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Abstract We study classes of atomic models Aty of a countable, complete first-order
theory 7. We prove that if Aty is not pcl-small, i.e., there is an atomic model N that
realizes uncountably many types over pcly (a) for some finite a from N, then there
are 281 non-isomorphic atomic models of 7', each of size Nj.
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1 Introduction

In a series of papers [3-5], Baldwin and the authors have begun to develop a model
theory for complete sentences of L, ., that have fewer than 28! non-isomorphic
models of size 8. By well known reductions, see e.g., Sect. 6.1 of [1], one can replace
the reference to infinitary sentences by restricting to the class of atomic' models of a

LA model M is atomic if, for every finite tuple a from M, tpy,(a) is principal i.e., is uniquely
determined by a single formula ¢ (x) € tpy, (a).

M. C. Laskowski: Partially supported by NSF Grant DMS-1308546.
S. Shelah: Partially supported by European Research Council Grant 338821 and NSF Grant
DMS-1362974. Publication no. 1099.

B Michael C. Laskowski
mcl@math.umd.edu

Department of Mathematics, University of Maryland, College Park, USA
Hebrew University, Jerusalem, Israel

Rutgers University, New Brunswick, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00153-018-0623-6&domain=pdf
http://orcid.org/0000-0002-2516-6360

Sh:1099

100 M. C. Laskowski, S. Shelah

countable, complete first-order theory. Specifically, for every complete sentence @ of
L, . there is a complete first-order theory 7 in a countable vocabulary containing
the vocabulary of @ such that the models of ® are precisely the reducts of the class
Atr of atomic models of T to the smaller vocabulary.

The whole of this paper concerns complete theories 7 in a countable language
such that the class Aty of atomic models of T has at least one uncountable element.
By theorems of Vaught, these restrictions on 7 are well understood. A countable,
complete 7 has an atomic model if and only if every consistent formula can be extended
to a complete formula. Furthermore, any two countable, atomic models of T are
isomorphic, and a model is prime if and only if it is countable and atomic. Using
a well-known union of chains argument, 7" has an atomic model of size 8; if and
only if the countable atomic model is not minimal, i.e., it has a proper elementary
substructure.

To date, the analysis of uncountable atomic models in Aty has followed the first-
order setting. Recall that if 7' is a complete theory in a countable language that is not
Ro-stable, then there are 2% non-isomorphic models of size X1, see e.g., VIII Con-
clusion 1.7(2) of [8]. The proof of this splits into two cases. One first establishes the
result for unsuperstable theories, and then invokes a separate argument for theories
that are superstable, but not Rg-stable.

Superstability itself does not make a good dividing line for atomic models. This
can be seen by considering a two-sorted structure M = (U, V'), where U denotes an
infinite set with no structure, and V consists of a single copy of (Z, <). Even though
T = Th(M) is unstable, Aty is k-categorical for every infinite cardinal k — the point
being that the (Z, <) sort cannot be increased in any atomic model.

To adjust for this, in [3], Baldwin and the authors defined the notion of pseudo-
algebraicity, which was introduced in [3], that is the correct analog of algebraicity in
the context of atomic models. Suppose M is an atomic model, and b, a are from M.
Wessay b € pcly,(a) if b € N for every elementary submodel N < M that contains a.

By analogy to weak minimality, call a formula ¢ (x, a) is pseudo-minimal if it is not
pseudo-algebraic, yet pseudo-algebraic closure pcl,, satisfies the exchange axiom on
the set of solutions ¢ (M, a). [Weakly minimal formulas can be characterized as the
non-algebraic formulas for which the relation of algebraic closure satisfies exchange.]
In the first order context, if T is superstable, then every non-algebraic formula extends
to a weakly minimal formula. By analogy, in [3] we prove that if Aty is an atomic
class and there is some non-pseudo-algebraic formula that cannot be extended to a
pseudo-minimal formula, then there are 2% non-isomorphic atomic models of size 8.

This paper seeks an atomic model analogue of the superstable, non-Rg-stable many-
models result in first order. To begin, it is natural to restrict our attention to types that
can be realized in an atomic model. Suppose M is atomic and A € M. We let S;;(A)
denote the set of complete types p over A for which Ab is an atomic set for some
(equivalently, for every) realization b of p.Itis easily checked that when A is countable,
S41(A) is a G5 subset of the Stone space S(A), hence S,;(A) is Polish with respect to
the induced topology. By analogy with the first order case, we call an atomic class Aty
Ro-stableif S,; (M) is countable, where M denotes the unique countable model in At7.

The grail, which remains open, would be to prove that non-8g-stability of an atomic
class Aty implies many atomic models in 8. Here, we content ourselves with some-
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what less. We repeatedly use the fact that any countable, atomic set A is contained
in a countable, atomic model M. However, unlike the first-order case, some types in
Sa: (A) need not extend to types in S;, (M). Indeed, there are examples where the space
S4¢ (A) is uncountable (hence contains a perfect set) while S,; (M) is countable. Thus,
for analyzing types over countable, atomic sets A € M, we are led to consider

SH(A, M) :={plA: p € Su(M)}.

Equivalently, S;';(A, M) is the set of ¢ € S,,(A) that can be extended to a type
q* € Sar(M).

We repeatedly use the following observations. Supposea € M < M'and f : M —
M’ is an isomorphism fixing a pointwise. Then pcly, (@) = pcly, (a). Moreover, f
induces an elementary permutation of D = pcl;,(a), which in turn induces a bijection
between the spaces of types S;', (D, M) and S, (D, M").

We now give the major new definition of this paper.

Definition 1.1 An atomic class Aty with an uncountable model is pcl-small if, for
every atomic model N and for every finite a from N, N realizes only countably many
complete types over pcly (a).

The name of this notion is by analogy with the first-order case — A complete, first-
order theory T is small if and only if for every model N and every finite a from N,
N realizes only countably many complete types over a. The following proposition
relates pcl-smallness with the spaces of types S, 7 (D, M).

Proposition 1.2 The atomic class Aty is pcl-small if and only if the space of types
St (pclys(a), M) is countable for every countable, atomic model M and every finite
a from M.

Proof First, assume that some atomic model N and finite sequence a from N witness
that Aty is not pcl-small. Choose {c; : i € w1} C N realizing distinct complete types
over D = pcly (a). Also, choose a countable M < N that contains a, and hence D.
Then {tp(c;/D) : i € w1} witness that S;;(D, M) is uncountable.

For the converse, choose a countable, atomic model M and a from M such that
S (D, M) is uncountable, where D = pcl u(@). We will inductively construct a con-
tinuous, increasing elementary chain (M, : @ < w1) of countable, atomic models with
M = My and, for each ordinal «, there is an element ¢, € M1 such that tp(cy /D)
is not realized in M, . Given such a sequence, it is evident that N = | J,, _,,, Mo and
a witness that Aty is not pcl-small. To construct such a sequence, we have defined
My to be M and take unions at limit ordinals. For the successor step, assume M
has been defined. As M and M, are each countable atomic models that contain a,
choose an isomorphism f : M — M, fixing a pointwise. As noted above, f fixes
D setwise. As M, is countable, so is the set {tp(c/D) : ¢ € My}. As S;(D, M) is
uncountable, choose an atomic type p € S;;(M), whose restriction to D is distinct
from {f‘l(tp(c/D)) : ¢ € My}. Now choose ¢, to realize f(p). Then, as Mycy
is a countable atomic set, choose a countable elementary extension My > M,
containing c. O
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Recall that an atomic class Aty is Ro-stable? if S,; (M) is countable for all (equiv-
alently, for some) countable atomic models M. As S;; (A, M) is a set of projections
of types in S,; (M), it will be countable whenever S,; (M) is. This observation makes
the following corollary to Proposition 1.2 immediate:

Corollary 1.3 If an atomic class Aty is Ro-stable, then At is pcl-small.

The converse to Corollary 1.3 fails. For example, the theory T = RE F (bin) of
countably many, binary splitting equivalence relations is not 8g-stable, yet pcl,, (a) =
a for every model M and a from M. Thus, S, (pcl;,(a)) and hence S;; (pcl(a), M) is
countable for every finite tuple a inside any atomic model M. The main theorem of
this paper is:

Theorem 1.4 Let T be a countable, complete theory T with an uncountable atomic
model. If the atomic class Aty is not pcl-small, then there are 2™ non-isomorphic
models in Atr, each of size N1.

Section 2 sets the stage for the proof. It describes the spaces of types Saﬁ (A, M),
states a transfer theorem for sentences of L, ,»(Q), and details a non-structural con-
figuration arising from non-pcl-smallness. In Sect. 3, the non-structural configuration
is exploited to give a family of 2% non-isomorphic structures (N, b*), where each of
the reducts N is in At7 and has size ®. Theorem 1.4 is finally proved in Sect. 4. It is
remarkable that whereas it is a ZFC theorem, the proof is non-uniform depending on
the relative sizes of the cardinals 280 and 2%

2 Preliminaries

In this section, we develop some general tools that will be used in the proof of Theo-
rem 1.4.

2.10n S} (A, M)
In this subsection we explore the space of types
Si(A, M) ={p|lA: p € Su(M)}

where A is a subset of a countable, atomic model M.

Fix a countable, atomic model M and an arbitrary subset A C M. Let P denote the
space of complete types in one free variable over finite subsets of M. As M is atomic,
P can be identified with the set of complete formulas ¢(x, m) over M. Implication
gives a natural partial order on P, namely p < ¢ if and only if dom(p) € dom(qg)
and g - p. One should think of elements of P as ‘finite approximations’ of types in
S(;(A, M). We describe two conditions on p € P that identify extreme behaviors in
this regard.

2 Sadly, this usage of ‘Ng-stability’ is analogous, but distinct from, the familiar first-order notion.
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Definition 2.1 We say a type p* € S, (A, M) lies above p € P if there is some
P € Sq: (M) extending p U p*. Asevery p € P extends to a type in S;; (M), it follows
that at least one p* € Sa"; (A, M) lies above p.

e Anelement p € P determines a type in S;r, (A, M) if exactly one p* € Sjt (A, M)
lies above p.

e Anelement p € P is A-large if {p* € S,(A, M) : p* lies above p} is uncount-
able.

To understand these extreme behaviors, we define a rank function tky : P —
(w1 + 1) as follows:

o tka(p) >O0forall p € P;
e For @ < wy, tka(p) > « if and only if for every B < « and for all finite F,
dom(p) € F C M, thereis g € S;:(F) with g > p that 8-A splits, where:
— A type g € Su:(F) A-splits if, for some ¢(x,a) with a from A, there are
q1,q2 > q withq U p(x,a) € g1 and g U —p(x,a) € q2; and g € Sg (F)
B-A splits if, in addition, rk 4 (q1), k4 (g2) > B.
e Fora < wy, wesayrtka(p) = aiftka(p) > a,butrks(p) # o + 1.

Proposition 2.2 If p € P andrks(p) = a < wy, then some r > p determines a type
in S;H(A, M).

Proof We prove this by induction on . We begin with « = 0. Suppose tk4(p) = 0.
Astk4(p) # 1, thereisafinite F,dom(p) C F € M for whichthereisnog € Sy;(F)
and ¢(x, a) with a from A for which ¢ > p and both ¢ U{p(x, @)} and ¢ U{—¢(x, a)}
are consistent. So fix any r € S, (F) with r > p. Any such r determines a type in
SE(A, M).

Next, choose 0 < o < w; and assume the Proposition holds for all 8 < «. Choose
p € Sut(E) with tkg(p) = a. Astka(p) > «, while tk4(p) # o + 1, there is a
finite F', E € F C M for which there is no g € S,;(F') that both extends p and «-A
splits. So choose any g € Sy (F) with ¢ > p. If ¢ determines a type in S, (A, M),
then we finish, so assume otherwise. Thus, there is some ¢(x, @) with a from A such
that both ¢ U {¢(x, a)} and ¢ U {—¢(x, a)} are consistent. Choose complete types
q1, q2 € Sq:(Fa) extending these partial types. Clearly, both g1, g2 > ¢, but since ¢
does not «-A split, at least one of them has rk4(g¢) < «. But then by our inductive
hypothesis, there is r > g that determines a type in S, (A, M) and we finish. O

Next, we turn our attention to A-large types and types of rank at least w; and see
that these coincide. We begin with two lemmas, the first involving types of rank at
least w1 and the second involving A-large types.

Lemma 2.3 Assume that E C M is finite and p € S4;:(E) has tko(p) > wy. Then:

1. Forevery finite F, E C F C M, thereis q € S4;(F), g > p, withtks(q) > w1;
and

2. There is some formula ¢ (x, a) with a from A and q1, g2 € P with pU{p(x,a)} C
g1, pU{—e(x, @)} € g2, and both ka(q1), kA (q2) = @1.
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Proof (1) Fix a finite F satisfying E C F C M. Astk4(p) > w1, for every B < w;
there is some ¢ > p with g € S, (F) for which certain extensions of g have rank
at least B. It follows that rk4(¢g) > B for any such witness. However, as S,;(F) is
countable, there is some g € S,;(F) which serves as a witness for uncountably many
B. Thus, rk 4 (¢) > w; for any such g > p.

(2) Assume that there were no such formula ¢ (x, a). Then, for any formula ¢ (x, a),
since P is countable, there would be an ordinal 8* < w; such that either every g € P
extending p U {¢(x, a)}, tka(q) < B* or every g € P extending p U {—¢(x, a)} has
rka(g) < B*. Continuing, as there are only countably many formulas ¢(x, a), there
would be an ordinal 8** < w; that works for all formulas ¢(x, a). Restating this, p
does not B**-A split, so no extension of p could 8**-A split either. This contradicts
tka(p) = B + 1. o

Lemma 2.4 Suppose q € S (F) is A-large. Then:

1. For every finite F', F C F' C M, there is some A-large r € Sy(F') withr > q;
and

2. For some ¢(x,a) with parameters from A, there are A-large extensions ri 2
g U{p(x,a)} andry 2 q U {—¢(x,a)}.

Proof Fixsuchag andletS = {p* € S (A, M) : p* lies above ¢}. (1) is immediate,
since S is uncountable, while S,;; (F’) is countable.

For (2), first note that if there is no such ¢(x, ), then there is at most one p* € S
with the property that:

For any formula ¢(x, a) with parameters from A, ¢(x,a) € p* if and only if
there is an A-large r € S, (Fa) extending g U {¢(x, a)}.

It follows that for any ¢* € S —{p*}, ¢* lies over some r > ¢ that is not A-large. That
is, using the fact that there are only countably many r > g, S — {p*} is contained in
the union of countably many countable sets. But this contradicts g being A-large. O

Proposition 2.5 For p € P, tks(p) > w; if and only if p is A-large.

Proof First, assume that rk 4 (p) > w;. Fix an enumeration {c, : n € w} of M. Using
Clauses (1) and (2) of Lemma 2.3, we inductively construct a tree {p, : v € 2<%} of
elements of P satisfying:

1. tkg(py) = w; forall v € 2=%;

Iflg(v) = n, then {¢; : i < n} € dom(p,);

Py =p;

Forv d u, py < pu;

For each v there is a formula ¢(x, a) with a from A such that ¢(x, a) € p,o and
—@(x,a) € pyi.

ke

Given such a tree, for each n € 2¢, let p; := U{p,”,, :n € w} and let pj; = pylA.
By Clauses (2) and (4), each p;, € S,/ (M), so each p; € Sjt (A, M). By Clause (5),
Py # p;, for distinct 7, n’ € 2%. Finally, each of these types lies over p by Clause (3).
Thus, p is A-large.

Conversely, we argue by induction on & < w that:
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(*%)g : If p € Pis A-large, thentk4(p) > «.

Establishing (x)g is trivial, and for limit &« < w1, it is easy to establish (x), given
that (x)g holds for all B < o. So assume (%), holds and we will establish (*)g41.
Choose any A-large p € P. Towards showing rka(p) > o + 1, choose any finite F,
dom(p) € F € M. As S, (F) is countable and uncountably many types in Sj, (A, M)
lie above p, there is some A-large g € S, (F) withg > p.

Next, by Lemma 2.4 choose a formula ¢(x, a) with a from A such that there are
A-large extensions r; 2 g U {¢(x,a)} and r, 2 q U {—¢(x, a)}. Applying (*), to
both 1, rp gives rk4 (71), tka (r2) > «. Thus, g «-A splits. Thus, by definition of the
rank, rk4 (p) > o + 1. O

We obtain the following Corollary, which is analogous to the statement ‘If T is
small, then the isolated types are dense’ from the first-order context.

Corollary 2.6 If S (A, M) is countable, then every p € P has an extension q¢ > p
that determines a type in S;; (A, M).

Proof 1f S; (A, M) is countable, then no p € P is A-large. Thus, every p € P has
rka(p) < w1 by Proposition 2.5, so has an extension determining a type in S, (A, M)
by Proposition 2.2. O

We close with a complementary result about extensions of A-large types.

Definition 2.7 A type r € S;: (M) is A-perfect if r[ 4 is omitted in M and for every
finite m from M, the restriction r [ is A-large.

The name perfect is chosen because, relative to the usual topology on S, (M),
there are a perfect set of A-perfect types extending any A-large p € P. However, for
what follows, all we need to establish is that there are uncountably many, which is
notationally simpler to prove.

Proposition 2.8 Suppose p € P is A-large. Then there are uncountably many A-
perfectr € Sy (M) extending p.

Proof Fix an A-large p € P. Choose a set R C S,,(M) of representatives for {p* €
ST (A, M) : p*lies above p}, i.e., for every such p*, there is exactly one p € R whose
restriction p[4 = p*. As p is A-large, R is uncountable. Now, for each finite 2 from
M, there are only countably many complete g € S,;(m), and if some g € S, () is
A-small, then only countably many p € R extend g. As M is countable, there are
only countably many 72, hence all but countably many p € R satisfy plmm A-large
for every m. Further, again since M is countable, at most countably many p € R
have restrictions to A that are realized in M. Thus, all but countably many p € R are
A-perfect. O

2.2 A transfer result

In this brief subsection we state a transfer result that follows immediately by Keisler’s
completeness theorem for the logic L, ,(Q), given in [7]. Recall that L, ,(Q) is
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the logic obtained by taking the (usual) set of atomic L formulas and closing under
boolean combinations, existential quantification, the ‘Q-quantifier,” i.e., if 6(y, X) is
a formula, then so is Qy6(y, x); and countable conjunctions of formulas involving
a finite set of free variables, i.e., if {;(X) : i € w} is a set of formulas, then so is
Nico Vi (X). We are only interested in standard interpretations of these formulas, i.e.,
M = N, Vi(a) if and only if M = ;(a) for every i € w;and M = Qy0(y, a) if
and only if the solution set (M, a) is uncountable.

Throughout the discussion let Z F C* denote a sufficiently large, finite subset of the
ZFC axioms. In the notation of [10], Proposition 2.9 states that sentences of L, ,,(Q)
are grounded.

Proposition 2.9 There is a sufficiently large, finite subset ZFC* of ZF C such that
whenever a countable language L and a sentence ® € L, ,(Q) are given, IF there
is a countable, transitive model (B, €) = ZFC* with L, ® € B and

(B,€e) = ‘Thereis M = ® and |[M| = Ry’

THEN (in V!) there is N |= ® and |[N| = ).

Proof This follows immediately from Keiser’s completeness theorem for L, ., given
that provability is absolute between transitive models of set theory. More modern,
‘constructive’ proofs can be found in [2] and [3]. These use the existence B-normal
ultrafilters. Given an arbitrary language L* € B and any countable L*-structure
(B, E, ...) where the reduct (B, E) is an w-model of ZF C*, for any 3-normal ultra-
filter U, the ultrapower Ult (3, U) is a countable w-model that is an L*-elementary
extension of (B, E, ...).Ithas the additional property that for any L*-definable subset
D, DV BU properly extends DB if and only if (B, E, ...) = D is uncountable’.
Using this, one constructs (in V'!) a continuous, L*-elementary w-sequence (B3, :
a < wy) of w-models, where each B, = Ult(By, Uy). Then the interpretation M ¢
where C = (e, Bo Will be a suitable choice of N. More details of this construction
are given in [2] or [3]. O

2.3 A configuration arising from non-pcl-smallness

The goal of this subsection is to prove the following Proposition, the data from which
will be used throughout Sect. 3.

Proposition 2.10 Assume T is a countable, complete theory for which Atr has an
uncountable atomic model, but is not pcl-small. Then there are a countable, atomic
M* € Atr, finite sequences a* C b* € M*, and complete I-types {r;(x, b*):j € w)
such that, letting D* = pcly(a*), A, = J{rj(M*,b*) : j < n}and A* = J{A, :
n € w} we have:

1. A* € D*;
2. SH(An, M*) is countable for every n € w; but
3. ST(A*, M*) is uncountable.
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Proof Fix any countable, atomic M* € Aty. Using Proposition 1.2 and the non-pcl-
smallness of At7, choose a finite tuple a* € M* such that S;; (D*, M*)isuncountable,
where D* = pcly«(a*) S M*.

Fix any finite tuple » 2 a* from M* and look at the complete 1-types Qj:={re
S, (b) such that r(M*) C D*}. These types visibly induce a partition of D*, and it is
easily seen that if &’ D b, the partition induced by &’ refines the partition induced by
b.Let Q := U(Q; :a* < b < M*).

Define a rank function tk : @ — ON U {o0o} as follows:

tk(c/b) > 0 if and only if tp(c/b) € Q;

— tk(c/b) > 1 if and only if tp(c/b) € Q and there are infinitely many ¢’ € D*
realizing tp(c/b); and

for an ordinal o > 2, rk(c/ b) > « if and only if for every 8 < o and every b
from M*, there is ¢/ € D* realizing tp(c/b) such that rk(c’/bb’) > B.

tk(c/b) = « if and only if tk(c/b) > a butrk(c/b) # o + 1.

Claim 1. For every r € Q, rk(r) is a countable ordinal.

Proof Assume by way of contradiction that rk (¢ /b) > w, for some type ¢/b. Then, for
any b’ from M, as D* is countable, there is an element ¢’ € D* such thatrk(c’/bb’) > B
for uncountably many B’s, hence rk(c’ /1315’ ) > w as well. Using this idea, if we let
(b, : n € w) be an increasing sequence of finite sequences from M* whose union
is all of M*, then we can find a sequence (¢, : n € w) of elements from D* such
that, for each n, rk(cn/l;,,) > wp and tp(cn/l;,,) C tp(cn+1/l;n+1). The union of these
1-types yields a complete, atomic 1-type g € S,;(M*) all of whose realizations are in
pclys«(@). However, since the type asserting that ‘x = ¢’ has rank O for each ¢ € D*, ¢
is omitted in M*. To obtain a contradiction, choose a realization e of ¢ and, as M*e is
a countable, atomic set, construct a countable, atomic elementary extension M" > M*
with e € M'. But now, ¢ implies that e € pcl,, (a), yet this is contradicted by the fact
that M™* contains a but not e. O

As notation, for a subset S € Q;,let Ag = J{r(M*) : r € S}, which is always a
subset of D*. Define the set of ‘candidates’ as

C={(S,b):b2a* S Q; and SJ;(As, M*) uncountable}
Note that C is non-empty as (Sp,a*) € C, where Sy is an enumeration of_all the
complete, pseudo-algebraic types over a*. Among all candidates, choose (S*, b*) € C
such that
a* :=sup{rk(r) +1:r € §*)
is as small as possible. Enumerate S* = {r; : j € w} and put A* := Ag+ and

Ay = U{rj(M*, b*) : j < n} foreachn € w. As Clauses (1) and (3) are immediate,
it suffices to prove the following Claim:
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Claim 2. For each n € w, S;,(An, M*™) is countable.

Proof Fix any n € w. First, note that if rk(r;) = O for every j < n, then A, would
be finite, which would imply S,;(A,) is countable. As S,;(A;) contains S;(An, M),
the result follows.

Now assume rk(r;) > O for at least one j < n. Let 8 := max{rk(r;) : j < n}
and let F = {j < n :rk(rj) = B}. Clearly, f < a*. Foreach j € F,as 8 > 0 but
rk(rj) # B+ 1, there is a finite tuple b such that rk(c/b*b ) < pforallc € rj(M*).

Let b be the concatenation of b* w1th each b for j € F and let

S :={r' € Qj : r' extends some r; with j < n}

Subclaim. rk(r') < B forevery r’ € S'.

Proof Fix r' € " and choose ¢ € r'(M*, b). There are two cases. On one hand, if 7/
extends some r; with j € F, thenrk(c/b") < rk(c/b*b) < B. On the other hand, if
r" extends some r; with r; ¢ F, then as tk(r;) < B, rk(c/b") < rk(c/b*) < B. O

Clearly Ag = A,, 50 S} (A,, M*) = S} (As, M*). Thus, if S}, (A,, M*) were
uncountable, then (S’, % ) would be a candidate, i.e., an element of C. But, as 8 < a*,
this is impossible by the Subclaim and the minimality of o*. O

3 A family of 280 atomic models of size 8¢

Throughout the whole of this section, we assume that 7 is a complete theory in a
countable language for which Aty has an uncountable atomic model, but is not pcl-
small. Appealing to Proposition 2.10,

Fix, for the whole of this section, a countable atomic model M*, tuples
a* C b* € M* and sets A* and A, for each n € w as in Proposition 2.10.

We work with this fixed configuration for the whole of this section and, in Sect. 3.3
eventually prove:

Proposition 3.1 There is a family {(N, b*) 1 n € 2%} of atomic models of T, each of
size Ny, that are pairwise non-isomorphic over b*.

3.1 Colorings of models realizing many types over A*

Definition 3.2 Call a structure (V, 15*) richif N € Aty has size R;, M* < N,and N
realizes uncountably many 1-types over A*.

Lemma 3.3 For each n € w, a rich (N, b*) realizes only countably many distinct
1-types over A,.

Proof Fix any (N,b*) and n < w as above. If {¢; : i € w;} realize distinct types
over A,, then the types {tpy(ci/M*) : i € w;} would be distinct, contradicting
S;'t (A, M*) countable. O
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How can we tell whether rich structures are non-isomorphic? We introduce the
notion of ¢/-colorings and Corollary 3.6 gives a sufficient condition.

Definition 3.4 Fix a subset Y/ € w and arich (N, b*).

e Forelements d, d’ € N, define the splitting number spl(d, d’") € (w+ 1) to be the
least k < w such that tp(d/Ax) # tp(d’/Ay) if such exists; and spl(d, d') = w if
(p(d/A%) = tp(d'/ A*).

e A U-coloring of a rich (N, b*) is a function

c:N—>w

such that for all pairs d, d’ € N, at least one of the following hold:
1. tp(d/A*) = tp(d'/A*); or
2. ¢(d) # c(d); or
3. spl(d,d") e U.
e The color filter F(N, b*) := {U C w : alU-coloring of (N, b*) exists}.

Lemma 3.5 Fix a rich (N, b*). Then:

1. F(N, IE*) is a filter;
2. F(N, b*) contains the cofinite subsets of w; but
3. No finite U C w is in F(N, b*).

Proof (1) First, note that if Y € U’ C w, then every U-coloring ¢ is also a U’-
coloring. Thus, F(N, b*) is upward closed. Next, suppose U; € F(N, b*) via the
coloring ¢c; : N — w and U € F(N, l;*) via the coloring ¢» : N — . Fix
any bijection t : w X w — w. It is easily checked that ¢* : N — w defined by
c*(d) = t(c1(d), c2(d)) is aldy NUs-coloring of (N, b*). Thus, U NUy € F(N, b*).
So F(N, b*) is a filter.

(2) As F(N, b*) is a filter, it suffices to show that for every n € w, B, € F(N, b*),
where B, = (w — {0, ..., n — 1}). Fix such an n. By Lemma 3.3, N realizes at most
countably many types over A,. Thus, we can produce a map ¢ : N — o such that
c(d) = c(d’) if and only if tp(d/A,) = tp(d'/A,). As any such ¢ is a B,-coloring,
B, € F(N, b*).

(3) It suffices to show thatnon = {0,...,n — 1} isin F(N, l;*). To see this, let
¢ : N — wbe an arbitrary map. We will show that c isnot an {0, ..., n — 1}-coloring.
As N realizes N distinct types over A*, there is some m™ € w and an uncountable
subset {dy : @ < w1} € N that realize distinct types over A*, yet c¢(dy) = m* for
each «. However, as N realizes only countably many types over A,, there are o # S
such that n < spl(dy, dg) < w. Thus, cisnotan {0, ...,n — 1}-coloring. O

We close with a sufficient condition for non-isomorphism of rich models.

Corollary 3.6 Suppose that for £ = 1,2, (Ng, b*) is a Up-colored rich model, and
Uy N U, is finite. Then there is no isomorphism f : N1 — Ny fixing b* pointwise.

Proof If there were such an isomorphism, tl_len (N3, l;*) would be both /] -colored
and Up-colored. Thus, both U, Uy € F(N,, b*), which contradicts Lemma 3.5. O
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3.2 Constructing a colored rich model via forcing

Arguing as in the proof of Proposition 1.2, from the data of Proposition 2.10 we can
construct a rich (N, b*) as the union of a continuous, elementary chain (My : o € w1)
of countable, atomic models with My = M™* such that, for each o« € w; there is a
distinguished b, € My such that tp(b, /A*) is omitted in M,,.

Our goal is to construct a sufficiently generic rich (N, b*), along with a coloring
¢ : N — (w+ 1) via forcing. Our forcing (Q, <@) encodes finite approximations of
such an (N, b*) and c. A fundamental building block is the notion of a striated type
over a finite subset @ satisfying b* € @ € M*. As an atomic type over a finite subset
is generated by a complete formula, we use the terms interchangeably.

Definition 3.7 Choose a finite tuple a with b* C a C M*. A striated type over a is a
complete formula 6 (x) € Sy, (a) whose variables are partitioned as X = (x; : j < £)
where, for each j, xX; = (x;, : n < n(j)) is an n(j)-tuple of variable symbols such
that 0 (x) implies tp(xjo/a U {x; : i < j}) is A*-large. The integer £ is the length of
the striated type.

A simple realization of a striated type 6 (x) of length £ is asequence b = (b jij<?)
of tuples from M* such that M* |= 6(b). A perfect chain realization of 6(X) is a pair
(M, b), consisting of a chain My < Mj < My_; < M* of £ elementary submodels of
M* and a simple realization b = (b j o j <€) from M* that satisfy: For each j < £,

I.aU{b;:i < j} S Mj;and
2. tp(bj,0/M;) is A*-perfect (see Definition 2.7).

Lemma 3.8 Every striated type 0(X) € Sy (a) has a perfect chain realization.

Proof We argue by induction on £, the length of the striation. For striations of length
zero there is nothing to prove, so assume the Lemma holds for striated types of length
£ and choose an (£ + 1)-striation 6(Xx) € Sy, (a). Let 6 [; be the truncation of 6 to the
variables X[, = (X : j < £). As €[, is clearly an £-striation, it has a perfect chain
realization, i.e., a chain My < M| < My_; < M* and a tuple b= (Ej 1 j < £) from
M* realizing 0]y such thata U {b; : i < j} C M; and tp(bj o/M;) is A*-perfect for
each j < £.

Now, since tp(x¢,o/ab) is A*-large, by applying Proposition 2.8 there is an A*-
perfect type p € Sq; (M*) (in a single variable x¢ o) extending tp(x¢.o/ab). Choose a
countable, atomic N = M* and e € N realizing p. As N and M* are both countable
and atomic, choose an isomorphism f : N — M* that fixes ab pointwise. Then
f(Mp) < f(My) <X ... f(My—1) < f(M*) < M* is a chain. Let by o := f(e) and
choose (by 1 ..., be neey—1) arbitrarily from M* so that, letting by = (l;g,n n<n()),
b —~ by realizes 0(x). This chain and this sequence form a perfect chain realization
of 6. O

The following Lemma is immediate, and indicates the advantage of working with
A*-perfect types.

Lemma 3.9 Let (M, b) be any perfect chain realization of a striated type 6(X) €
Sat(c_l)_.T}_zenfor every ¢ € My, tp(b/ac) € Sy:(ac) is a striated type extending 0 (X),
and (M, b) is a perfect chain realization of it.
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The Lemma below, whose proof simply amounts to unpacking definitions, demon-
strate that striated types are rather malleable.

Lemma 3.10 1. Iftp(¢/a) is a striated type of length k and tp(d/ac) is a striated
type of length £, then tp(cd /a) is a striated type of length k + £.

2. Suppose tp(b/a) is a striated type of length € and k < L. Let bk and b>k be
the induced partition of b. Then tp(b-y/a) is a striated type of length € and
tp(b>k/ab<k) is a striated type of length (£ — k). Moreover, if (M, b) is a perfect
chain realization of tp(b/a) then (M -, by) is a perfect chain realization of
tp(b<k/a) and (Mzk, bzk) is a perfect chain realization oftp(bzk/ab<k).

We begin by defining a partial order (Qo, <q,) of ‘preconditions’. Then our forcing
(Q, <@) will be a dense suborder of these preconditions.

Definition 3.11 Qo is the set of all p = (ay, up, p, Op(Xp), kp, Up, cp), Where

. ap is a finite subset of M* containing b*;

. up is a finite subset of wy;

np = (n; : t € up) is a sequence of positive integers;

Xp = (Xr,p : t € up), where each X, p = (x;, : n < i) is a finite sequence from

the set X = {x;, : t € w1, n € w} of variable symbols;

. Op(Xp) € Sur(ap) is a striated type of length |up| (see Definition 3.7);

kp € w;

Uy CShp=1{0,... kp—1};

¢p : Xp — wis afunction such that for all pairs x; , x;,» from X with cp(x;,,) =

cp(Xs,m)

(a) either spl(b; ., by ) > kyp for all perfect chain realizations (M, b) of Op(Xp);

(b) or there is some k € Up such that spl(b; ,, bsn) = k for all perfect chain
realizations (M, b) of Op(Xp).

B

®© NN W

We order elements of Qqp by: p <g, q if and only if

ap Cag;

up C ug and n; p < n; g forall ¢ € up, hence X;  is a subsequence of x; g;
0q(xq) - Op(xp);

kp < kq;

Up = Uq N kp (hence, for j < kp, j € Up if and only if j € Uy);

cp = Cqlx,

Visibly, (Qo, <q,) is a partial order. As notation, for p € Qp and x;, € Xp,
let p(x;n) € Sa(ap) be tple; ,/ap) for any realization ep in M* of 6(xp). Call a
precondition p € Qo unarily decided if, for every x; , € Xp, p(x; ) determines a type
in S, ,(A kps M *) (see Definition 2.1). That the unarily decided preconditions are dense
follows easily from the fact that S;t (Akp, M*) is countable.

Lemma 3.12 Theset {p € Qo : pisunarily decided} is dense in (Qo, <q,). Moreover,
given any p € Qo, there is a unarily decided q >q, p with Xq = Xp and kq = kp
(hence Ug = Up).
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Proof Fixp € Qg andletk := k. Arguing by induction on the size of the finite set X,
itis enough to strengthen p(x; ,) individually for each x; , € Xp. So fix x; , € Xp. By
Corollary 2.6 there is ana’ 2 ap and a 1-type 1 (x;,,) € Sy (a’) extending p(x; ,) that
determines a type in S} (Ak,» M*). Then, using Lemma 3.9 we can choose a striated
type 0'(xp) € Sas(a’) extending Op(xp) U g1.

We iterate the above procedure for each of the (finitely many) elements of xp,
thereby getting a unarily decided precondition p’ >q, p whose type 6y (xp) still has
the same free variables, and each of kp, U, cp are unchanged. O

Next, call a precondition p € Qg fully decided if it is unarily decided and for each
pair x; ,, Xy, from X, with cp(x;,) = cp(xy,m), if spl(by u, bs ) > kp for some
perfect chain realization (M, l;), then tp(b; n/A*) = tp(bs m/A*) for all perfect chain
realizations (M, b) of 6 (Xp).

Lemma 3.13 The set {p € Qo : p is fully decided} is dense in (Qo, <q,). Moreover,
given any p € Qo, there is a fully decided q >q, p with Xq = Xp.

Proof It suffices to handle each pair x; ,, x;,,» from X, with c(x; ,) = c(x5,m) sep-
arately. Given such a pair, suppose there is some perfect chain realization (M, b)
of 0(xp) € Sur(@p) with kp < spl(dy n, bs,;m) < ®. Among all such perfect chain
realizations, choose one that minimizes k* = spl(b; , bsm). Choose a formula
¢(x,c) with ¢ from A4 witnessing that tp(b; ,/Aki+1) 7# tp(bs.m/Aks+1). As
Ap41 € My, by applying Lemma 3.9, let 6*(x}) be a complete formula over apc
isolating tp(b/apc). Form the precondition p’ € Qg by putting 8y = ayc; Oy = 6*;
ky = k* +1; and Uy = Uy U {k*}; while leaving X}, and cp unchanged. It is evi-
dent that spl(b; ,, b; ,,) = k* € Uy for all perfect chain realizations (M, b') of Op.

tno
Continuing this process for each of the (finitely many) relevant pairs gives us a fully
decided extension of p. O

Definition 3.14 The forcing (Q, <) is the set of fully decided p € Qg with the
inherited order.

Lemma 3.15 The forcing (Q, <) has the countable chain condition (c.c.c.).

Proof Suppose {p; : i € w1} is anuncountable subset of Q. In light of Lemma 3.13, it
suffices to find i # j for which there is some precondition q € Qg satisfyingp; <g, q
and p; <q, q. First, by the A-system lemma applied to the finite sets {up, }, we may
assume that |up,| is constant and there is some fixed u* that is an initial segment of
each up, and, moreover, whenever i < j, every element of (up, \ ™) is less than every
element of (up; \ u*). By further trimming, but preserving uncountability, we may
assume that the integer kp, the subset U, C kp, and the parameter ap remain constant.
As notation, fori < j, let f : up, — up; be the unique order-preserving bijection.
We may additionally assume that np, (t) = np, (f (7)), hence f has a natural extension
(also called f): Xp, — Xp; given by f(xtn) = xf(),n. With this identification, we
may assume 6y, (Xp,) = 9pj (f(Xp;)). As well, we may also assume tp(x; ,/ Akp) =
tp(xf(t),,,/Akp) for every x;,, € Xp;. As well, the colorings match up as well, i.e.,
c(Xtn) = Xf@)n-
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Now fixi < j.Define q by kg := kp;Uq := Up; and ay := a;, (the common values).
Let ug := up, Uup,;, and, for t € up,, n;q = n;p, while n; g = Nip; fort € Up;.
To produce the striated type 0q € S (aq), first choose a perfect chain realization
(M b) of Op, (Xp,). Say |up;| = £ = |up |, while |u*| = k < £. By Lemma 3.10(2),
tp(bi/ ap) is a striated type of length k and (Msp, b=y)isa perfect chain realization
of the striated type | tp(b=r /apb<k) of length (¢ — k). Choose d from My such that
tp(d/apb<k) = tp(b>k/apb<k) Then by Lemma 3.9 (with My playing the role of My
there), (M >ks b>k) is a perfect chain realization of the striated type tp(b>k / apb<kd)
So, by Lemma 3.10(1), tp(db>k/apb<k) is a striated type of length 2(¢ — k). Thus, a
second application of Lemma 3.10(1) implies that tp(b<kdb>k /ap) is a striated type
of length 2¢ — k. Let 6 be a complete formula over ap generating this type.

In order to show that q is a precondition (i.e., an element of (Qp) only Clause (8)
requires an argument. Fix any x; ,, X5,» in Xq with cq(x;n) = cq(xs,m). As both
pi, P; € Qo, the verification is immediate if {z, s} is a subset of either up, or Up;, SO
assume otherwise. By symmetry, assume 7 € up, — u* and s € up, — u*. The point
is that by our trimming, X r(;),, € ij, Cp; (X f(t),n) = cp; (x,n), and tp(x,,n/Akp) =
tp(X f(1).n/ Ak, )- There are now two cases: First, if tp(x £(r),n/A*) = tp(xy m/A*), then
it follows that tp(x; , / Akp) = tp(Xs.m/ Akp), hence spl(e;,,,, e5,m) > kp for any perfect
chain realization (N, &) of 4. On the other hand, if 6, i ‘says’ spl(X r(1),n, Xs,m) =k €
Uy, then By ‘says’ spl(x; », Xs,m) = k € Ug as well. Thus, q € Qp, which suffices by
Lemma 3.13. O

Lemma 3.16 Each of the following sets are dense and open in (Q, <@).

1. Foreveryt e w, Dy ={p e Q:t cupl;

2. Forevery (t,n) € w1 X w, Dy, ={p € Q: x;,, € Xp}, and

3. Henkin witnesses: For all t € wy, all (x5, ,; 1 i < m) with each s; <t and all
e(y,vi 1 i < m), the set {p € Q : either 6,(xp) = Vy—@(y, x5, n; : i < m) or
for some n*, 6y (Xp) = @(Xs p%, X5 p; 11 < m)}.

4. Foralle e M*, D, = {p € Q : e € ap and 6 (xp) - x0,, = e for some n € w}.

Proof That each of these sets is open is immediate. As for density, in all four clauses
we will show that given some p € Q, we will find an extension q > p with X a
one-point extension of Xp. In all cases, we will put kq := kp, Uy = U and since X
is finite, we can choose the color cq of the ‘new element’ to be distinct from the other
colors. Because of that, Clause (8) for q follows immediately from the fact p € Q.
Thus, for all four clauses, all of the work is in finding a striated type 64 extending 0.

(1) Fix t € w; and choose an arbitrary p € Q. If ¢ € u, then there is nothing to
prove, so assume otherwise. Let £ = |up| and let k = [{s € up : 5 < t}|. Assume that
k < ¢, as the case of k = ¢ is similar, but easier. Choose a perfect chain realization
(M, b) of Op(Xp). By Lemma 3.10(2), tp(15<k/5p) is a striated type of length k. By
Lemma 2.4(1), choose an A*-large type r € Sa,(5p15<k) and choose a realization
e of r in M. One checks immediately that tp(b<ke/§p) is a striated type of length
(k + 1). Now, also by Lemma 3. 10(2) (M >ks b>k) is a perfect chain realization of
tp(b>k/apb<k) So, by Lemma 3.9, (M>k, b>k) is also a perfect chain realization of
tp(b>k /apb <re). In particular, tp(b>k/apb<ke) is astriated type of length (¢ —k). Thus,
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by Lemma 3.10(1), tp(15<kel52k/5p) is a striated type of length (£ +1). Take aq := a,,
Xq := Xp U {x;,0}, and take 0q(Xq) to be a complete formula in tp(breb=y /aq).

The proofs of (2) and (3) are extremely similar. We prove (2) and indicate the
adjustment necessary for (3). Fix (¢, n) € w; X w. By (1) and an inductive argument,
we may assume we are given p € Q witht € up and x; ,—1 € Xp. Say |up| = £ and
assume ¢ is the (k — 1)st element of u, in ascending order. Choose a perfect chain
realization (M, b) of Op(Xp). By Lemma 3.10(2), tp(15<k/5p) is striated of length k.
Choose an arbitrary e € Mk3 and adjoin it to Ek,l. More formally, let l}i = (l}; :
j < k), where l;jf = l;j for j < k — 2, while l;,’:_l := by_1e. Note that tp(l;zk/ﬁp)
remains a striated type of length k. By Lemma 3.10(2), (MZ ks I;Z ) is a perfect chain
realiza}tion of_tp(l;zk /ﬁpl;<k). So, b}/ Lemn_la 3.9 it is also a perfect chain realization
of tp(b>y /aph™ ). In particular, tp(bxx /apb’, ) is a striated type of length (£ — k), so
tp(l5ikl52k/5p) is a striated type of length £ extending 0 (Xp). Put Xgq := xp U {x; }
and let 64 (Xq) be a complete formula isolating this type.

(4) is also similar and is left to the reader. O

The following Proposition follows immediately from the density conditions
described above.

Proposition 3.17 Let G be a Q-generic filter. Then, in V[G], a rich, Ug-colored
atomic model of T exists, where Ug = {k € w : k € Uy, for some p € G}.

Proof There is a congruence ~¢ defined on X = {x;, : t € w;,n € w} defined
by x;n ~G Xsm if and only if 6, = x;, = x;,, for some p € G. Let Mg be
the model of T with universe X/ ~¢ and relations Mg = ¢(ai,...,a;) if and
only if there are (x4 ny, ..., Xy ,n) € X* such that [x4,n;]1 = a; for each i and
Op F (X1 015 -5 Xty ny) for some p € G. Since (Q, <g) has c.c.c., Mg has size
N1. As notation, for each t € wj, let M<; be the substructure of Mg with universe
{[xs.m] : s < t,m € w}). Then M* < My and M<; < M<, < Mg whenever
s <t < wi. The definition of a striated type implies that tp([x; 0]l/A*) is omitted
in M, hence the set {[x; 0] : ¢ € w;} witnesses that (Mg, b*) is rich. Also, define
cG := U{cp : p € G}. Using the fact that each p € Q is fully decided, check that ¢
is a Ug-coloring of (Mg, b*). O

Note that in the Conclusion below, sucha G € V always exists, since B is countable.
Recall the finite fragment Z FC* of Z F C given by Proposition 2.9.

Conclusion 3.18 Suppose B is a countable, transitive model of ZFC*, with
{M*, T,L} C B,and let G € V, G C Q be any filter meeting every dense D C Q
with D € B. Then: Let Ug = {k € w : k € Up for some p € G}. Then:

1. Ug € V; and B
2. In'V, there is a Ug-colored, rich atomic model (N, b*) of T.

Proof That Ug € V is immediate, since both B and G are. As for (2), as G meets
every dense set in 3, B[G] is a countable, transitive model of Z F C*, and by applying

3 In the proof of (3), e would be a realization of ¢(y, bs; n; : i < m) in My, if one existed.
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Proposition 3.17,
B[G] & ‘There is a rich, Ug-colored (Mg, b*) of size R}’

Let L' = LU{c, R}U{cy, : m € M*} Working in B[G], expand Mg to an L’-structure
M, interpreting each c,, by m, interpreting the unary function ¢ "as cg = Ufep :
p € G}, and the unary predicate R™ = {[x; 0] : 7 € w1}.

Now, for each d,d’ € M' and k € w, the relation tp,, (d/Ax) = tpy(d'/Ax) is
definable by an L;Ulyw-formula. Thus, the binary function spl : (M’ 2 S (w4 1)
is also L;l’w-deﬁnable, hence, using the coloring c, there is an L;)l’w-sentence v
stating that ‘c induces a Ug-coloring.” Finally, using the Q-quantifier to state that R
is uncountable, there is an L, ,-sentence ® € B[G] stating that the L(b*)-reduct of
a given L'-structure is a rich, atomic model of T, that is Ug-colored via c. We finish
by applying Proposition 2.9 to M’ and ®. O

3.3 Mass production

In this subsection we define a forcing (P, <p) such that a P-generic filter G produces
a perfect set {G, : n € 2“} of Q-generic filters such that the associated subsets
{Ug, : n € 2%} of w are almost disjoint. Although the application there is very
different, the argument in this subsection is similar to one appearing in [9].

We begin with one easy density argument concerning the partial order (Q, <g).
Fundamentally, it allows us to ‘stall’ the construction for any fixed, finite length of
time.

Lemma 3.19 Foreveryp € Qand every k* > kp, thereis q >q p such thatxq = Xp,
(hence cq = cp); but kq = k* and Uq = Uy, i.e., Uy N [kp, k*) = 0.

Proof Simply define q as above and then verify that q € Q. O

Definition 3.20 Forn € w, let
P, = {(k, p) : k € w, p = (py : n € 2"), where each p, € Q and every k,, = k}

As notation, for p € P, we let k(p) denote the (integer) first coordinate of p. For each
£ < k(p), define the trace of ¢, try(p) = {v € 2" : L € U, }.
LetP = J,., P As notation, for p € P, n(p) is the unique n for which p € P,,.

new
Definition 3.21 Define an order <p on P by p <p q if and only if

1. n(p) < n(@), k(p) < k(Q);

2. py <q qu for all pairs v € 2"®) | ;i € 2@ satisfying v <! u; and

3. For all £ € [k(p), k(q)), the set {ul,@p) : n € tre(q)} is either empty or is a
singleton.

It is easily checked that (P, <p) is a partial order, hence a notion of forcing. The
following Lemma describes the dense subsets of P.
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Lemma 3.22 [. Foreachn andk, {p € P:n(p) > n}and {p € P: k(p) > k} are
dense;

2. Suppose D is a dense, open subset of Q. Then for every n and every p € P, there
is q € P, such that q >p p and, for everyv € 2", q, € D.

Proof Arguing by induction, it suffices to prove that for any given p € P, there is
q >p p with n(q) = n(p) + 1 and an r >p p with k(r) > k(p). Fix p € P. Say
p € P, and p = (k, p). To construct q, for each v € 2", define g,0 = qv1 = pv.
Letqg := (qu : 1 € 2"ty and q = (k, §). Then q € P, and q >p p (note that
Clause (3) in the definition of <p is vacuously satisfied since k(p) = k(q)).

To construct r, simply apply Lemma 3.19 to each p, to produce an extension
ry =@ py with k,, = k+1,but iy, = U,,. Thenlet 7 := (r, : v € 2") and
r = (k+1,7). Thenr >p p as required.

(2) Fix such a D and n. As we are working exclusively in P, and because 2" is a
fixed finite set, it suffices to prove that for any chosen v € 2",

For every p € P, there is q € P, withq >p pand ¢, € D.

To verify this, fix v € 2" and p € P,. Concentrating on p,, as D is dense, choose
qv € DN Q with g, >g py. Let k* := kg,. Next, for each § € 2" with § # v,
apply Lemma 3.19 to ps, obtaining some g5 € Q satisfying gs >q ps, kg, = k¥, but
Uys = Ups. Now, collect all of this data into a condition q € [P, defined by k(q) = k*
and g = (g, : y € 2"), where each g, is as above. To see that q >p p, Clause (3) is
verified by noting that for every £ € [k(p), k*), tre(q) is either empty, or equals {v},
depending on whether or not £ € Uy, . O

Notation 3.23 Suppose B |= ZFC* and let G* € P, G* € V be a filter meeting
every dense subset D* C P with D* € B. For each n and v € 2", let

G, :={peQ: forsomep* = (k, p) € G",p=p)}
Then, for each n € 2%, let
G, = U{Gnln :new} and Uy :={l € w : £ € Uy for some q € G}

Proposition 3.24 In the notation of 3.23:

1. Foreveryn € 2% G, € Qs a filter meeting every dense D C Q with D € B;
2. The sets {Uy : n € 2°} are an almost disjoint family of infinite subsets of w.

Proof (1) follows immediately from Lemma 3.22(2).

(2) Choose distinct 17, " € 2¢. Choose ng such that n|n # n’|n whenever n > ny.
By Lemma 3.22(1), choose p* € G* with n(p*) > ng. We show that U,y N,y is finite
by establishing that if £ € U, N Uy, then £ < k(p*).

To establish this, choose £ € U, N,y . By unpacking the definitions, choose q*, r* e
G* such that, letting i := n|n(q*) and u’ := '|n(r*), we have £ € Ug:; ﬂL{rZ,. As
G* is a filter, choose s* € G* with s* >p p*, q*, r*. As notation, let § := n|n(s*) and
8 == n'|n(s*).
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Claim: ¢ € Lls§ N Z/{s;,.

Proof As £ € u‘lfu £ < k(q*). From q* <p s* we conclude k(q*) < k(s*), so
£ < k(s*) as well. From q* <p s* and u < § we obtain q,*L <@ s;. But then, as
le Z/{qﬂ, it follows that £ € Us;. That £ € Z/{S} is analogous, using r* in place of q*.
Finally, assume by way of contradiction that £ > k(p*). The Claim implies that
(8,8} C tre(s*). As £ € [k(p*), k(s*)), Clause (3) of p* <p s* implies that §|n(p*) =
8'|n(p*). But, as n|n(p*) = §|n(p*) and n’|n(p*) = §'|n(p*), we contradict our choice
of p*. O

We close this section with the proof of Proposition 3.1, which we restate for con-
venience.

Conclusion 3.25 There is a family {(N,), b*) 1 n € 2%} of Z_NO rich, atomic models of
T, each of size Ry, that are pairwise non-isomorphic over b*.

Proof Choose any countable, transitive model B of ZFC* and choose any G* € V,
G* C P, G* meets every dense subset D* € BB (as B is countable, such a G* exists).
For each n € 2¢, choose G, and U, as in Proposition 3.24, and apply Conclusion 3.18
to get a rich Uy-colored (N, b*) in V. That this family is pairwise non-isomorphic
over b* follows immediately from Corollary 3.6, since the sets {Uy, 1 n € 2%} are
almost disjoint. O

4 The proof of Theorem 1.4

Assume that the class Aty is not pcl-small, as witnessed by an (uncountable) model N*
containing a finite tuple a*. Fix a countable, elementary substructure M* < N* that
contains a*. To aid notation, let D* := pcly«(a*). We now split into cases, depending
on the relationship between the cardinals 280 and 28!

Case 1. 280 < 281,

In this case, expand the language of T to L(D*), adding a new constant symbol for
eachd € D*.Then, the natural expansion N}, of N* to an L(D*)-structure is a model
of the infinitary L(D*)-sentence ® that entails 72 (N7,.) and ensures that every finite
tuple is L-atomic with respect to 7. As N, is a model of @ that realizes uncountably
many types over the empty set (after fixing D*!), it follows from [6], Theorem 45 of
Keisler that there are 2™! pairwise non-L (D*)-isomorphic models @, each of size Nj.
As 2% < 281 it follows that there is a subfamily of 28! pairwise non-L-isomorphic
reducts to the original language L. As each of these models are L-atomic, we conclude
that Aty has 2™ non-isomorphic models of size Nj.

Case 2. 2% =281,

Choose b* from M* as in Proposition 2.10 and apply Conclusion 3.25 to get a
set 7 = {(Ny, b*) : n € 2} of atomic models, each of size 8y, that are pairwise
non-isomorphic over b*. Let F = {N;, : n € 2“} be the set of reducts of elements
from F*. By our cardinal hypothesis,  has size 2%!. The relation of L-isomorphism
is an equivalence relation on F, and each L-isomorphism equivalence class has size
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at most N (since Nf‘” = 81). As 8] < 2% we conclude that F has a subset of size
281 of pairwise non-isomorphic atomic models of 7', each of size Rj. O
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