \rangle$ witness " $S \in I[\lambda]$ " as in 1.2(1); without loss of generality $\operatorname{otp} C_{\alpha} \leq \delta(*)$. For any club E let us define \mathcal{P}_{E}^{α} by induction on $\alpha < \lambda$:

$$\begin{split} \mathcal{P}_E^{\alpha} =: \{ \alpha \cap g\ell(C_{\beta}, E) : \alpha \in E \text{ and } \alpha \leq \beta < \min[E \setminus (\alpha + 1)] \} \\ \cup \{ C \cup \{ \beta \} : \text{ for some } \beta \in E, \beta < \alpha, C \in \mathcal{P}_E^{\beta} \text{ and } \mathrm{otp}(C) < \delta(*) \} \end{split}$$

where

$$g\ell(C_{\beta}, E) =: \{ \sup(E \cap (\gamma + 1)) : \gamma \in C_{\beta} \text{ and } \gamma > \min E \}.$$

Note that $|\mathcal{P}_E^{\alpha}| \leq |\min(E \setminus (\alpha + 1))| < \lambda$. We can prove that for some club E of λ $\langle \mathcal{P}_E^{\alpha} : \alpha < \lambda \rangle$ is as required except (v) which can be corrected (just by trying successively κ^+ clubs $E_{\zeta}(\zeta < \kappa^+)$ decreasing with ζ , see [13]) and (iv) which is guaranteed by demanding E to consist of limit ordinals only and the second set in the union defining \mathcal{P}_E^{α} . $\square_{1.3}$

The following lemma gives a sufficient condition for the existence of "quite large" stationary sets in $I[\lambda]$ of almost any fixed cofinality.

Lemma 1.4 Suppose

- (i) $\lambda > \kappa > \aleph_0$, λ and κ are regular,
- (ii) $\overline{\mathcal{P}} = \langle \mathcal{P}_{\alpha} : \alpha < \kappa \rangle$, \mathcal{P}_{α} a family of $< \lambda$ closed subsets of α ,
- (iii) $I_{\overline{P}} =: \{ S \subseteq \kappa : \text{ for some club } E \text{ of } \kappa, \text{ for no } \delta \in S \cap E \text{ is there a club } C \text{ of } \delta, \text{ such that } C \subseteq E \text{ and } [\alpha \in \text{nacc} C \Rightarrow C \cap \alpha \in \bigcup_{\beta < \alpha} \mathcal{P}_{\beta}] \} \text{ is a proper ideal on } \kappa.$

Then there is $S^* \in I[\lambda]$ such that for stationarily many $\delta < \lambda$ of cofinality κ , $S^* \cap \delta$ is stationary in δ ; moreover for some club E of δ of order type κ ,

$$\{\operatorname{otp}(\alpha \cap E) : \alpha \in E \setminus S^*\} \in I_{\overline{\mathcal{P}}}.$$

Sh:420

Remark 1.4A: The "for stationarily many" in the conclusion can be strengthened to: a set whose complement is in the ideal defined in [13], §2.

Proof. Let χ be regular large enough, N^* be an elementary submodel of $(H(\chi), \in, <_{\chi}^*)$ of cardinality λ such that $(\lambda+1) \subseteq N^*$, $\overline{\mathcal{P}} \in N$. Let $\overline{C} = \langle C_i : i < \lambda \rangle$ list $N^* \cap \{A \subseteq \lambda : |A| < \kappa\}$ and let

 $S^* = \{ \delta < \lambda : \operatorname{cf}(\delta) < \kappa \text{ and for some } A \subseteq \delta, \ \delta = \sup A, \\ \operatorname{otp} A < \kappa \text{ and } (\forall \alpha < \delta)[A \cap \alpha \in \{C_i : i < \delta\}] \}.$

Clearly $S^* \in I[\lambda]$; so we should only find enough $\delta < \lambda$ of cofinality κ as required. So let E_0^a be a club of λ . We can choose inductively $M_{\zeta}(\zeta \leq \kappa)$ such that:

- (a) $M_{\zeta} \prec (H(\chi), \in, <^*_{\chi}),$
- (b) $||M_{\zeta}|| < \lambda$, $M_{\zeta} \cap \lambda$ an ordinal,
- (c) M_{ζ} is increasing continuous,
- (d) $N, \kappa, \overline{P}, \overline{C}, E_0^a$ belongs to M_0 ,
- (e) $\langle M_{\varepsilon} : \varepsilon \leq \zeta \rangle \in M_{\zeta+1}$.

Let $\delta_{\zeta} = \sup(M_{\zeta} \cap \lambda)$, so $\langle \delta_{\zeta} : \zeta \leq \kappa \rangle$ is strictly increasing continuous, so $\delta =: \delta_{\kappa}$ has cofinality κ . Hence there is a strictly increasing continuous sequence $\langle \alpha_{\zeta} : \zeta < \kappa \rangle \in N^*$ with limit δ , and clearly $E = \{\zeta < \kappa : \alpha_{\zeta} = \delta_{\zeta}\}$ is a club of κ . We know that

$$T =: \{ \zeta < \kappa : \zeta \text{ limit and for some club } C \text{ of } \zeta, \ C \subseteq E \text{ and } \bigwedge_{\varepsilon < \zeta} [C \cap \varepsilon \in \bigcup_{\xi < \zeta} \mathcal{P}_{\xi}] \}$$

is stationary; moreover, $\kappa \backslash T \in I_{\overline{P}}$ (see assumption (iii)) and clearly $T \subseteq E$. Clearly it suffices to show

$$(*) \ \zeta \in T \Rightarrow \delta_{\zeta} \in S^*.$$

Suppose $\zeta \in T$, so there is C, a club of ζ such that $C \subseteq E$ and $\bigwedge_{\varepsilon < \zeta} [C \cap \varepsilon \in \bigcup_{\xi < \zeta} \mathcal{P}_{\xi}]$. Let $C^* = \{\delta_{\varepsilon} : \varepsilon \in C\}$, so C^* is a club of δ_{ζ} of order type $\leq \zeta < \kappa$ (which is $< \delta_0 \leq \delta_{\zeta}$). It suffices to show for $\xi \in C$ that $\{\delta_{\varepsilon} : \varepsilon \in \xi \cap C\} \in \{C_i : i < \delta_{\zeta}\}$. For this end we shall show

- $(\alpha) \quad \{\delta_{\varepsilon} : \varepsilon \in C \cap \xi\} \in \{C_i : i < \lambda\},\$
- $(\beta) \quad \{\delta_{\varepsilon} : \varepsilon \in C \cap \xi\} \in M_{\xi+1}.$

This suffices as $\langle C_i : i < \lambda \rangle \in M_0 \prec M_{\xi+1}$ and $M_{\xi+1} \cap \{C_i : i < \lambda\} = \{C_i : i \in \lambda \cap M_{\xi+1}\} = \{C_i : i < \delta_{\xi+1}\}.$

PROOF OF (α) : Remember $\langle \alpha_{\varepsilon} : \varepsilon < \kappa \rangle \in N^*$. Also $\langle \mathcal{P}_{\varepsilon} : \varepsilon < \kappa \rangle \in N^*$ hence $\bigcup_{\varepsilon < \kappa} \mathcal{P}_{\varepsilon} \subseteq N^*$ (as $\kappa < \lambda$, $|\mathcal{P}_{\varepsilon}| < \lambda$, $\mathrm{cf}\lambda = \lambda$) and $C \cap \xi \in \bigcup_{\varepsilon < \kappa} \mathcal{P}_{\varepsilon}$; hence $C \cap \xi \in N^*$. Together $\{\alpha_{\varepsilon} : \varepsilon \in \xi \cap C\} \in N^*$; as $\varepsilon \in C \Rightarrow \varepsilon \in E \Rightarrow \alpha_{\varepsilon} = \delta_{\varepsilon}$ (from $C \subseteq E$ and the definition of E), and from the definition of $C \subseteq E$ and the definition of $C \subseteq E$.

PROOF OF (β) : We know $\overline{\mathcal{P}} \in M_0$; as $|\mathcal{P}_{\varepsilon}| < \lambda$, $\kappa < \lambda$ and $M_{\varepsilon} \cap \lambda$ is an ordinal, clearly $\bigcup_{\varepsilon < \kappa} \mathcal{P}_{\varepsilon} \subseteq M_0$ (remember $|\mathcal{P}_{\varepsilon}| < \lambda$, $\kappa < \lambda$). So for $\varepsilon < \zeta$, $C \cap \varepsilon \in \bigcup_{\gamma < \zeta} \mathcal{P}_{\gamma} \subseteq M_0 \subseteq M_{\xi+1}$.

As $\langle M_i : i \leq \xi \rangle \in M_{\xi+1}$ clearly $\langle \delta_i : i \leq \xi \rangle \in M_{\xi+1}$ hence by the previous sentence $\langle \delta_i : i \in C \cap \xi \rangle \in M_{\xi+1}$, as required.

Conclusion 1.5 If κ , λ are regular, $\kappa^+ < \lambda$ then there is a stationary $S \subseteq \{\delta < \lambda : \text{cf} \delta = \kappa\}$ in $I[\lambda]$.

Proof. If $\lambda = \kappa^{++}$ — use [9], 4.1. So assume $\lambda > \kappa^{++}$. By [9], 4.1 the pair (κ, κ^{++}) satisfies the assumption of 1.3 for $S = \{\delta < \kappa^{++} : \text{cf} \delta = \kappa\}$; (i.e. κ, λ there stands for κ, κ^{++} here). Hence the conclusion of 1.3 holds for some $\overline{\mathcal{P}} = \langle \mathcal{P}_{\alpha} : \alpha < \kappa^{++} \rangle$, $|\mathcal{P}_{\alpha}| < |\kappa^{++}|$. Now apply 1.4 with (κ^{++}, λ) here standing for (κ, λ) there (we have just proved $I_{\overline{\mathcal{P}}}$ is a proper ideal, so assumption (ii) holds). Note:

(*)
$$\{\delta < \kappa^{++} : \operatorname{cf} \delta = \kappa\} \not\in I_{\overline{D}}$$
.

Now the conclusion of 1.4 (see the "moreover" and choice of $\overline{\mathcal{P}}$, i.e.(*)) gives the desired conclusion.

Conclusion 1.6 If $\lambda > \kappa$ are uncountable regular, $\kappa^+ < \lambda$, then for some stationary $S \subseteq \{\delta < \lambda : \text{cf}\delta = \kappa\}$ and some $\overline{\mathcal{P}} = \langle \mathcal{P}_{\alpha} : \alpha < \lambda \rangle$ we have: $\bigoplus_{\overline{\mathcal{P}},S}^{\lambda,\kappa}$ from the conclusion of 1.3 holds.

Proof. As κ is regular apply 1.5 and then 1.3.

 $\square_{1.6}$

Now 1.6 was a statement I have long wanted to know, still sometimes we want to have " $C_{\delta} \subseteq E$, otp $C = \delta(*)$ ", $\delta(*)$ not a regular cardinal. We shall deal with such problems.

Claim 1.7 Suppose

- (i) $\lambda > \kappa > \aleph_0$, λ and κ are regular cardinals,
- (ii) $\overline{\mathcal{P}}_{\ell} = \langle \mathcal{P}_{\ell,\alpha} : \alpha < \kappa \rangle$ for $\ell = 1, 2$, where $\mathcal{P}_{1,\alpha}$ is a family of $< \lambda$ closed subsets of α , $\mathcal{P}_{2,\alpha}$ is a family of $\leq \lambda$ clubs of α and $[C \in \mathcal{P}_{2,\alpha} \& \beta \in C \Rightarrow C \cap \beta \in \bigcup_{\gamma < \alpha} \mathcal{P}_{1,\gamma}]$,
- (iii) $I_{\overline{\mathcal{P}}_1,\overline{\mathcal{P}}_2} =: \{S \subseteq \kappa : \text{for some club } E \text{ of } \kappa, \text{ for no } \delta \in S \cap E \text{ is there } C \in \mathcal{P}_{2,\alpha}, C \subseteq E\} \text{ is a proper ideal on } \kappa.$

Then we can find $\overline{\mathcal{P}}_{\ell}^* = \langle \mathcal{P}_{\ell,\alpha}^* : \alpha < \lambda \rangle$ for $\ell = 1, 2$ such that:

- (A) $\mathcal{P}_{1,\alpha}^*$ is a family of $< \lambda$ closed subsets of α ;
- (B) $\beta \in \text{nacc} C \& C \in \mathcal{P}_{1,\alpha}^* \Rightarrow C \cap \beta \in \mathcal{P}_{1,\beta}^*$;
- (C) $\mathcal{P}_{2,\delta}^*$ is a family of $\leq \lambda$ clubs of δ (for δ limit $< \lambda$) $[\beta \in \text{nacc} C \& C \in \mathcal{P}_{2,\delta}^* \Rightarrow C \cap \beta \in \mathcal{P}_{1,\beta}^*]$;
- (D) for every club E of λ , for some strictly increasing continuous sequence $\langle \delta_{\zeta} : \zeta \leq \kappa \rangle$ of ordinals $\langle \lambda \rangle$ we have

 $\{\zeta < \kappa : \zeta \text{ limit, and for some } C \in \mathcal{P}_{2,\zeta} \text{ we have:}$

$$\begin{aligned} \{\delta_{\varepsilon} : \varepsilon \in C\} \in \mathcal{P}_{2,\delta_{\zeta}}^{*} \ (hence \ [\xi \in \text{nacc}C \Rightarrow \{\delta_{\varepsilon} : \varepsilon \in C \cap \xi\} \in \mathcal{P}_{1,\delta_{\xi}}^{*}])\} \\ &\equiv \kappa \ mod \ I_{\overline{\mathcal{P}}_{1},\overline{\mathcal{P}}_{2}}; \end{aligned}$$

SHELAH 360

(E) we have e_{δ} a club of δ of order type $cf(\delta)$ for any limit $\delta < \lambda$; such that for any $C \in \bigcup_{\alpha < \lambda} \mathcal{P}_{2,\alpha}^*$ for some $\delta < \lambda$, $\mathrm{cf} \delta = \kappa$ and $C' \in \bigcup_{\beta < \kappa} \mathcal{P}_{2,\beta}$ we have $C = \{ \gamma \in e_{\delta} : \operatorname{otp}(e_{\delta} \cap \gamma) \in C' \}.$

Proof. Same proof as 1.4. (Note that without loss of generality $[C \in \mathcal{P}_{1,\alpha} \& \beta < \alpha < \alpha]$ $\kappa \Rightarrow C \cap \beta \in \mathcal{P}_{1,\beta}]$).

Conclusion 1.8: If $\delta(*)$ is a limit ordinal and $\lambda = \mathrm{cf}\lambda > |\delta(*)|^+$ then we can find $\overline{\mathcal{P}}_{\ell}^* =$ $\langle \mathcal{P}_{\ell,\alpha}^* : \alpha < \lambda \rangle$ for $\ell = 1, 2$ and stationary $S \subseteq \{\delta < \lambda : \mathrm{cf} \delta = \mathrm{cf} \delta(*)\}$ such that:

 $\bigoplus_{\overline{\mathcal{P}}_{1}^{*}, \overline{\mathcal{P}}_{2}^{*}, S} : \begin{cases} (A) & \mathcal{P}_{1,\alpha}^{*} \text{ is a family of } < \lambda \text{ closed subsets of } \alpha \text{ each of order type } < \delta(*); \\ (B) & \beta \in \text{nacc} C \& C \in \mathcal{P}_{1,\alpha}^{*} \Rightarrow C \cap \beta \in \mathcal{P}_{1,\beta}^{*}; \\ (C) & \mathcal{P}_{2,\delta}^{*} \text{ is a family of } \leq \lambda \text{ clubs of } \delta \text{ (yes, maybe } = \lambda) \text{ of order type } \delta(*), \\ & \text{and } [\beta \in \text{nacc} C \& C \in \mathcal{P}_{2,\delta}^{*} \Rightarrow C \cap \beta \in \mathcal{P}_{1,\beta}^{*}]; \\ (D) & \text{for every club } E \text{ of } \lambda, \text{ for some } \delta \in E \cap S, \text{ cf} \delta = \text{cf}(\delta(*)) \text{ and there is } \\ & C \in \mathcal{P}_{2,\beta}^{*} \text{ such that } C \subseteq E. \end{cases}$

Proof. If $\lambda = |\delta(*)|^{++}$ (or any successor of regulars) use [3], III, 6.4(2)] or [13], 2.14(2) (c)&(d)). If $\lambda > |\delta(*)|^{++}$ let $\kappa = |\delta(*)|^{++}$ and let $S_1 = \{\delta < \kappa^{++} : \mathrm{cf}\delta = \mathrm{cf}\delta(*)\}$; applying the previous sentence we get $\overline{\mathcal{P}}_{1}^{*}, \overline{\mathcal{P}}_{2}^{*}$ satisfying $\bigoplus_{\overline{\mathcal{P}}_{1}^{*}, \overline{\mathcal{P}}_{2}^{*}, S_{1}}^{\kappa^{+\hat{+}}, \delta(*)}$, hence satisfying the assumption $\square_{1.8}$ of 1.7 so we can apply 1.7.

Definition 1.9 $+\bigoplus_{\overline{\mathcal{D}}_1,\overline{\mathcal{D}}_2,S}^{\lambda,\delta(*)}$ is defined as in 1.8 except that we replace (C) by:

(C)⁺ $\mathcal{P}_{2.\delta}^*$ is a family of $< \lambda$ clubs of δ of order type $\delta(*)$.

Remark 1.9A Note that if $\mathcal{P}_{\alpha} = \mathcal{P}_{1,\alpha} \cup \mathcal{P}_{2,\alpha}, \ |\mathcal{P}_{2,\alpha}| \leq 1, \ \mathcal{P}_{1,\alpha} = \{C \in \mathcal{P}_{\alpha} : \text{otp}C < \delta(*)\},\ \mathcal{P}_{2,\alpha} = \{C \in \mathcal{P}_{\alpha} : \text{otp}C = \delta(*)\} \text{ then } ^{+} \bigoplus_{\overline{\mathcal{P}}_{1},\overline{\mathcal{P}}_{2},S}^{\lambda,\delta(*)} \Leftrightarrow \bigoplus_{\overline{\mathcal{P}},S}^{\lambda,\delta(*)}.$

C S

C

S

 \mathbf{R}

ar

su

Claim 1.10 Suppose $\lambda = cf \lambda > |\delta(*)|^+$, $\delta(*)$ a limit ordinal, additively indecomposable (i.e. $\alpha < \delta(*) \Rightarrow \alpha + \alpha < \delta(*)$), $\bigoplus_{\overline{\mathcal{P}}_1, \overline{\mathcal{P}}_2, S}^{\lambda, \delta(*)}$ from 1.8 and

(*) $\alpha \in S \Rightarrow |\mathcal{P}_{2,\alpha}| \leq |\alpha|$.

(Note: a non-stationary subset of S does not count; e.g. for λ successor cardinal the α with $|\alpha|^+ < \lambda$. Note: ${}^+\bigoplus_{\overline{\mathcal{P}}_1,\overline{\mathcal{P}}_2,S}^{\lambda,\delta(*)}$ holds by (*) and if λ is successor then ${}^+\bigoplus_{\overline{\mathcal{P}}_1,\overline{\mathcal{P}}_2,S}^{\lambda,\delta(*)}$ suffices). Then for some stationary $S_1 \subseteq S$ and $\overline{\mathcal{P}} = \langle \mathcal{P}_\alpha : \alpha < \lambda \rangle$ we have: $\mathcal{P}_\alpha \subseteq \mathcal{P}_{1,\alpha} \cup \mathcal{P}_{2,\alpha}$ and:

 \mathcal{P}_{α} is a family of closed subsets of α , $|\mathcal{P}_{\alpha}| < \lambda$;

 $\begin{array}{ll}
 \begin{array}{ll}
 & \lambda, \delta(*) \\
 & * \bigotimes_{\vec{\mathcal{P}}, S_1} \\
 & (ii) & \text{otp} C < \delta(*) \text{ if } C \in \mathcal{P}_{\alpha}, \ \alpha \notin S_1; \\
 & (iii) & \text{if } \alpha \in S_1 \text{ then: } \mathcal{P}_{\alpha} = \{C_{\alpha}\}, \ \text{otp} C_{\alpha} = \delta(*), \ C_{\alpha} \text{ a club of } \alpha \text{ disjoint to } S_1; \\
 & (iv) & C \in \mathcal{P}_{\alpha} \& \beta \in \text{nacc} C \Rightarrow \beta \cap C \in \mathcal{P}_{\beta}; \\
 & (v) & \text{for any club } E \text{ of } \lambda \text{ for some } \delta \in S_1 \text{ we have } C_{\delta} \subseteq E.
\end{array}$

Remark: Note there are two points we gain: for $\alpha \in S_1$, \mathcal{P}_{α} is a singleton (as in 1.3), and an ordinal α cannot have a double role — C_{α} a guess (i.e. $\alpha \in S_1$) and C_{α} is a proper initial segment of such C_δ . When $\delta(*)$ is a regular cardinal this is easier.

Proof. Let $\mathcal{P}_{2,\alpha} = \{C_{\alpha,i} : i < \alpha\}$ (such a list exists as we have assumed $|\mathcal{P}_{2,\alpha}| \le |\alpha|$, we ignore the case $\overline{\mathcal{P}}_{2,\alpha} = \emptyset$). Now

ADVANCES IN CARDINAL ARITHMETIC

- (*)₀ for some $i < \lambda$ for every club E of λ for some $\delta \in S \cap E$ we have $C_{\delta,i} \setminus E$ is bounded in α . [Why? If not, for every $i < \lambda$ there is a club E_i of λ such that for no $\delta \in S \cap E$ is $C_{\delta,i} \setminus E$ bounded in α . Let $E^* = \{j < \lambda : j \text{ a limit ordinal, } j \in \bigcap_{i < j} E_i\}$, it is a club of λ , hence for some $\delta \in S \cap E^*$ and $C \in \mathcal{P}_{2,\delta}$ we have $C \subseteq E^*$. So for some $i < \alpha$, $C = C_{\delta,i}$, so $C \subseteq E^* \subseteq E_i \cup i$ hence $C_{\delta,i} \setminus i \subseteq E_i$, contradicting the choice of E_i .]
- (*)₁ for some $i < \lambda$ and $\gamma < \delta(*)$, letting $C_{\delta} =: C_{\delta,i} \setminus \{\zeta \in C_{\delta,i} : \operatorname{otp}(\zeta \cap C_{\delta,i}) < \gamma\}$ we have: for every club E of λ , for some $\delta \in S \cap E$ we have: $C_{\delta} \subseteq E$. [Why? Let i(*) be as in $(*)_0$, and for each $\gamma < \delta(*)$ suppose E_{γ} exemplify the failure of $(*)_1$ for i(*) and γ , now $\bigcap_{\gamma < \delta(*)} E_{\gamma}$ is a club of λ exemplifying the failure of $(*)_0$ for i(*), contradiction. So for some $\gamma < \delta(*)$ we succeed.]
- (*)₂ Without loss of generality $|\mathcal{P}_{2,\alpha}| \leq 1$, so let $\mathcal{P}_{2,\alpha} = \{C_{\alpha}\}$. [Why? Let i, γ and C_{δ} (for $\delta \in S$) be as in (*)₁ and use $\mathcal{P}'_{1,\alpha} = \{C \setminus \{\zeta \in C : \text{otp}(\zeta \cap C) < \gamma\} : C \in \mathcal{P}_{1,\alpha}\}$, $\mathcal{P}'_{2,i} = \{C_{\delta}\}$.]
- (*)₃ for some $h: \lambda \to |\delta(*)|^+$, for every $\alpha \in S$ we have $h(\alpha) \notin \{h(\beta) : \beta \in C_\alpha\}$. [Why? Choose $h(\alpha)$ by induction on α .]
- (*)₄ for some $\beta < |\delta(*)|^+$, for every club E of λ , for some $\delta \in S \cap h^{-1}(\{\beta\})$, $C_{\delta} \subseteq E$. [Why? If for each β there is a counterexample E_{β} then $\bigcap \{E_{\beta} : \beta < |\delta(*)|^+\}$ is a counterexample for $(*)_2$.]

Now we have gotten the desired conclusion.

 $\Box_{1.10}$

Claim 1.11 If $S \subseteq \{\delta < \lambda : \text{cf} \delta = \kappa\}$, $S \in I[\lambda]$, $\kappa^+ < \lambda = \text{cf} \lambda$, then for some stationary $S_1 \subseteq S$ and $\overline{\mathcal{P}}_1$ we have $*\bigoplus_{\overline{\mathcal{P}}_1,S_1}^{\lambda,\delta(*)}$.

Proof. Same proof as 1.3 (plus $(*)_3$, $(*)_4$ in the proof of 1.8).

 $\square_{1.11}$

Claim 1.12 Assume $\lambda = \mu^+$, $|\delta(*)| < \mu$, $\operatorname{cf}(\delta(*)) \neq \operatorname{cf}\mu$. Then we can find stationary $S \subseteq \{\delta < \lambda : \operatorname{cf}\delta = \operatorname{cf}\delta(*)\}$ and $\overline{\mathcal{P}}$ such that $*\bigotimes_{\overline{\mathcal{P}},S}^{\lambda,\delta(*)}$.

Remark: This strengthens 1.8.

Proof.

Sh:420

Case (α) : μ regular.

By [3], III, 6.4(2)] or [13], 2.14(2) ((c)&(d)).

Case β : μ singular.

Let $\theta =: \operatorname{cf} \mu$, $\sigma =: |\delta(*)|^+ + \theta^+$ and $\mu = \sum_{\zeta < \theta} \mu_{\zeta}$, $\langle \mu_{\zeta} : \zeta < \theta \rangle$ strictly increasing, $\mu_0 > \sigma$ and for each $\alpha < \lambda$ let $\alpha = \bigcup_{\zeta \le \theta} A_{\alpha,\zeta}$, $\langle A_{\alpha,\zeta} : \zeta < \theta \rangle$ increasing, $|A_{\alpha,\zeta}| \le \mu_{\zeta}$.

By 1.6 there is a sequence $\overline{\mathcal{P}} = \langle \mathcal{P}_{\alpha} : \alpha < \lambda \rangle$ and stationary $S_1 \subseteq \{\delta < \lambda : \mathrm{cf}(\delta) = \sigma\}$ such that $\bigoplus_{\overline{\mathcal{P}}, S_1}^{\lambda, \sigma}$ of 1.3 holds. Let $\bigcup \{\mathcal{P}_{\alpha} : \alpha < \lambda\} \cup \{\emptyset\}$ be $\{C_{\alpha} : \alpha < \lambda\}$ such that $C_{\alpha} \subseteq \alpha$,

 $[\alpha \in S_1 \Rightarrow \alpha = \sup C_\alpha \& C_\alpha \in \mathcal{P}_\alpha \& \operatorname{otp} C_\alpha = \sigma]$ and $[\alpha \notin S_1 \Rightarrow \operatorname{otp} C_\alpha < \sigma]$. For some club E_1^* of λ , $[\alpha \in E_1^* \Rightarrow \bigcup_{\beta \leq \alpha} \mathcal{P}_\beta = \{C_\beta : \beta < \alpha\}]$.

Looking again at $\bigoplus_{\overline{P},S_1}^{\lambda,\sigma}$, we can assume $S_1 \subseteq E_1^*$ & $(\forall \delta)[\delta \in S_1 \Rightarrow C_\delta \subseteq E_1^*]$, hence because we can replace every C_α by $\{\beta \in C_\alpha : \text{otp}(\beta \cap C_\alpha) \text{ is even }\}$, without loss of generality

(*) $[\delta \in S_1 \& \alpha \in \text{nacc}C_{\delta} \Rightarrow \alpha \cap C_{\delta} \in \{C_{\beta} : \beta < \text{Min}(C_{\delta} \cap \alpha)\}].$

Without loss of generality $[\beta \in A_{\alpha,\zeta} \Rightarrow C_{\beta} \subseteq A_{\alpha,\zeta}]$ (just note $|C_{\beta}| \leq \sigma < \mu_{\zeta}$) and $\alpha \in A_{\beta,\zeta} \Rightarrow A_{\alpha,\zeta} \subseteq A_{\beta,\zeta}$. For $\alpha \in S_1$ let $C_{\alpha} = \{\beta_{\alpha,\varepsilon} : \varepsilon < \sigma\}$ ($\beta_{\alpha,\varepsilon}$ increasing in ε) and let $\beta_{\alpha,\varepsilon}^* \in [\beta_{\alpha,\varepsilon},\beta_{\alpha,\varepsilon+1})$ be minimal such that $C_{\alpha} \cap \beta_{\alpha,\varepsilon+1} = C_{\beta_{\alpha,\varepsilon}^*}$ (exists by (*) above). Without loss of generality every C_{α} is an initial segment of some C_{β} , $\beta \in S_1$ (if not, we redefine it as \emptyset).

(*)₁ there are $\gamma = \gamma(*) < \theta$ and stationary $S_2 \subseteq S_1$ such that for every club E of λ , for some $\delta \in S_2$ we have: $C_\delta \subseteq E$, and for arbitrarily large $\varepsilon < \sigma$, $\beta^*_{\delta,\varepsilon} \in A_{\beta_{\delta,\varepsilon+1},\gamma}$. [Why? If not, for every $\gamma < \theta$ (by trying $\gamma(*) = \gamma$) there is a club E_γ of λ exemplifying the failure of $(*)_1$ for γ . Let $E = \bigcap_{\gamma < \theta} E_\gamma \cap E_1^*$, so E is a club of λ , hence

$$S' =: \{ \delta : \delta < \lambda, \delta \in S_1(\text{so cf } \delta = \sigma) \text{ and } C_\delta \subseteq E \}$$

is a stationary subset of λ . For each $\delta \in S'$ and $\varepsilon < \sigma$, for some $\gamma = \gamma(\delta, \varepsilon) < \theta$ we have $\beta_{\delta,\varepsilon}^* \in A_{\beta_{\delta,\varepsilon+1},\gamma}$, but as $\sigma = \operatorname{cf}\sigma \neq \operatorname{cf}\theta = \theta$ for some $\gamma(\delta)$, $\{\varepsilon < \sigma : \varepsilon\gamma(\delta,\varepsilon) = \gamma(\delta)\}$ is unbounded in σ . But $\delta \in E_{\gamma(\delta)}$, contradiction].

(*)₂ Without loss of generality: if $\beta \in \text{nacc}C_{\alpha}$, $\alpha < \lambda$ then $(\exists \xi \in A_{\beta,\gamma(*)})[\beta > \xi > \sup(\beta \cap C_{\alpha}) \& \beta \cap C_{\alpha} = C_{\xi}]$. [Why? Define C'_{α} for $\alpha < \lambda$:

$$C_{\alpha}^{0} = \{\beta : \beta \in \text{nacc} C_{\alpha} \text{ and } (\exists \xi \in A_{\beta,\gamma(*)}) [\beta > \xi \geq \sup(\beta \cap C_{\alpha}) \& \beta \cap C_{\alpha} = C_{\xi}] \}.$$

$$C_{\alpha}' \text{ is: } \begin{cases} \emptyset & \text{if } \alpha \in S_{2}, \alpha > \sup C_{\alpha}^{0}, \\ \alpha \cap \text{closure of } C_{\alpha}^{0} & \text{otherwise.} \end{cases}$$

Now $\langle C_{\alpha} : \alpha < \lambda \rangle$ can be replaced by $\langle C'_{\alpha} : \alpha < \lambda \rangle$].

- (*)₃ For some $\gamma_1 = \gamma_1(*) < \theta$, for every club E of λ , for some $\delta \in E$: $\mathrm{cf}(\delta) = \mathrm{cf}(\delta(*))$, and there is a club e of δ satisfying: $e \subseteq E$, $\mathrm{otp}(e)$ is $\delta(*)$, and for arbitrarily large $\beta \in \mathrm{nacc}(e)$ we have $e \cap \beta \in \{C_\zeta : \zeta \in A_{\delta,\gamma_1}\}$. [Why? If not, for each $\gamma_1 < \theta$ there is a club E_{γ_1} of λ for which there is no δ as required. Let $E =: \bigcap_{\gamma_1 < \theta} E_{\gamma_1}$, so E is a club of λ , hence for some $\alpha \in \mathrm{acc}(E) \cap S_2$, $C_\alpha \subseteq E$. Letting again $C_\alpha = \{\beta_{\alpha,\varepsilon} : \varepsilon < \sigma\}$ (increasing), $C_\alpha \cap \beta_{\alpha,\varepsilon} = C_{\delta,\beta_{\delta,\varepsilon}}$ where $\beta_{\delta,\varepsilon}^* \in A_{\beta_{\delta,\varepsilon+1},\gamma(*)}$ clearly $\delta =: \beta_{\alpha,\delta(*)}$, $e = \{\beta_{\delta,\varepsilon} : \varepsilon < \delta(*)\}$ satisfies the requirements except the last. As $\mathrm{cf}(\delta(*)) \neq \mathrm{cf}(\mu)$, for some $\gamma_1(*) < \theta, \gamma_1(*) \geq \gamma(*)$ and $\{\varepsilon < \delta(*) : \beta_{\delta,\varepsilon}^* \in A_{\beta_{\delta,\delta(*)},\gamma_1(*)}\}$ is unbounded in $\delta(*)$. Clearly $\delta =: \beta_{\alpha,\delta(*)}$, $e =: C_\alpha \cap \delta$ satisfies the requirement. Now this contradicts the choice of $E_{\gamma_1(*)}$].
- $(*)_4$ For some club E^a of λ , for every club $E^b \subseteq E^a$ of λ , for some $\delta \in E^b$ we have:

(a)
$$cf(\delta) = cf(\delta(*));$$

ADVANCES IN CARDINAL ARITHMETIC

- (b) for some club e of $\delta: e \subseteq E^b$, $otp(e) = \delta(*)$, and for arbitrarily large $\beta \in nacc(e)$ we have $e \cap \beta \in \{C_{\xi}: \varepsilon \in A_{\delta,\gamma_1(*)}\}$;
- (c) for every $\beta \in A_{\delta,\gamma_1(*)}$ we have: $C_{\beta} \subseteq E^a \Rightarrow C_{\beta} \subseteq E^b$ (we could have demanded $C_{\beta} \cap E^a = C_{\beta} \cap E^b$). [Why? If not we choose E_i for $i < \mu_{\gamma_1(*)}^+$ by induction on i, $[j < i \Rightarrow E_i \subseteq E_j]$, E_i a club of λ , and E_{i+1} exemplify the failure of E_i as a candidate for E^a . So $\bigcap_i E_i$ is a club of λ hence by $(*)_3$ there are δ and e as there. Now $\langle \{\beta \in A_{\delta,\gamma_1(*)} : C_{\beta} \subseteq E_i\} : i < \mu_{\gamma_1(*)}^+ \rangle$ is a decreasing sequence of subsets of $A_{\delta,\gamma_1(*)}$ of length $\mu_{\gamma_1(*)}^+$, and $|A_{\delta,\gamma_1(*)}| \leq \mu_{\gamma_1(*)}$, hence it is eventually constant. So for every i large enough, δ contradicts the choice of E_{i+1}].

Let $S = \{\delta < \lambda : \operatorname{cf}(\delta) = \operatorname{cf}(\delta(*)), \text{ and there is a club } e = e_{\delta} \text{ of } \delta \text{ satisfying: } e \subseteq E^{a}, \text{ otp}(e) = \delta(*), \ \alpha \in \operatorname{nacc}e \Rightarrow e \cap \alpha \in A_{\alpha,\gamma(*)} \text{ and for arbitrarily large } \beta \in \operatorname{nacc}(e) \text{ we have } e \cap \beta \in \{C_{\xi} : \xi \in A_{\delta,\gamma(*)}\}\}.$ So S is stationary, let for $\delta \in S$, C_{δ}^{*} be an e as above. For $\alpha < \lambda$ let $\mathcal{P}_{1,\alpha} = \{C_{\beta} : \beta \leq \alpha, \beta \in A_{\alpha,\gamma_{2}(*)}\}.$

 $(*)_{5}$

Sh:420

- (a) for every club E of λ , for some $\delta \in S$, $C_{\delta}^* \subseteq E$;
- (b) C_{δ}^* is a club of δ , otp $(C_{\delta}^*) = \delta(*)$;
- (c) if $\beta \in \text{nacc}C_{\delta}^*(\delta \in S)$ then $C_{\delta}^* \cap \beta \in \mathcal{P}_{1,\beta}$;
- (d) $|\mathcal{P}_{1,\beta}| \leq \mu_{\gamma(*)}$, $\mathcal{P}_{1,\beta}$ is a family of closed subsets of β of order type $< \delta(*)$.

[Why? This is what we have proved.]

Now repeating $(*)_3$, $(*)_4$ of the proof of 1.10, and we finish.

 $\square_{1.12}$

Claim 1.13

- (1) Assume $\lambda = \mu^+$, $|\delta(*)| < \mu$, $\aleph_0 < \operatorname{cf}(\delta(*)) = \operatorname{cf}(\mu)(< \mu)$; then we can find stationary $S \subseteq \{\delta < \lambda : \operatorname{cf}\delta = \operatorname{cf}(\delta(*))\}$ and $\overline{\mathcal{P}}$ such that $*\bigotimes_{\overline{\mathcal{P}},S}^{\lambda,\delta(*)}$, except when:
 - \bigoplus for every regular $\sigma < \mu$, we can find $h : \sigma \to \mathrm{cf}(\mu)$ such that for no δ, ϵ do we have: if $\delta < \sigma$, $\mathrm{cf}(\delta) = \mathrm{cf}(\mu)$, $\epsilon < \mathrm{cf}\mu$ then $\{\alpha < \delta : h(\alpha) < \epsilon\}$ is not a stationary subset of δ .
- (2) In 1.12 and 1.13(1) we can have $\mu > \sup_{\alpha < \lambda} |\mathcal{P}_{\alpha}|$.
- (3) If 1.13(2), if μ is strong limit we can have $|\mathcal{P}_{\alpha}| \leq 1$ for each α .

Remark Compare with [7], §3.

Proof. Left to the reader (reread the proof of 1.12 and [7], §3).

Claim 1.14 Let κ be regular uncountable. We can choose for each regular λ , $\overline{\mathcal{P}}^{\lambda} = \langle \mathcal{P}^{\lambda}_{\alpha} : \alpha < \lambda \rangle$ (assuming global choice) such that:

(a) for each λ , $\mathcal{P}^{\lambda}_{\alpha}$ is a family of $\leq \lambda$ of closed subsets of α of order type $< \kappa$.

- (b) if χ is regular, F is the function $\lambda \mapsto \overline{\mathcal{P}}^{\lambda}$ (for λ regular $< \chi$), $\aleph_0 < \kappa = \mathrm{cf} \kappa$, $\kappa^{++} < \chi$, $x \in H(\chi)$ then we can find $\overline{N} = \langle N_i : i \leq \kappa \rangle$, an increasing continuous chain of elementary submodels of $(H(\chi), \in, <_{\chi}^*, F)$, $\langle N_j : j \leq i \rangle \in N_{i+1}$, $||N_i|| = \aleph_0 + |i|$, $x \in N_0$ such that:
 - (*) if $\kappa^+ < \theta = \text{cf}\theta \in N_i$, then for some club C of $\sup(N_{\kappa} \cap \theta)$ of order type κ , for any $j_1^i < j < \kappa$ we have:

$$C \cap \sup(N_i \cap \theta) \in N_{i+1}$$
 and $\operatorname{otp}(C \cap \sup(N_i \cap \theta)) = j$.

Proof. Let $\langle C_{\alpha} : \alpha \in S \rangle$ be such that $S \subseteq \{\alpha \leq \kappa^{++} : \operatorname{cf} \alpha \leq \kappa\}$ is stationary, $\operatorname{otp} C_{\alpha} \leq \kappa$, $[\beta \in C_{\alpha} \Rightarrow C_{\beta} = \beta \cap C_{\alpha}]$, C_{α} a closed subset of α , $[\alpha \text{ limit } \Rightarrow \alpha = \sup C_{\alpha}]$, $\{\alpha \in S : \operatorname{cf} \alpha = \kappa\}$ stationary, and for every club E of κ^{++} there is $\delta \in S$, $\operatorname{cf}(\delta) = \kappa$, $C_{\delta} \subseteq E$. For $i \in \kappa^{++} \setminus S$ let $C_i = \emptyset$. Now for every regular $\lambda > \kappa^+$ and $\alpha \leq \lambda$, let $e_{\alpha}^{\lambda} \subseteq \alpha$ be a club of α for $\alpha \leq \lambda$ limit and let

$$\overline{\mathcal{P}}_{\alpha}^{\lambda} = \{ \{ i \in e_{\delta} : i < \alpha, \text{otp}(e_{\delta} \cap i) \in C_{\beta} \} : \delta < \lambda \text{ has cofinality } \kappa^{++}, \text{ and } \beta \in S \}.$$

Given $x \in H(\chi)$, we choose by induction on $i < \kappa^{++}$, M_i , N_i such that:

$$\begin{split} N_i \prec M_i \prec (H(\chi), \in, <^*_{\chi}, F), \\ \|M_i\| &= |i| + \aleph_0, \\ \|N_i\| &= |C_i| + \aleph_0, \\ M_i(i < \kappa^{++}) \text{ is increasing continuous,} \\ x \in M_0, \\ \langle M_j : j \leq i \rangle \in M_{i+1}, \\ N_i \text{ is the Skolem Hull of } \{\langle N_j : j \in C_{\zeta} \rangle : \zeta \in C_i\}. \end{split}$$

We leave the checking to the reader.

 $\Box_{1.14}$

2 Measuring $S_{<\kappa}(\lambda)$

We prove that two natural ways to measure $S_{<\kappa}(\lambda)$ (κ regular uncountable) give the same cardinal: the minimal cardinality of a cofinal subset; i.e. its cofinality (i.e. $\operatorname{cov}(\lambda,\kappa,\kappa,2)$) and the minimal cardinality of a stationary subset. The theorem is really somewhat stronger: for appropriate normal ideal on $S_{<\kappa}(\lambda)$, some member of the dual filter has the right cardinality.

The problem is natural and I did not trace its origin, but until recent years it seems (at least to me) it surely is independent, and I find it gratifying we get a clean answer. I thank P. Matet and M. Gitik for reminding me of the problem.

We then find applications to Δ -systems and largeness of $I[\lambda]$.

Definition 2.1

- (1) $(\overline{C}, \overline{P}) \in \mathcal{T}^*[\theta, \kappa]$ if
 - (i) $\aleph_0 < \kappa = \operatorname{cf} \kappa < \theta = \operatorname{cf} \theta$,

- (ii) $\overline{C} = \langle C_{\delta} : \delta \in S \rangle, \overline{P} = \langle \mathcal{P}_{\delta} : \delta \in S \rangle,$
- (iii) $S \subseteq \theta$, S is stationary (we shall write $S = S(\overline{C})$),
- (iv) C_{δ} is an unbounded subset of δ (not necessarily closed),
- (v) $id^a(\overline{C})$ is a proper ideal (i.e. for every club E of θ for some $\delta \in S$, $C_\delta \subseteq E$),
- (vi) $\bigwedge_{\delta \in S} \operatorname{otp} C_{\delta} < \kappa$ (hence $[\delta \in S \Rightarrow \operatorname{cf}(\delta) < \kappa]$),
- (vii) \mathcal{P}_{δ} is a directed family of bounded subsets of C_{δ} , $\bigcup_{x \in \mathcal{P}_{\delta}} x = C_{\delta}$, and $|\mathcal{P}_{\delta}| < \kappa$,
- (viii) for every $\alpha < \theta$ the set

$$\mathcal{P}_{\alpha}^* =: \{a \cap \alpha : \text{for some } \delta \in S \text{ we have } \alpha < \delta \in S, a \in \mathcal{P}_{\delta} \text{ and } \alpha \in C_{\delta}\}$$

has cardinality $< \theta$ or at least

- (viii) for some list $\langle a_i : i < \theta \rangle$ of $\bigcup_{\alpha} \mathcal{P}_{\alpha}$ we have: $\mathcal{P}_{\alpha} \subseteq \{a_j : j < \alpha\}$,
- (ix) for $x \in \bigcup_{\delta \in S} \mathcal{P}_{\delta}$, $|\{y \in \bigcup_{\delta \in S} \mathcal{P}_{\delta} : y \subseteq x\}| < \kappa$.
- (2) $\overline{C} \in \mathcal{T}^0[\theta, \kappa]$ if $(\overline{C}, \overline{\mathcal{P}}) \in \mathcal{T}^*[\theta, \kappa]$ with $\mathcal{P}_{\delta} = \{C_{\delta} \cap \alpha : \alpha \in C_{\delta}\}$ or at least $\mathcal{P}_{\delta} = \{C_{\delta} \cap \alpha : C_{\delta} \cap \alpha \text{ has a least element}\}.$
- (3) $\overline{C} \in \mathcal{T}^1[\theta, \kappa]$ if $(\overline{C}, \overline{\mathcal{P}}) \in \mathcal{T}^*[\theta, \kappa]$ with $\mathcal{P}_{\delta} = S_{\leq \aleph_0}(C_{\delta})$.

Note that:

Claim 2.2

Sh:420

(1) If $\theta = \operatorname{cf} \theta > \kappa = \operatorname{cf} \kappa > \sigma = \operatorname{cf} \sigma$, then there is $\overline{C} \in \mathcal{T}^1[\theta, \kappa]$ such that:

$$\{\delta \in S(\overline{C}) : \operatorname{cf} \delta = \sigma\} \neq \emptyset \mod \operatorname{id}^a(\overline{C}).$$

- (2) If $S \subseteq \{\delta < \theta : \operatorname{cf} \delta < \kappa\}$ is stationary, \overline{C} an S-club system, $|C_{\delta}| < \kappa$, and $\operatorname{id}^{a}(\overline{C})$ a proper ideal, then $\overline{C} \in \mathcal{T}^{1}[\theta, \kappa]$.
- (3) In (2) if in addition $|\{C_\delta \cap \alpha : \alpha \in C_\delta, \delta \in S\}| < \theta \text{ then } \overline{C} \in \mathcal{T}^0[\theta, \kappa].$
- (4) In part (1) if θ is a successor of regular then we can demand $\overline{C} \in \mathcal{T}^0[\theta, \kappa]$ each C_{δ} closed.
- (5) In part (1) if $\theta = \operatorname{cf} \theta > \kappa = \operatorname{cf} \kappa > \sigma = \operatorname{cf} \sigma$ then there is $\overline{C} \in \mathcal{T}^0[\theta, \kappa]$ such that: $\{\delta \in S(\overline{C}) : \operatorname{cf} \delta = \sigma\} \neq \emptyset \mod id^a(\overline{C}).$

Proof.

- (1) By [13], §2 and then part (2).
- (2) Check.
- (3) Check.
- (4) By [3], III, 6.4(2) (or [13], 2.14(2) ((c)&(d)).

(5) By 1.5 and 1.11 (so we use the non-accumulation points).

Remember (see [Sh52], §3)

Definition 2.3 (1) $\mathcal{D}_{\leq \kappa}^{\kappa}(\lambda)$ is the filter on $\mathcal{S}_{\leq \kappa}(\lambda)$ defined by:

for $X \subseteq \mathcal{S}_{<\kappa}(\lambda)$:

 $X \in \mathcal{D}_{<\kappa}^{\kappa}(\lambda)$ iff there is a function F from $\bigcup_{\zeta<\kappa} {}^{\zeta}[\mathcal{S}_{<\kappa}(\lambda)]$ to $\mathcal{S}_{<\kappa}(\lambda)$ such that: if $a_{\zeta} \in \mathcal{D}_{<\kappa}^{\kappa}(\lambda)$ $S_{\leq \kappa}(\lambda)$ for $\zeta < \kappa$, is increasing continuous and for each $\zeta < \kappa$ we have $F(\langle \ldots, a_{\xi}, \ldots \rangle)_{\xi < \zeta} \subseteq$ $a_{\zeta+1}$ then $\{\zeta < \kappa : a_{\zeta} \in X\} \in \mathcal{D}_{\kappa}$ (\mathcal{D}_{κ} the filter generated by the family of clubs of κ).

Similarly

Definition 2.4 For $\lambda \geq \theta = \mathrm{cf}\theta > \kappa = \mathrm{cf}\kappa > \aleph_0, \ (\overline{C}, \overline{P}) \in \mathcal{T}^*[\theta, \kappa]$ we define a filter $\mathcal{D}_{(\overline{C},\overline{\mathcal{P}})}(\lambda)$ on $\mathcal{S}_{<\kappa}(\lambda)$; (let $\chi = \beth_{\omega+1}(\lambda)$):

 $Y \in \mathcal{D}_{(\overline{C},\overline{\mathcal{P}})}(\lambda) \text{ iff } Y \subseteq \mathcal{S}_{<\kappa}(\lambda) \text{ and for some } x \in H(\chi), \text{ for every } \langle N_{\alpha},N_a^*: \alpha < \theta,a \in \mathcal{P}_{<\kappa}(\lambda) \}$ $\bigcup_{\delta \in S} \mathcal{P}_{\delta} \rangle \text{ satisfying } \otimes \text{ below, and also } [a \in \mathcal{P}_{\delta} \& \delta \in S \& \alpha < \kappa \Rightarrow x \in N_a^* \& x \in N_{\alpha}],$ there is $A \in \mathrm{id}^a(\overline{C})$ such that: $\delta \in S(\overline{C}) \backslash A \Rightarrow \bigcup_{a \in \mathcal{P}_\delta} N_a^* \cap \lambda \in Y$, where

- $\begin{cases} \text{ (i)} \quad N_{\alpha} \prec (H(\chi), \in, <_{\chi}^{*}); \\ \text{ (ii)} \quad \|N_{\alpha}\| < \theta, \ N_{\alpha} \cap \theta \text{ an initial segment}; \\ \text{ (iii)} \quad \langle N_{\beta} : \beta \leq \alpha \rangle \in N_{\alpha+1}; \\ \text{ (iv)} \quad N_{\alpha} \text{ increasing continuous}; \\ \text{ (v)} \quad N_{a}^{*} \prec (H(\chi), \in, <_{\chi}^{*}) \text{ for } a \in \bigcup_{\delta \in S} \mathcal{P}_{\delta}; \\ \text{ (vi)} \quad \|N_{a}^{*}\| < \kappa, \ N_{a}^{*} \cap \kappa \text{ an initial segment}; \\ \text{ (vii)} \quad b \subseteq a \text{ (both in } \bigcup_{\delta \in S} \mathcal{P}_{\delta} \text{ implies } N_{b}^{*} \prec N_{a}^{*}; \\ \text{ (viii)} \quad \text{if } \alpha \in a \in \bigcup_{\delta \in S} \mathcal{P}_{\delta} \text{ then } \langle N_{\beta}, N_{b}^{*} : \beta \leq \alpha, b \subseteq \alpha, b \in \bigcup_{\delta \in S} \mathcal{P}_{\delta} \rangle \\ \quad \text{ belongs to } N_{a}^{*}; \\ \text{ (ix)} \quad \langle N_{\beta}, N_{b}^{*} : \beta \leq \alpha, b \subseteq \alpha + 1, b \in \bigcup_{\delta \in S} \mathcal{P}_{\delta} \rangle \text{ belongs to } N_{\alpha+1}; \\ \text{ (x)} \quad a \subseteq N_{a}^{*} \text{ and } \alpha \in a \Rightarrow \alpha \cap a \in N_{a}^{*}; \\ \text{ (vi)} \quad a \subseteq \alpha, a \in \bigcup_{S \subseteq S} \mathcal{P}_{\delta} \text{ implies } N_{a}^{*} \in N_{\alpha+1} \text{ (remember (viii) of 2.} \end{cases}$

 - (xi) $a \subseteq \alpha, a \in \bigcup_{\delta \in S} \mathcal{P}_{\delta}$ implies $N_a^* \in N_{\alpha+1}$ (remember (viii) of 2.1).

Clearly

Claim 2.5

- (1) Any $\chi \geq 2^{\lambda}$ can serve, and $x = (Y, \lambda, \overline{C}, \overline{P})$ is enough.
- (2) $\mathcal{D}_{(\overline{C},\overline{P})}(\lambda)$ is a fine normal filter on $\mathcal{S}_{<\kappa}(\lambda)$ when $(\overline{C},\overline{P}) \in \mathcal{T}^*[\theta,\kappa], \lambda \geq \theta$, hence it extends $\mathcal{D}_{<\kappa}(\lambda)$. (Remember $id^a(\overline{C})$ is a proper ideal.)

Theorem 2.6 Suppose $\lambda > \kappa = \operatorname{cf} \kappa > \aleph_0$. Then the following three cardinals are equal for $(\overline{C},\overline{P}) \in \mathcal{T}^*[\kappa^+,\kappa]$:

$$\mu(0) = \operatorname{cf}(S_{<\kappa}(\lambda), \subseteq),$$

$$\mu(1) = \operatorname{cov}(\lambda, \kappa, \kappa, 2) = \min\{|\mathcal{P}| : \mathcal{P} \subset S_{<\kappa}(\lambda), \text{ and for}$$

 $\mu(1) = \operatorname{cov}(\lambda, \kappa, \kappa, 2) = \min\{|\mathcal{P}| : \mathcal{P} \subseteq \mathcal{S}_{<\kappa}(\lambda), \text{ and for every } a \subseteq \lambda, |a| < \kappa, \}$ there is $b \in \mathcal{P}$, $a \subseteq b$,

F

I

g

ge p

hh

$$\mu(2) = \min\{|S| : S \subseteq \mathcal{S}_{<\kappa}(\lambda) \text{ is stationary}\},$$

$$\mu(3) = \mu_{(\overline{C}, \overline{\mathcal{P}})} = \min\{|Y| : Y \in \mathcal{D}_{(\overline{C}, \overline{\mathcal{P}})}(\lambda)\}.$$

Remark 2.6A

Sh:420

- (1) It is well known that if $\lambda > 2^{<\kappa}$ then the equality holds.
- (2) This is close to "strong covering".
- (3) In the proof we may replace " $\theta = \kappa^+$ " by " $\lambda > \theta = cf\theta > \kappa$ " if $\alpha < \theta \Rightarrow cov(\alpha, \kappa, \kappa, 2) < \theta$.
- (4) Note if $\lambda = \kappa$, then $\mu(1) = \mu(2)$ trivially.
- (5) Note that only $\mu(3)$ has $(\overline{C}, \overline{P})$ in its definition, so actually $\mu(3)$ does not depend on $(\overline{C}, \overline{P})$.

Remark 2.6B

- (1) We can weaken in Definition 2.1(1) demand (ix) as follows:
 - (ix) there is a sequence $\langle a_i, \mathcal{P}_i^* : i < \lambda \rangle$ such that
 - (a) $|a_i| < \kappa$, \mathcal{P}_i^* is a family of $< \kappa$ subsets of a_i ;
 - (b) for every δ and $x \in \mathcal{P}_{\delta}$, for some $i < \delta$, $a_i = x$ and

$$(\forall b)[b \in \mathcal{P}_{\delta} \& b \subseteq a \Rightarrow b \in \mathcal{P}_{i}^{*}].$$

In this case 2.6, 2.6A(3) (and 2.5) remain true and we can strengthen 2.2.

(2) We can even use another order on \mathcal{P}_{δ} (not \subseteq).

Proof. Clearly $\lambda \leq \mu(0) = \mu(1) \leq \mu(2) \leq \mu(3)$ (the last by 2.5(2)). So we shall prove $\mu(3) \leq \mu(1)$, (suffices by 2.2(1)) and let \mathcal{P} exemplify $\mu(1) = \text{cov}(\lambda, \kappa, \kappa, 2)$.

Let χ be e.g. $\beth_3(\lambda)^+$, M_{λ}^* be the model with universe $\lambda+1$ and all functions definable in $(H(\chi), \in, <_{\chi}^*, \lambda, \kappa, \mu(1))$. Let M^* be an elementary submodel of $(H(\chi), \in, <_{\chi}^*)$ of cardinality $\mu(1), \mathcal{P} \in M^*, M_{\lambda}^* \in M^*, (\overline{C}, \overline{\mathcal{P}}) \in M^*$ and $\mu(1)+1 \subseteq M^*$ hence $\mathcal{P} \subseteq M^*$. It is enough to prove that $M^* \cap \mathcal{S}_{<\kappa}(\lambda)$ belongs to $\mathcal{D}_{(\overline{C},\overline{P})}(\lambda)$.

So let N_i (for $i < \kappa^+$), N_a^* (for $a \in \bigcup_{\delta \in S} \mathcal{P}_{\delta}$) be such that: they satisfy \otimes of 2.4 and M_{λ}^* , M^* , \mathcal{P} , λ , κ , \overline{C} , $\overline{\mathcal{P}}$ belong to every N_{α} , N_a^* . It is enough to prove that $\{\delta < \kappa^+ : \lambda \cap \bigcup_{a \in \mathcal{P}_{\delta}} N_x^* \in M^*\} = \kappa^+ \mod \mathrm{id}^a(\overline{C})$.

For each $i \in S$ there is a set a_i such that $(\bigcup_{y \in \mathcal{P}_i} N_y^*) \cap \lambda \subseteq a_i \in \mathcal{P}$; so without loss of generality $a_i \in N_{i+1}$. Let $\mathfrak{a}_i =: \operatorname{Reg} \cap a_i \cap \lambda^+ \setminus \kappa^{++}$, so \mathfrak{a}_i is a set of $< \kappa$ regular cardinals $> \kappa^+$ and $\mathfrak{a}_i \in N_{i+1}$ too, so there is $\langle \mathfrak{b}_{\lambda}[\mathfrak{a}_i] : \lambda \in \operatorname{pcf}\mathfrak{a}_i \rangle$ as in [13], 2.6, without loss of generality it is definable from \mathfrak{a}_i (in $(H(\chi), \in, <_{\chi}^*)$). Also $a \in \mathcal{P} \subseteq M^*$ so $a \in M^*$, so $\mathfrak{a} \in M^*$. Hence $\langle \mathfrak{b}_{\lambda}[\mathfrak{a}_i] : \lambda \in \operatorname{pcf}\mathfrak{a}_i \rangle \in N_{i+1} \cap M^*$, and also there is $\langle f_{\theta,\alpha}^{\mathfrak{a}_i} : \alpha < \theta, \theta \in \operatorname{pcf}\mathfrak{a}_i \rangle$ as in [13], 1.2, and again without loss of generality it belongs to $N_{i+1} \cap M^*$. As $\max \operatorname{pcf}\mathfrak{a}_i \leq \operatorname{cov}(\lambda, \kappa, \kappa, 2) \leq \mu(1)$ (first inequality by [10], 5.4), clearly each $f_{\theta,\alpha}^{\mathfrak{a}_i} \in M^*$. Let h be the function with domain $\bigcup_{i \in S} \mathfrak{a}_i$, $h(\theta) = \sup(\theta \cap \bigcup_{i < \kappa^+} N_i)$. So by [13], 2.3(1) each $h \mid \mathfrak{a}_i$ has the form $\max\{f_{\theta,\alpha}^{\mathfrak{a}_i} : \ell < n\}$ hence belongs to M^* . Let e be a definable function

Sh:420

in $(H(\chi), \in, <_{\chi}^*, \lambda, \kappa)$, Dom $e = \lambda + 1$, e_{α} is a club of α of order type cf_{α} , enumerated as $\langle e_{\alpha}(\zeta) : \zeta < cf_{\alpha} \rangle$. Now for each $\theta \in \bigcup_{i < \kappa^{+}} \mathfrak{a}_{i}$,

$$E_{\theta} =: \{i < \kappa^{+} : (\forall \zeta < \kappa^{+})[[e_{h(\theta)}(\zeta) \in N_{i} \Leftrightarrow \zeta < i], i \text{ is limit},$$

$$\theta \in \bigcup_{i \in I} \mathfrak{a}_{j} \text{ and } \sup(N_{i} \cap \theta) = \sup\{e_{h(\theta)}(\zeta) : \zeta < i\}]\}$$

is a club of κ^+ , hence

$$E=\{\delta<\kappa^+:\delta \text{ limit and } [\theta\in(\bigcup\{N_y: \text{ for some }\alpha\in S \text{ and }\zeta\in C_\alpha\cap\delta\}] \}$$

we have
$$\sup y < \zeta, \ y \in \mathcal{P}_{\alpha}$$
 \}) & $\theta \in \text{Reg} \cap \lambda^+ \setminus \kappa^{++} \Rightarrow \delta \in E_{\theta}$ and $N_{\delta} \cap \kappa^+ = \delta$ }

is a club of κ^+ (note: we use (viii) of Definition 2.1(1)). For each $\delta \in E \cap S$ such that $C_\delta \subseteq E$, let $\delta^* = \sup(\kappa \cap \bigcup_{y \in \mathcal{P}_\delta} N_y^*)$ so $\delta^* < \kappa$, and we define by induction on n models $M_{y,\delta,n}$ for every $y \in \mathcal{P}_\delta$ (really, they do not depend on δ). Now $M_{y,\delta,0}$ is the Skolem Hull in M_λ^* of $\{i: i \in y\} \cup \{j: j < \delta^*\}$. $M_{y,\delta,n+1}$ is the Skolem Hull in M_λ^* of

$$M_{y,\delta,n} \cup \{e_{\theta}(\zeta) : \theta \in (\text{Reg} \cap \lambda^+ \setminus \kappa^{++}) \cap M_{y,\delta,n} \text{ and } \zeta \in y\}.$$

Now (A), (B), (C), (D), (E) below suffice to finish.

- (A) We can easily prove by induction on n that:
 - (a) for $y \in \mathcal{P}_{\delta}$ we have $M_{y,\delta,n} \subseteq \bigcup_{y \in \mathcal{P}_{\delta}} N_y^*$;
 - (b) for $z \subseteq y$ in \mathcal{P}_{δ} we have $M_{z,\delta,n} \subseteq M_{y,\delta,n}$;
 - (c) for $y \in \mathcal{P}_{\delta}$ and m < n we have $M_{y,\delta,m} \subseteq M_{y,\delta,n}$;
 - (d) assume $i \in y$ (hence $i \in E$), $\{y, z\} \subseteq \mathcal{P}_{\delta}$, $\sup z < i, z \subseteq y$ and $\theta \in \bigcup_{i < \kappa^{+}} N_{i} \cap \operatorname{Reg} \cap \lambda^{+} \setminus \kappa^{++}$; then: $\theta \in N_{z}^{*} \cap N_{i} \Rightarrow e_{h(\theta)}(i) = \sup(\theta \cap N_{i}) \in N_{y}^{*}$ and $\theta \in M_{z,\delta,n} \cap N_{i} \Rightarrow \sup(M_{z,\delta,n} \cap \theta) \leq e_{h(\theta)}(i) \leq \sup(M_{y,\delta,n} \cap \theta)$.
- (B) We can also prove that $\langle M_{y,\delta,n} : n < \omega, y \in \mathcal{P}_{\delta} \rangle$ is definable in $(H(\chi), \in, <_{\chi}^*)$ from the parameters δ , M_{λ}^* , $(\overline{C}, \overline{\mathcal{P}})$ and $h \mid a_i$, all of them belong to M^* , hence the sequence, and $\bigcup_{n < \omega, y \in \mathcal{P}_{\delta}} M_{y,\delta,n}$ belongs to M^* .
- (C) $(\bigcup_{n<\omega,y\in\mathcal{P}_{\delta}}M_{y,\delta,n})\cap\operatorname{Reg}\cap(\kappa^{+},\lambda^{+})$ is a subset of \mathfrak{a}_{i} (use (A)(a) and definition of a_{i},\mathfrak{a}_{i}).
- (D) if $\sigma \in \bigcup_{n < \omega, y \in \mathcal{P}_{\delta}} M_{y,\delta,n}$, $\sigma \in \text{Reg } \cap \lambda^+ \setminus \kappa$ then $\sigma \cap \bigcup_{n < \omega} M_{y,\delta,n}$ is unbounded in $\sigma \cap \bigcup_{y \in \mathcal{P}_{\delta}} N_{\delta}^*$ [when $\sigma > \kappa^+$ use (*), for $\sigma = \kappa^+$ as C_{δ} is equal to $\bigcup_{y \in \mathcal{P}_{\delta}} y$ and $\delta = \sup C_{\delta}$, for $\sigma = \kappa$ see (d), choice of $M_{y,\delta,0}$].

(E)
$$\bigcup_{n<\omega,y\in\mathcal{P}_{\delta}} M_{y,\delta,n} \cap \lambda = \bigcup_{y\in\mathcal{P}_{\delta}} N_y^* \cap \lambda$$
. (See [14], 3.3A, 5.1A).

Conclusion 2.7 Suppose $\lambda > \kappa > \aleph_0$ are regular cardinals and $(\forall \mu < \lambda)[\text{cov}(\mu, \kappa, \kappa, 2) < \lambda]$. If for $\alpha < \lambda$, a_{α} is a subset of λ of cardinality $< \kappa$ and $S \in \mathcal{D}_{<\kappa}(\lambda)$ (or just $S \neq \emptyset$

 $\operatorname{mod} \mathcal{D}_{<\kappa}^{\kappa}(\lambda)$) then we can find a stationary $T \subseteq \{\delta < \lambda : \operatorname{cf} \delta = \kappa\}$, $c \subseteq \lambda$ and $\langle b_{\delta} : \delta \in T \rangle$ such that:

$$a_{\delta} \subseteq b_{\delta} \in S \text{ for } \delta \in T$$

and

$$b_{\delta} \cap \delta = c \text{ for } \delta \in T.$$

Remark: See on this and on 2.9 Rubin Shelah [2] and [12], §6.

Conclusion 2.8 If $\lambda > \kappa > \aleph_0$, λ and κ are regular cardinals and $[\kappa < \mu < \lambda \Rightarrow cov(\mu, \kappa, \kappa, 2) < \lambda]$ then $\{\delta < \lambda : cf(\delta) < \kappa\} \in I[\lambda]$.

Proof. Use $\mu(3)$ of 2.6.

Claim 2.9 Let $(*)_{\mu,\lambda,\kappa}$ mean: if $a_i \in \mathcal{S}_{<\kappa}(\lambda)$ for $i \in S$, $S \subseteq \{\delta < \mu : \operatorname{cf} \delta = \kappa\}$ is stationary, then for some $b \in \mathcal{S}_{<\kappa}(\lambda)$, $\{i \in S : a_i \cap i \subseteq b\}$ is stationary. Let $(*)_{\mu,\lambda,\kappa}^-$ be defined similarly but $\{i \in S : a_i \subseteq b\}$ only unbounded. Then for $\aleph_0 < \kappa < \lambda < \mu$ regular we have:

$$\begin{aligned} \operatorname{cov}(\lambda,\kappa,\kappa,2) < \mu &\Rightarrow (*)_{\mu,\lambda,\kappa} \Rightarrow (*)_{\mu,\lambda,\kappa}^{-} \\ &\Rightarrow (\forall \lambda' \leq \lambda)[\kappa < \lambda' \leq \lambda \ \& \ \operatorname{cf} \lambda' < \kappa \Rightarrow \operatorname{pp}_{<\kappa} \lambda' < \mu]. \end{aligned}$$

Remark So it is conceivable that the \Rightarrow are \Leftrightarrow . See [12], §3.

Proof. Straightforward.

3 Nice Filters Revisited

This generalizes [11] (and see there).

See [15], §5 on this generalization of normal filters.

Conventions 3.1

- (1) We use \aleph_1 rather than an uncountable regular κ for simplicity.
- (2) Let μ^* be $> \aleph_1$ and $\mathcal{Y}_i = \{i\} \times (\bigcup_{\mu < \mu^*} \mu)$, $\mathcal{Y} = \bigcup_{i < \omega_1} \mathcal{Y}_i$, $\iota(y) = i$ when $y \in \mathcal{Y}_i$.
- (3) Let Eq denote a set of equivalence relations e on \mathcal{Y} refining $\bigcup_{i<\omega_1} \mathcal{Y}_i \times \mathcal{Y}_i$ with $<\mu^*$ equivalence classes, each class of cardinality $|\mathcal{Y}|$. We say $e_1 \leq e_2$ if e_2 refines e_1 . If not said otherwise, every e is in Eq. Let Eq_{μ} be the set of all such equivalence relations with $<\mu$ equivalence classes. Let $\iota(x/e)=\iota(x)$.

Definition 3.2

- (1) Let $FIL(e) = FIL(e, \mathcal{Y})$ denote the set of D such that:
 - (a) D is a filter on \mathcal{Y}/e ,
 - (b) for any club C of ω_1 , $\bigcup_{i \in C} \mathcal{Y}_i/e \in D$,

- (c) (normality) if $X_i \in D$ for $i < \omega_1$ then $\{(\delta, j)/e : (\delta, j) \in \mathcal{Y}, \delta \text{ limit and } i < \delta \Rightarrow (\delta, j) \in X_i\}$ belongs to D.
- (2) $\mathrm{FIL}(\mathcal{Y}) = \mathrm{FIL}(Eq, \mathcal{Y})$ is $\bigcup_{e \in Eq} \mathrm{FIL}(e, \mathcal{Y})$. For $D \in \mathrm{FIL}(\mathcal{Y})$, let e = e[D] be such that $D \in \mathrm{FIL}(e, \mathcal{Y})$.
- (3) For $D \in \text{FIL}(e)$ let $D^{[*]} = \{X \subseteq \mathcal{Y} : \{y/e : y/e \subseteq X\} \in D\}.$
- (4) For $D \in \text{FIL}(\mathcal{Y})$ and $e(1) \ge e(D)$, let $D^{[e(1)]} = \{X \subseteq \mathcal{Y}/e(1) : X^{[*]} \in D^{[*]}\}$.
- (5) For $A \subseteq \mathcal{Y}/e$, $A^{[*]} = \bigcup_{(x/e) \in A} x/e$, and for $e(1) \ge e$ let

$$A^{[e(1)]} = \{y/e(1) : y/e \in A\}.$$

Definition 3.2A For $D \in FIL(e, \mathcal{Y})$, let D^+ be $\{Y \subseteq \mathcal{Y}/e : Y \neq \emptyset \mod D\}$.

Definition 3.3

- (0) For $f: \mathcal{Y}/e \to X$ let $f^{[*]}: \mathcal{Y} \to X$ be $f^{[*]}(x) = f(x/e)$. We say $f: \mathcal{Y} \to X$ is supported by e if it has the form $g^{[*]}$ for some $g: \mathcal{Y}/e \to X$. Let $e_1, e_2 \in Eq$, $f_{\ell}: \mathcal{Y}/e_{\ell} \to X$; we say $f_1 = f_2^{[e_1]}$ if $f_1^{[*]} = f_2^{[*]}$.
- (1) Let $F_c({}^{\omega}\omega,e)=F_c({}^{\omega}\omega,e,\mathcal{Y})$ be the family of \overline{g} , a sequence of the form $\langle g_{\eta}:\eta\in u\rangle$, $u\in f_c({}^{\omega}\omega)=$ the family of non-empty finite subsets of ${}^{\omega}{}^{>}\omega$ closed under initial segment, and for each $\eta\in u$ we have $g_{\eta}\in {}^{\mathcal{Y}}\mathrm{Ord}$ is supported by e. Let $\mathrm{Dom}\ \overline{g}=u$, Range $\overline{g}=\{g_{\eta}:\eta\in u\}$. We let $e=e(\overline{g})$, an abuse of notation.
- (2) We say \overline{g} is decreasing for D or D-decreasing (for $D \in FIL(e, I)$) if $\eta \triangleleft \nu \Rightarrow g_{\nu} \triangleleft g_{\eta}$.
- (3) If $u = \{ \langle \rangle \}$, $g = g_{\langle \rangle}$ we write g instead of $\langle g_{\eta} : \eta \in u \rangle$.

Definition 3.4

(1) For $e \in Eq$, $D \in FIL(e, \mathcal{Y})$ and D-decreasing $\overline{g} \in F_c(\omega_e, e)$ we define a game $G^*(D, \overline{g}, e, \mathcal{Y})$ (we may omit \mathcal{Y}). In the *n*th move (stipulating $e_{-1} = e$, $D_{-1} = D$, $\overline{g}_{-1} = \overline{g}$):

player I chooses $e_n \geq e_{n-1}$ and $A_n \subseteq \mathcal{Y}/e_n$, $A_n \neq \emptyset \mod D_{n-1}^{[e_n]}$ and he chooses $\overline{g}^n \in F_c({}^\omega\!\omega, e_n)$ extending \overline{g}_{n-1} (i.e. $\overline{g}^{n-1} = \overline{g}^n \upharpoonright \text{Dom } \overline{g}_{n-1}$), \overline{g}^n supported by e_n and \overline{g}^n is $(D_n^{[e_n]} + A_n)$ -decreasing, player II chooses $D_n \in \text{FIL}(e_n, \mathcal{Y})$ extending $D_{n-1}^{[e_n]} + A_n$.

In the end, the second player wins if $\bigcup_{n<\omega} \text{Dom } \overline{g}^n$ has no infinite branch.

(2) $G^{\overline{\gamma}}(D, \overline{g}, e, \mathcal{Y})$ is defined similarly to $G^*(D, \overline{g}, e, \mathcal{Y})$ (Dom $\overline{\gamma} = \text{Dom } \overline{g}$) but the second player has, in addition, to choose an ordinal α_{η} for $\eta \in \text{Dom } \overline{g}^n \setminus \bigcup_{\ell < n} \text{Dom } \overline{g}^{\ell}$ such that $[\eta \triangleleft \nu \& \nu \in \text{Dom } \overline{g}^{n-1} \Rightarrow \alpha_{\nu} < \alpha_{\eta}]$ and $\alpha_{\eta} = \gamma_{\eta}$ for $\eta \in \text{Dom } \overline{g}$.

- (3) $wG^*(D, \overline{g}, e, \mathcal{Y})$ and $wG^{\overline{\gamma}}(D, \overline{g}, e, \mathcal{Y})$ are defined similarly but e is not changed during a play.
- (4) If $\overline{\gamma} = \langle \gamma_{<>} \rangle$, $\overline{g} = \langle g_{<>} \rangle$ we write $\gamma_{<>}$ instead of $\overline{\gamma}$, $g_{<>}$ instead of \overline{g} .
- (5) If $E \subseteq \mathrm{FIL}(\mathcal{Y})$ the games G_E^* , $G_E^{\overline{\gamma}}$ are defined similarly, but player II can choose filters only from E (so we like to have $A \in D^+$, $D \in E \Rightarrow D + A \in E$).

Remark 3.4A Denote the above games $G_0^*, G_0^{\overline{\gamma}}$. Another variant is

(3) For $e \in Eq$, $D \in FIL(e, \mathcal{Y})$ and D-decreasing $\overline{g} \in F_c(\omega)$ we define a game $G_1^*(D, \overline{g}, e, \mathcal{Y})$. We stipulate $e_{-1} = e$, $D_{-1} = D$.

In the *n*th move first player chooses $e_n, e_{n-1} \leq e_n \in Eq$ and $D'_n \in FIL(e_n, \mathcal{Y})$ such that:

- (*) for some $A_n \subseteq \mathcal{Y}/e_{n-1}$, $A_n \neq \emptyset$ mod D_{n-1} we have:
 - (i) $(D_{n-1} + A_n)^{[e_n]} \subseteq D_n$;
 - (ii) D'_n is the normal filter on \mathcal{Y}/e_n generated by $(D_{n-1}+A_n)^{[e_n]} \cup \{A^n_{\zeta}: \zeta < \zeta^*_n\}$ where for some $\langle C_{\zeta}: \zeta < \zeta_n \rangle$ we have:
 - (a) each C_{ζ} is a club of ω_1 ,
 - (b) if $\zeta_{\ell} < \zeta_{n}^{*}$ for $\ell < \omega$, $i \in \bigcap_{\ell < \omega} C_{\zeta_{\ell}}$, $x \in \mathcal{Y}/e_{n-1}$, and $\iota(x) = i$, then for some $x' \in \mathcal{Y}/e_{n}$, we have $x' \subseteq x$, $x' \in \bigcap_{\ell < \omega} A_{\zeta_{\ell}}^{n}$.

First player also chooses \bar{g}^n extending \bar{g}^{n-1} D'_n -decreasing and the second player chooses D_n , $D'_n \subseteq D_n \in \mathrm{FIL}(e_n, \mathcal{Y}_n)$.

- (4) We define $G_1^{\overline{\gamma}}(D, \overline{g}, e, \mathcal{Y})$ as in (2) using G_1^* instead of G_0^* .
- (5) If player II wins, e.g. $G_E^{\overline{\gamma}}(D, \overline{f}, e, \mathcal{Y})$ this is true for $E' =: \{D' \in G : \text{player II wins } G_{E^*}^{\overline{\gamma}}(D', \overline{f}, e, Y)\}.$

Definition 3.5

Sh:420

- (1) We say $D \in \text{FIL}(\mathcal{Y})$ is nice to $\overline{g} \in F_c({}^{\omega}\omega, e, \mathcal{Y})$, e = e(D), if player II wins the game $G^*(D, \overline{g}, e)$ (so in particular \overline{g} is D-decreasing, \overline{g} supported by e).
- (2) We say $D \in \mathrm{FIL}(\mathcal{Y})$ is nice if it is nice to \overline{g} for every $\overline{g} \in F_c({}^{\omega}\omega, e, \mathcal{Y})$.
- (3) We say D is nice to α if it is nice to the constant function α . We say D is nice to $g \in {}^{\aleph_1}\text{Ord}$ if it is nice to $g^{[e(D)]}$.
- (4) "Weakly nice" is defined similarly but e is not changed.

Remark "Nice" in [11] is the weakly nice here, but formally they act on different objects; but if $x \in y \Leftrightarrow \iota(x) = \iota(y)$ we get a situation isomorphic to the old one.

Claim 3.6 Let $D \in FIL(\mathcal{Y})$ and e = e(D).

(1) If D is nice to $f, f \in F_c({}^\omega\omega, e, \mathcal{Y}), g \in F_c({}^\omega\omega, e, \mathcal{Y})$ and $g \leq f$ then D is nice to f.

372 SHELAH

- (2) If D is nice to f, $e = e(D) \le e(1) \in Eq$ then $D^{[e(1)]}$ is nice to $f^{[e(1)]}$.
- (3) The games from 3.4(2) are determined and winning strategies do not need memory.
- (4) D is nice to \overline{g} iff D is nice to $g_{<>}$ (when $\overline{g} \in F_c({}^\omega\!\omega,e,\mathcal{Y})$ is D-decreasing).
- (5) If $Eq' \subseteq Eq$ and for simplicity $\bigcup_{i < \omega_1} \{i\} \times \mathcal{Y}_i \in Eq'$ and for every $e \in Eq'$, $e \leq e(1) \in Eq$ for some permutation π of \mathcal{Y} , $\pi(e) = e$, $\pi(e(1)) \leq e(2) \in Eq'$ then we can replace Eq by Eq'.
- (6) For $Eq = Eq_{\mu}$ (where $\mu \leq \mu^*$) there is Eq' as above with: |Eq'| countable if μ is a successor cardinal $(>\aleph_1)$, $|Eq'| = \operatorname{cf} \mu$ if μ is a limit cardinal.

Proof. Left to the reader. (For part (4) use 3.7(2) below.)

 $\square_{3.6}$

R

()

ir

L

ĝ

c

(

Claim 3.7

- (1) Second player wins $G^*(D, \overline{g}, e)$ iff for some $\overline{\gamma}$ second player wins $G^{\overline{\gamma}}(D, \overline{g}, e)$.
- (2) If second player wins $G^{\gamma}(D, f, e)$ then for any D-decreasing $\overline{g} \in F_c({}^{\omega}\omega, e, \mathcal{Y})$, \overline{g} supported by e and $\bigwedge_{\eta,x} g_{\eta}(x) \leq f(x)$, the second player wins in $G^{\overline{\gamma}}(D, \overline{g}, e)$, when we let

$$\gamma_{\eta} = \gamma \times [\max_{\eta \leq \nu \in \text{Dom } \bar{g}} (\ell g(\nu) - \ell g(\nu) + 1)].$$

(3) If $u_1, u_2 \in f_c(^{\omega}>_{\omega})$, $h: u_1 \to u_2$ satisfies $[\eta \vartriangleleft \nu \Leftrightarrow h(\eta) \vartriangleleft h(\nu)]$ and for $\ell = 1, 2$ we have $\overline{g}^{\ell} \in F_2(^{\omega}>_{\omega}, e_2, \mathcal{Y})$, $g_{\eta}^1 = g_{h(\eta)}^2$ (for $\eta \in u_1$), $\overline{\gamma}^{\ell} = \langle \gamma_{\eta}^{\ell} : \eta \in u_2 \rangle$ is \vartriangleleft -decreasing sequence of ordinals, $\gamma_{\eta}^1 \geq \gamma_{h(\eta)}^2$ and the second player wins in $G^{\overline{\gamma}^2}(D, \overline{g}^2, e, \mathcal{Y})$ then the second player wins in $G^{\overline{\gamma}^1}(D, \overline{g}^1, e, \mathcal{Y})$.

Proof.

(1) The "if" part is trivial, the "only if" as in [11].

The following is a consequence of a theorem of Dodd and Jensen [DoJ]:

Theorem 3.8 If λ is a cardinal, $S \subseteq \lambda$ then:

- (1) K[S], the core model, is a model of $ZFC + (\forall \mu \geq \lambda)2^{\mu} = \mu^{+}$.
- (2) If in K[S] there is no Ramsey cardinal $\mu > \lambda$ (or much weaker condition holds) then (K[S], V) satisfies the μ -covering lemma for $\mu \geq \lambda + \aleph_1$; i.e. if $B \in V$ is a set of ordinals of power $\leq \mu$ then there is $B' \in K[S]$, $B \subseteq B'$, $V \models |B'| \leq \mu$.
- (3) If $V \models (\exists \mu \geq \lambda)(\exists \kappa)[\mu^{\kappa} > \mu^{+} > 2^{\kappa}]$ then in K[S] there is a Ramsey cardinal $\mu > \lambda$.

Lemma 3.9 Suppose $f \in {}^{\aleph_1}\mathrm{Ord}$, $\lambda > \lambda_0 =: \sum_{\alpha < \mu^*} 2^{|\alpha|^{\aleph_0}} + \prod_{i < \omega_1} |f(i) + 1| + |Eq|$, and for every $A \subseteq \lambda_0$, in K[A] there is a Ramsey cardinal $> \lambda_0$, then for every normal filter $D \in \mathrm{FIL}(e, \mathcal{Y})$, D is nice to f.

Remark: The point in the proof is that via forcing we translate the filters from $FIL(e, \mathcal{Y})$ to normal filters on ω_1 [for higher κ 's cardinal restrictions are better].

Proof. Without loss of generality $(\forall i) f(i) \geq 2$.

Let $S \subseteq \lambda_0$ be such that $[\alpha < \mu^* \& A \subseteq 2^{|\alpha|^{\aleph_0}} \Rightarrow A \in L[S]]$, $Eq \in L[S]$ and: if $g \in {}^{\aleph_1}\mathrm{Ord}$, $(\forall i < \omega_1)g(i) \leq f(i)$ then $g \in L[S]$ (possible as $\prod_{i < \omega_1} |f(i) + 1| \leq \lambda_0$). We work for awhile in K[S]. In K[S] there is a Ramsey cardinal $\mu > \lambda_0$ (see 3.8(3)). Let, in K[S],

$$I = \{X : X \subseteq \mu, X \cap \omega_1 \text{ a countable ordinal } > 0, \{\omega_1, \mu\} \subseteq X,$$

moreover $X \cap \lambda_0$ is countable}.

Let

$$J = \{X \in I : X \text{ has order type } \geq f(X \cap \omega_1)\}.$$

Now for $g \in {}^{\aleph_1}$ Ord such that $\bigwedge_{i < \omega_1} g(i) < f(i)$ let \hat{g} be the function with domain J, $\hat{g}(X) = \text{the } g(X \cap \omega_1)$ -th member of X.

Let $D = \{A_i : \omega_1 \leq i \leq 2^{|\mathcal{Y}/e|}\}$ and we arrange $\langle A_i : \omega_1 \leq i < 2^{|\mathcal{Y}/e|} \rangle \in L[S]$, (as \mathcal{Y}/e has cardinality $< \mu^*$, so $2^{|\mathcal{Y}/e|} \leq \lambda_0$).

Let F be the minimal fine normal filter on I (in K[S]) to which J_D belongs where

$$J_D = \{X : X \in J \text{ and } i \in (\omega_1, 2^{|\mathcal{Y}/e|}) \cap X \Rightarrow X \cap \omega_1 \in A_i\}.$$

Clearly it is a proper filter as $K[S] \models "\mu$ is a Ramsey cardinal".

Observation 3.9A [in K[S]]. Assume P is a proper forcing notion of cardinality $\leq |\alpha|^{\aleph_0}$ for some $\alpha < \mu^*$ (or just P, MAC $(P) \in K[S]$ and $\{X \in I : X \cap |MAC(P)| \text{ is countable}\} \in F$ where MAC(P) is the set of maximal antichains of P) and let F^P be the normal fine filter which F generates in V^P . Then

- (1) F-positiveness is preserved; i.e. if $X \in V$, $X \subseteq I$, $F \in FIL(\mathcal{Y})$ and $V \models$ " $X \neq \emptyset \mod F$ " then \Vdash_P " $X \neq \emptyset \mod F$ ".
- (2) Moreover, if Q < P, (Q proper and) P/Q is proper then forcing with P/Q preserve F^Q -positiveness.

Let $\mathcal{P}(\mathcal{Y}/e) = \{A_{\zeta}^e : \zeta < 2^{|\mathcal{Y}/e|}\}.$

Now we describe a winning strategy for the second player. In the side we choose also (p_n, Γ_n, f_n) , $\overline{\gamma}^n$, W_n such that (where e_n , A_n are chosen by the second player):

- (A) (i) $P_n = \prod_{\ell \le n} Q_{\ell}$, Q_{ℓ} is Levy $(\aleph_1, \mathcal{Y}/e_n)$ (we could use iterations, too, here it does not matter);
 - (ii) $p_n \in P_n$;
 - (iii) p_n increasing in n;
 - (iv) f_n is a P_n -name of a function from ω_1 to \mathcal{Y}/e_n ;
 - (v) $p_n \Vdash_{P_n} f_n(i) \in \mathcal{Y}_i/e_n$;

¹By the homogeneity of the forcing notion the value of p_n is immaterial.

- (vi) $p_{n+1} \parallel f_{n+1}(i) \subseteq f_n(i)$ for every $i < \omega_1$ ";
- (vii) f_n is given naturally it can be interpreted as the generic object of Q_n except trivialities.
- (B) (i) $\overline{\gamma}^n, \overline{g}^n$ has the same domain, $\gamma_{\eta}^n < \mu$;
 - (ii) $p_n \Vdash_{P_n} W_n \subseteq J_D, W_{n+1} \subseteq W_n$;
 - (iii) $\overline{\gamma}^n = \gamma^{n+1} \upharpoonright \text{Dom } \overline{\gamma}^n, \text{ Dom } \overline{\gamma}^n = \text{Dom } \overline{g}^n$;
 - (iv) $p_n \Vdash_{P_n} {}^{u} \{X \in J_D : \text{for } \ell \in \{0, ..., n\}, f_{\ell}(X \cap \omega_1) \in A_{\ell} \text{ and } \bigwedge_{\eta \in \text{Dom } \overline{g}^n} \hat{g}_{\eta}(X) = \gamma_{\eta} \text{ and for } \ell \in \{-1, 0, ..., n-1\}, \zeta \in X \cap 2^{|\mathcal{Y}/e_{\ell}|} \text{ we have: } A_{\zeta}^{e_{\ell}} \in D_{\ell} \Rightarrow f_{\ell}(X \cap \omega_1) \in A_{\zeta}^{e_{\ell}}\} \supseteq W_n \neq \emptyset \text{ mod } F^{P_n}$
- (C) $D_n = \{Z \subseteq \mathcal{Y}/e_n : p_n | | -p_n ``\{X \in J_D : f_n(X \cap \omega_1) \notin Z\} = \emptyset \mod D_n^{P_n} + W_n"\}.$

Note that $D_n \in K[S]$, so every initial segment of the play (in which the second player uses this strategy) belongs to K[S].

Remark 3.9B

- (1) From the proof, instead $K[S] \models \text{``}\lambda$ is Ramsey", $K[S] \models \text{``}\mu \to (\alpha)_2^{<\omega}$ for $\alpha < \lambda_0$ " is enough for showing 3.9.
- (2) Also if $\prod (|f(i)|+1) < \mu_0$, $[\alpha < \mu_0 \Rightarrow |\alpha|^{\aleph_0} < \mu_0]$, it is enough: $S \subseteq \alpha < \mu_0 \Rightarrow$ in K[S] there is $\mu \to (\alpha)_2^{<\omega}$.

Theorem 3.10 Let $D^* \in \mathrm{FIL}(e,\mathcal{Y})$ be a normal ideal on \aleph_1 . If for every $f : \aleph_1 \to (\sum_{\chi < \mu^*} \chi^{\aleph_1})^+$, D^* is nice to f, then for every $f \in {}^{\aleph_1}\mathrm{Ord}$, D is nice to f.

Proof. As in [11], 1.7.

Remark 3.10A So, the existence of μ , $\mu \to (\alpha)_{\aleph_0}^{<\omega}$ for every $\alpha < (\sum_{\chi < \mu^*} \chi^{\aleph_1})^+$, is enough for " D^* is nice".

Conclusion 3.11 Let $\lambda_0 = \sum_{\chi < \mu^*} 2^{\chi^{\aleph_0}} + |Eq|, \ \mu^* \geq \aleph_2$; if for every $S \subseteq \lambda_0$ there is a Ramsey cardinal in K[S] above λ_0 then every $D \in FIL(\mathcal{Y})$ is nice.

Proof. By 3.9, 3.10.

Concluding Remark 3.12

- (1) We could have used other forcing notions, not Levy($\aleph_1, \mathcal{Y}/e_n$). E.g. if $\mu = \aleph_2$ we could use finite iterations of the forcing of Baumgartner to add a club of ω_1 , by finite conditions. (So this forcing notion has cardinality \aleph_1 .) Then in 3.9 we can weaken the demands on $\lambda_0 : \lambda_0 = \sum_{\chi < \mu_0} 2^{\chi} + \prod_{i < \omega_1} |1 + f(i)| + |Eq|$, hence also in 3.11, $\lambda_0 = \sum_{\chi < \mu^*} 2^{\chi}$ is O.K.
- (2) Concerning |Eq| remember 3.6(5), (6).

- (3) Similarly to (1). If $\bigwedge_{\theta < \mu} \text{cov}(\theta, \aleph_1, \aleph_1, 2) < \mu$ then by 2.6 we can use forcing notions of Todorčević for collapsing $\theta < \mu$ which has cardinality $< \mu$.
- (4) If we want to have $\lambda_0 =: \prod_{i < \omega_1} |f(i) + 2|$ (or even $T_D(f+2)$), we can get this by weakening further the first player letting him choose only A_n which are easily definable from the \overline{g}^{n-1} , we shall return to it in a subsequent paper.

4 Ranks

Sh:420

Convention 4.1 Like 3.1 and: $\overline{g} \in F_c({}^\omega\omega,e^*,\mathcal{Y}), \, \eta^* \in \text{Dom } \overline{g}^*, \, \nu^*$ an immediate successor of η^* not in Dom $g^*, \, D^* \in \text{FIL}(e^*,\mathcal{Y})$ is such that in $G^{\overline{\gamma}^*}(D^*,\overline{g}^*,e^*)$ second player wins (all constant). FIL* (e,\mathcal{Y}) will be the set of $D \in \text{FIL}(e,\mathcal{Y})$ such that $e \geq e^*, \, (D^*)^{[e]} \subseteq D$ and in $G^{\overline{\gamma}^*}(D^*,\overline{g}^*,e^*)$ second player wins. (So actually FIL (e^*,\mathcal{Y}) depends on D^*,\overline{g}^*,e^* , too.)

Definition 4.2

- (1) $rk_D^5(f)$ for $D \in FIL^*(e, \mathcal{Y})$, $f \in \mathcal{Y}/eOrd$, $f <_D \overline{g}_{\eta^*}^*$ will be: the minimal ordinal α such that for some $D_1, e_1, \overline{\gamma}^1$ we have $D^{[e_1]} \subseteq D_1 \in FIL(e_1, \mathcal{Y})$, $\overline{\gamma}^1 = \overline{\gamma}^* \wedge \langle \nu^*, \alpha \rangle$ (i.e. Dom $\overline{\gamma}^1 = (\text{Dom } \overline{\gamma}^*) \cup \{\nu^*\}$, $\overline{\gamma}^1 \upharpoonright \text{Dom } \overline{\gamma}^* = \overline{\gamma}^*$, $\gamma_{\nu^*}^1 = \alpha$) and in $G^{\overline{\gamma}^1}(D, \overline{g}^* \wedge \langle \nu^*, f \rangle)$ second player wins and ∞ if there is no such α .
- (2) $rk_D^4(f)$ is $\sup\{rk_{D+A}^5(f): A \in D^+\}$.

Claim 4.3

- (1) $rk_D^5(f)$ is (under the circumstances of 4.1, 4.2) an ordinal $<\gamma_{\eta^*}^*$.
- (2) $rk_D^4(f)$ is an ordinal $\leq \gamma_{\eta^*}^*$.

Claim 4.4 If $D \in FIL^*(e, \mathcal{Y})$, $h <_D f <_D g_n^*$ then $rk_D^5(h) < rk_D^5(f)$.

Proof. Let e_1 , D_1 witness $rk_D^5(f) = \alpha$ so $e(D) \leq e_1$, $D \subseteq D_1 \in FIL^*(e_1, \mathcal{Y})$ and in $G^{\overline{\gamma}^{\wedge} \langle \nu^*, \alpha \rangle}(D_1, \overline{g}^{*\wedge} \langle \nu^*, f \rangle, e)$ second player wins. We play for the first player: $e = e_1$, $A_0 = \mathcal{Y}/e_1$, $\overline{g}^0 = \overline{g}^{*\wedge} \langle \nu^*, f \rangle^{\wedge} \langle \nu^{*\wedge} \langle 0 \rangle, g \rangle$, now the first player should be able to answer say e_2 , D_2 , $\overline{\gamma}^2$. So $\gamma_{\nu^*\wedge\langle 0 \rangle}^2 < \gamma_{\nu^*}^2 = \alpha$, and by 3.7(3), we know that in $G^{\overline{\gamma}'}(D_2, \overline{g}^{*\wedge} \langle \nu^*, g \rangle, e_2)$ where $\overline{\gamma}' = \overline{\gamma}^{\wedge} \langle \nu^*, \gamma_{\nu^*\wedge\langle 0 \rangle}^2 \rangle$, second player wins.

Claim 4.5 Let $e \geq e^*$, $D \in FIL^*(e, \mathcal{Y})$.

(1) For $e \ge e(D)$, $A \in (D^{[e]})^+$, $f \in \mathcal{Y}/eOrd$, $f <_D g_{\eta^*}^*$ we have:

$$rk_D^5(f) \le rk_{D[e]+A}^5(f) \le rk_{D[e]+A}^4(f) \le rk_D^4(f).$$

(2) If $e_2 \geq e_1 \geq e(D)$, $f_{\ell} \in {}^{\mathcal{Y}}\!\text{Ord}$ is supported by e_{ℓ} , $f_1 \leq_D f_2 <_D g_{\eta^*}^*$ then $rk_D^{\ell}(f_1) \leq rk_D^{\ell}(f_2)$ for $\ell = 4, 5$.

5 More on Ranks and Higher Objects

Convention 5.1

- (a) μ^* is a cardinal $> \aleph_1$ (using \aleph_1 rather than an uncountable regular κ is to save parameters).
- (b) \mathcal{Y} is a set of cardinality $\sum_{\kappa < \mu^*} \kappa$.
- (c) ι is a function from $\mathcal Y$ onto ω_1 , $|\iota^{-1}(\{\alpha\})| = |\mathcal Y|$ for $\alpha < \omega$.
- (d) Eq is the set of equivalence relations e on $\mathcal Y$ such that:
 - (α) $y \in z \Rightarrow \iota(y) = \iota(z),$
 - (β) each equivalence class has cardinality $|\mathcal{Y}|$,
 - (γ) e has $< \mu^*$ equivalence classes.
- (e) D denotes a normal filter on some \mathcal{Y}/e $(e \in Eq)$, we write e = e(D). The set of such D's is $FIL(\mathcal{Y})$.
- (f) E denotes a set of D's as above, such that:
 - (a) for some $D = \min E \in E$,

$$(\forall D')[D' \in E \Rightarrow (e, D) \le (e(D'), D')],$$

- (β) if $D \in E$, $A \subseteq \mathcal{Y}/e_1$, $e_1 \ge e(D)$, $A \ne \emptyset$ mod D then $D^{[e_1]} + A \in E$.
- (g) $E^{[e]} =: \{D \in E : e(D) = e\}.$
- (h) \mathcal{E} denotes a set of E's as above, such that:
 - (a) there is $E = \text{Min } \mathcal{E} \in \mathcal{E}$ satisfying

$$(\forall E')(E' \in E \Rightarrow E' \subseteq E),$$

 (β) if $D \in E \in \mathcal{E}$ then

$$E_{\lceil D \rceil} = \{D': D' \in E \text{ and } (e(D), D) \leq (e(D'), D')\} \in \mathcal{E}.$$

Definition 5.2

- (1) We say E is λ -divisible when: for every $D \in E$, and Z a set of cardinality $< \lambda$, there are D', j such that:
 - (α) $D' \in E$;
 - $(\beta) \quad (e(D),D) \leq (e(D'),D');$
 - (γ) $j: \mathcal{Y}/e(D') \to Z;$
 - (\delta) for every function $h: \mathcal{Y}/e(D) \to Z$,

$$\{y/e(D'):h(y/e(D))=j(y/e(D'))\}\neq\emptyset \bmod D'.$$

- (2) We say E has λ -sums when: for every $D \in E \in \mathcal{E}$ and sequence $\langle Z_{\zeta} : \zeta < \zeta^* < \lambda \rangle$ of subsets of $\mathcal{Y}/e(D)$ there is $Z^* \subseteq \mathcal{Y}/e(D)$ such that: $Z^* \cap Z_{\zeta} = \emptyset \mod D$ and: [if $(e(D), D) \le (e', D')$, e' = e(D'), $D' \in E_{[D]}$ and $\bigwedge_{\zeta} Z_{\zeta}^{[e']} = \emptyset \mod D'$, then $Z^* \in D'$].
- (3) We say E has weak λ -sums if for every $D \in E \in \mathcal{E}$ and sequence $\langle Z_{\zeta} : \zeta < \zeta^* < \lambda \rangle$ of subsets of $\mathcal{Y}/e(D)$ there is D^* , $D^* \in E_{[D]}$ such that:
 - (a) if $(e(D), D) \leq (e', D')$, $D' \in E_{[D]}$ and $Z_{\zeta} = \emptyset \mod D'$ for $\zeta < \zeta^*$, $e(D^*) \leq e(D')$, then $D^* \subseteq D'$, and
 - (β) $Z_{\zeta} = \emptyset \mod D^*$ for $\zeta < \zeta^*$.
- (4) If $\lambda = \mu^*$ we omit it. We say \mathcal{E} is λ -divisible if every $E \in \mathcal{E}$ is. Similarly we define " \mathcal{E} has [weak] λ -sums" by modifying clause [(3)] (2), replacing E by \mathcal{E} and D by E.

We now define variants of the games from §3.

Definition 5.3 For a given \mathcal{E} , for every $E \in \mathcal{E}$:

- (1) We define a game $G_2^*(E, \overline{g})$. In the *n*-th move first player chooses $D_n \in E_{n-1}$ (stipulating $E_{-1} = E$) and choose $\overline{g}_n \in F_c({}^\omega\omega, e(D_n), \mathcal{Y})$ extending \overline{g}_{n-1} (stipulating $\overline{g}_{-1} = \overline{g}$) such that \overline{g}_n is D_n -decreasing. Then the second player chooses $E_n, (E_{n-1})_{[D_n]} \subseteq E_n \in \mathcal{E}$. In the end the second player wins if $\bigcup_{n<\omega} \text{Dom } \overline{g}_n$ has no infinite branch.
- (2) We define a game $G_2^{\overline{\gamma}}(E,\overline{g})$ where Dom $\overline{\gamma}=$ Dom \overline{g} , each γ_n an ordinal, $[\eta \vartriangleleft \nu \Rightarrow \gamma_n > \gamma_\nu]$ similarly to $G_2^*(D,\overline{g})$ but the second player in addition chooses an indexed set $\overline{\gamma}_n$ of ordinals, Dom $\overline{\gamma}_n=$ Dom $\overline{g}_n, \overline{\gamma}_n|$ Dom $\overline{\gamma}_{n-1}=\overline{\gamma}_{n-1}$ and $[\eta \vartriangleleft \nu \Rightarrow \gamma_{n,\eta} > \gamma_{n,\nu}]$.

Definition 5.4

Sh:420

- (1) We say \mathcal{E} is nice to $\overline{g} \in F_c({}^{\omega}\omega, e, \mathcal{Y})$ if for every $E \in \mathcal{E}$ with $e \leq e(E)$ the second player wins the game $G_2^*(E, \overline{g})$.
- (2) We say \mathcal{E} is nice if it is nice to \overline{g} whenever $E \in \mathcal{E}$, $e \leq e(E)$, $\overline{g} \in F_c({}^{\omega}\omega, e, \mathcal{Y})$, \overline{g} is $(\min E)$ -decreasing, we have: $\mathcal{E}_{[E]}$ is nice to \overline{g} .
- (3) If Dom $\overline{g} = \{ \langle \rangle \}$ we write $g_{\langle \rangle}$ instead of \overline{g} .
- (4) We say \mathcal{E} is nice to α if it is nice to the constant function α .

Claim 5.5

- (1) If \mathcal{E} is nice to f, $f \in F_c(\omega_w, e, \mathcal{Y})$, $g \in F_c(\omega_w, e, \mathcal{Y})$, $g \leq f$ then \mathcal{E} is nice to f.
- (2) The games from 5.4 are determined, and the winning side has winning strategy which does not need memory.

- (3) The second player wins $G_2^*(E, \overline{g})$ iff for some $\overline{\gamma}$ second player wins $G_2^{\overline{\gamma}}(E, g)$.
- (4) If the second player wins $G_2^{\gamma}(E, f)$, $\overline{g} \in F_c(\omega_{\omega}, e(E))$, $g_{\eta} \leq f$ for $\eta \in \text{Dom }(\overline{g})$ then the second player wins in $G_2^{\overline{\gamma}}(E, \overline{g})$ when we let

$$\gamma_{\eta} = \gamma + [\max_{\eta \le \nu \in \text{Dom } \bar{q}} (\ell g \nu - \ell g \eta + 1)].$$

Lemma 5.6 Suppose $f_0 \in {}^{(\mathcal{Y}/e)}$ Ord, $e \in Eq$, $\lambda_0 =: \sup_{e_0 \le e \in Eq} \prod_{x \in \mathcal{Y}/e} (f_0^{[e]}(x) + 1)$.

- (1) If there is a Ramsey cardinal $\geq \bigcup \{f(x) + 1 : x \in \text{Dom } f_0\}$ then there is a μ^* -divisible \mathcal{E} nice to f_0 having weak μ^* -sums.
- (2) If for every $A \subseteq \lambda_0$ there is in $K[A_0]$ a Ramsey cardinal $> \lambda_0$, then there is a μ^* -divisible \mathcal{E} which has weak μ^* -sums and is nice to f.
- (3) In part 2 if $\lambda_0 = 2^{<\mu_0}$ then there is a μ^* -divisible nice \mathcal{E} which has weak μ^* -sums.

Remark: This enables us to pass from " $pp_{\Gamma(\theta,\aleph_1)}$ large" to " pp_{normal} is large".

Proof. (1) Define $f_1 \in {}^{(\aleph_1)}\text{Ord}$, $f_1(i) = \sup\{f_0(y/e) : \iota(y) = i\}$, let λ be such that: $\lambda \to (\sup_{i < \aleph_1} f_1(i))_2^{<\omega}$ (or just $\emptyset \notin D_n^*$ — see below), let $\lambda_n = (\lambda^{\mu^*})^{+n}$,

 $I_n = \{s : s \subseteq \lambda_n, s \cap \omega_1 \text{ a countable ordinal}\},$ $J_n = \{s \in I_n : s \cap \lambda \text{ has order type } \geq f_0(s \cap \omega_1)\}.$

Let D_n^* be the minimal fine normal filter on J_n .

Let for $n < \omega$ and $e \in Eq$, $H_{n,e} = \{h : h \text{ a function from } J_n \text{ into } \mathcal{Y}/e \text{ such that } \iota(h(s)) = s \cap \omega_1\}.$

Let $P_n = \{p : p \subseteq J_n, p \neq \emptyset \mod D_n^*\}, P = \bigcup_{n < \omega} P_n$ and for $p \in P$ let n(p) be the unique n such that $p \in P_n$.

Let $p \leq q$ (in P) if $n(p) \leq n(q)$ and $\{s \cap \lambda_{n(p)} : s \in q\} \subseteq p$. Now for every $e \in Eq$, $n < \omega$, $p \in P_n$, $h \in H_{n,e}$ we let:

$$D_p^{n,e,h} = \{ A \subseteq \mathcal{Y}/e : h^{-1}(A) \supseteq p \bmod D_{n(p)}^* \},$$

$$E_p^{n,e,h} = \{D_q^{n^1,e^1,h^1}: p \leq q \in P, n^1 = n(q), \text{ and } (n^1,e^1,h^1) \geq (n,e,h)\},$$

where $(n^1, e^1, h^1) \ge (n, e, h)$ means: $n \le n^1 < \omega$, $e \le e^1 \in Eq$, $h^1 \in H_{n^1, e^1}$ and for $s \in J_{(n^1)}$, $h^1(s)^{[e]} = h(s \cap \lambda_n)$. We define $(p^1, n^1, e^1, h^1) \ge (p, n, e, h)$ similarly and let

$$\mathcal{E}_p^{n,e,h} = \{ E_q^{n^1,e^1,h^1} : p \le q \in P, n^1 = n(q), (n^1,e^1,h^1) \ge (n,e,h) \}.$$

 $[\text{Note: } (p^1, n^1, e^1, h^1) \geq (p, n, e, h) \text{ implies } D_{p^1}^{n^1, e^1, h^1} \supseteq D_p^{n, e, h}, \ E_{p^1}^{n^1, e^1, h^1} \subseteq E_p^{n, e, h} \text{ and } \mathcal{E}_{p^1}^{n^1, e^1, h^1} \subseteq \mathcal{E}_p^{n, e, h}.] \text{ Now any } \mathcal{E} = \mathcal{E}_p^{n, e, h} \ (p \in P) \text{ is as required.}$

A new point is " \mathcal{E} is μ -divisible". So suppose $E \in \mathcal{E} = \mathcal{E}_p^{n,e,h}$ so $E = E_q^{n^1,e^1,h^1}$ for some $(q,n^1,e^1,h^1) \geq (p,n,e,h)$. Let Z be a set of cardinality $< \mu^*$, so $(\lambda_{n^1})^{|Z|} = \lambda_{n_1}$; let $\{h_{\zeta}: \zeta < \zeta^* = |\mathcal{Y}/e_1|^{|Z|} \leq 2^{\mu} \leq \lambda_{n^1}\}$ list all functions h from \mathcal{Y}/e_1 to Z. Let $\langle S_{\zeta}: \zeta < \xi \rangle$

 $|\mathcal{Y}/e_1|^{|Z|}\rangle$ list a sequence of pairwise disjoint stationary subsets of $\{\delta < \lambda_{n^1+1} : \mathrm{cf}\delta = \aleph_0\}$. Let $e_2 \in Eq$ be such that $e_1 \leq e_2$ and for every $y \in \mathcal{Y}$, $\{z/e_2 : z e_1 y\} = \{x(y/e, t) : t \in Z\}$; we let $q_2, q \leq q_2 \in P$ be: $q_2 = \{s \in J_{n^1+1} : s \cap \lambda_{n^1} \in q \text{ and sup } s \in \bigcup_{\zeta} S_{\zeta}\}$; lastly we define $h^2 : J_{n^1+1} \to \mathcal{Y}/e_1$ by: $h^2(s) = x(h^1(s \cap \lambda_{n^1}), h_{\zeta}(s \cap \lambda_{n^1}))$ if $s \in q_2$, sup $s \in S_{\zeta}$ (for $s \in J_{n^1+1} \setminus q_2$ it does not matter).

The proof that q_2 , e_2 , h^2 are as required is as in [2] and more specifically [8].

As for proving " $\mathcal{E}_p^{n,e,h}$ has weak μ^* -sums" the point is that the family of fine normal filters on J_n has μ^* -sum.

- (2) Similar to 3.9 (and 3.6(5),(6)).
- (3) Similar to [11], 1.7.

Sh:420

 $\square_{5.6}$

6 Hypotheses: Weakening of GCH

We define some hypotheses; except for the first we do not know now whether their negations are consistent with ZFC.

Hypothesis 6.1

- (A) $pp(\lambda) = \lambda^+$ for every singular λ .
- (B) If a is a set of regular cardinals, $|a| < \min a$ then $|pcfa| \le |a|$.
- (C) If \mathfrak{a} is a set of regular cardinals, $|\mathfrak{a}| < \min \mathfrak{a}$ then $pcf\mathfrak{a}$ has no accumulation point which is inaccessible (i.e.: λ inaccessible $\Rightarrow \sup(\lambda \cap pcf\mathfrak{a}) < \lambda$).
- (D) For every λ , $\{\mu < \lambda : \mu \text{ singular and pp} \mu \geq \lambda\}$ is countable.
- (E) For every λ , $\{\mu < \lambda : \mu \text{ singular and } \text{cf} \mu = \aleph_0 \text{ and } \text{pp} \mu \geq \lambda \}$ is countable.
- (F) For every λ , $\{\mu < \lambda : \mu \text{ singular of uncountable cofinality, } \operatorname{pp}_{\Gamma(\operatorname{cf}\mu)}(\mu) \geq \lambda\}$ is finite.
- (D)_{θ,σ,κ} For every λ , $\{\mu < \lambda : \mu > \mathrm{cf}\mu \in [\sigma,\theta) \text{ and } \mathrm{pp}_{\Gamma(\theta,\sigma)}(\mu) \geq \lambda\}$ has cardinality $< \kappa$.
- (A)_{\Gamma} If $\mu > cf \mu$ then $pp_{\Gamma}(\mu) = \mu^+$ (or in the definition of $pp_{\Gamma}(\mu)$ the supremum is on the empty set).
- $(B)_{\Gamma}$, $(C)_{\Gamma}$ Similar versions (i.e. use pcf_{Γ}).

We concentrate on the parameter free case.

Claim 6.2 *In* 6.1, we have:

- (1) (A) \Rightarrow (B) \Rightarrow (C);
- (2) $(A) \Rightarrow (D) \Rightarrow (E), (A) \Rightarrow (F);$
- (3) (E) + (F) \Rightarrow (D) \Rightarrow (B). [Last implication by the localization theorem [13], §2.]

Theorem 6.3 Assume Hypothesis 6.1A.

- (1) For every $\lambda > \kappa$, $cov(\lambda, \kappa^+, \kappa^+, 2) = \begin{cases} \lambda^+ & \text{if } cf(\lambda) \leq \kappa, \\ \lambda & \text{if } cf(\lambda) > \kappa. \end{cases}$
- (2) For every $\lambda > \kappa = \operatorname{cf} \kappa > \aleph_0$, there is a stationary $S \subseteq S_{\leq \kappa}(\lambda)$, $|S| = \lambda^+$ if $\operatorname{cf}(\lambda) \leq \kappa$ and $|S| = \lambda$ if $\operatorname{cf}(\lambda) > \kappa$.
- (3) For μ singular, there is a tree with cf μ levels, each level of cardinality $< \mu$, and with $\geq \mu^+$ (cf(μ))-branches.
- (4) If $\kappa \leq cf \mu < \mu \leq 2^{\kappa}$ then there is an entangled linear order \mathcal{T} of cardinality μ^{+} .

Proof.

- (1) By [14], §1.
- (2) By part (1) and 2.6.
- (3), (4) By [10], §4.

Theorem 6.4 [Hypothesis 6.1(D)]. If $\lambda > 2^{\aleph_0}$, and $\lambda > \theta \geq \operatorname{cf} \lambda + 2^{\aleph_0}$ then $\operatorname{cov}(\lambda, \lambda, \theta^+, 2) = \operatorname{pp}_{\theta}(\lambda)$.

Remark See [14], §3, §5 on earlier results; [16] for later results.

Proof. We prove by induction on $pp_{\theta}(\lambda)$ (not on λ !) for fixed θ . For a given λ , let

$$\Theta_1 =: \{ \mu : \lambda \leq \mu < \mathrm{pp}_\theta^+(\lambda), \mathrm{cf} \mu \leq \theta, \mathrm{pp}_\theta^+(\mu) = \mathrm{pp}^+(\lambda) \},$$

$$\Theta_2 =: \{ \mu : \lambda \leq \mu < pp_{\theta}^+(\lambda), \text{cf} \mu \leq \theta \text{ and } \text{cov}(\mu, \mu, \theta^+, 2) \geq pp_{\theta}^+(\mu) \}.$$

As we know that $[\lambda \leq \mu < pp_{\theta}^{+}(\lambda) \& cf\mu \leq \theta \Rightarrow pp_{\theta}^{+}(\mu) \leq pp_{\theta}^{+}(\lambda)]$ (by [10], 2.3) and by the induction hypothesis clearly $\Theta_2 \subseteq \Theta_1$. But by Hypothesis 6.1(D) we have Θ_1 countable hence Θ_2 is countable (really $|\Theta_1| \leq \theta$ suffices). By [10], 5.3(10) Θ_2 is closed hence it has a last element σ . By [10], proof of 5.4(1)—first part $cov(\alpha, \sigma^+, \theta^+, 2) < pp^+(\lambda)$ for $\alpha < pp^+(\lambda)$ (and as said above $\sigma \in \Theta_1$). Now apply 6.5 below (we have Hypothesis 6.1(C) by 6.2(3) + 6.2(1) with $\lambda, \chi, \theta, \kappa$ there standing for $\sigma, pp^+(\lambda), \theta, cf\lambda$ here). $\square_{6.4}$

Claim 6.5 Suppose

- (a) $\lambda > cf\lambda = \kappa, \ \lambda > \theta \ge \kappa$,
- (b) $\chi = \text{cf}\chi > \lambda$ and $\text{cov}(\alpha, \lambda^+, \theta^+, 2) < \chi$ for $\alpha < \chi$,
- (c) $pp_{\theta}^+(\lambda) \leq \chi$,
- (d) $\lambda > 2^{\aleph_0}$ if $\kappa = \aleph_0$,
- (e) if χ is inaccessible then Hypothesis 6.1(C).

Then

(α) cov($\lambda, \lambda, \theta^+, 2$) < χ ;

Sh:420

(β) moreover, for some $\lambda_0 < \lambda$, $cov(\chi, \lambda_0^+, \theta^+, 2) = \chi$.

Proof. We concentrate on the case $cf\lambda = \aleph_0$, which is harder [if $cf\lambda > \aleph_0$ it suffices to choose f_{ξ} for $\xi < \omega$]. Note that in the conclusion, (β) follows from (α) (by [10], 5.3 (10). Let $\chi^* = \beth_3(\lambda)^+$, and choose by induction on $\zeta \leq (2^{\aleph_0})^+$ a model $M_{\zeta}^* \prec (H(\chi)^*, \in, <_{\chi^*}^*)$, $\|M_{\zeta}^*\| < \chi$, $M_{\zeta}^* \cap \chi$ an ordinal, M_{ζ}^* increasing continuous in ζ , $\{\kappa, \chi, \lambda, \theta\} \in M_0^*$ and $\langle M_{\xi}^* : \xi \leq \zeta \rangle \in M_{\zeta+1}^*$. Let $M^* = M_{(2^{\aleph_0})^+}^*$. Let $\mathcal{P}_{\zeta} =: \mathcal{S}_{<\lambda}(\lambda) \cap M_{\zeta}^*$, and $\mathcal{P} = \mathcal{P}_{(2^{\aleph_0})^+}$. Clearly \mathcal{P} is a family of $<\chi$ subsets of λ each of cardinality $<\lambda$, so it suffices to prove:

(*) if $a \subseteq \lambda$, $|a| \le \theta$ then for some $A \in \mathcal{P}$, $a \subseteq A$.

Given $a \subseteq \lambda$, $|a| \le \theta$, we define by induction on $\zeta < \omega_1$, f_{ζ} such that:

- (a) $f_{\zeta} \in M^*$, f_{ζ} belongs to $\prod (\lambda \cap \text{Reg})$.
- (b) For $w \subseteq \zeta$ satisfying $(\exists A \in M^*)[\{f_{\xi} : \xi \in w\} \subseteq A \& |A| < \lambda]$, let A_w be the $<^*_{\chi^*}$ -first such A of minimal cardinality and we let N^a_w be the Skolem Hull of $\{f_{\xi} : \xi \in w\}$ in $(H(\chi^*), \in, <^*_{\chi^*})$ and N^b_w be the Skolem Hull of $A_w = A_w \cup \{f_{\xi} : \xi \in w\}$ in $(H(\chi^*), \in, <^*_{\chi^*})$. We demand for every such w that: for every large enough $\sigma \in \lambda \cap \text{Reg} \cap N^a_w$ we have $\sup(\sigma \cap N^b_w) < f_{\zeta}(\sigma)$.

For defining f_{ζ} , let $W_{\zeta} = \{w \subseteq \zeta : A_w \text{ well defined}\}$ so $W_{\zeta} \subseteq M^*$, $|W_{\zeta}| \leq 2^{\aleph_0}$ hence for some $\xi(\zeta) < (2^{\aleph_0})^+$, $W_{\zeta} \subseteq M_{\xi(\zeta)}^*$. For $w \in W_{\zeta}$, let N_w^+ be the Skolem Hull of A_w in $(H(\chi^*), \in, <_{\chi^*}^*)$, so $N_w^+ \in M_{\xi(\zeta)+1}^*$ (see its definition) and $||N_w^+|| = |A_w|$ hence

$$\mathfrak{a}_w = \{ \sigma : \sigma \in N_w^+ \cap \lambda \cap \operatorname{Reg} \cap N_w^+ \setminus |A_w|^+ \}$$

belongs to $M^*_{\xi(\zeta)+1}$, and it includes an end segment of $\lambda \cap \text{Reg} \cap N^+_w$. Now by [14], 3.2, $\text{cf}_{\leq \theta}(\prod \mathfrak{a}_w/J_\lambda^{bd}) < \chi$ (we use Hypothesis 6.1(C) if χ is inaccessible).

As $\mathfrak{a}_w \in M_{\xi(\zeta)+1}$ there is $f_w^{\zeta} \in (\prod \mathfrak{a}_w) \cap M_{\xi(\zeta)+1}^*$ such that:

- (*) for every large enough $\sigma \in N_w^+ \cap \operatorname{Reg} \cap \lambda$ we have $\sup(\sigma \cap N_w^+) < f_w^{\zeta}(\sigma)$, but $N_w^a \subseteq N_w^+$ hence
- (*)' for every large enough $\sigma \in N_w^a \cap \operatorname{Reg} \cap \lambda$ we have $\sup(\sigma \cap N_w^+) < f_w^{\zeta}(\sigma)$.

Now $M_{\xi(\zeta)+1} \in M_{\xi(\zeta)+2}$, $||M_{\xi(\zeta)+1}|| < \chi$ hence there is a cofinal $\mathcal{P}' \subseteq \mathcal{S}_{\leq \lambda}(|M_{\xi(\zeta)+1}|)$ of cardinality $< \chi$ in $M_{\xi(\zeta)+2}$; as $M_{\xi(\zeta)+2} \cap \chi$ is an ordinal, necessarily $\mathcal{P}' \subseteq M_{\xi(\zeta)+2}$ hence there is $A^{\zeta} \in M_{\xi(\zeta)+2}$ such that $\bigwedge_{w \in W_{\zeta}} f_w^{\zeta} \in A^{\zeta}$ and $|A^{\zeta}| \leq \lambda$. So there is $f_{\zeta} \in \Pi(\text{Reg } \cap \lambda)$ in $M_{\xi(\zeta)+2}$ satisfying $(\forall f)[f \in A^{\zeta} \& (\exists \theta)[\theta < \lambda \& f] (\text{Reg } \cap \lambda \setminus \theta) < f_{\zeta}]]$.

Now there is $A \in M^*$, $|A| \leq \lambda$, $\{f_{\xi} : \xi < \omega_1\} \subseteq A$ (by assumption (b) of the claim), hence for some $A \in M^*$, $|A| < \lambda$ and $w^* = \{\xi < \omega_1 : f_{\xi} \in A\}$ is uncountable. For each $\xi \in w$, for some $\lambda_{\xi} < \lambda$,

$$\lambda_{\xi} < \sigma \in \lambda \cap \operatorname{Reg} \cap N_{w^* \cap \xi}^a \Rightarrow \sup(N_{w^* \cap \xi}^b \cap \sigma) < f_{\xi}(\sigma).$$

As we assume $cf \lambda = \aleph_0$, for some $\lambda(*) < \lambda$, there are $\xi_0 < \xi_1 < \ldots < \xi_n < \ldots$ in w^* such that $\lambda_{\xi_n} \leq \lambda(*)$.

Let $N^*=$ Skolem Hull of $A \cup (\lambda(*)+1)$ in $(H(\chi^*), \in, <^*_{\chi^*})$; it belongs to M^* , hence $N^* \cap \lambda \in \mathcal{P}$. So it suffices to show that $N^b_{\{\xi_n:n<\omega\}}$ is a subset of N^* , which is done as in [14], 3.3A, 5.1A.

Remark 6.5A

- (1) We may want to omit the " $\lambda > 2^{\aleph_0}$ and $\theta \ge cf\lambda + 2^{\aleph_0}$ " in 6.4, 6.5. Of course, this is used only in 6.5, and we may replace it by: for some $\lambda_0 < \lambda$
 - (*) $_{\lambda_0}$ if c is a two place function from λ_0 to κ such that $[\alpha < \beta < \gamma \Rightarrow c(\alpha, \gamma) \leq \max\{c(\alpha, \beta), c(\beta, \gamma)\}$, then for some $n_0 < \omega$ and infinite $w \subseteq \lambda_0$ we have $\alpha \in w \& \beta \in w \& \alpha < \beta \Rightarrow c(\alpha, \beta) \leq n_0$.

Unfortunately, this is equivalent to

 $(*)'_{\lambda_0} \text{ there are functions } f_{\alpha} \in \text{``Ord for } \alpha < \lambda_0 \text{ such that: } \alpha < \beta \Rightarrow f_{\beta} <_{J_{\omega}^{bd}} f_{\alpha}$ $[\text{why? } (*)'_{\lambda_0} \Rightarrow (*)_{\lambda_0} \text{ using } c(\alpha, \beta) = \min\{n : (\forall m)[m \geq n \Rightarrow f_{\alpha}(m) > f_{\beta}(m)]\}.$ $(*)_{\lambda_0} \Rightarrow (*)'_{\lambda_0} \text{ as for each } \alpha < \lambda_0 \text{ and } n \text{ we define when } f_{\alpha}(n) \geq \zeta:$

$$f_{\alpha}(n) \ge \zeta \Leftrightarrow \bigwedge_{\xi < \zeta} (\exists \beta) [\alpha < \beta \& c(\alpha, \beta) \le n \& f_{\beta}(n) \ge \xi].$$

Now $f_{\alpha}(n)$ is the minimal value; if it is ∞ we get contradiction to the choice of c, and $[\alpha < \beta \& c(\alpha, \beta) = n \le m \Rightarrow f_{\alpha}(m) > f_{\beta}(m)]$ is as required.

Claim 6.6 Assume (E) (or just (D)_{θ,\aleph_0,θ}). If $\kappa \leq \theta = \operatorname{cf} \mu < \mu < 2^{\mu}$ then there is an entangled linear order of cardinality μ^+ .

Proof. By [10], 2.1 for some strictly increasing continuous $\langle \mu_i : i < \theta \rangle$, $\mu = \bigcup_{i < \kappa} \mu_i$ and $\mu^+ = \text{tcf} \prod \mu_i^+ / J_{\theta}^{bd}$. Now note

(*) for some $i < \kappa$, for every $j \in (i, \kappa)$, $\mu^+ \notin \operatorname{pcf}\{\mu_{\alpha}^+ : i < \alpha < j\}$.

Now we can choose by induction on $\zeta < \theta$, $i(\zeta) < \theta$ such that $i(\zeta)$ strictly increasing and $\mu_{i(\zeta)} > \max \operatorname{pcf}\{\lambda_j : i < j < \bigcup_{\xi < \zeta} i(\xi)\}$. Now to $\langle \mu_{i(\zeta)}^+ : \zeta < \theta \rangle$ apply [10], 4.12.

References

- [1] T. Dodd and R.B. Jensen, The covering lemma for K, Ann. of Math Logic 22 (1982), 1-30. [DoJo]
- [2] M. Rubin and S. Shelah, Combinatorial problems on trees: partitions, Δ-systems and large free subsets, *Annals of Pure and Applied Logic* 33 (1987), 43–82. [RuSh117]
- [3] S. Shelah, *Universal Classes*, (with III, IV, revised from 300, V, VI, VII completed, and 322), O.U.P. (submitted). [Sh-e]
- [4] S. Shelah, Cardinal Arithmetic, Oxford University Press (most Chapters listed individually), accepted. [Sh-g]

- [5] S. Shelah, Appendix: Stationary Sets, Abstract elementary classes, Proc. of the USA-Israel Conference on Classification Theory, Chicago 12/85; ed. J. Baldwin, Springer Lecture Notes 1292 (1987) 483-497. [Sh88a]
- [6] S. Shelah, On successor of singular cardinals, Proc. of the ASL Meeting, Mons, Aug. 1978, Logic Colloquium 78, ed. M. Boffa, D. van Dalen and K. McAloon; Studies in Logic and the Foundation of Math., Vol. 97, North Holland Publ. Co., Amsterdam (1979), 357-380. [Sh108]
- [7] S. Shelah, Diamonds and Uniformization, J. of Symb. Logic [sb 4/82, Ne, acc 10/82, pr 1/84, NSF+BSF] 49 (1984), 1022-1033. [Sh186]
- [8] S. Shelah, *The Existence of Coding Sets*, Springer Verlag Lecture Notes Volume 1182 (1986), 188-202. [Sh212]
- [9] S. Shelah, Reflection of stationary sets and successor of singulars, Archiv für Math. Logic 31 (1991) 25-34. [Sh351]
- [10] S. Shelah, $\aleph_{\omega+1}$ has a Jonsson Algebra, [dn 5-7/88, dn Nov 18, 1988]. [Sh355]
- [11] S. Shelah, Bounding $pp(\mu)$ when $\mu > cf(\mu) > \aleph_0$, Cardinal Arithmetic Ch. V, Oxford Univ. Press, in press. [Sh386]
- [12] S. Shelah, Advanced: Cofinalities of Small Reduced Products, Cardinal Arithmetic, Oxford Univ. Press, in press. [Sh371]
- [13] S. Shelah, There are Jonsson algebras in many inaccessible cardinals, Cardinal Arithmetic Ch. III, Oxford Univ. Press, in press. [Sh365]
- [14] S. Shelah, Cardinal arithmetic, Cardinal Arithmetic Ch IX, Oxford Univ. Press, in press. [Sh400]
- [15] S. Shelah, More on cardinal arithmetic, Archiv für Math. Logic. [Sh410]
- [16] S. Shelah, Further cardinal arithmetic, Israel J. Math., accepted. [Sh430]