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ABSTRACT 

We show that without using inaccessible cardinals it is possible to get 
models of "ZF + all sets of reals have the Baire property + DC(wl )" and 
"ZFC + all projective sets have the Baire property + the union of less 
than w2 many meager sets is meager", answering two well-known open 
questions of Woodin and Judah, respectively. 

1. In troduct ion  

In 1979 Shelah proved tha t  in order  to obta in  a model  in which every set of reals 

has the Baire property,  a large cardinal assumpt ion is not  necessary, thus finding 

a deep a s y m m e t r y  in the s tudy  of measure and category on the real line. Shelah 
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started from L and by a method called a m a l g a m a t i o n  he built a forcing notion 

P satisfying 

(i) H O D ( L  P) ~"every set of reals has the Baire property", 

(ii) L P and L have the same cofinalities; moreover P ~ccc, 

(iii) L P ~ CH.  

From (ii) it is possible to conclude that in H O D ( L  P) there are uncountable well- 

ordered sets of reals (namely, the constructible reals!). From this evidence it was 

natural to ask the following question: 

W o o d i n :  Can we get a model where every projective set of reals 

has the Baire property and DC(0,1) holds? 

Recall here that DC(0,1 ) is the following sentence: 

if T~ is a relation such that  (VX)(3Y)(Ti(X, Y)) then there is a 

sequence (Z~: a < 0,1) such that 

( w  < < 

Note that  DC(Wl) implies the following version of choice: 

if ~ C_ wl x R, dom(~)  = wl 

then there exists a choice function f :  wl , R such that 7~(a, f ( a ) )  

for each a < wl. 

It is interesting to remark that in the same work Shelah proved that  the existence 

of an uncountable well-ordered set of reals provides non-measurable sets. 

In [JS1] we studied the consistency strength of "ZFC + variants of MA + 

suitable sets of reals have the Baire property". We showed that Balre property 

for ~El-sets of reals plus MA(a-centered) implies that  wl is a Mahlo cardinal in 

L. Since MA(a-centered) implies that the union of less than continuum meager 

sets is meager, the following question arises naturally at this point. 

J u d a h :  Do we need large cardinals to construct a model in which 

all projective sets of reals have Baire property and the union of any 

wl meager sets is meager? 

Note that if unions of 0,1 many null sets are null, then every E~-set of reals 

is Lebesgue measurable. Consequently if each projective sets of reals has the 
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Baire property and any union of 0:1 null sets is null, then 0~1 is inaccessible in 

L (cf [Rai D. It was also asked if it is possible to build a model, starting from 

L, satisfying (i) and (ii) above in which the continuum is large. This question 

was answered in [JuR] where we proved that  we can keep (i) and (ii) adding 

Cohen reals to L n'. We suggest that  the reader looks at this work for a better 

understanding of the method of amalgamation. 

The aim of the present paper is to prove the following two Theorems: 

THEOREM 1.1: I f Z F  is consistent then the following theory is consistent: 

ZF + DC(o~l) + "Every set ofreaJs has Baire property." 

THEOREM 1.2: If ZF is consistent then the following theory is consistent: 

ZFC + "Every projective set of rea/s has Baire property" + "Any 

union of 0~l meager sets is meager." 

The method presented in this paper allows one to prove stronger results. One 

can show that 0~1 in the above Theorems may be replaced by any resonable 

cardinal t;, by using <> and club filters in ~v,~(~) when tr > •2. 

Our notation is standard and essentially derived from [Jec]. Since we work with 

Boolean algebras we keep the convention that p < q means that the condition p 

is stronger than q. For a partial order P, BA(P) stands for the complete Boolean 

algebra determined by the order P. 1 denotes the largest element of a forcing 

notion or just the unit in the Boolean algebra. 

ACKNOWLEDGEMENT: The authors want to thank A. Roslanowski for improve- 

ments in the presentation of this work. 

2. Basic definitions and facts 

In this section we recall some definitions and results from [She]. They will be 

applied in the next section. 

The basic tool in the construction of models in which definable sets have Baire 

property is the amalgamation. To define this operation we need the following 

definition. 

Recall that 1 ~ ~ P' means P C_ P' and each maximal antichain in P is a maximal 

antichain in P'. Note that for complete Boolean algebras B1 C_ B2, B1 ~ B2 means 

sups ' A = sups ~ A for any A C_ B1. 
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For a forcing notion F let Pp be a P-name for the generic subset of P. 

Definition 2.1: Suppose that P <~ BA(Q). Then (Q : P) is the P-name of a 

forcing notion which is a subset of Q, 

(Q :P) = {q e Q : q is compatible with every p E I'p}. 

Thus p I~- q E (Q : P) if and only if every p' E P, p' _< p is compatible with q. 

Recall that if P <~ BA(Q), then forcing notions Q and P * (Q : P) are equivalent. 

De/]nition 2.2: Let p0,p1 and p2 be forcing notions. Suppose that fl :  F0 1- I 

BA(P1), f2:p0 ~ BA(P2) are complete embeddings (i.e. they preserve order 

and fi[P ~ <~ BA(P i) ). We define the amalgamat ion  of p1 and p2 over fl ,  f2 

by 

p1 X f l j  2 p2 = 

{(P,,P2) �9 el • e2: (?p �9 e0)(p IF "Pl �9 ( e ' :  fliP~ ~p2 �9 (p2: fe[p0l),,)}. 

p1 x B,I2 P~ is ordered in the natural way: (pl, P2) >_ (p~, p~) if and only if Pl >_ p~, 

p2 >__ 
The amalgamation p1 x f~,h p2 is equivalent to the iteration p0, ((p~ : fl  [po]) x 

(e2: NP0])). 

Note that p1  p2 can be completely embedded into the amalgamation p1 x I1 ,h 

p2 by pl �9 p1 ~ (pl, 1) and p2 �9 p2 ~ (1,p2). Thus we think of p1 x/,,  h p2 as 

a forcing notion extending both p1 and p2 

The amalgamation is applied in the construction of Boolean algebras admitting 

a lot of automorphisms. If p1 = p2 = p then the mapping 

f 2 o f l l : f l [ P  ~ *P 

can be naturally extended to an embedding 

r 

where we identify p E P with (p, 1) E P xh ,  h P. 

Now suppose that B is a complete Boolean algebra such that for sufficiently 

many pairs (p1, p2) of complete suborders of B and for complete embeddings 

fi: p0 ___._. pi (i = 1,2) the algebra B contains the amalgamation p1 xfl,f2 p2 (as 
a suborder extending both pi, i = 1,2). Then many partial isomorphisms of B 

can be extended to automorphisms of B. 
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Definition 2.3: A complete Boolean algebra 13 is s t r o n g l y  C o h e n - h o m o g e -  

neous  if for every 13-name r for an wl-sequence of ordinals there exists a complete 

subalgebra 131 of the algebra 13 such that 

�9 r is a 13~-name, 

�9 if 13' <, 13" <~ 13, 13' 11-"(13" : 13') is the Cohen algebra" and f :  13" ---* 

13 is a complete embedding such that f]13' = idB,, then there exists an 

automorphism r 13 ~-? 13 extending f .  

For more details on extending homomorphisms see [JuR]. 

Solovay showed the connection between the strong homogeneity of the algebra 

13 and the fact that in generic extensions via 13 all projective sets of reals have 

the Baire property. Let $1 be the class of all wl-sequences of ordinal numbers. 

THEOREM 2.4 (Solovay): Let I3 be a strongly Cohen homogeneous complete 

Boolean algebra satisfying ccc. Suppose that for any 13-name r for an Wl-sequence 

of ordinals 

13 Ib "the union of all meager Borel sets coded in V[r] is meager". 

Then 13 I~" "any set of reeds definable over Sl has Baire property". 

Proof." See [Sol] or for a detailed argument [JuR]. I 

The class HOD(S1) consists of all sets hereditarily ordinal definable over Sl. 

THEOREM 2.5 (Solovay, MeAloon): Assume that every set of reals ordinal de- 

finable over Sl has Baire property. Then HOD(S1) ~ "  ZF + DC(wl) + every 

set of reals has Baire property". 

Proof: This is a standard modification of arguments given in [Jec], pp. 545-548 

(Lemma 42.8, Corollary 2). | 

In the next section we will built a model in which there exists an algebra 13 

satisfying the assumptions of Theorem 2.4 and such that 

13 Ib"the union of W 1 meager sets is meager". 

To be sure that the algebra 13 satisfies ccc we will use the following notion. 
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Definition 2.6: A triple (P,2), {E,,},e,~) is a model of swee tness  if 

1. P is a notion of forcing and 2) is a dense subset of F, 

2. E ,  are equivalence relations on 2) such that 

�9 each E,, has countably many equivalence classes (the equivalence class 

of the dement p �9 2) in the relation En will be denoted by [p],), 

�9 E n + l  C En,  

�9 equivalence classes of all relations En are downward directed, 

�9 if {Pi: i < w} C_ 2), Pi �9 ~w]i for all i, then for every n < w there 

exists q �9 ~v~,],, which is stronger than all pi for i > n, 

�9 if p, q �9 2), p _> q and n �9 w then there exists k �9 w such that 

(Vp ' �9  [plk)(qq' �9 [ql,,)(p' > q'). 

Note that if (P,2), {En}new) is a model of sweetness then P is a-centered. 

Definition 2.7: We say that a model of sweetness (p2,2)2, {E2n}ne~,) e x t e n d s  

a model (p1,2)1 E 1 ,{ ,,}ne~) (we write (PI,2)l,{Eln}ne~) _> (P2,2)2,{E2n}ne,o)) 

whenever 

1. p1 ~, p2, 2)1 C_ 2) 2 and E~ = E~12) x for each n e w, 

2. i f p e D  1 , n � 9  1, 

3. if p _> q, p �9 2)2, q �9 2)1 then p �9 2)1. 

LEMMA 2.8: 

(a) The relation >_ is transitive on models of sweetness. 

(P ,  2) ,  { En}nEw) are models of sweetness such that (b) Suppose that i i i 

pi2)i r i~ ~ _ , > 

for aJ1i < j < ~ (~ < wx ). Then 

lira(P/,2)', = (U P', U 2)', { U ' 
i<~ i<~ i<~ 

is a mode /o f  sweetness extending a11 models (pi 2)i, i 

Proof." See [She]. | 

Sweetness may be preserved by amalgamation. 
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LEMMA 2.9: Suppose that (pi, ~)i, {E/}nEo~) for i = 1, 2 are models of sweetness 

and fi: po ~ BA(P i) are complete embeddings. Then there exists a model of 

sweetness (~1 x]l,f2 p2,~),, {E*}ne,~) based on the amalgamation p1 Xfl,f2 ~2 

and extending both (p1, ~)1 1 a n d ( P 2 , V  2, E 2 , { 

Proof." See Lemmas 7.5, 7.12 of [She]. | 

To ensure that our algebra satisfies 

B I~-"the union of wl meager sets is meager" 

we will use the Hechler order D. Recall that D consists of all pairs (n, f )  such 

that  n E w, f E w w. It is ordered by 

( n , f )  >_ (n ' ,y ' )  if and only if 

n <<_ n', f[n = f ' ln  and (Vk E w)(f(k) _< f ' (k)) .  

The forcing with D adds both a dominating real and a Cohen real. Consequently 

D*D It-"the union of all Borel meager sets coded in the ground model 

is meager". 

The composition with D preserves sweetness. 

LEMMA 2.10: Let (P,:D, {E ,} , e~  ) be a model of sweetness and let I) be a P- 

name t'or Hechler forcing. Then there exists a model of sweetness 

(P * D, :D*, {E*},e~ ) based on P * ~) and extending the model (P,:D, {E ,} , e~  ). 

Proof." Simqar to the proof of Lemmas 7.6, 7.11 of [She]; see [JuR] for the details. 
| 

In [She] the Amoeba Forcing for Category/4 was applied to add a comeager 

set of Cohen reals. The same notion of forcing can be used in our construction 

instead of 23. 

3. The proof  of  the main result 

In this section we present proofs of Theorems 1.2 and 1.1. 
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Definition 3.1: Let K~ be the class consisting of all sequences P = ((PI, M i) : i 

< wt) such that 

1. M i is a model of sweetness based on pi ,  

2. if i < j < wl then pi  ~ e j .  

3. pwt = Ui<,,l pi  satisfies etc. 

Let us remark that if P E/C then pi  extend each other only as forcing notions, 

not as models of sweetness. Moreover no continuity is assumed. Note that if 

E K~ then each pi  is a-centered. 

We define the relation < on/C. 

Definition 3.2: Let P1,P2 E E. We say P1 > P2 if P~t <~ p~l and there exists 

a closed unbounded subset C of w] such that 

(!) if i E C then M~ > M~, 

(!t) if i E C, q E P~ ' ,  p E P~ and p I~-e~ q E (P~" : P~) then p II-p~ q E 

(P~' : P~). 

Remark: We do not keep a strict formalism, but we would like to alert the reader 

to a notational problem here. In Definition 3.1 the relation pi  ~ p j  assumes a 

literal inclusion of the underlying sets. The relation P ~  <~ P ~  in Definition 3.2 

says that there is a (canonical) complete embedding of P~'  into P~'  satisfying 

the suitable conditions. 

Condition (!!) can be written in the language of projections. It says that if 

~r~: BA(P~ ' )  ~ BA(P~) are the projections (for k = 1, 2), i E C, q E P~'  C_ P~'  

then Irl(q) = r~(q). 

Clearly the relation < is transitive and reflexive. 

LEMMA 3.3: Suppose that P,n E /C for m < w are such that ml  < m2 < w 

implies P,m > P,,,2 (and let C,,,,,,+ 2 witness it). Let C = N,~t<,n,<~ Cmt,m2. 

Put 

p i =  U p~(C\i) M i = lim M~ (c\i) 
~ r n < t o  " 

r e < t o  

( p i  M i ~ T h e n P , , =  < ,  ,0, 0,]: i < w l  > E / C a n d P , ~ > P , , t ' o r e a c h m < w .  

Proof: First note that C is a closed unbounded subset of wl. Since C C 

N,,<~, Cm,m+l we may apply Lemma 2.8 (b) to conclude that each M~ is a 

model of sweetness based on Pi  ~ad" 
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CLAIM: I f i < j < w l  t h e n P / r  

Indeed, let i < j .  We may assume that i , j  E C (recall that P~ = p~(C\i)). 

Note that P /  <t P / a n d  P /  ~ P~ for each m E w. Let Jt C P~ be a maximal 

antichain. Clearly it is an antichain in P~ but we have to prove that  it is maximal. 

Let q E P~. Then q E P~ for some m < w. Let 

Z = {r E p i :  (qp~ E .A)(r IF-p& pr E ( P / :  P,~))}. 

Clearly Z is dense in P/re. Hence we find r E Z such that r It-e~ q E ( P ~ :  P/m)" 

Let p~ E .4 witness r E Z. Take k such that p~ E P~, m < k < w. Consider P,~ 

and Pk. Since i , j  E C C_ C,n,k we may apply condition (!!) to conclude that 

rlI-p#, qE(P~ :P~). 

By the choice of p~ we have 

Thus p~ and r are compatible and any p~ E P~, p~ > r, p~ is compatible with q. 

Consequently q and p~ are compatible. The claim is proved. 

It follows from the above claim that Pw E/C. 

CLAIM: The club C witnesses that P,,, > P,, for each m < w. 

Indeed, first note that 

P:'= U m = U U U P:' 
i<wl i<wl rn<w rn<w 

Since P,~I <~ P ~  for each ml < m2 we see that Pm ~1 ~ p~l .  It follows from 

the definition o f M  / and Lemma 2.8 that i f i  E C then M / < M/ .  Thus 

we have to check condition (!!) only. Suppose i E C, q E p,~l, p E P /  and 

plt-ps q E (Pm ~1 : P / ) .  Assumeplyp~ q E (Pff~ : p i). Then we f i n d r  E P /  

such that  r > p and r is incompatible with q. Let k > m be such that r E P~. 

Since i E Cm.k we have p It-p~ q E (Pff~ : P~) (by condition (!!) for Pro, Pk). But 

r It-p~ q r (P~'I : P~)--a contradiction. | 

LEMMA 3.4: Assume that 

�9 P~ E/C/'or ~ < Wl, 

�9 i[~ < ( < wl then P~ > PC is witnessed by the club C~,r C_ wl, 
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�9 i f5  < wl is a limit ordinal and i 6 [']r162 C~,r then M; = limr M~. 

Let 

C = {6 < w~: 6 is l imit  & (V~ < ( < 6)(6 6 C~,r 

and let C( i )  = N(C\ i )  for i < w,. Put pi,~, = pg#:], M i,~, = M~#~]. Then 

P., e ~c and (V~ < ~)(P~ > ~.,). 

Proof." First note that the set {6 < ~ :  (V~ < ( < 6)(6 6 C~,~)} is the diagonal 

intersection of clubs [']~<~ C~,r (for ~ < ,q).  Hence C is closed and unbounded 

and P,, is well defined. 

CLAIM: I f i < j < w ~  t h e n p i  
6.' 1 

Indeed, suppose i < j < = pg~] pC(j) and we wl. Then pi,~t ' P~, = " c(i) 

pc(j)  Since may assume that C(i) < C(j). By 3.1 (2) we have that Pg~] ~ , c(i)" 

C consists of limit ordinals only and C(j) E ~<r162 we get pC(j) _ - c ( j )  - -  

O~<c( j )  P~(J) (and it is a direct limit). Since C(i) < C(j) we conclude pC(j) 
c ( i )  ~ 

pc(j) The claim is proved. pC(j)c(j) and consequently p C ~  ~ c(j)" 

Since each M i is a model of sweetness based on pi  we have proved that 

P~I ~ ~.  Let ~ < ~1- 

CLAIM: p? l  ~_~ p ~  

First note  that  

Since ~x < (2 < Wl. implies P6 > PC, we have P~'  <~ P~'  for (1 < (2 < wl. 

Consequently p~l ~ p ~ .  

CLAIM: I f i E C \ ( ~ + l )  thenM~ >_m~l. 

I f  i e c \ ( ~ + l )  then  C(i) = i > ~. Moreover  it follows from our assumptions 

that M~ = limr M~. By Lemma 2.8 we get M~ > M~ = McC~ = M~I. 

CLAIM: Suppose i E C \ ( ~ +  1), q E P~ ' ,  p E P~ and p t[-p~ q E (P? '  : P~). 

T h e n  p i~p, q ~ (P~; : P~'). 

Assume not. Then we have r 6 P~I = Pi i, r < p such that r and q are 

incompatible. There is ~ 6 ((, i) such that r E P~. Thus p I)zp~ q E (P~' : P~). 

Since i 6 C~,r we get a contradiction with condition (!!) for Pe > ~r 
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We have proved that the club C\(~ + 1) witnesses P~ _> P~,. $ 

Suppose P = < (pi ,  M i) : i < wl > E/C. Let 

P~  = {(p, r )  e P~ '  * I ) :  p E p i  k r is a Pi-name } = pi  , D. 

Note that though it is possible that pi+l is isomorphic to p i ,  D, we think 

of algebra D (in Pb) being iterated "on a new coordinate" above sup(P ~'). In 

other words, while pi C PJ for i < j we do not treat pi also as a subset of pi  *2,  

it is only embedded into the iteration. 

Let M b be the canonical model of sweetness based on P~ and extending 

the model M i (see Lemma 2.10). Let 

PD = ((ef i ,M~)) :  i <wl ) .  

LEMMA 3.5: PD e 1C, P >_ PD and P~' = pw~ ,K). 

Proof: The last assertion is a consequence of the fact that p~,l is a ccc notion of 

forcing. Since for i < j ,  D Vp' is a complete suborder of D Vpj (cf [JS2]) we have 

that P~) ,~ P~) provided i < j .  Consequently PD E /C. To show P > PD note 

that M i > M b for all i < wl and P~'I ~ p~)l. Suppose now that i < Wl, p E pi, 

q E P~' and p I}-pi q E (p~l : pi). Assume that p I}tp~ q E (P~)' : P~)). Then 

we find a condition r = (r0,r)  E P~) below p which is inconsistent with q. We 

consider q as an element of P ~ ,  while r is an element of P '~  * D. Consequently 

incompatibility of q and r means that q and r0 are not compatible. But r0 E p i  

lies below F- -a  contradiction. I 

LEMMA 3.6: Suppose that B, C, D, Co are complete Boolean a/gebras such that 

(1) B ~ : D ~ C ,  C o ~ C  

Let Bo = BNCo,  :Do = D n C o  (note that Bo <~ Do ~ Co). We assume that 

(2) B I "(v : B) is a subset o[ (Vo : B)" (i.e. every element (V  : B) is 

(modulo Fs) equivalent to an element of" (:Do: 13)); 

(3) ifb E B, bo E Bo and bo IkB0 b E (B : Bo) then bo Ibc0 b E (C:  Co). 

Then 

(3*) i fd  E :D, do E :Do and do Ik~ o d E (:D : :Do) then do II-co d E (C : Co). 

Remark: Note that (3) is equivalent to: ~rcC0(b ) = 7rsS0(b), where 7rA o is the 

projection from the algebra A onto its complete subalgebra A0. 
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Proof: 

CLAIM: Suppose c E Co,do E :Do and do Ibvo c E (Co : Do). Then do It-v c E 

(c: v). 
We have to prove that each d < do,d E 2) is compatible with c. Let 

d < do, d E 79. Let b' E B be such that b' I}-B "d E (2) : B)". By (2) we have 

b t Ibs "d E (:Do : B)". Thus we find b E B and dl E :Do such that 

b 1~-8 "d E (D : B) & d --(v:s) dl" 

(the last means that/~d = b-d1). Thus/~dl.do = I~d.do = l~d 7 ~ O. We find bo E Bo 

such that bo II-Bo b E (B : Bo) and bo.dl "do 7 ~ 0 (it is enough to take bo such that 

bo I}-Bo b.dl.do E (79 : Bo)). Note that then bo I}-co b E (C : Co) (by (3)). Since 

bo'dl.do E Do and it is stronger than do we get bo'dl-do'c r O. The last condition 

is stronger than bo and belongs to Co. Hence b.bo.dl.do.c 7 L O. Finally note that 

b.bo.dl-do-c < b.dl = b.d < d so d and c are compatible. The claim is proved. 

Now suppose that d E V, do E 79o and do It-~ o d E (79 : 79o). Let c E Co,c < 

do. Take d* E 190 such that d* < do and d* t}-p o c E (Co : 29o). By the claim 

we haved* It-~ c E (C : 79). Since d* < do we haved* .d  ~ O,d*.d E 79 and 

consequently d*.d.c ~ O. Hence d and e are compatible and we are done. | 

Suppose that Po, P1, P2,Pa E K: and the club C C wl witnesses that both 

P0 > P1 and P2 > Pa. Assume that Q0, Q2 are complete Boolean algebras such 

that for some i0 < wl 

�9 BA(P~') ,r Qo ~ BA(P~" ), BA(P~") ~ Q2 'r BA(P~' ), 
�9 BA(P~ ~) Ik (Qo: BA(P~")) C ((Qo N BA(P~~ BA(Po')) 

BA(P~') I~- (Q2: BA(P~ I)) C ((Q2 N BA(P~ ~ BA(P~ ')). 
Let f: Qo ~ Q2 be an isomorphism such that f[Q0 N BA(P~)] = Q2 N BA(P~) 
for all i E C\io. For i E C\io put 

p i  .~_ {(Pl,P2) E e ~ '  Xid,l p~l : Pl E P~ & p2 E P.~}, 

where id stands for the identity on Q0. It follows from Lemma 3.6 that pi is 

isomorphic to pi  xfl,13 pi3, where fa = flQ0 N BA(P])  and f ,  is the identity on 

Q0 MBA(P~i). Therefore we have the canonical model of sweetness M ~ based on p i  

and extending both models M~ and M~ (compare Lemma 2.9). At the moment 

p i  is defined for i from the club C\io only. For i ~ C\io we put p i  = pi ' ,  where 

i* is the first element of C\io greater than i. 

Sh:446



Vol. 84, 1993 BAIRE PROPERTY AND AXIOM OF CHOICE- 447 

Let 

•  P3 = : i < 

Note that Ui<~,~ p i  = p ~  •  P ~ "  

LEMMA 3.7: P1 X fP3 EK: andP1,P3 _>P1 X,f P3. 

Proof." To prove P1 x f P3 E K: we have to show the~ollowing 

CLAIM: p i < ~ p j f o r e a c h i < j < w l ,  i , j E C \ i 0 .  

Let .,4 _ pi be a maximal antichain and let (pl,p2) E PJ. Let q E Q0 be 

such that 

q IF "Pl E (P~'  : Qo) ~z p~ E (P~" : f[Qo])". 

Take rl E P1 i such that rl It-p~ "Pl, q E (P~'  : Pli) '' (note that q and Pl are 

compatible). Next find q' E Q0 such that q' < q and q' IF rl ~ (P1 wl : Q0) (recall 

that rl and q are compatible). Since p2 and f(q') are compatible we find r2 E P~ 

such that r2 IFp~ "P2,f(q') E (P~' : P~)". Consider the pair (rl ,r2).  There is 

q" E Qo,q" <_ q' such that q" IF r2 E (P~" : f[Qo]). Then 

q" IF %1 E ( P ~  : Qo) & r2 E (p~,l : f[Qo])" 

and consequently (r l , r2)  E P~. Since (r l , r2)  has to be compatible with some 

element of A we are done. 

CLAIM: Suppose q E P~I, i E C\io, p E pi are such that p IFp~ q E ( P ~  : Pli). 

Then p lt-p~ q E ( P ~  : pi). 

Suppose r E Pi  is stronger than p. Let r = (r l , r2)  and let r0 E Q0 witness 

r E P1 ~ Xid,I P~ ' .  We may get r0 E Q0 n BA(P~). Remember that P~ '  is 

embedded in P "  by s ~ (s, 1), tht~s we have p _'2 (p, 1), q _'2 (q, 1). Since 

r0, rl E BA(P1 i) are compatible and rl _> p we find r~ E p~l below r0, rl and q. 

Then (r~,r2) E P ~  and it is a condition stronger than both (r l , r2)  and (q, 1). 

The claim is proved. 

Since M~ > M i for each i E C \ i0 it follows from the above claim that 

P1 > P1 • I P3 (and C x. i0 is a witness for it). Similarly one can prove P3 > 

P1 X f P3. I 
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LEMMA 3.8: Suppose P0, Pl E /C, P0 _> ~1. Let Q0,Q1 be comple*e Bootean 

algebras such that (for k - 0,1): 

�9 B A ( P :  ~) ~ Qt ~ BA(P~'),  

�9 BA(P~) IF  "(Qk : BA(P~ ~ )) is the Cohen algebra". 

Let f: Q0 ~ Q1 be an isomorphism such that f[BA( P~ ~ ) = id. 

Then *here ex/st P E K~ and an automorph/sm r P~t ~ P ~  such that 

F'I > F' and y c_ r 

Proof: We may apply Lemma 3.7 to get that P2 = P1 x !  P1 E /C. The amal- 

gamation over f produces an extension of f - -  there is fl:  P~'~ * P~t such 

that f C_ fl (we identify p E P~t with (1,p) E P~'). Moreover P1,P2,fl sat- 

isfy assumptions of Lemma 3.7 and thus Ps = P2 xl, P2 E E. If we identify 

p E P~' with (p, 1) E Ps we get a partial isomorphism f2 such that f~ C f2 

and rng(]2) = P~t. Continuing in this fashion we build Pm E /C and partial 

isomorphisms fm such that P,~ >_ Pm+~, f , ,  C_ fm+l and either P~' C_ dom(fm) 

or P~' C_ rag(fro). Next we apply Lemma 3.3 to conclude that P~, E /C and 

f~, = UmE,, fm: P ~  o,t? p~, is the desired automorphism. | 

Deflnition 3.9: We define the following notion of forcing: 

�9 R = {P E /C : P E H(w2)}, where 7-/(w2) is the family of those sets which 

are hereditarily of size less than w2 (we choose P E "/-/(w2) in order to be 

sure that R is a set). 

�9 <~ is the relation _< of 3.2. 

A notion of forcing P is (Wl + 1)-strategically closed if the second player 

has a winning strategy in the following game of length wi + 1. 

For i --- 0 Player I gives p0 E P; 

Player I gives in the i-th move a dense subset D/of  P; 

Player II gives pi+l <_ pi, pi+l E Di, for a limit i Player II gives pi 

below all pj (for j < i). 

Player II looses if he is not able to give the respective element of P for some 

i <:C~ 1 �9 

Note that (wl + 1)-strategically closed notions of foreings do not add new 

wl-sequences of elements of the ground model. 
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PROPOSITION 3.10: The forcing notion R is wl-closed and (0~1 + 1)-strategically 

dosed. Consequently forcing with R does not collapse ~1 and to2. 

Proof: For the oJl-closure use Lemma 3.3, for the "~1 + 1-strategic closure apply 

3.3 and 3.4. | 

Note that [R[ = 2 ~ . Thus if we assume that 2 w~ = 0~2 then forcing with R 

does not collapse cardinals. 

Suppose V ~GCH.  

PROPOSITION 3.11: Let G C_ R be a generic over V. Let P = U{P w~ : P E G}. 

Then (in V[G]) 

1. F is a ccc notion of forcing. 

2. I f  r is a P-name for an oJl-sequence of ordinals then FIb "the union of all 

Bore1 meager sets coded in V[r] is meager". 

3. The Boolean algebra BAOF ) is strongly Cohen-homogeneous. 

4. P I~" "any union of to1 meager sets is meager". 

Proof: 1. Work in V. Suppose that A is a R-name for an Wl-sequence of 

palrwise incompatible elements of P. Let P E R. By Proposition 3.10 there is 

P1 _> [* which decides all values of A. We may assume that all these elements 

belong to p~t .  A contradiction. 

2. Let r be a P-name for an wl-sequence of ordinals. Then r is actually 

an wl-sequence of (countable) antichains in P. Therefore r E V and it is a P~'t- 

name for some P0 E G. By density arguments we have that  (PD)D E G for some 

_> P0 (compare Lemma 2.10). Since D * D forces that the union of all meager 

sets coded in the ground model is meager we get 

P IF "the union of all Borel meager sets coded in V[G][r] is meager". 

3. Work in V[G]. Let r be a P-nanae for an o~l-sequence of ordinals. As in 

2. we find F0 E G such that r is a P~-name .  Suppose now that 

�9 BA(P~' )  ~ B ,~ BA(F), 

�9 BA(P~") fb "(B : BA(P~' )) is the Cohen algebra", 

�9 / :  B ~ BA(P) is a complete embedding such t h a t / I B A ( P ~ ' )  = id. 

Note that B and f are determined by countably many elements. Each element of 

BA(P) is a countable union of elements of P. Consequently B, / E V and there 

is P1 E G such that B, rng(f)  C_ BA(P~"), P0 _> PI. By density argument and 
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Lemma 3.8 we find P2 E G and f2 such that [~1 _> [~2 and f2 is an automorphism of 

BA(P~" ) extending f .  Similarly, if P4 e G, P3 >_ P4 and fa is an automorphism of 

BA(P~'  ) then there are P5 �9 G, h such that h is an automorphism of BA(P~ ' )  

extending f3. 

It follows from the above that,  in V[G], we can extend f to an automor- 

phism of BA(P). 

4. Similar arguments as in 1. and 2. 1 

Theorems 1.2 and 1.1 follow directly from the above proposition and The* 

orems 2.4 and 2.5. 

Remark: To get a model for 2 ~ = t~ > w2 we use the same method but using 

the dub  filter on "P.~(t~). We leave the details to the reader. 
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