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ABSTRACT

We introduce a model-theoretic characterization of Magidor cardinals,

from which we infer that Magidor filters are beyond ZFC-inconsistency.

0. Introduction

Magidor cardinals were defined in [4] through a combinatorial property of colo-

ring functions. Recall that λ → [λ]ℵ0-bd
λ means that for every function f from

the bounded subsets of λ of size ℵ0 into λ, there exists a set A ∈ [λ]λ for which

the restriction of f to the bounded subsets of A of size ℵ0 omits at least one

color. The combinatorial definition reads as follows:
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Definition 0.1 (Magidor cardinals): A cardinal λ is a Magidor cardinal iff

λ → [λ]ℵ0-bd
λ .

The term ℵ0-bd in the above definition means every countable set, regardless

of its order type (though a similar concept of Magidority can be defined with

an additional limitation on the order type). The restriction to ℵ0-bounded

subsets in the domain of the coloring is obligatory if one wishes to accept the

axiom of choice. If λ → [λ]ωλ then λ is called ω-Jónsson, and there are no such

cardinals in ZFC as proved in [3]. Consequently, if λ is a Magidor cardinal then

λ > cf(λ) = ℵ0.

A primary question is: what is the consistency strength of Magidor cardinals?

On the one hand, every Magidor cardinal is a Jónsson cardinal. On the other

hand, if λ is I1 (or even I2) then λ is a Magidor cardinal. There is some

evidence that the consistency strength of Magidor cardinals is far from the

parallel strength of Jónsson cardinals; see [4]. In the current paper we give

another evidence, through the notion of Magidor filters. Recall that a filter F

over λ is uniform iff every element of F is of size λ.

Definition 0.2 (Magidor filters): Let F be a filter over λ.

We say that F is a Magidor filter iff:

(ℵ) F is a uniform filter.

(�) F contains all the end-segments of λ.

(ג) For every coloring c : [λ]ℵ0-bd → λ there exists an element x ∈ F for

which c′′[x]ℵ0-bd �= λ.

The uniformity requirement is crucial here, as otherwise the concept of Magi-

dor filter would be meaningless. The requirement that each end-segment belongs

to F can be satisfied by extending F , as every uniform extension of a Magidor

filter preserves the Magidority.

The main theorem of this paper is that there are no Magidor filters, assuming

the axiom of choice. Recall that every measurable cardinal carries a Jónsson

filter. Moreover, every singular cardinal limit of measurable cardinals carries a

Jónsson filter by the proof of Prikry, [8]. So the main result here for Magidority

stands in sharp contrast with Jónssonicity, and demonstrates in another way

the discrepancy between the notions of Magidority and Jónssonicity.

Our notation is standard, and elaborated in [4]. For a general background we

suggest [5]. We sketch several conventions to be used in the present paper. By
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the existence of an elementary embedding we mean that there is some transitive

model M of ZFC and a non-trivial elementary embedding j from M into some

other transitive model of ZFC. The model M need not be a proper class, and

occasionally it will not be a model of all ZFC axioms, in which cases we assume

that M satisfies enough ZFC in order to carry out the relevant proof. Assuming

the axiom of choice, the non-triviality yields an ordinal β so that j(β) > β. The

first such ordinal is called the critical point of j and denoted crit(j). An ordinal

η is a fixed point of j iff j(η) = η. A fixed point η is non-trivial if η > crit(j).

If g : ν → μ and x ⊆ μ then g−1[x] = {α ∈ ν : g(α) ∈ x}. The arrows notation
with ℵ0-bd as a superscript is coherent with the common arrows notation. If

F is a filter over λ, then λ → [F ]ℵ0-bd
θ means that the set from which we omit

colors is an element of F . If λ → [F ]ℵ0-bd
λ , then there is an ordinal α < λ such

that λ → [F ]ℵ0-bd
α,<α . This notation means that the number of attained colors is

less than α. We denote the first such ordinal by αM (F ).

A word about the axiom of choice is in order. The proof of the non-existence

of Magidor filters is carried out in ZFC. If we drop AC (even upon replacing

it by some weak versions of choice) then Magidor filters may exist. Moreover,

they form a natural niche of large cardinals in ZF. In some sense, Magidor

filters continue the table of large cardinals beyond ω-Jónssonicity, since the

existence of such a filter implies the existence of an unbounded set of ω-Jónsson

cardinals. The fact that the concept of Magidor filters comes from the ZFC

acceptable notion of Magidor cardinals in a fairly natural way, enables us to go

further afield and gives another aspect to the interplay between large cardinals

and the axiom of choice.

Acknowledgment. We thank the referee for the neat and rapid work on this

paper. The third author is partially supported by European Research Council

grant 338821. This is publication 1083 in Shelah’s list.

1. A model-theoretic characterization of Magidor cardinals

Most large cardinals, including Jónsson cardinals, have several natural defi-

nitions. This fact proves fruitful in many respects. For the main result we

need a model theoretic characterization of Magidor cardinals. For a similar

characterization of Jónsson cardinals see Tryba, [10]. Ahead of proving our

characterization we need to show that each Magidor cardinal λ is ω-closed, i.e.,

α < λ ⇒ αω < λ. This is the content of the following:
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Claim 1.1: Every Magidor cardinal is ω-closed.

Proof. Let λ be a Magidor cardinal, and assume toward a contradiction that

μ < λ while μω ≥ λ. Since cf(λ) = ω �= cf(μω) we know that μω > λ, though

this fact has no significant role in the proof. From the limitude of λ we have

μ+3 < λ.

We choose a sequence of sets 〈Ci : i < λ〉 with the following three properties:

(α) Each Ci is a bounded subset of λ, closed in its supremum.

(β) The order type of Ci is μ, for every i < λ.

(γ) For every δ < λ so that cf(δ) = μ+3 and for every club E ⊆ δ we can

find an ordinal i < λ for which Ci ⊆ E.

The existence of such a sequence follows from the club guessing theorems of

pcf; see [9] or [1]. Let D be {u ⊆ λ : otp(u) = ω, sup(u) < λ}, so D is just

the collection of bounded subsets of λ of order type ω. Let Sλ
ω be the set

{α < λ : cf(α) = ω}. We choose a function

d : D → λ

such that

Rang(d � {u ∈ D : u ⊆ Ci ∩ Sλ
ω}) = λ

for every i < λ. The existence of d follows from the fact that we have but

λ-many Ci’s and

|{u ⊆ Ci ∩ Sλ
ω : otp(u) = ω}| > λ

for every i < λ, hence we can choose the values of d by induction on i < λ.

We shall define a coloring c which exemplifies the non-Magidority of λ. Wit-

hout loss of generality, dom(c) = {u ⊆ λ : sup(u) < λ, otp(u) = ω · ω}, since we

can define c(u) = 0 whenever u ∈ [λ]ℵ0-bd and otp(u) �= ω · ω. If u ∈ dom(c),

let 〈αu,i : i < ω · ω〉 be an increasing enumeration of the members of u, and set

c(u) = d

({
α : ∃n, α =

⋃
�∈ω

αu,ω·n+�

})
.

Assume now that A ⊆ λ, the order type of A is μ+3 and A is bounded in λ. Let

B(A) = {c(u) : u ⊆ A, u ∈ dom(c)}. We shall prove that B(A) = λ for every A

as above, thus arriving at a contradiction. Indeed, given S ∈ [λ]λ let A be the

first μ+3 members of S. Since B(A) = λ we conclude that c omits no colors on

[S]ℵ0-bd, contradicting the Magidority of λ.
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Given any set A, we denote the closure of A under the order topology by

c�(A). Fix A and let 〈αi : i ≤ μ+3〉 enumerate the members of c�(A), stipulating

δ = αμ+3 . Choose any γ < λ. We shall prove that γ ∈ B(A). Notice that

cf(δ) = μ+3, and αi+1 ∈ A for every i < μ+3. Set E = {αω·i : i < μ+3}, so E

is a club subset of δ. By the choice of the club guessing sequence, there exists

an ordinal i∗ < λ for which Ci∗ ⊆ E.

By the definition of d we can choose an increasing ω-sequence 〈βn : n ∈ ω〉
of ordinals from Ci∗ ∩ Sλ

ω so that d({βn : n ∈ ω}) = γ. Recall that Ci∗ ⊆ E, so

each βn has the form αω·i(n) for some i(n) < μ+3, and i(n) < i(n+1) for every

n ∈ ω. Likewise, cf(βn) = ω for every n ∈ ω.

We wish to define a set of order type ω ·ω out of the βn’s, with the goal being

to define a set u for which c(u) = γ. For every n ∈ ω we choose an increasing

sequence of ordinals 〈jn,� : � ∈ ω〉 such that:

(α)
⋃

�∈ω jn,� = αω·i(n) for every n ∈ ω.

(β) jn,� is a successor ordinal for every n, � ∈ ω.

(γ) max{αω·i(m) : m < n} < jn,0 for every n ∈ ω.

Let
u = {αjn,�

: n, � ∈ ω}.
By (β) we have u ⊆ A, so u ⊆ δ as A ⊆ δ. By the construction, otp(u) = ω · ω.
Observe that αω·i(n) = sup{β ∈ u : otp(u∩β) < ω ·n} for every n ∈ ω (again, by

the construction), and hence c(u) = d({αω·i(n) : n ∈ ω}) = d({βn : n ∈ ω}) = γ,

so the proof is accomplished. 1.1

Theorem 1.2 (Magidority and elementary embeddings): Assume λ>cf(λ)=ω.

The following are equivalent:

(a) λ is a Magidor cardinal.

(b) For every γ > λ there is a triple (M, M̄, j) such that M ⊆ V is a tran-

sitive set for which λ + 1 ⊆ M , j : M → Vγ an elementary embedding

such that crit(j) < λ = j(λ), M̄ = (Mn : n ∈ ω), M =
⋃

n∈ω Mn and

Mn ≺ M for every n ∈ ω, for every δ < λ there exists nδ ∈ ω such that

n ∈ [nδ, ω) ⇒ [Mn ∩ δ]ℵ0 ⊆ M , and finally λ � j′′M .

(c) There exists some ordinal γ > λ for which there is a triple (M, M̄, j)

such that M ⊆ V is a transitive set for which λ+1 ⊆ M , j : M → Vγ an

elementary embedding such that crit(j) < λ = j(λ), M̄ = (Mn : n ∈ ω),

M=
⋃

n∈ω Mn and Mn≺M for every n∈ω, for every δ<λ there exists

nδ ∈ ω such that n ∈ [nδ, ω) ⇒ [Mn ∩ δ]ℵ0 ⊆ M , and finally λ � j′′M .
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Proof. For the direction (a) ⇒(b) fix any ordinal γ > λ. Let B be an expansion

of (Vγ ,∈) by Skolem functions. For every set S ⊆ λ let c�B(S) be a minimal

elementary submodel M of B for which S ⊆ M and [M ∩ λ]ℵ0 ⊆ M . Such a

model M can be created by induction on ω1, using the Löwenheim–Skolem the-

orem and adding the ω-subsets at each step. Notice that |c�B(S)| ≤ |S|ℵ0 · 2ℵ0 .

In particular, if u ∈ [λ]ℵ0 then |c�B(u)| = 2ℵ0 .

For every u ∈ [λ]ℵ0 fix an enumeration 〈au,ζ : ζ < 2ℵ0〉 of the members

of c�B(u). Let A ⊆ [λ]ℵ0-bd be a maximal almost disjoint family such that

a ∈ A ⇒ otp(a) = ω. Denote
⋃{c�B(u) : u ∈ [λ]ℵ0-bd} by T .

We define two functions, c0 and c1. The function c0 : [λ]ℵ0-bd → 2ℵ0 × ω1

would give a pair of ordinals for the coloring c1, and c1 would be the coloring

for which we employ assumption (a). Our demand from c0 is that for every

a ∈ A the following statement will be satisfied:

∀b ∈ [a]ℵ0 , Rang(c0 � [b]ℵ0) = 2ℵ0 × ω1.

Now we define c1 : [λ]ℵ0-bd → T as follows. If u ∈ [λ]ℵ0-bd, otp(u) = δ + ω

for some limit ordinal δ, {αu,i : i < δ + ω} an increasing enumeration of the

members of u, vu = {αu,δ+n : n ∈ ω} is the upper part of u, c0(vu) = (ζ, ε)

and a{αu,i:i<δ∩ε},ζ is an ordinal, then we let c1(u) = a{αu,i:i<δ∩ε},ζ . In all other

cases, c1(u) = 0. Since |T | = λ, we can use the Magidority assumption (a) and

choose a set A ∈ [λ]λ and an ordinal τ ∈ T such that ∀u ∈ [A]ℵ0-bd, c1(u) �= τ .

Let 〈μn : n ∈ ω〉 be an increasing sequence of cardinals such that λ=
⋃

n∈ω μn.

For every n ∈ ω let M∗
n = c�B(A ∩ μn). As noted above, |M∗

n| ≤ μℵ0
n < λ.

By virtue of Skolem (i.e., by adding the Skolem functions to B and taking

an elementary submodel of it) M∗
n ≺ B, and since M∗

n ⊆ M∗
n+1 we infer that

M∗
n ≺ M∗

n+1 for every n ∈ ω. Let M∗ be
⋃

n∈ω M∗
n and let M be the Mostowski

collapse of M∗ by π.

The key-point in this part of the proof is that τ /∈ M∗. To show this fact,

assume toward a contradiction that τ ∈ M∗, and choose some n ∈ ω for which

τ ∈ M∗
n, i.e., τ ∈ c�B(A∩μn). Pick up a set u ∈ [A∩μn]

ℵ0 such that τ ∈ c�B(u).

By the fixed enumerations of c�B(u) we may write τ = au,ζ for some ζ < 2ℵ0 .

Denote the order-type of u by ε.

Choose some a0 ⊆ A\μn, otp(a0) = ω and a0 is bounded in λ. Let u0 = u∪a0
so otp(u0) = ε + ω. Let n0 be the first natural number so that u0 ⊆ μn0 . We

choose now a1 ∈ [A \ μn0 ]
ℵ0-bd and a2 ∈ A such that b = a1 ∩ a2 is infinite. By

the above properties of c0, there exists v0 ∈ [b]ℵ0 such that c0(v0) = (ζ, ε).
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Define u1 = u0 ∪ v0 and observe that otp(u1) = ε + ω + ω. Let δ = ε + ω,

so δ is a limit ordinal. We claim that c1(u1) = τ , which contradicts the choice

of τ . Indeed, recall that otp(u1) = δ + ω and δ is the limit ordinal ε + ω. By

definition, c1(u1) = a{αu1,i:i<δ∩ε},ζ , as c0({αu,δn : n ∈ ω}) = c0(v0) = (ζ, ε).

However, {αu1,i : i < δ ∩ ε} = {αu1,i : i < ε} = u and hence c1(u1) = au,ζ = τ ,

a contradiction.

Let j be the inverse π−1 of the Mostowski collapse. Notice that j is an

elementary embedding from M into Vγ . Observe also that j(τ) �= τ since

τ /∈ j′′M , and hence j has a critical point below λ and j(λ) = λ. Let Mn be

π(M∗
n) for every n ∈ ω, and verify that all the requirements in (b) are satisfied.

As (b)⇒(c) trivially, we are left with (c)⇒(a). Choose a quadruple (γ,M, M̄ , j)

as alleged in (c), and assume toward a contradiction that λ � [λ]ℵ0-bd
λ . Let

c : [λ]ℵ0-bd → λ exemplify this fact. Notice that c ∈ Vγ , and since j′′M ≺ Vγ ,

we may assume without loss of generality that c ∈ j′′M .

Fix an ordinal η ∈ λ \ j′′M (recall that λ � j′′M) and an increasing sequence

of regular cardinals 〈μn : n ∈ ω〉 which converges to λ and begins with μ0 = ℵ0.

By induction on n ∈ ω we choose a pair (�n, An) such that:

(ℵ) m < n < ω ⇒ �m < �n.

(�) An ⊆ j′′M�n ∩ μ�n and |An| = μn for every n ∈ ω.

(ג) m < n < ω ⇒ An ∩ μ�m = ∅.
How do we choose them? For n = 0 let �0 = 0 and

A0 = {p ∈ ω : p is a prime number}.
At the stage of n + 1 we choose � > �n such that |j′′M ∩ μ�| > μn+1 (such an

� exists as |j′′M ∩ λ| = λ). Recall that M =
⋃

n∈ω Mn so j′′M =
⋃

n∈ω j′′Mn,

and choose �n+1 > � so that |j′′M�n+1 ∩ μ�n+1 | > μn+1. Consequently, there is

a set An+1 ⊆ j′′M�n+1 ∩ μ�n+1 so that |An+1| = μn+1. By chopping an initial

segment of An+1 we may assume that An+1 ∩ μ�n = ∅, thus accomplishing the

construction.

Set A =
⋃

n∈ω An, so A ∈ [λ]λ. Let us show that η /∈ c � [A]ℵ0-bd. Indeed,

let u ⊆ A be any bounded set of size ℵ0. By (ג) above there is n0 ∈ ω such

that u ⊆ ⋃
n≤n0

An. By assumption (c) of our theorem there is n1 ∈ ω such

that u ∈ j′′Mn1 , and hence u ∈ j′′M . However, c ∈ j′′M as well and hence

c(u) ∈ j′′M so η �= c(u) by the choice of η, a contradiction to the defining

property of the coloring c. 1.2
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Remark 1.3: In the above theorem, one can show that for every δ < λ and every

large enough n ∈ ω we have [Mn ∩ δ]ℵ0 ⊆ Mn. Moreover, a similar statement

for unbounded ω-sequences of Mn follows from the above proof. The omitted

colors in the proof come from bounded ω-sequences which are contained in M

but in none of the Mn’s. 1.3

The proof is suggestive in another direction. Usually, given a large enough

cardinal we are confronted with the opposite situation in which the domain of

the embedding is V (or some portion Vγ of it) and the range is some transitive

modelM . The more we require fromM , the larger our cardinal is. In particular,

one can step up in the chart of large cardinals by asking for strong closure

properties from the M side. The same holds in our characterization, but we

have a glass ceiling. Recall that in ZFC there are no ω-Jónsson cardinals, by [7].

Claim 1.4 (ω-Jónsson cardinals): Assume λ is an infinite cardinal.

There is no triple (γ,M, j) such that:

(a) γ > λ+ 1.

(b) M ⊆ V is a transitive set.

(c) j : M → Vγ is an elementary embedding.

(d) λ+ 1 ⊆ M but λ � j′′M .

(e) crit(j) < λ = j(λ).

(f) [M ∩ λ]ℵ0 ⊆ M .

Proof. By [3], λ is not ω-Jónsson in V, so also not in M by elementarity. Choose

a function c : [λ]ω → λ which exemplifies this fact. Without loss of generality,

c ∈ j′′M . We indicate that one may choose (by elementarity) d ∈ M which

exemplifies this property of λ in M , and then define c = j′′d ∈ j′′M .

By our assumptions λ � j′′M , so we can choose an ordinal η ∈ λ \ j′′M .

Let A be the set j′′M ∩ λ, so A ∈ [λ]λ. Let u ∈ [A]ℵ0 be any set. Since

u ⊆ A = j′′M ∩ λ we infer that u ∈ j′′M . Indeed, enumerate the members of u

by {un : n ∈ ω}. Since
u ⊆ j′′M

we can choose vn ∈ M for every n ∈ ω so that ∀n ∈ ω, j(vn) = un. Let

v = {vn : n ∈ ω},
and notice that j(v) = u. However, v ∈M by assumption (f), so u∈ j′′M and

hence c(u)∈j′′M . Consequently, η �=c(u) for every such u, a contradiction. 1.4
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2. Magidor filters

For proving the main theorem, we need some additional facts. Recall that a

filter F over λ is not (ω, θ)-regular iff for every A ⊆ F, |A| = θ one can find

B ⊆ A, |B| = ℵ0 such that
⋂{x : x ∈ B} is not empty. Jónsson filters (and

hence Magidor filters) possess some degree of irregularity. The proof of the

following lemma is derived from the ideas of Prikry, [8].

Lemma 2.1: Let F be a Magidor filter over λ. Then F is not (ω, θ)-regular for

some θ = cf(θ) < λ. Actually, αM (F ) can serve as θ.

Proof. If F is a Magidor filter then, in particular, F is a Jónsson filter. One has

to convert colorings of ω-bounded subsets into coloring of finite subsets (this is

done, e.g., in [4] with respect to being a Magidor cardinal). By Lemma 1.40 in

[8] it follows that F is not (ω, θ)-regular for some θ = cf(θ) < λ (see also Tryba,

[11]). 2.1

Remark 2.2: Actually, one can prove stronger irregularity properties for Jónsson

and Magidor filters. The proof can be extracted from [8]. Irregularity gives some

kind of reflection, to be used in the main theorem. 2.2

If λ carries a Magidor filter F , then λ is a Magidor cardinal (by definition,

rememeber that F is uniform), and hence satisfies Theorem 1.2. The following

lemma shows that one may assume that j′′λ belongs to the filter.

Lemma 2.3: Assume G is a Magidor filter over λ. Then there exists an ele-

mentary embedding j : M → Vλ+ω such that crit(j) < λ = j(λ) and j′′λ ∈ G.

Proof. Let G be a Magidor filter over λ. Let N be an elementary submodel of

Vλ+ω of size λ, so that λ + 1 ⊆ N . Fix a well ordering of Vλ+ω in N . Being

a Magidor cardinal, |[λ]ℵ0-bd| = λ. Enumerate all the ℵ0-bounded subsets of λ

by {ti : i < λ} in such a way that if sup(ti) ≤ α then i < |α|ℵ0 . Denote the

map ti �→ i by t.

Let 〈fn : n ∈ ω〉 be a set of Skolem functions for (Vλ+ω ,∈, t). We clump

these functions into one single function g : [λ]ℵ0-bd → Vλ+ω , and then we define

h : [λ]ℵ0-bd → λ by h(s) = g(s) if g(s) ∈ λ and h(s) = 0 otherwise. By the

Magidority of G there exists A ∈ G for which h′′[A]ℵ0-bd �= λ. Notice, however,

that A ⊆ h′′[A]ℵ0-bd since the identity is one of our Skolem functions.
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Let M ′ = g′′[A]ℵ0-bd, so M ′ ≺ N ≺ Vλ+ω and A ⊆ M ′. Let M be the

Mostowski collapse of M ′ and let j : M → M ′ be the inverse of the collapse. It

follows that j′′λ = M ′ ∩ λ ⊇ A and hence j′′λ ∈ G, so we are done. 2.3

We can state now our main result. The proof is modelled after Tryba, [11],

who showed that there are many Jónsson cardinals below the first cardinal

which carries a Jónsson filter. Our plan is to prove that there would be many

ω-Jónsson cardinals below the first cardinal which carries a Magidor filter, and

this is impossible under the axiom of choice.

However, one key-feature in the proof of Tryba fails when moving to Magido-

rity. The main idea of Tryba is to project a Jónsson filter with some function

g : λ → λ, and Jónssonicity is preserved under taking the preimage of any such

function. But the projection of a Magidor filter with a function that keeps its

uniformity need not be a Magidor filter. The subtle point is that ℵ0-bounded

subsets may transfer into unbounded subsets of size ℵ0. In order to cope with

this problem, we impose another requirement on the projecting function. It

turns out that we can define a suitable function which keeps Magidority.

Theorem 2.4 (The main theorem): Assuming the axiom of choice, there are

no Magidor filters.

Proof. Assume toward a contradiction that F is a Magidor filter over λ. We

may assume that F is an ultrafilter, as any ultrafilter extending F is a Magidor

filter as well. By virtue of Lemma 2.1, choose a regular θ < λ such that F is

not (ω, θ)-regular.

We shall prove that there is a function g : λ → λ such that |g−1({γ})| < θ for

every γ < λ (we say that g is almost one-to-one), g is monotonic and unbounded,

and g is <F -minimal with respect to these properties. We call g the projecting

function, and we shall use it in order to create a Magidor filter with a kind of

weak normality.

Assume, towards a contradiction, that no such g exists. We construct a

sequence of functions 〈fε : ε < θ〉, each of which is a function from λ into λ,

with the following properties:

(a) |f−1
ε ({γ})| < θ for any γ < λ and every ε < θ.

(b) fε is monotonic and unbounded in λ for every ε < θ.

(c) ε < ζ ⇒ fζ <F fε.

(d) ε < ζ ⇒ fζ ≤ fε.
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The construction starts from the identity function on λ as f0. Clearly, all

the requirements are satisfied. In the successor stage ε + 1 we employ the

assumption toward a contradiction, which means that fε does not satisfy the

above-mentioned properties in order to choose some h <F fε which is almost

one-to-one, monotonic and unbounded. We set fε+1 = min(h, fε). At limit

stages we let fε(α) = min{fβ(α) : β < ε} for every α < λ. Notice that

monotonicity is still preserved.

By (b), let Aε = {α < λ : fε+1(α) < fε(α)} for every ε < θ. The collection

A = {Aε : ε < θ} is a subcollection of F . Keep in mind that F is not (ω, θ)-

regular, and choose B ⊆ A, |B| = ℵ0 so that the intersection of the members

of B is not empty. By choosing any ordinal γ in this intersection, we have an

infinite decreasing sequence of ordinals (think of fε(γ) for each member of B),
a contradiction.

We use the function g in order to project the ultrafilter F and get a new filter

G over λ as follows:

G = {x ⊆ λ : g−1[x] ∈ F}.
The fact that G is an ultrafilter is immediate. The fact that |g−1({γ})| < θ for

every γ < λ ensures that G is uniform, as if |x| < λ then |g−1[x]| < |x| · θ < λ,

and hence g−1[x] /∈ F . It follows that G contains all the end-segments of λ.

We proceed to show that G is Magidor. Let δ < λ be large enough, and

assume f : [λ]ℵ0-bd → δ. We define another coloring h : [λ]ℵ0-bd → δ by

h(t) = f(g′′t). Choose an element y ∈ F so that h′′[y]ℵ0-bd �= δ. Let x = g′′y,
so y ⊆ g−1[x] and hence g−1[x] ∈ F and x ∈ G. Fix an ordinal γ ∈ δ−h′′[y]ℵ0-bd.

We claim that γ /∈ f ′′[x]ℵ0-bd, thus proving that G is a Magidor filter.

Toward a contradiction assume that γ=f(t) for some t={tn :n∈ω}∈ [x]ℵ0-bd.

For every n ∈ ω choose sn ∈ y such that g(sn) = tn. Notice that

s = {sn : n ∈ ω}
is bounded in λ, so s ∈ [y]ℵ0-bd. Indeed, t is bounded in λ so one can choose

an ordinal τ ∈ (sup(t), λ) ∩ x. Let σ = g−1(τ) < λ and observe that s ⊆ σ and

hence bounded in λ. However, h(s) = f(g′′s) = f(t) = γ, a contradiction.

The last property of G that we need is a very weak version of normality.

We shall prove the following general fact: if h : λ → λ is a monotonically

increasing and regressive function on a set x ∈ G, then |h−1({γ})| ≥ θ for some

γ < λ. Indeed, since h and g are monotonically increasing, h◦g is monotonically

increasing as well. Set y = g−1[x] ∈ F , and notice that β ∈ y ⇒ h(g(β)) < g(β)
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as g(β) ∈ x. Hence, h ◦ g <F g and by the choice of g there is an ordinal γ < λ

for which |(h ◦ g)−1({γ})| ≥ θ. However, (h ◦ g)−1({γ}) = g−1(h−1({γ})), so
h−1 must be of size at least θ for some ordinal since θ = cf(θ). It follows, in

particular, that g is not regressive on a set from G.

By Lemma 2.3 we choose an elementary embedding j : M → Vλ+ω such

that crit(j) < λ = j(λ) and j′′λ ∈ G. Let A ∈ G be the generating set of the

models M∗
n from the proof of Theorem 1.2. We may assume that A ⊆ j′′λ, by

intersecting A with j′′λ (recall that both sets are elements of G). We define a

function f : A → λ by f(α) = otp(A ∩ α). Observe that f is monotonically

increasing, unbounded in λ, one-to-one and regressive over the set

A′ = {α ∈ A : otp(A ∩ α) < α}.

Consequently, A′ /∈ G and hence A \A′ ∈ G.

Choose an ordinal α ∈ A \ A′ so that crit(j) < |α| ≤ α. Choose a large

enough n ∈ ω for which α < μn < λ. Let πn : M∗
n → Mn be the Mostowski

collapse, and let jn = π−1
n . Notice that crit(jn) ≤ crit(j) < |α| and jn(α) = α

as otp(A ∩ α) = α. It follows that jn(|α|) = |α| as well. A focal point here is

that jn(|α|Mn) = |α|V (by the fact that jn is increasing).

To sum up, we have an elementary embedding jn from a transitive set Mn

into Vγ such that crit(jn) < |α| and jn(|α|) = |α|. Since |α| < μn we may

assume that (Mn ∩ |α|)ℵ0 ⊆ Mn; see Remark 1.3. But this contradicts Claim

1.4, so we are done. 2.4

The above proof is illuminating in the following sense. Magidor cardinals

are strongly connected with rank-into-rank embeddings. In fact, I1 and I2 are

Magidor cardinals. These axioms are located on the verge of inconsistency. The

additional feature, of having a filter which keeps the Magidority, traverses the

border into inconsistency.

Actually, the existence of an ω-Jónsson cardinal is inconsistent with ZFC,

and by the above proof the existence of a Magidor filter is another step. It

yields an unbounded set which consists of ω-Jónsson cardinals. This fact gives

an insight into the profound difference between Jónsson cardinals and Magidor

cardinals. For Jónsson cardinals, the filterhood is a strengthening of the con-

sistency strength but it remains in the realm of consistency (every measurable

cardinal carries a Jónsson filter). For Magidor cardinals, the filterhood sends

us into inconsistency.
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There is another issue to be mentioned in this context. The results in this

paper are proved in the frame of ZFC.Without the axiom of choice, the existence

of a Magidor filter is possible. Indeed, under AD the measurable ultrafilter

over ℵ1 is a Magidor filter. We may conclude that Magidor filters can serve

as a natural large cardinals axiom above ω-Jónsson cardinals. We emphasize,

however, that the proof of the main theorem employs the axiom of choice, and

we do not know what is the relationship between Magidor cardinals and ω-

Jónsson cardinals without AC. Actually, it is not clear whether there exists a

Magidor filter over a singular cardinal under weak versions of choice or even in

ZF.

Anyhow, the ZFC proof casts Magidor filters as a germane step above ω-

Jónssonicity. Recall that every normal measure over a measurable cardinal

contains a measure-one set of Ramsey cardinals, some normal measure over a

supercompact cardinal contains a measure-one set of measurable cardinals, and

a Magidor filter (if such existed) would imply the existence of an unbounded

set of ω-Jónsson cardinals and a measure-one set of ordinals which satisfy the

defining property of ω-Jónssonicity.

The following figure demonstrates this idea:

J
Jónsson
Cardinals

F J ?

Jónsson
Filters

M
Magidor
Cardinals

��

Magidor
Filters ����

��
��
��
��
��
��

I1
Rank
into
Rank

������������ ω(J)

ω(J)

Omega
Jónsson
Cardinals

FM

Reinhardt
Cardinals

R

We display a fragment of the chart of large cardinals in two rows. The

second row begins with ω-Jónssonicity, known to be inconsistent with ZFC but

possible under ZF. The first row reaches up to the point of ZFC-inconsistency,

beginning with Jónsson cardinals. The consistency strength of Jónsson filters is

strictly above the consistency strength of Jónsson cardinals. For instance, in the

canonical model L[U ] of Kunen in [6], there is only one measurable cardinal, and

a measure-one set of Jónsson cardinals in the unique normal measure. However,

only the measurable cardinal carries a Jónsson filter in L[U ]. Actually, the

consistency strength of a Jónsson filter over a regular cardinal is measurability

(see [2]), so in L[U ] we have but one such cardinal.
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We do not know whether any Magidor cardinal carries a Jónsson filter. Of

course, natural Magidor cardinals which come from rank-into-rank embedding

are limits of measurable cardinals and hence carry a Jónsson filter. We suspect,

however, that the consistency strength of Magidority is above measurability

(see [4]). The axiom I1 is strictly stronger than Magidority (again, see [4]), but

we do not know if the first Magidor cardinal must be below I2.

The next stage, i.e., ω-Jónssonicity, is beyond consistency, assuming the ax-

iom of choice. The existence of Magidor filters is another step forward, as shown

in this paper. As noted above, Magidor filters may exist without the axiom of

choice, e.g., under AD. Reinhardt cardinals point to another open problem, and

it is opaque whether their existence can be refuted from the axioms of ZF alone.

We conclude with the following:

Question 2.5: Assume AD. Does there exist a cardinal λ > cf(λ) = ω which

carries a Magidor filter?
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