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(Communicated by Heike Mildenberger)

Abstract. We show that NSOP1 theories are exactly the theories in which
Kim-independence satisfies a form of local character. In particular, we show
that if T is NSOP1, M |= T , and p is a complete type over M , then the
collection of elementary substructures of size |T | over which p does not Kim-

fork is a club of [M ]|T | and that this characterizes NSOP1.
We also present a new phenomenon we call dual local-character for Kim-

independence in NSOP1 theories.

1. Introduction

A well-known theorem of Kim and Pillay characterizes the simple theories as
those theories with an independence relation satisfying certain properties and shows
that, moreover, any such independence relation must coincide with non-forking
independence. As the theory of simple theories was being developed, work of
Chatzidakis on ω-free PAC fields and Granger on vector spaces with bilinear forms
furnished examples of non-simple theories for which there are nonetheless inde-
pendence relations satisfying many of the fundamental properties of non-forking
independence in simple theories. These properties include extension, symmetry,
and the independence theorem. Chernikov and the second-named author proved
an analogue of one direction of the Kim-Pillay theorem for NSOP1 theories, show-
ing essentially that the existence of an independence relation with these properties
implies that a theory is NSOP1 [CR16]. To establish the other direction, the first-
and second-named authors introduced Kim-independence and showed that it is
well-behaved in any NSOP1 theory. The theory of Kim-independence provides an
explanation for the simplicity-like phenomena observed in certain non-simple ex-
amples and a central issue of research concerning NSOP1 theories is to determine
the extent to which properties of non-forking independence in simple theories carry
over to Kim-independence in NSOP1 theories. This paper addresses the specific
issue of local character for Kim-independence.

Simple theories are defined to be the theories in which forking satisfies local
character. Local character of non-forking asserts that there is some cardinal κ (T )
so that, for any complete type p in finitely many variables over A, there is a set
B ⊆ A with |B| < κ (T ) over which p does not fork. An analogue of local character
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for Kim-independence in NSOP1 theories was proved by the first- and second-
named authors in [KR17, Theorem 4.5]. It was shown there that if T is NSOP1

and M |= T , then for any p ∈ S (M), there is N ≺ M with |N | < κ =
(
2|T |)+ such

that p does not Kim-fork over N .
However, this result was an unsatisfactory generalization of local character in

simple theories for three reasons. First, with respect to non-forking, it follows
almost immediately that if κ (T ) exists at all, it can be taken to be |T |+: given a

type p ∈ S (A) with no B ⊆ A of size < |T |+ over which p does not fork, one can

find a chain of forking types of length |T |+ and then by the pigeonhole principle,
some formula must fork infinitely often with respect to the same disjunction of
dividing formulas. This equivalence is no longer immediate when considering Kim-
independence, because of the added constraint that the formulas must divide with

respect to Morley sequences and it was asked [KR17, Question 4.7] if
(
2|T |)+ can be

replaced by |T |+ in an arbitrary NSOP1 theory. Secondly, non-forking independence
satisfies base monotonicity, which means that if p ∈ S (B) does not fork over A,
then p does not fork over B′ whenever A ⊆ B′ ⊆ B. In other words, local character
of forking implies that every type does not fork over an entire cone of small subsets
of its domain. However, in an NSOP1 theory T , Kim-independence satisfies base
monotonicity if and only if T is simple. One would like an analogue of local character
for NSOP1 theories that shows that types over models do not Kim-divide over many
small submodels. Finally, local character of non-forking independence characterizes
simple theories. Many tameness properties of Kim-independence are known to
characterize NSOP1 theories, e.g., symmetry and the independence theorem, so it
is natural to ask if local character does as well.

Our main theorem is the following.

Theorem 1.1. Suppose T is a complete theory with monster model M |= T . The
following are equivalent:

(1) T is NSOP1.
(2) There is no continuous (see below) increasing sequence of |T |-sized models〈

Mi

∣∣∣ i < |T |+
〉
with union M and p ∈ S (M) such that p � Mi+1 Kim-forks

over Mi for all i < |T |+.
(3) For any M |= T , p ∈ S (M), the set of elementary substructures of M of

size |T | over which p does not Kim-divide is a stationary subset of [M ]|T |.
(4) For any M |= T , p ∈ S (M), the set of elementary substructures of M of

size |T | over which p does not Kim-divide contains a club subset of [M ]|T |.
(5) For any M |= T , p ∈ S (M), the set of elementary substructures of M of

size |T | over which p does not Kim-divide is a club subset of [M ]|T |.
(6) Suppose that N |= T , M ≺ N , and p ∈ S (N) does not Kim-divide over

M . Then the set of elementary substructures of M of size |T | over which

p does not Kim-divide is a club subset of [M ]
|T |

.

Continuous here means that the models indexed by limit ordinals are the union
of their predecessors in the chain. The equivalence of (1) and (2) was noted in

[KR17, Corollary 4.6] with |T |+ replaced by
(
2|T |)+, which is considerably weaker

than the theorem proved here.
In particular, this theorem implies that if T is NSOP1, M |= T , and p ∈ S (M),

then the set of N ≺ M with |N | = |T | such that p does not Kim-fork over N
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is non-empty, answering a question asked by the first- and second-named authors
[KR17, Question 4.7]. However, by demanding a stronger form of local character,
we obtain a new characterization of NSOP1.

Remark 1.2. In the first draft of this paper, published online in July 2017, we did
not yet have (5) or (6) above. Shortly after that draft was available, in a private
correspondence Pierre Simon found an easier proof of (1) implies (4), and we thank
him for allowing us to include his proof here. Later we found a proof of (6).
These proofs use symmetry of Kim-independence, and so are not as transparently
connected to the syntactic definition of NSOP1 theories as in the proof in simple
theories, and our original proof.

Our original proof assumes towards contradiction that local character fails and
reaches a contradiction to NSOP1 as is done in, e.g., simple theories. For this
approach to work we used stationary logic. This logic expands first-order logic
by introducing a quantifier aa interpreted so that M |= (aaS)ϕ (S) if and only
if the set of countable subsets X ⊆ M such that M , when expanded with the
predicate S interpreted as X, satisfies ϕ (S) contains a club of [M ]ω. This logic was
introduced by the third-named author in [She75] and later studied by Mekler and
the third-named author [MS86] who showed that the satisfiability of a theory in
L (aa) implies the satisfiability of a theory in a related logic, where the second-order
quantifiers range over uncountable sets of a certain size. This theorem, which may
be regarded as a version of the upward Lowenheim-Skolem theorem, provides a tool
for “stretching” a family of counterexamples to local character in such a way that
preserves the cardinality and continuity constraints needed to produce SOP1.

After further review, we noticed that our original proof gives rise to a new
phenomenon, which we call dual local-character.

In light of all this, we decided to rearrange the paper in the following way. After
a short preliminaries section, we prove the main theorem. In Section 4 we discuss
stationary logic and describe our original proof without giving details. In Section
5 we discuss the dual local-character. The details of all this can be found in an
online version of this paper [KRS17].

2. Preliminaries

2.1. NSOP1 theories, invariant types, and Morley sequences. Throughout
the paper, we will assume T is a complete theory with infinite models and a monster
model M.

Definition 2.1 ([DS04, Definition 2.2]). A formula ϕ (x; y) has the 1-strong order
property (SOP1) if there is a tree of tuples 〈aη | η ∈ 2<ω〉 so that

• For all η ∈ 2ω, the partial type {ϕ (x; aη�n) |n < ω} is consistent.
• For all ν, η ∈ 2<ω, if ν � 〈0〉 � η, then

{
ϕ (x; aη) , ϕ

(
x; aν�〈1〉

)}
is incon-

sistent.

A theory T is NSOP1 if no formula has SOP1 modulo T .

Fact 2.2 ([KR17, Proposition 2.4]). T has NSOP1 if and only if there is no formula
ϕ (x; y), k < ω, and a sequence 〈c̄i | i ∈ I〉 with ci = (ci,0, ci,1) satisfying

(1) For all i ∈ I, ci,0 ≡c<i ci,1.
(2) {ϕ (x; ci,0) | i ∈ I} is consistent.
(3) {ϕ (x; ci,1) | i ∈ I} is k-inconsistent.
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We also use the following notation. Write a |�
u

M
B for tp (a/MB) is finitely

satisfiable in M ; in other words it is a coheir of its restriction to M . A type
p ∈ S (M) is an heir of its restriction to N ≺ M if for every formula ϕ (x; y) ∈ L (N)
and every b ∈ M , if ϕ (x; b) ∈ p, then ϕ (x; b′) ∈ p for some b′ ∈ N . We denote this

by c |�
h

N
M . This is equivalent to saying that M |�

u

N
c.

Definition 2.3. A global type q ∈ S (M) is called A-invariant if b ≡A b′ implies
ϕ (x; b) ∈ q if and only if ϕ (x; b′) ∈ q. A global type q is invariant if there is some
small set A such that q is A-invariant. If q (x) and r (y) are A-invariant global types,
then the type (q ⊗ r) (x, y) is defined to be tp (a, b/M) for any b |= r and a |= q|Mb.
It is also A-invariant. We define q⊗n (x0, . . . , xn−1) by induction: q⊗1 = q and
q⊗n+1 = q (xn)⊗ q⊗n (x0, . . . , xn−1).

Fact 2.4 ([She90, Lemma 4.1]). If T is any complete theory, M |= T , and p ∈
S (M), then there is a complete global type q extending p which is, moreover,
finitely satisfiable in M . In particular, q is M -invariant.

Definition 2.5. Suppose q is an A-invariant global type and I is a linearly ordered
set. By a Morley sequence in q over A of order type I, we mean a sequence
〈bα |α ∈ I〉 such that for each α ∈ I, bα |= q|Ab<α

where b<α = 〈bβ |β < α〉. Given
a linear order I, we will write q⊗I for the A-invariant type in variables 〈xα |α < I〉
so that for any B ⊇ A, if b |= q⊗I |B, then bα |= q|Bb<α

for all α ∈ I. If q is,
moreover, finitely satisfiable in A, then we refer to a Morley sequence in q over A
as a coheir sequence over A.

The above definition of q⊗I generalizes the finite tensor product q⊗n – given any
global A-invariant type q and linearly ordered set I, one may easily show that q⊗I

exists and is A-invariant by compactness.

Definition 2.6. Suppose M is a model.

(1) Given a formula ϕ (x; b) and a global M -invariant type q ⊇ tp (b/M), we
say that ϕ (x; b) k-Kim-divides over M via q if, whenever 〈bi | i < ω〉 is a
Morley sequence over M in q, then {ϕ (x; bi) | i < ω} is k-inconsistent.

(2) If q is a global M -invariant type with q ⊇ tp (b/M), we say ϕ (x; b) Kim-
divides over M via q if ϕ (x; b) k-Kim-divides over M via q for some k < ω.

(3) We say ϕ (x; b) Kim-divides over M if ϕ (x; b) Kim-divides over M via q for
some global M -invariant q ⊇ tp (b/M).

(4) We say that ϕ (x; b) Kim-forks over M if it implies a finite disjunction of
formulas, each Kim-dividing over M .

(5) We write a |�
K

M
B if tp (a/MB) does not Kim-fork (or Kim independent)

over M .

Note that if a |�
u

M
B, then a |�

f

M
B (i.e., tp (a/BM) does not fork over M)

which implies a |�
K

M
B.

Fact 2.7 ([KR17, Theorem 3.15]). The following are equivalent for the complete
theory T :

(1) T is NSOP1.
(2) (Kim’s lemma for Kim-dividing) Given any model M |= T and formula

ϕ (x; b), ϕ (x; b) Kim-divides via q for some globalM -invariant q ⊇ tp (b/M)
if and only if ϕ (x; b) Kim-divides via q for all global M -invariant q ⊇
tp (b/M).
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From this it easily follows that Kim-forking is equal to Kim-dividing [KR17,

Proposition 3.19]. The notion of Kim independence, denoted by |�
K , satisfies

many nice properties which turn out to be equivalent to NSOP1.

Fact 2.8 ([KR17, Theorem 8.1]). The following are equivalent for the complete
theory T :

(1) T is NSOP1.

(2) Symmetry of Kim independence over models: a |�
K

M
b iff b |�

K

M
a for any

M |= T .

(3) Independence theorem over models: if A |�
K

M
B, c |�

K

M
A, c′ |�

K

M
B, and

c ≡M c′, then there is some c′′ |�
K

M
AB such that c′′ ≡MA c and c′′ ≡MB c′.

Fact 2.9 ([KR17, Lemma 7.6]). Suppose that T is NSOP1 and that 〈ai | i < ω〉 is
an |�

K
-Morley sequence over M in the sense that ai |�

K

M
a<i and the sequence is

indiscernible. Then if ϕ (x, a0) does not Kim-divide over M , then {ϕ (x, ai) | i < ω}
does not Kim-divide over M , and in particular it is consistent.

2.2. The generalized club filter.

Definition 2.10. Let κ be a cardinal and let X be a set with |X| ≥ κ. We write
[X]

κ
to denote {Y ⊆ X | |Y | = κ}.

(1) A set C ⊆ [X]κ is unbounded if for every Y ∈ [X]κ, there is some Z ∈ C
with Y ⊆ Z.

(2) A set C ⊆ [X]
κ
is closed if, whenever 〈Yi | i < α ≤ κ〉 is a chain in C, i.e.,

each Yi ∈ C and i < j < α implies Yi ⊆ Yj , then
⋃

i<α Yi ∈ C.

(3) A set C ⊆ [X]
κ
is club if it is closed and unbounded.

(4) A set S ⊆ [X]
κ
is stationary if S ∩ C = ∅ for every club C ⊆ [X]

κ
.

The intersection of two clubs is club. The club filter on [X]
κ
is the filter generated

by the clubs. If |X| = κ, then the club filter on [X]κ is the principal ultrafilter
consisting of subsets of [X]κ containing X.

Example 2.11. If M is an L-structure of size ≥ κ ≥ |L|, then the collection of
elementary substructures of M of size κ is a club in [M ]κ.

Remark 2.12. In the literature, e.g., [Jec13, Definition 8.21], the above definitions
are given instead for subsets of Pκ+ (X) = {Y ⊆ X | |Y | < κ+} but note that [X]κ

is a club subset of Pκ+ (X), hence all definitions relativize to this set in the natural
way.

Fact 2.13. Let κ be a cardinal and let X be a set with |X| ≥ κ+.

(1) The club filter on [X]κ is κ+-complete [Jec13, Theorem 8.22].
(2) For every club C ⊆ [X]

κ
, there is a collection of finitary functions f =

〈fi | i < κ〉 with fi : X
ni → X such that

Cf := {Y ∈ [X]κ | fi (Y ni) ⊆ Y for all i < κ}
is contained in C. Equivalently, there is a function F : X<ω → [X]κ such
that CF ⊆ C [Jec13, Lemma 8.26].

(3) Conversely, given a collection of finitary functions f = 〈fi | i < κ〉 with
fi : X

ni → X, the set Cf is club in [X]κ.

(4) When κ = ω, for any club C ⊆ [X]
κ
, there is a function F : X<ω → X

such that CF ⊆ C [Jec13, Theorem 8.28].
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We leave the proof of the next lemma to the reader.

Lemma 2.14. Suppose λ is a cardinal, X is a set with |X| = λ+, and 〈Yα |α < λ+〉
is an increasing continuous sequence of sets of cardinality λ with union X. Then

{Yα |α < λ+} is a club of [X]
λ
. In particular, if X = λ+ and C ⊆ λ+ \ λ is a club

of λ+, then, recalling each ordinal in C is the set of its predecessors, we have C is

a club of [X]λ.

3. Proof of Theorem 1.1

3.1. A short proof of (1) implies (4) in Theorem 1.1 using heirs. Here we
give a short proof of (1) implies (4) in Theorem 1.1, due to Pierre Simon. We thank
him for allowing us to include this proof.

Lemma 3.1. Suppose p (x) ∈ S (M), M |= T . Then the set of N ≺ M such that

|N | = |T | and p is an heir of p|N is a club subset of [M ]|T |.

Proof. It is easy to verify that this set is closed under increasing unions, so it is
closed. Therefore, to show it is unbounded, and hence club, it is enough to show
that it contains a club.

Consider the Lp-structure Mp expanding M by forcing p to be definable — i.e.,

for every L-formula ϕ(x; y) add a relationRϕ(y) interpreted as
{
b∈M |y|∣∣ϕ (x, b)∈p

}
.

Note that |Lp| = |L|. Then if N ′ ≺ Mp, then its L-reduct N is such that p is an
heir of p|N . Thus we are done by Example 2.11. �

Theorem 3.2. Suppose T is NSOP1. If M |= T and p ∈ S (M), then the set of
elementary substructures N ≺ M with |N | = |T | such that p does not Kim-divide
over N contains a club.

Proof. By Lemma 3.1, it suffices to show that if p is an heir of p|N , then p does
not Kim-divide over N . But if p is an heir of p|N , then, given c |= p, M |�

u

N
c,

hence M |�
K

N
c by symmetry of Kim-independence (in fact one needs only a weak

version of symmetry; see [KR17, Proposition 3.22]) which implies c |�
K

N
M . This

shows that p does not Kim-divide over N . �

3.2. A proof of (1) implies (6) in Theorem 1.1.

Lemma 3.3. Suppose T is an arbitrary theory and M |= T with |M | ≥ |T | = κ.
Given any global M -finitely satisfiable type q, let Cq denote the set of N ≺ M with
|N | = κ such that q⊗ω|N = r⊗ω|N for some global N-finitely satisfiable type r.
Then:

(1) Cq is a club of [M ]
κ
.

(2) Given any set A ⊆ M , there is some N ≺ M of size ≤ |T |+ |A| such that
A ⊆ N and q⊗ω|N is a type of a Morley sequence generated by some global
type r finitely satisfiable in N and if ϕ (x, c) Kim-divides over M via q,
then ϕ (x, c) Kim-divides over N via r.

Proof. One proof of (1) essentially follows from the proof of [KR17, Lemma 4.4], so
we also give an alternative one. Let ā = 〈ai | i < ω〉 be a coheir sequence generated
by q over M . Then, N ∈ Cq iff N ≺ M and ā is a coheir sequence over N in the
sense that tp (ai/a<iN) if finitely satisfiable in N . Thus it is easy to see that Cq is
closed under unions.
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Note that if N ≺ M is such that tp (ā/M) is an heir extension of its restriction
to N , then N ∈ Cq: if ϕ (ai, a<i) holds when ϕ (x, y) is some formula over N , then
for some c ∈ M , ϕ (c, a<i) holds, and by choice of N , we may assume that c ∈ N .
Now Lemma 3.1 finishes the proof.

(2) is immediate from (1), applied to the theory T (A) obtained from T by adding
constants for the elements of A. �

Theorem 3.4. Suppose T is NSOP1 with |T | = κ and M |= T . Then for a finite
tuple b and any set A, the following are equivalent:

(1) A |�
K

M
b.

(2) There is a club C ⊆ [M ] κ of elementary substructures of M such that

A |�
K

N
b for all N ∈ C.

(3) There is a stationary set S ⊆ [M ] κ of elementary substructures of M such

that A |�
K

N
b for all N ∈ S.

Proof. (1) =⇒ (2) Suppose that A |�
K

M
b. Let q ⊇ tp (b/M) be a global M -finitely

satisfiable type and choose 〈bi | i < ω〉 |= q⊗ω|M with b0 = b. By Lemma 3.3,
there is a club Cq of elementary substructures N ≺ M with |N | = |T | so that
q⊗ω|N = r⊗ω|N for some global N -finitely satisfiable type r. Fix N ∈ C, a a finite

tuple from A and ϕ (x; b, n) ∈ tp (a/Nb). As a |�
K

M
b, we know {ϕ (x; bi, n) | i < ω}

is consistent. As 〈bi | i < ω〉 is also a Morley sequence over N in a global N -finitely
satisfiable type, it follows from Kim’s lemma for Kim-dividing (Fact 2.7) that
ϕ (x; b, n) does not Kim-divide over N . As ϕ (x; b, n) was arbitrary, we conclude

a |�
K

N
b. Since this was true for any a, we have that A |�

K

N
b.

(2) =⇒ (3) is immediate.

(3) =⇒ (1) Suppose a  |�
K

M
b for some finite tuple a from A. Let ϕ (x; b,m) ∈

tp (a/Mb) be a formula witnessing this. Fix q ⊇ tp (b/M) a global M -finitely sat-
isfiable type and 〈bi | i < ω〉 |= q⊗ω|M . Let C ′ = {N ≺ M | |N | = |T | and m ∈ N}.
The set C ′ is clearly club so the intersection C ′′ = Cq ∩C ′ is also a club of [M ]κ. If
N ∈ C ′′ and q⊗ω|N = r⊗ω|N for some global type r finitely satisfiable in N , then
ϕ (x; b,m) ∈ tp (a/Nb) and 〈bi | i < ω〉 realizes r⊗ω|N . As {ϕ (x; bi,m) | i < ω} is

inconsistent, we have a  |�
K

N
b. As S is stationary, it must intersect C ′′, so we get a

contradiction. �

Corollary 3.5. Suppose T is NSOP1 with |T | = κ and M |= T . Then for a finite
tuple a and any set B, the following are equivalent:

(1) a |�
K

M
B.

(2) There is a club C ⊆ [M ] κ of elementary substructures of M such that

a |�
K

N
B for all N ∈ C.

(3) There is a stationary set S ⊆ [M ] κ of elementary substructures of M such

that a |�
K

N
B for all N ∈ S.

Proof. Follows immediately from symmetry of Kim-independence and Theorem 3.4.
�

Lemma 3.6. Suppose T is NSOP1. Assume M ≺ N . Suppose that a |�
K

M
N and

ϕ (x, a) Kim-divides over N for ϕ (x, y) ∈ L (M). Then ϕ (x, a) Kim-divides over
M .
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Proof. Let 〈ai | i < ω〉 be an indiscernible sequence over N starting with a0 = a such

that ai |�
h

N
a<i and {ϕ (x, ai) | i < ω} is inconsistent (to construct it, let 〈bi | i ∈ Z〉

be a coheir sequence in the type of tp (a/N), so in particular bi |�
u

N
b<i for i < 0,

hence b>i |�
u

N
bi by transitivity of |�

u, and let ai = b−i for i < ω).

Then 〈ai | i < ω〉 is an |�
K-Morley sequence overM in the sense that ai |�

K

M
a<i.

To see this, suppose not, i.e., by symmetry suppose that a<i  |�
K

M
ai. Then for some

formula ψ (z, x) over M , ψ (a<i, ai) holds and ψ (z, ai) Kim-divides over M . Since
a<i |�

u

N
ai, for some n ∈ N , ψ (n, ai) holds. However, since ai ≡N a, by symmetry

N |�
K

M
ai — contradiction.

Suppose that ϕ (x, a) does not Kim-divide over M . Then by Fact 2.9,

{ϕ (x, ai) | i < ω}
is consistent — contradiction. �

Lemma 3.7. Suppose T is NSOP1. Suppose that 〈Mi | i ≤ α〉 is an increasing
sequence of elementary substructures of a model N , that Mα =

⋃
{Mi | i < α} and

that p ∈ S (N). Assume that p does not Kim-fork over Mi for all i < α. Then p
does not Kim-fork over Mα.

Proof. Let a |= p. We want to show that a |�
K

Mα
N , so by symmetry it is enough to

show that N |�
K

Mα
a. Suppose not. Then there is some formula ϕ (x, y) in L (Mα)

and some b ∈ N such that ϕ (b, a) holds and ϕ (x, a) Kim-divides over Mα. Let

i < α be such that ϕ (x, y) ∈ L (Mi). Since Mα ⊆ N and a |�
K

Mi
N by assumption,

a |�
K

Mi
Mα. Hence by Lemma 3.6, ϕ (x, a) Kim-divides over Mi. Hence b  |�

K

Mi
a.

But this is a contradiction since a |�
K

Mi
N so by symmetry b |�

K

Mi
a. �

We can now prove (1) =⇒ (6) from Theorem 1.1.

Theorem 3.8. Suppose that T is NSOP1. Suppose that a is a finite tuple, a |�
K

M
N ,

and M ≺ N . Then the set E of M ′ ∈ [M ]
|T |

such that M ′ ≺ M and a |�
K

M ′ N is
a club.

Proof. The family E is closed under unions by Lemma 3.7. Hence to finish we only
need to show that E contains a club, and this follows from Corollary 3.5 (1) =⇒
(2). �

3.3. The equivalence (1)–(6). We finish the proof of Theorem 1.1 with the fol-
lowing.

Theorem 3.9. Suppose T is a complete theory. The following are equivalent:

(1) T is NSOP1.
(2) There is no continuous increasing sequence of |T |-sized models 〈Mi | i< |T |+〉

with union M and p ∈ S (M) such that p � Mi+1 Kim-forks over Mi for all
i < |T |+.

(3) For any M |= T , p ∈ S (M), the set of elementary substructures of M of

size |T | over which p does not Kim-divide is a stationary subset of [M ]|T |.
(4) For any M |= T , p ∈ S (M), the set of elementary substructures of M of

size |T | over which p does not Kim-divide contains a club subset of [M ]|T |.
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(5) For any M |= T , p ∈ S (M), the set of elementary substructures of M of

size |T | over which p does not Kim-divide is a club subset of [M ]|T |.
(6) Suppose that N |= T , M ≺ N , and p ∈ S (N) does not Kim-divide over

M . Then the set of elementary substructures of M of size |T | over which

p does not Kim-divide is a club subset of [M ]|T |.

Proof. (1) =⇒ (6) is Theorem 3.8.
(6) =⇒ (5) =⇒ (4) =⇒ (3) is trivial (for (6) implies (5), note that for p ∈ S (M),

p does not Kim-divide over M trivially).
(3) =⇒ (2) Assume (3) holds but (2) fails. By Lemma 2.14, C = {Mi | i < |T |+}

is a club of [M ]|T |. As T is NSOP1, by (3), there is a stationary set S ⊆ [M ]|T |

such that N ∈ S implies p does not Kim-fork over N . Choose any Mi ∈ C ∩ S to
obtain a contradiction.

(2) =⇒ (1). Suppose T has SOP1 as witnessed by some formula ϕ (x, y). Let T sk

be a Skolemized expansion of T . Then T sk also has SOP1 as witnessed by ϕ (x, y).
Thus by Fact 2.2, we can find a formula ϕ (x, y) and an array 〈ci,j | i < ω, j < 2〉 such
that ci,0 ≡c<i ci,1 for all i<ω, {ϕ (x, ci,0) | i<ω} is consistent and {ϕ (x; ci,1) | i<ω}
is 2-inconsistent (all in M

sk). By Ramsey and compactness we may assume that
〈ci | i < ω〉 is indiscernible (with respect to M

sk) and extend this sequence to length

|T |+.
For i ≤ |T |+, let Ni = dcl (c<i) (in M

sk). Then for every limit ordinal δ < |T |+,
ϕ (x, cδ,1) Kim-divides over Nδ as the sequence 〈cj,1 | δ ≤ j < |T |+〉 is indiscernible
and for all δ ≤ j, cj |�

u

Nδ
c>j . As cδ,1 ≡c̄<δ

cδ,0, it follows that cδ,1 ≡Nδ
cδ,0,

and hence ϕ (x, cδ,0) also Kim-divides. Let p ∈ S(N|T |+) be any complete type
containing {ϕ (x, cδ,0) | δ < κ}, which is possible as this partial type is consistent.
The sequence 〈Nδ | δ ∈ lim(|T |+)〉 is an increasing and continuous sequence of
elementary substructures of N|T |+ of size |T | with union N|T |+ witnessing that (2)
fails. �

Remark 3.10. The proof of (1) implies (6) in Theorem 1.1 relies heavily on symme-
try of Kim-independence, whose proof assumes that the whole theory is NSOP1.
However, a closer look at the proof of (1) implies (4) given in Section 3, or observing
the proof using stationary logic sketched below, we see that for (1) implies (4), we
only need that a particular formula ϕ (x, y) does not have an SOP1 array as in Fact
2.2.

Corollary 3.11. Suppose T is NSOP1, M |= T , M ≺ N , and p ∈ S (N). Then p
does not Kim-fork over M iff for every κ with |T | ≤ κ ≤ |M |, the set of elementary
substructures of M of size κ over which p does not Kim-divide is a club subset of
[M ]

κ
.

Proof. Suppose that p does not Kim-fork over M . Let A ⊆ M be any subset of M
of size κ and apply Theorem 1.1 to the theory T (A) obtained from T by adding
new constant symbols for the elements of A.

For the other direction, apply the left hand side with κ = |T | and use Corollary
3.5. �

Corollary 3.12. Suppose T is NSOP1 and M |= T . Then given any set A, there

is a club E ⊆ [M ]
|T |+|A|

such that N ∈ E iff A |�
K

N
M .
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Proof. Let κ = |A| + |T |. By Corollary 3.11, we know for each finite tuple a from

A, there is a club Ea ⊆ [M ]κ so that N ∈ Ea iff a |�
K

N
M . Let E =

⋂
a∈A Ea. As

|A| ≤ κ and the club filter on [M ]κ is κ+-complete (Fact 2.13(1)), E is a club of

[M ]κ. By the strong finite character of Kim-independence, we have A |�
K

N
M iff

N ∈ E. �

3.4. A sample application.

Proposition 3.13. Suppose T is NSOP1 and A |= T . Given any set C, there is

some C ′ ⊇ C with |C ′| = |C|+ |T | such that C ′ ∩ A is a model and C ′ |�
K

A∩C′ A.

Proof. Let κ = |C|+ |T |. Let C0 = C and, by Corollary 3.12, we may let E0 ⊆ [A]κ

be a club of elementary substructures of A such that N ∈ E0 implies C0 |�
K

N
A. By

induction, we will choose sets Ci, clubs Ei ⊆ [A]
κ
, and models Xi ≺ A such that

(1) Xi ∈
⋂

j≤i Ei and Ci ∩A ⊆ Xi.

(2) Ci+1 = Ci ∪Xi.

(3) For all N ∈ Ei, we have Ci |�
K

N
A.

Given 〈Ci, Xi, Ei | i ≤ n〉, let Cn+1 = Cn ∪ Xn. By Corollary 3.12, we may let

En+1 ⊆ [A]
κ
be a club such that N ∈ En+1 implies Cn+1 |�

K

N
A. As

{X ∈ [A]
κ |Cn+1 ∩ A ⊆ X}

is a club of [A]
κ
, we may choose Xn+1 ∈

⋂
i≤n+1 Ei containing Cn+1 ∩ A. This

completes the induction.
Let Cω =

⋃
i<ω Ci. By construction, Cω ∩ A =

⋃
i<ω Xi. As i < j implies

Xi ⊆ Xj , and i ≥ n implies Xi ∈ En, it follows that

Cω ∩A =
⋃
i≥n

Xi ∈ En

for all n, as En is club. Also as each Xi is a model, this additionally shows that
Cω ∩ A is a model. Moreover, if c ∈ Cω is a finite tuple, there is some n so that

c ∈ Cn, hence c |�
K

Cω∩A
A, by the choice of En. Setting C ′ = Cω, we finish. �

3.5. Open questions.

Question 3.14. Is the dual of Lemma 3.6 also true? Namely, suppose that

a |�
K

M
N and ϕ (x, a) Kim-divides over M for ϕ (x, y) ∈ L (M). Then is it true

that ϕ (x, a) Kim-divides over N?

If the answer to Question 3.14 is “yes”, then we have the following weak form of
transitivity (note that a full version of transitivity does not hold; see [KR17, Section
9.2]).

Claim 3.15 (Weak form of transitivity). Suppose the answer is “yes”. Let M ≺ N .

Suppose that a |�
K

M
N and a |�

K

N
B. Then a |�

K

M
B.

Proof. Suppose not. Then by symmetry there is a formula ϕ (x, y) over M such
that ϕ (b, a) holds for some b ∈ B and ϕ (x, a) Kim-divides over M . However,

since b |�
K

N
a, ϕ (x, a) does not Kim-divide over N . By assumption we arrive at a

contradiction. �

Question 3.16. Does the weak form of transitivity hold in NSOP1 theories?
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Question 3.17. Is there a local counterpart to Lemma 3.7? Namely, under NSOP1,
assume that ϕ (x, a) does not Kim-fork over Mi for i < α an increasing union. Is it
true that ϕ (x, a) does not Kim-fork over

⋃
i<α Mi?

Question 3.18. Is it true that T is NSOP1 if and only if for every M |= T and
complete type p ∈ S (M), there is some N ≺ M of cardinality ≤ |T | such that p
does not Kim-fork over N?

4. A proof of (1) implies (4) in Theorem 1.1 using stationary logic

4.1. More on clubs. The club filter on [X]
ω

was characterized by Kueker in
terms of games of length ω [Kue72]. The natural analogue for games of length λ
determines a filter on Pλ+ (X), which, in general, differs from the club filter. In
generalizing stationary logic to quantification over sets of some uncountable size λ,
it turns out that this filter provides a more useful analogue to the club filter on

[X]
ω
than the club filter on [X]

λ
.

Definition 4.1. Suppose X is a set and λ is a regular cardinal. Given a subset
F ⊆ Pλ+ (X), we define the game G (F ), to be the game of length λ where Players
I and II alternate playing an increasing λ sequence of elements of Pλ+ (X). In this
game, Player II wins if and only if the union of the sets played is in F . The filter
Dλ (X) is defined to be the filter generated by the sets F ⊆ Pλ+ (X) in which Player
II has a winning strategy in G (F ). We say Y ⊆ Pλ+ (X) is Dλ (X)-stationary if Y
intersects every set in Dλ (X).

It is easy to check that every club C ⊆ [X]
λ

is an element of Dλ(X) and,

therefore, that every S ⊆ [X]λ that is Dλ (X)-stationary is also stationary with

respect to the usual club filter on [X]
λ
. It was remarked in [MS86] that if λ = λ<λ,

then Dλ (λ
+) is just the filter generated by the clubs of λ+ intersected with the set

of ordinals of cofinality λ (considered as initial segments of λ+). More precisely, we
have the following fact. (We omit its proof since it is not necessary for the rest.)

Fact 4.2. Suppose λ is an infinite regular cardinal and write Sλ+

λ for the stationary
set {α < λ+ | cf (α) = λ}.

(1) If C ⊆ λ+ is a club, then C ∩ Sλ+

λ ∈ Dλ (λ
+).

(2) Suppose λ = λ<λ. Then Dλ (λ
+) is generated by sets of the form C ∩Sλ+

λ ,
where C ⊆ λ+ is a club.

4.2. Stationary logic. The stationary logic L (aa) was introduced in [She75]
(where it was called L

(
Qss

ℵ1

)
). The logic is defined as follows: given a first-

order language L, expand the language with countably many new unary predicates
{Si | i < ω} and a new quantifier aa. The formulas of L in L (aa) are the smallest
class containing the first-order formulas of L, closed under the usual first-order for-
mation rules together with the rule that if ϕ is a formula, then (aaSi)ϕ is also a
formula, for any new unary predicate Si. Satisfaction is defined as usual, together
with the rule that M |= (aaS)ϕ (S) if and only if M |= ϕ (S) when SM = X for
“almost all” X ∈ [M ]ω—that is,

{
X ∈ [M ]ω

∣∣ if SM = X then M |= ϕ (S)
}

con-
tains a club of [M ]ω. We define the quantifier stat dually: M |= (statS)ϕ (S)
if and only if M |= ¬ (aaS)¬ϕ (S). Note that M |= (statS)ϕ (S) if and only if{
X ∈ [M ]ω

∣∣ if SM = X then M |= ϕ (S)
}
is stationary. Given an L-structure M ,
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we write Thaa (M) for the set of L (aa)-sentences satisfied by M . We refer the
reader to [BKM78, Section 1] for a detailed treatment of stationary logic.

Later work by Mekler and the third-named author extended stationary logic,
which quantifies over countable sets, to a logic that permits quantification over sets
of higher cardinality [MS86]. For λ a regular cardinal, the logic L

(
aaλ

)
is defined

analogously to L (aa), with semantics defined so that M |=
(
aaλS

)
ϕ (S) if and only

if {X ∈ [M ]λ | if SM = X then M |= ϕ(S)} ∈ Dλ (M). The quantifier statλ is also
understood dually: M |=

(
statλS

)
ϕ (S) if and only if M |= ¬

(
aaλS

)
¬ϕ (S). If

T is an L (aa)-theory, one obtains an L
(
aaλ

)
-theory by replacing the quantifier aa

with aaλ. We call this theory the λ-interpretation of T . By working with Dλ (M)

instead of the full club filter on [M ]
λ
, one is able to relate satisfiability of an L (aa)-

theory to the satisfiability of its λ-interpretation. Below, the “moreover” clause
about λ-saturation is not stated in [MS86], but is immediate from the proof.

Fact 4.3 ([MS86, Theorem 1.3]). Suppose λ = λ<λ and T is a consistent L (aa)-
theory of size at most λ. Then the λ-interpretation of T has a model of size at most
λ+. In fact, there is such a model which is, moreover, λ-saturated.

4.3. Sketch of the proof of (1) implies (4). The idea of the proof of (1) =⇒
(4) in Theorem 1.1 using stationary logic is as follows:

(1) Reduce the theorem to the case where the language is countable.
(2) Assume towards contradiction that M |= T , and there is p ∈ S (M) so that

the set

S0 = {N ≺ M | |N | = ℵ0 and p Kim-divides over N}
is stationary. Using Fact 4.3 we can show that given any regular uncount-
able cardinal λ = λ<λ, there is a model M ′ |= T , |M ′| = λ+, a formula
ϕ (x; y), and a type p∗ over M ′ so that

S′
0 = {N ′ ≺ M ′ | |N ′| = λ, there is ϕ (x; a′N ) ∈ p∗ that Kim-divides over N ′}

is Dλ (M
′)-stationary.

(3) Now using Fact 4.2 and forcing (in order to find such a cardinal λ), we
can get an increasing continuous chain of models and formulas forming a
Kim-dividing chain, indexed by a stationary set.

(4) Apply the proof of [KR17, Theorem 4.5], to get some k such that for every
n < ω there is a sequence 〈eifi | i < n〉 such that ei ≡e<if<i

fi for all i < n,
{ϕ (x, ei) | i < n} is consistent while {ϕ (x, fi) | i < n} is k-inconsistent. as
in Fact 2.2

For the full details, see [KRS17].

5. Dual local character

Definition 5.1 (T any theory). Say that a formula ϕ (x, a) strongly Kim-divides
over a model M if for every global M -invariant type q ⊇ tp (a/M), ϕ (x, a) Kim-
divides over M via q.

Remark 5.2. By Fact 2.7, strong Kim-dividing = Kim-dividing iff T is NSOP1.

Definition 5.3. A dual type (over A) in x is a set F of (A-)definable sets in x such
that for some k < ω, it is k-inconsistent. Say that F dually divides over a model
N , if every X ∈ F which is not definable over N divides over N . Similarly define
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when F dually Kim-divides over N and when F strongly dually Kim-divides over
N .

Theorem 5.4. The following are equivalent for a complete theory T :

(1) T is NSOP1.
(2) There is no continuous increasing sequence of |T |-sized models 〈Mi | i< |T |+〉

with union M and a dual type F over M such that F � Mi+1 does not
strongly dually Kim-divide over Mi for all i < |T |+.

(3) Assume that M |= T and F is a dual type over M . Then there is a sta-

tionary subset S of [M ]|T | such that if N ∈ S then N ≺ M and F strongly
dually Kim-divides over N .

(4) (Dual local character) Same as (3) but S is a club.

Proof. The proof is essentially dualizing or inverting the proof (using stationary
logic) of Theorem 1.1 (1) =⇒ (4), but we go into some details.

(1) =⇒ (4). We follow the proof of “(1) implies (4)” of Theorem 1.1 as described
in Section 4. Namely, assume that (2) fails. This means that there is a stationary

subset S of [M ]
|T |

such that if N ∈ S, then N ≺ M and there is some X ∈ F which
is not definable over N but still does not Kim-divide over N . Using the same proof
as in the first step in Section 4.3, we may assume that the language L is countable
and that there is a single formula ϕ (x, y) with |x| = n such that if N ∈ S, then
for some b ∈ M\N , ϕ (x, b) does not Kim-divide over N (and ϕ (x, b) is not N -
definable). Now we repeat the same procedure as in the proof described in Section
4.3 (2). Thus, for a regular uncountable cardinal λ = λ<λ, we get a model M ′ |= T ,
|M ′| = λ+, a formula ϕ (x, y), and a k-inconsistent family F∗ of definable subsets
over M ′ so that the set S′

0 of all N
′ ≺ M ′ of size λ such that for some ϕ (x; a′N ) ∈ F∗

which is not N ′-definable and does not Kim-divide over N ′ is Dλ (M
′)-stationary.

Now we repeat the proof in Section 4. The contradiction we will find at the end
will be the same contradiction, but the roles of the two sequences ei and fj are
reversed. Now {ϕ (x, ei) | i < ω} is k-inconsistent (note that the formulas ϕ (x, ei)
must define distinct definable sets from F∗) and 〈ϕ (x, fj) | j < n〉 is consistent.

(4) =⇒ (3) =⇒ (2) is exactly as in the proof of Theorem 3.9. The proof of
(2) =⇒ (1) is just dualizing the proof of “(2) implies (1)” in Theorem 3.9 in the
sense that the sequences 〈ci,0 | i < ω〉 and 〈ci,1 | i < ω〉 exchange places. �

Question 5.5. Is there a proof of the dual local-character which does not use
stationary logic? Such a proof may reveal some new properties of Kim-dividing.
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