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Dedicated to Rüdiger Göbel for this 70th birthday

Abstract. We deal with abelian groups and R-modules. We consider theories
in infinitary logic of the form Lλ,θ of such structures M and prove they have
elimination of quantifiers up to positive existential formulas, so ones defining
subgroups of some power of M . Hence in the appropriate sense those theories
are stable and understood to some extent.

§ 0. Introduction

Much is known on classes of R-modules and first order logic. Szmielew [Szm49]
prove the decidability of the theory of Abelian groups. Szmielew [Szm55] prove
an elimination of quantifiers in the theory of Abelian groups up to Boolean combi-
nations of pe (= positive existential) formulas.

Eklof [Ekl71] proves the existence of universal homogeneous R-models in λ if
λ = λ<γ where γ depending on R only. Fisher improved this to saturated models
of elementary classes (see his review of [Ekl71]), this implies stability by a general
criterion ([Sh:11, §0],[Sh:c, Ch.III]).

Baur [Bau76] proved that for the class of R-modules any first order formula is
equivalent to a Boolean combination of positive existential formulas and also prove
stability (of Th(M)) for M and R-module.

We like to know for a given ring R how complicated the class of R-modules
which are models of a sentence ψ in an infinitary logic.

Question 0.1. Given a ring R, for the class ModR of left R-modules:
1) Does it have for the logic Lλ,μ a kind of elimination of quantifiers (say up to
some depth).
2) Is it stable? (say no formula ϕ(x̄, ȳ) ∈ L∞,∞(τR) linearly ordering arbitrarily
long sequence of tuples in some models of ψ)?
3) Can we define something like non-forking?
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Question 0.2. Do we have a parallel of the main gap, i.e. proving that either
every M ∈ Modψ can be characterized by some suitable cardinal invariants or
there are many complicated M ∈ Modψ?

Here we first show that for any R-module, in Lλ,θ(τR) or better L∞,θ,γ(τR) we
have a version of eliminating quantifiers up to positive existential formulas however
we add parameters. Second, by this we can prove some versions and consequences
of stability. More specifically

• after expanding by enough individual constants, every formula in L∞,θ,γ(τR)
is equivalent to a Boolean combination of positive existential such formu-
las

• the number of added individual constants is reasonable: ≤ �γ(|τ |<θ)

• stability, i.e. no long sequences of linearly ordered (< θ)-tuples

• (Λep
ε,α, 2)-indiscernible implies Λep

ε,α-indiscernible

• convergence follows, see Definition 3.4

§ 1. Preliminaries

Notation 1.1. 1) Let θ− be σ if θ = σ+ and θ if θ is a limit cardinal.

Definition 1.2. 1) A vocabulary τ consists of function symbols (e.g. individual
constants) and predicates (= relation symbols), in addition the vocabulary assign
generally to each of them its arity = number of places arityτ (−); here it can be an
infinite ordinal; an individual constant is a 0-place function.
2) For a vocabulary τ we say M is a τ -structure when M , writing τM = τ (M) = τ ,
consisting of:

(a) |M |, the universe of M , a non-empty set of the so-called elements of M , so
we may write a ∈ M, ā ∈ εM andA ⊆ M , etc., instead a ∈ |M |, ā ∈ ε(|M |)
and A ⊆ |M |, etc.

(b) FM a function from εM to M , possibly partial where ε is the ordinal
arityτ (F ), for F a function symbol from τ

(c) PM ⊆ εM where ε is the ordinal arityτ (P ) for P a predicate from τ .

Definition 1.3. 1) We say τ is a θ-additive (or a θ-Abelian) vocabulary when
τ has the two-place function symbols x + y, x − y, the individual constant 0 and
the other predicates and function symbols has arity < θ.
2) M is a θ-additive structure (or model) when :

(a) τM , the vocabulary of M is a θ-additive vocabulary

(b) GM := (|M |,+M ,−M , 0M ) is an Abelian group

(c) if P ∈ τM is an ε-place predicate then PM is a sub-group of (GM )ε

(e) if F ∈ τM\{+,−, 0} is an ε-place function symbol then FM is a partial
ε-place function from M to M and graph(FM ) = {āˆ〈FM (ā)〉 : ā ∈
Dom(FM )} is a subgroup of (GM )ε+1.

Remark 1.4. Fisher [Fis77] defines and deals with “Abelian structure” in
other directions.
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Definition 1.5. 1) We consider an R-module M as a τ (R)-structure, where
τR = τ (R) be the vocabulary of R-modules, i.e. have binary functions x+ y, x− y,
individual constant 0 and unary function symbol Fa, interpreted as multiplication
by a from the left for every a ∈ R.
2) If x̄, ȳ has length ε then we let x̄+ ȳ = 〈xζ +yζ : ζ < ε〉, x̄− ȳ = 〈xζ −yζ : ζ < ε〉
and similarly ax̄ for a ∈ R, and when we replace x̄ and/or ȳ by a member of εM .

Observation 1.6. 1) For a ring R, an R-module is an ℵ0-additive structure
in the vocabulary τR.
2) For a τ -additive model M , for every τ -term σ(x̄) we have

(a) M |= “σ(ā± b̄) = σ(ā)± σ(b̄)” meaning (when F is partial), if two of the
terms are well defined then so is the third and the equality hold

(b) M |= P (ā± b̄) when M |= P (ā) ∧ P (b̄).

§ 2. Eliminating quantifiers

Context 2.1. 1) R is a fixed ring τ = τR, see 1.5(1) or just τ is an θ-additive
vocabulary, see 1.3(1), 1.6(1).
2) K is the class of R-modules or of τ -additive models.
3) M,N will denote R-modules or are τ -additive models.
4) θ = cf(θ).

Definition 2.2. For ε < θ and ordinal α (and τ as in 2.1). We shall define
Λpe
α,ε = Λpe,θ

α,ε = Λpe,θ
α,ε (τ ), a set of formulas ϕ(x̄) in L∞,θ(τ ) in fact in L∞,θ,α(τ ) with

�g(x̄) = ε < θ, so x̄ = 〈xξ : ξ < ε〉 if not said otherwise, by induction on the ordinal
α.

For ζ < θ we write Λpe
α,ε,ζ for the set of ϕ = ϕ(x̄, ȳ), �g(x̄) = ε, �g(ȳ) = ζ (so

ȳ = 〈yξ : ξ < ζ〉 if not said otherwise) with ϕ ∈ Λpe
α,ε+ζ and Λpe

α = ∪{Λpe
α,ε : ε <

θ},Λpe
α,ε,<θ = ∪{Λpe

α,ε,ζ : ζ < θ}. If τ = τR we may write Λpe
α,ε(R).

The definition is as follows:

Case 1: α = 0

For R-modules:
It is the set of ϕ = ϕ(x̄) of the form:

∑
�<n

a�xζ(�) = 0 with ζ(�) < �g(x̄) or

better,
∑
ζ<ε

aζxζ = 0 where aζ ∈ R is 0R for all but finitely many ζ’s.

For general τ , so here the τ -additive case:
It is the set of ϕ(x̄) has the form P (σ̄(x̄)), σ̄ a sequence of length arityτ (P ) of

terms (in the variables x̄), P may be equality or any predicate from τ of arity the
length of σ̄.

Case 2: α a limit ordinal
It is ∪{Λpe

β,ε(R) : β < α}.

Case 3: α = β + 1
For some ζ < θ and Φ ⊆ Λpe

β,ε+ζ we have ψ(x̄) = ∃ȳ(
∧
{ϕ(x̄ˆȳ) : ϕ(x̄, ȳ) ∈ Φ}).
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Claim 2.3. 1) In 2.2, Λpe
α,ε is ⊆- increasing with α and is of cardinality ≤

�ε(|τ |+ ℵ0) if θ = ℵ0 and �ε(|τ |<θ) in general.
2) For M ∈ K and ϕ(x̄) ∈ Λpe

α,ε(τ ), the set ϕ(M̄) = {b̄ ∈ εM : M |= ϕ[b̄]} is a

sub-abelian group of εM and the set {b̄ ∈ εM : M |= ϕ[b̄ − ā]} is affine (= closed
under x̄− ȳ + z̄) for any ā ∈ εM .

Proof. Easy. �
Theorem 2.4. For every α for every M ∈ K there is a subset I = Iα of θ>M of

cardinality ≤ κα = �α(|τ |<θ) such that: in M every formula ψ(x̄) from L∞,θ,α(τ ),
so �g(x̄) < θ, is equivalent in M to a Boolean combination of formulas of the form
ϕ(x̄− ā) with ϕ(x̄) ∈ Λpe

α,�g(x̄)(τ ) and ā ∈ I ∩ �g(x̄)M .

Before we shall prove

Conclusion 2.5. For every M ∈ K, limit ordinal α, ε < θ and ā ∈ εM , for
some i(∗), j(∗) ≤ κα and ϕi(x̄ε), ψj(x̄ε) ∈ Λpe

α,ε for i < i(∗), j < j(∗) we have
{ā′ ∈ εM : tpLpe

∞,θ,α
(ā′, ∅,M) = tpLpe

∞,θ,α
(ā, ∅,M)} is equal to {ā′ ∈ εM : M |=∧

i<i(∗)
ϕi(ā

′ − ā) ∧
∧
{¬ψj(ā

′ − ā′′) : j < j(∗) and ā′′ ∈ Iγ ∩ εM}.

Definition 2.6. 1) We say b̄1, b̄2 ∈ εM are α-equivalent over I ⊆ θ>M when
ϕ(x̄ε) ∈ Λpe

α,ε(R), ā ∈ I ⇒ M |= “ϕ[b̄1 − a] ≡ ϕ[b̄2 − ā]”.
2) Replacing I by A means I = ∪{εA : ε < θ}.
We shall use freely

Observation 2.7. The sequence b̄1, b̄2 ∈ εM are α-equivalent over I ⊆ εM iff
for any ϕ(x̄) ∈ Λpe

α,ε we have (a) ∨ (b) where:

(a) for some ā ∈ I ∩ εM we have M |= ϕ[b̄1 − ā] ∧ ϕ[b̄2 − ā]

(b) for every ā ∈ I ∩ εM we have M |= ¬ϕ[b̄1 − ā] ∧ ¬ϕ[b̄2 − ā]

Proof. Straight. �2.7

Proof. Proof of 2.4
By induction on α we choose Iα and prove the statement. For α = 0 choose

Iα = {0M} and for α a limit ordinal this is obvious, use ∪{Iβ : β < α} so assume
α = β + 1 and we shall choose Iα.

Choose Iα such that

�α (a) Iα is a subset of θ>M

(b) |Iα| ≤ 2κβ where κβ = �β(|τ |<θ)

(c) Iβ ⊆ Iα

(d) If ε < θ and ϕi(x̄) ∈ Λep
β,ε and āi ∈ Iβ ∩ εM for i < i(∗) ≤ κβ and

there is d̄ ∈ εM such that M |= ϕi[d̄− āi] for i < i(∗)
then there is such d̄ ∈ Iα

(e) Assume ε < θ, x̄ = x̄ε, ψ(x̄) is a conjunction of formulas from Λep
β,ε

and ϕi(x̄) ∈ Λep
β,ε for i < κβ and apply 4.1 with

λα = (2κβ )+, κβ, ψ(
εM), ψ(εM) ∩ ϕi(

εM) for i < κβ here
standing for λ, S,G,Gs(s ∈ S) there; (i.e. the subgroups of
(ε|M |,+M ) with universes as above) getting the ideal I on κβ

and
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further assume κβ /∈ I

(α) there are d̄ι ∈ Iα ∩ ϕi(
εM) for

ι < ι(∗) ≤ 2κβ such that for every ā ∈ ψ(εM) there is ι < ι(∗)
satisfying {i < κ : ā− d̄ι /∈ ϕi(

εM)} ∈ I

(β) for any u ∈ I there are u∗ such that u ⊆ u∗ ∈ I and
d̄ι ∈ ∩{ϕi(

εM) : i ∈ κβ\u∗} ∩ ψ(εM) ∩ Iα
for ι < (2κβ )+ such that:
i ∈ u∗ ∧ ι(1) ≤ ι(2) < (2κβ )+ ⇒ d̄ι(1) − d̄ι(2) /∈ ϕi(

εM)

(f) if ε < θ and d̄1, d̄2 ∈ Iα ∩ εM then d̄1 + d̄2 ∈ Iα, d̄1 − d̄2 ∈ Iα and
ξ < θ ⇒ 0̄ξˆd̄1 ∈ Iα.

This is possible for (e)(α) by clause (c) of 4.1 and for (e)(β) by clause (d) of 4.1.
To prove the induction statement for α clearly it suffices to prove:

� assume ε, ξ < θ; if b̄1, b̄2 ∈ εM are α-equivalent over Iα and c̄1 ∈ ξM then
for some c̄2 ∈ ξM the sequences b̄1ˆc̄1, b̄2ˆc̄2 ∈ (ε+ξ)M are β-equivalent
over Iβ .

Why � holds? Let x̄ be of length ε and ȳ of length ξ. Let Φ1 = {ϕ(x̄, ȳ) ∈ Λep
β,ε+ξ:

for some ā ∈ Iβ ∩ ε+ξM we have M |= ϕ[b̄1ˆc̄1 − ā]} and for ϕ(x̄, ȳ) ∈ Φ1 choose
āϕ(x̄,ȳ) ∈ Iβ ∩ ε+ξM such that M |= ϕ[b̄1ˆc̄1− āϕ(x̄,ȳ)]. Let Φ2 = {ϕ(x̄, ȳ) ∈ Λep

β,ε+ξ :

ϕ(x̄, ȳ) /∈ Φ1}.
So by �α(d) there is a b̄∗ˆc̄∗ ∈ Iα be such that �g(b̄∗) = �g(b̄1), �(c̄

∗) = �g(c̄1)
and ϕ(x̄, ȳ) ∈ Φ1 ⇒ M |= ϕ[b̄∗ˆc̄∗ − āϕ(x̄,ȳ)]. For transparency note that if Φ2 = ∅
then as the formula ∧{ϕ(x̄, ȳ) : ϕ(x̄, ȳ) ∈ Φ1} ∈ Λpe

α,ε+ξ clearly by the assumption

of � there is c̄2 ∈ ξM such that ϕ(x̄, ȳ) ∈ Φ1 ⇒ M |= ϕ(b̄2ˆc̄2 − āϕ(x̄,ȳ)), so c̄2 is as
required, hence we are done so without loss of generality Φ2 �= ∅. Clearly |Φ2| ≤ κβ

and let Φ′
� = {ϕ(0̄ε, ȳ) : ϕ(x̄, ȳ) ∈ Φ�} for � = 1, 2.

Let {¬ϕi(x̄ˆȳ − āi) : i < κβ} list possibly with repetitions the set of formulas
¬ϕ(x̄ˆȳ−ā) satisfied by c̄1ˆb̄1 with ϕ(x̄, ȳ) ∈ Λep

β,ε,ζ , ā ∈ Iβ and let ϕ′
i(ȳ) = ϕi(0ε, ȳ).

Let ψ′(ȳ) = ∧{ϕ(ȳ) : ϕ(ȳ) ∈ Φ′
1}.

Let the ideal I on κβ be defined as in 4.1 with G = ψ′(εM) where ψ′(x̄ξ) =∧
{ϕ(ȳ) : ϕ(ȳ) ∈ Φ′

1} and Gi = G ∩ ϕ′
i(

ξM) for i ∈ S := κβ, λ = (2κβ )+.

Case 1: κβ ∈ I.
So clearly M |= ϕ[b̄1 − b∗, c̄1 − c̄∗] for every ϕ(x̄, ȳ) ∈ Φ1.
Let ψ∗(x̄, ȳ) =

∧
{ϕ(x̄, ȳ) : ϕ(x̄, ȳ) ∈ Φ1}, so clearly it ∈ Λep

α,ε,ζ and M |=
ψ∗[b̄1 − b̄∗, c̄1 − c̄∗] hence M |= (∃ȳ)ψ∗[b̄1 − b∗, ȳ]. But (∃ȳ)ψ(x̄, ȳ) ∈ Λep

α,ε so by the

assumption on b̄1, b̄2 we have M |= (∃ȳ)ψ∗[b̄2 − b̄∗, ȳ] hence for some c̄′2 we have
M |= ψ∗[b̄2 − b̄∗, c̄′2] and let c̄′′2 = c̄′2 + c̄∗, so M |= ψ∗[b̄2 − b̄∗, c̄′′2 − c̄∗]. As we are
in case 1, by �α(e)(β) there is a sequence 〈ēι : ι < λ〉 of members of G, i.e. of
{ā ∈ ξM : M |= ψ∗(0̄ε, ā)} such that i < κβ ∧ (ι(1) < ι(2) < λ) ⇒ ēι(2)− ēι(1) /∈ Gi.

So for every ι < λ, the sequence (b̄2− b̄∗)ˆ(c̄′′2− c̄∗+ēι) belongs to ψ∗(
ε+ξM) and

for each i < κβ the set {ι < λ : (b̄2− b̄∗)ˆ(c̄′′2 − c̄∗+ ēι) belongs to (āi− b̄∗ˆc̄∗)+Gi}
has at most one member. As κβ < λ for some ι < λ, (b̄2ˆb̄)ˆ(c̄

′′
2 − c∗ + ēι) /∈

∪{āi − b̄∗ˆc̄∗ +Gi : i < κβ}.
So c̄2 := c̄′′2 + ēι is as required.

Case 2: κβ /∈ I
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So there is a sequence 〈d̄ι : ι < ι(∗)〉 of members of Iα as in �α(e)(α)
for ξ,G,Gi(i < κβ) as above, i.e. with ψ̄′(ȳ), 〈ϕ′

i(ȳ) : i < κβ〉 here stands for
ψ(x̄), 〈ϕi(x̄) : i < κβ〉 there; so ι(∗) < (2κα)+ and ι < ι(∗) ⇒ d̄ι ∈ Iα ∩ εM . As
clearly c̄1−c̄∗ ∈ G necessarily for some ι < ι(∗) the set u := {i < κβ : (c̄1−c̄∗−d̄ι) /∈
Gi} belongs to I and, of course, b̄∗ˆ(c̄∗ + d̄ι) ∈ Iα ∩ ε+ξM and we have:

(∗)1 M |= ϕ[b̄1 − b̄∗, c̄1 − c̄∗ − dι] for ϕ ∈ Φ1

(∗)2 if i ∈ κβ\u then M |= ϕi[b̄1 − b̄∗, c̄1 − c̄∗ − d̄ι].

As in Case 1 there is c̄′′2 ∈ ξM such that

(∗)3 M |= ϕ[b̄2 − b̄∗, c̄′′2 − c̄∗ − d̄ι] for ϕ ∈ Φ1

(∗)4 if i ∈ κβ\u then M |= ϕi[b̄2 − b̄∗, c̄′′2 − c̄∗ − d̄ι].

As u ∈ I by �α(e)(β) that is, by 4.1 there are ē, u∗ such that ē is a sequence of
the form 〈ēj : j < κ+

β 〉 and u ⊆ u∗ ∈ I such that:

(∗)5 ēj ∈ Gi for i ∈ κβ\u∗

(∗)6 ej2 − ēj1 /∈ Gi for j1 < j2 < κ+
β , i ∈ u∗.

So

(∗)7 (b̄2 − b̄∗)ˆ(c̄′′2 − c̄∗ − d̄ι − ēj) belongs to ∩{ϕ(ε+ξM) : ϕ ∈ Φ1}
(∗)8 if i ∈ κβ\u∗ then also i ∈ κβ\u so by (∗)4+(∗)5 the sequence (b̄2−b̄∗)ˆ(c̄′′2−

c̄∗ − d̄ι − ēj) satisfies ϕi(x̄ˆȳ − āi) in M hence b̄2ˆ(c̄
′′
2 − ēj) satisfies the

formula ¬ϕi(x̄ˆȳ − āi) in M .

Lastly, by (∗)6

(∗)9 for each i ∈ u∗, there is ji < κ+
β such that for every j ∈ κ+

β \{ji} the

sequence (b̄2ˆb̄
∗)ˆ(c̄′′2 − c∗−ej) satisfies ¬ϕi(x̄ˆȳ− āi), so for some j, (c̄′′2 −

c̄∗ − ēj) this holds for every i ∈ u∗.

Putting together (∗)7 + (∗)8 + (∗)9 clearly (c̄′′2 − c̄∗ − d̄ι − ēj) is as required in � so
we are done. �2.4

Definition 2.8. Let θ = cf(θ), γ an ordinal, λ̄ = 〈λβ : β < γ〉.
1) For an R-module M we say Ī is a (θ, γ)-witness for M when Ī = 〈Iβ : β ≤ γ〉
and for each α ≤ γ, Iα satisfies the conclusion of 2.4.
2) We say Ī is a (λ̄, θ, γ)-witness when if in addition λ̄ = 〈λβ : β ≤ γ〉 and β ≤ γ ⇒
λβ > |Iβ |.

§ 3. Stability

Context 3.1. 1)

(a) R a fixed ring, τ = τR or

(b) τ is a θ-additive vocabulary; K the class of τ -additive models.
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2) M ∈ K a fixed R-module.
3) θ = cf(θ) and an ordinal, γ(∗) limit for simplicity.
4) λ̄ = 〈λα : α ≤ γ(∗)〉, λα > κα := �α(|R|+ θ−).
5) Ī∗ is a (λ̄, θ, γ(∗))-witness, see 2.8.
6) A∗ = ∪{ā : ā ∈ Iγ(∗)}.
7) Λε = Λpe

γ(∗),ε for ε < θ and Λ = ∪{Λε : ε < θ}.
8) M∗ = MA∗ := (M,a)a∈A∗ .

Definition 3.2. Assume ε < θ,Λ ⊆ Λpe
θ,γ(∗) and A∗ ⊆ A ⊆ M ∈ K and

ā ∈ εM .
1) Sε

Λ(A,M) = {tpΛ(ā, A,M) : ā ∈ εM}, see below.
2) For ā ∈ εM let tpΛ(ā, A,M) = {ϕ(x̄ˆb̄ − c̄) : b̄ ∈ ξA and c̄ ∈ ε+ξM and
M |= ϕ[ā1ˆb̄− c̄] and ϕ(x̄, ȳ) ∈ Λpe

γ,ε+ξ ∩ Λ}.

The Stability Theorem 3.3. Assume Λ ⊆ Λpe
γ(∗) and A ⊆ M ∈ K.

1) The set Sε
Λ(A,M) has cardinality ≤ ((|A|)<θ)|Λ|.

2) For any κ ≥ 4, yes! four, there are no āα ∈ εM, b̄α ∈ ξM for α < κ and1

ϕ(x̄, ȳ) ∈ Λpe
γ(∗),ε,ξ such that for α < β < κ we have M |= “ϕ[āα, b̄β ] ∧ ¬ϕ[āβ, b̄α]”.

3) If the formula ϕ(x̄, ȳ) from L∞,θ,γ(∗) or just is a Boolean combination of such

formulas and κ ≥ �γ(∗)+2(|τ |<θ)+ then there are no M ∈ K, āα ∈ εM, b̄α ∈ ζM

for α < κ such that M |= ϕ[āα, b̄β] ∧ ¬ϕ[āβ, b̄α] whenever α < β < κ. Actually
κ ≥ �γ(∗)+1(|τ |<θ)+ suffice.

4) If p ∈ Sε
Λ(A,M) and ϕ(x̄, ȳ) ∈ Λep

γ(∗),ε,ξ and p ∩ {ϕ(x̄, b̄) : b̄ ∈ ξA} �= ∅ then for

some āϕ ∈ εA and b̄ ∈ ξA we have ϕ(x̄− āϕ, b̄) � p�{±ϕ} and ϕ(x̄− āϕ, b̄) ∈ p.

Proof. 1) Consider the statement

(∗) if ϕ(x̄, ȳ) ∈ Λpe
γ(∗),ε,ξ∩Λ and p�(x̄) = tp{ϕ(x̄,ȳ)}(ā�, A,M) ∈ Sε

{ϕ(x̄,ȳ)}(A,M)

for � = 1, 2 and b̄ ∈ ξA, c̄ ∈ ε+ξA and ϕ(x̄ˆb̄ − c̄) ∈ p1(x̄) ∩ p2(x̄) then
p1(x̄) = p2(x̄).

Why (∗) is true? Assume ϕ(x̄ˆb̄′ − c̄′) ∈ p1(x̄), so ā1ˆb̄
′ − c̄′ ∈ ϕ(M̄). But we are

assuming ϕ(x̄ˆb̄ − c̄) ∈ p�(x̄) = tp{ϕ(x̄,ȳ)}(ā�, A,M) hence ā�ˆb̄ − c̄ ∈ ϕ(M) for

� = 1, 2. Together ā2ˆb̄
′ − c̄′ = (ā2ˆb̄ − c̄) − (ā1ˆb̄ − c̄) + (ā1ˆb̄

′ − c̄′) belongs to
ϕ(M), hence ϕ(xˆb̄′ − c′) ∈ p2(x). So ϕ(x̄ˆb̄′ − c̄′) ∈ p1 ⇒ ϕ(x̄ˆb′ − c̄′) ∈ p2 and by
symmetry we have ⇔ hence p1(x̄) = p2(x̄), i.e. we have proved (∗).

Why (∗) is sufficient? For every ξ < θ, ϕ(x̄, ȳ) ∈ Λpe
γ(∗),ε,ξ ∩ Λ and p(x̄) ∈

Sε
Λ(A,M) choose (b̄p(x̄),ϕ(x̄,ȳ), c̄p(x̄),ϕ(x̄,ȳ)) such that

⊕1 • b̄p(x̄),ϕ(x̄,ȳ) ∈ εA and c̄p(x̄),ϕ(x̄,ȳ) ∈ ε+ξA

• if possible ϕ(x̄ˆb̄p(x̄),ϕ(x̄,ȳ) − c̄p(x̄),ϕ(x̄,ȳ)) ∈ p(x̄).

For p(x̄) ∈ Sε
Λ(A,M) let Φp(x̄) = {ϕ(x̄, ȳ) ∈ Λpe

γ,ε,ξ: in ⊕1 we have “possible”} and

let qp(x̄) = {ϕ(x̄ˆb̄p(x̄),ϕ(x̄,ȳ) − c̄p(x̄),ϕ(x̄,ȳ)) : ϕ(x̄, ȳ) ∈ Φp(x̄)}.
Now

⊕2 if p1(x̄), p2(x̄) ∈ Sε
Λ(A,M) and Φp1(x̄) = Φp2(x̄) and qp1(x̄) = qp2(x̄) then

p1(x̄) = p2(x̄).

1This holds also for ¬ϕ(x̄, ȳ) but for κ finite we can invert the order.
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[Why? Just think.]

⊕3 the set {(Φp(x̄), qp(x̄)) : p(x̄) ∈ Sε
Λ(A,M)} has cardinality≤ 2|Λ|+(|A|<θ)|Λ|.

[Why? Straightforward.]
Clearly we are done.

2) Note that ϕ(x̄, ȳ) ∈ Λpe
γ,ε,ξ implies that

� if M |= ϕ[ā, b̄] ∧ ϕ[ā, b̄′] ∧ ϕ[ā′, b̄] then M |= ϕ[ā′, b̄′].

[Why? As ϕ(ε+ζM) is a subgroup of ε+ζM and āˆb̄, ā′ˆb̄, āˆb̄′ belongs to it then so
does ā′ˆb̄′ = ā′ˆb̄+ (āˆb̄′)− (āˆb̄) but the latter is equal to ā′ˆb̄′.]

So we can choose ā = ā0, ā
′ = ā3, b̄ = b̄1, b̄

′ = b̄2 and get a contradiction.
3) Toward contradiction let 〈āα : α < κ〉, āα ∈ εM form a counterexample. By
Erdös-Rado theorem �γ(∗)+2(|τ |<θ)+ → (4)2

�γ(∗)+1(|τ |<θ). Now for α < β < κ let

pα,β = tpΛpe
γ(∗),ε,ε

(āαˆāβ ; ∅,M) so {pα,β : α < β} has cardinality ≤ �γ(∗)+1(|τ |<θ)

hence by the arrow above for some α0 < α1 < α2 < α3 and p, � < m < u ⇒
pα�,αn

= p; we get contradiction by part (2). If κ is just ≥ �γ(∗)+1(|τ |<θ)+, use �
from the proof of part (2) and repeat a proof of the Erdös-Rado theorem.
4) Should be clear. �3.2

Recall ([Sh:300a])

Definition 3.4. For Φ ⊆ Λ we say I ⊆ εM is (μ,Φ)-convergent when |I| ≥ μ
and for every ξ < θ and ϕ(x̄) ∈ Φε+ξ and b̄ ∈ ξM, c̄ ∈ ξ+εM for all but < μ of the
ā ∈ I the truth value of āˆb̄− c̄ ∈ ϕ(M) is constant.

Claim 3.5. 1) A sufficient condition for I = {āi : i < λ} ⊆ εM to be (μ,Φ)-
convergent is: for some ε, I ⊆ εM and i < j < λ∧ϕ(x̄) ∈ Φ∩Λε ⇒ āj− āi ∈ ϕ(M).
2) If ε < θ, λ = cf(λ) > μ ≥ μγ(∗) and (∀i < λ)(|i|μγ(∗) < λ) and āi ∈ εM for

i < λ with no repetition then for some stationary S ⊆ λ, {āi : i ∈ S} is (μ+,Φ)-
convergent.

Remark 3.6. 1) Note that being (μ, I)-convergent is very close to being (< ω)-
indiscernible, and sometimes is the reasonable generalization of indiscernible.
2) So 3.5(1) says that 2-indiscernible almost implies (< ω)-indiscernible.
2) Also 3.5(2) says there are (< ω)-indiscernibles.

Proof. Should be clear. �3.5

§ 4. How much does the subgroup exhaust a group

Claim 4.1. Assume the groups Gs (for s ∈ S) are subgroups of the group G
and λ > |S|+. There is an ideal I on S (possibly I = P(S)) such that:

(a) for every u ∈ I there is a sequence ḡ = 〈gα : α < λ〉 of members of G such
that s ∈ u ∧ α < β < λ ⇒ gαGs �= gβGs

(b) for u ∈ P(S)\I, clause (a) fails

(c) if S /∈ I, cf(λ) > 2|S| and α < λ ⇒ |α||S| < λ, e.g. (∃μ)(λ = (μ|S|)+)
then there is A ⊆ G of cardinality < λ such that for every g ∈ G for some
a ∈ A we have {s ∈ S : gGs �= aGs} ∈ I

(d) under the assumptions of clause (c) and in addition λ is regular then for
every u ∈ I for some ḡ and v we have
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• u ⊆ v ∈ I

• ḡ = 〈gα : α < λ〉
• gαGs = g0Gs moreover gα ∈ Gs for s ∈ S\v
• if s ∈ v, α < β < λ then gαGs �= gβGs.

(e) I ⊆ P(S), I is closed under subsets

(f) I is an ideal provided that G is Abelian or just each Gs is a normal sub-
group.

Definition 4.2. For G and Ḡ = 〈Gs : s ∈ S〉 as in 4.1 and λ ≥ ℵ0 let
I = IG,Ḡ,λ be as defined in clauses (a),(b) of 4.1, it is an ideal (but may be P(S)).

Proof. Let I be the set of u ⊆ S such that clause (a) holds.
Now

(∗) (α) I ⊆ P(κ)

(β) I is ⊆-downward closed, i.e. is closed under subsets.

[Why? Obvious.]
Now for 4.1, we have chosen I such that clauses (a),(b),(e) hold.
Toward proving clause (c) of 4.1 for each u ∈ I+ := P(S)\I, let ḡu = 〈gu,α :

α < α(u)〉 be a maximal sequence of members of G such that α < β < α(u) ∧ s ∈
u ⇒ gu,αGs �= gu,βGs. By the definition of I as u /∈ I, necessarily α(u) < λ,

and as we are assuming cf(λ) > 2|S|, clearly α(∗) = sup{α(u) : u ∈ I+} < λ. So
B := {gu,α : u ∈ I+ and α < α(u)} is a subset of G of cardinality < λ. For every
u ∈ I and h : S\u → B choose gh ∈ G such that, if possible, (∀s ∈ S\u)(ghGs =
h(s)Gs), so A = {gh : h is a function from S\u into B and u ∈ I} is a subset of G
of cardinality ≤ |B||S| < λ, recalling we are assuming now (∀α < λ)(|α||S| < λ).

We shall show that A is as required (in clause (c)), then we are done. Let
g∗ ∈ G. Let u = {s ∈ S: for no w ∈ I+ and α < α(w) do we have gGs = gu,αGs}.
Now if u ∈ I+ then ḡu = 〈gu,α : α < α(u)〉 is well defined and g∗ satisfies the
demand on gu,α(u) contradicting the maximality of ḡu. So u ∈ I and we can find
h : (S\u) → B such that s ∈ S\u ⇒ g∗Gs = h(s)Gs. So gh is well defined and ∈ A
and is as required, so we are done.

For clause (d) let u ∈ I be given and let 〈gα : α < λ〉 witness that u ∈ I. For
each α < β let uα = {s ∈ S: there is β < α such that gαGs = gβGs}, clearly
uα ∩ u = ∅ and let hα : uα → α be such that s ∈ uα ⇒ gαGs = ghα(s).

As λ is regular, recalling (∀α < λ)(|α||S| < λ) by the present assumption on
λ, for some h : u∗ → λ, the set W is a stationary subset of λ where W = {α <
λ : cf(α) = |S|+ and hα = h, uα = u∗}. Clearly α, β ∈ W ∧ s ∈ u∗ ⇒ gαGs =
gh(s)Gs = gβGs and α �= β ∈ W ∧ s ∈ S\u∗ ⇒ gαGs �= gβGs. Letting 〈αi : i < λ〉
list W and gi = gαi

for α < λ, clearly v = u∗, 〈g′i : i < λ〉 are as promised in clause
(d). Well for the “moreover” and, i.e. use 〈g−1

0 g1+i : i < λ〉.
We are left with clause (f).
I is an ideal when the assumption of clause (f) holds. Let u1, u2 ∈ I be disjoint

and we shall prove that u := u1 ∪ u2 ∈ I. Let 〈g�,α : α < λ〉 witness u� ∈ I for
� = 1, 2. We try to choose g3,ε ∈ G such that ζ < ε ∧ s ∈ u ⇒ g3,εGs �= g3,ζGs; we
can add g3,ε ∈ {g1,ig2,j : i, j < λ}. Arriving to ε, if for some i < λ ∧ j < λ we can
choose g3,ε := g1,ig2,j fine.
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Otherwise there are f : λ×λ → ε and g : λ×λ → u such that for (i, j) ∈ λ×λ
we have g1,ig2,jGg(i,j) = g3,f(i,j)Gg(i,j).

For each i < λ, ζ < ε and s ∈ u ⊆ S let U 2
i,ζ,s = {j < λ : f(i, j) = ζ, g(i, j) =

s}. Now j ∈ U 2
i,ζ,s ⇒ g1,ig2,jGs = g3,ζGs ⇒ g2,jGs = g−1

1,i g3,ζGs hence if s ∈ u2

then j(1) �= j(2) ∈ U 2
i,ζ,s ⇒ g2,j(1)Gs = (g−1

1,i g3,ζ)Gs = g2,j(2)Gs contradiction.

Hence U 2
i,ζ,s has cardinality ≤ 1 when i < λ, ζ < ε, s ∈ u2.

For j < λ, ζ < ε and s ∈ u let

U 1
j,ζ,s = {i < λ : f(i, j) = ζ and g(i, j) = s}.

If G is abelian, as above we have ζ < ε∧j < λ∧s ∈ u1 ⇒ |U 1
j,ζ,s| ≤ 1. If not but still

every Gs is a normal subgroup of G then for any j < λ, ζ < μ, s ∈ u1 we have i ∈
U 1

j,ζ,s ⇒ g1,ig2,jGs = g3,ζGs ⇒ g1,i(Gsg2,j) = g1,i(g2,jGs) = g3,ζGs ⇒ g1,iGs =

g3,ζ(Gsg
−1
2,j ) hence i(1) �= i(2) ∈ U 1

j,ζ,s ⇒ g1,i(1)Gs = g3,ζ(Gsg
−1
2,j ) = g1,i(2)Gs, a

contradiction so again U 1
j,ζ,s has at most one member.

For � ∈ {1, 2} and i < λ let U �
i = ∪{U �

i,ζ,s : ζ < ε and s ∈ u�}, so as |u�| ≤ |S|
clearly |U �

i | ≤ |S|. As λ > |S|+ there are i, j < λ such that i /∈ U 1
j ∧ j /∈ U 2

i ;
hence the member g1,ig2,j of G satisfies the demand on g3,ε.

So we can carry the induction on ε < λ, so we are done proving clause (f). �4.1

Claim 4.3. In 4.1 there is a W ⊆ S such that

(a) there is a sequence s̄ = 〈si : i < i(∗)〉 listing W satisfying (
⋂
i<j

Gsi ,
⋂
Gsi)

is finite for j < i(∗) stipulating
⋂
i<0

Gsi = G

(b) if W ′ ⊆ S satisfies (A) then W ′ ⊆ W .

Proof. Immediate. �

§ 5. Concluding Remark

Example 5.1. An example of additive structure is a ring satisfying xy = −yx,
i.e. if (R,+R) is ⊕{Zxs : s ∈ I}, f is a function from I × I into R is such that
f(x, y) = −f(y, x) and f(x, x) = 0 and we have

(
∑

�<�(∗)
a�xs�) (

∑

m<n(∗)
bmxtn) = Σ{a�bmxf(s�,tm) : � < �(∗),m < m(∗)}.

Remark 5.2. 1) We may use τ ⊇ {+,−, 0, 1} ∪ {Pi : i < i(∗)}, Pi unary and
instead modules use τ -models M such that |M | is the disjoint union ∪{PM

i : i <
i(∗)},+M is a partial two-place function, +M = ∪{+M�PM

i : i < i(∗)}, (PM
i ,+M )

an abelian group, all relations and functions commute with + or at least every rela-
tion is affine, i.e. let F∗(x, y, z) = x−y+z, and demandG(. . . , F∗(xi, yi, zi), . . .)i<i(∗) =

F∗(G(x̄), G(ȳ), G(z̄)) and ā, b̄, c̄ ∈ PM ⇒ F∗(ā, b̄, c̄) = 〈F∗(ai, bi, ci) : i < arity(P )〉 ∈
PM .
2) However, as we use infinitary logics, if M is the disjoint union of Abelian groups
GM

i := (PM
i ,+M

i ) for i < i(∗) and we define GM as the direct sum having predicate
for those subgroups then we have bi-interpretability. Concerning having “affine
structure” only, we can expand by choosing an element in each to serve as zero.
3) It is natural to extend our logic by cardinality quantifiers saying “the definable
subgroup G divided by the definable subgroup H has cardinality ≥ λ”.
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Remark 5.3. Concerning 2.4 note
1) Note that instead of an R-module M we can use (M, cα)α<κ, i.e. expand M by κ
individual constants; the only difference is using �α(|R|<θ + κ) instead �α(|R|<θ).
2) The theorem 5.3 has an arbitrary choice: the Iα, so e.g. not every formula
ϕ(x̄) ∈ L∞,θ,γ and ā ∈ I∂ is ϕ(x̄, āγ) equivalent to a formula without parameters.
Instead of using extra individual constants, in the proof (see �α in the proof of
2.4) for any ψ(x̄), ψ(x̄) ∧ ϕi(x̄) for i < i(∗) < κβ, I, G,Gi(i < i(∗)) and the ideal I
on κβ can expand M by:

(a) PM = {ā : M |= ψ[ā] and {i < κβ : ā /∈ Gi} ∈ I} is a subgroup

(b) predicates for the set {ā+ PM : ā ∈ ψ(M)}.

So the proof shows that we can in M eliminate quantifier to quantifier-free formulas
in this expansion.
3) Also this may give too much information. Still the result gives elimination of
quantifiers: not as low as in the first order case.
4) We can now define non-forking and hopefully [Sh:F1210] will deal with this.

Question 5.4. 1) Are there arbitrarily large Abelian groups G which are not
only indecomposable, but even potentially so, i.e. absolutely, even after any forcing
G is indecomposable.
2) Relatives, e.g. no potential non-trivial automorphism.

Discussion 5.5. We know that for the minimal λ, λ → (ω)<ω
ℵ0

, up to λ the

answer is yes (and more) but if |G| ≥ λ then potentially it has non-trivial endomor-
phisms and even non-trivial embedding of G into itself (Eklof-Shelah [EkSh:678],
Göbel-Shelah [GbSh:880]). We can improve this to “for some a1 �= a2 from
G”, potentially there are an embeddings f1, f2 of G into itself such that f1(a1) =
a2, f2(a2) = a1, see [Sh:F1210].
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