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KULIKOV’S PROBLEM ON UNIVERSAL TORSION-FREE
ABELIAN GROUPS

SAHARON SHELAH and LUTZ STRÜNGMANN

Abstract

Let T be an abelian group and λ an uncountable regular cardinal. The question of whether there is
a λ-universal group U among all torsion-free abelian groups G of cardinality less than or equal to λ
satisfying Ext (G,T ) = 0 is considered. U is said to be λ-universal for T if, whenever a torsion-free
abelian group G of cardinality at most λ satisfies Ext (G,T ) = 0, there is an embedding of G into U. For
large classes of abelian groups T and cardinals λ, it is shown that the answer is consistently no, that is
to say, there is a model of ZFC in which, for pairs T and λ, there is no universal group. In particular,
for T torsion, this solves a problem by Kulikov.

1. Introduction

Given a class C of objects it is natural to ask for universal objects in C. A universal
object is an element C ∈ C such that every other object of the class C can be
embedded into C . The existence of universal objects clearly simplifies the structure
theory for C.

On the other hand, if there are no universal objects in C, this indicates that
the class C has a complicated structure. Since the definition of universal objects is
formulated categorically, the search for universal objects appears, as is well known,
in any field of mathematics.

In this paper we focus on abelian groups, and begin with the class TFλ of
all torsion-free abelian groups G of rank less than or equal to λ, where λ is a
fixed cardinal. We consider the subclass C = TFλ (T ) of all G ∈ TFλ with
Ext (G,T ) = 0 for some fixed abelian group T . Here Ext (−, T ) denotes the first
derived functor of the functor Hom (−, T ). In 1969, Kulikov raised the problem of
whether or not there are universal groups in TFλ (T ) for all (uncountable) cardinals
λ and torsion abelian groups T . If the group T is cotorsion, that is, Ext (�, T ) = 0,
then, for any λ, there is a universal group in TFλ (T ), namely the torsion-free
divisible group of rank λ. Surely the restriction to classes of groups bounded by
some fixed cardinal λ is necessary to find universal objects. We want to consider
Kulikov’s problem and its solution in the context of recently investigated cotorsion
theories.

Cotorsion theories for abelian groups were introduced by Salce [11] in 1979.
Following his notation, we call a pair (F,C) a cotorsion theory if F and C
are classes of abelian groups which are maximal with respect to the property
Ext (F, C) = 0 for all F ∈ F, C ∈ C.
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kulikov’s problem on abelian groups 627

Salce [11] showed that every cotorsion theory is cogenerated by a class of torsion
and torsion–free groups, where (F,C) is said to be cogenerated by the class A if

C = A⊥ = {X ∈ Mod–� | Ext (A,X) = 0 for all A ∈ A}

and

F =⊥ (A⊥) =
{
Y ∈ Mod–�

∣∣ Ext (Y ,X) = 0 for all X ∈ A⊥ }
.

Examples for cotorsion theories are (L,Mod–�) = (⊥(�⊥),�⊥), where L is the
class of all free groups, and the classical cotorsion theory

(TF,CO) = (⊥(�⊥),�⊥),

where TF is the class of all torsion-free groups and CO is the class of all cotorsion
groups. If (F,C) is a cotorsion theory, then C is called cotorsion class and F is
called torsion-free class.

We put (F,C) � (F′,C′) for cotorsion theories (F,C) and (F′,C′) if C ⊆ C′.
We say that (F,C) is singly cogenerated if C = G⊥ for some group G. Clearly �⊥

and �⊥ give rise to the maximal and minimal cotorsion theories. Moreover, Göbel,
Shelah and Wallutis showed in [5] that any partially ordered set can be embedded
into the lattice of all cotorsion classes. Hence there is no hope of characterizing
cotorsion theories. However, if we restrict ourselves to torsion-free groups in
TFλ (T ), then the existence of a universal group provides a step towards
classification. The existence of universal groups also contributes information about
the size of singly cogenerated cotorsion classes G⊥. If G is torsion-free of rank at
most λ, and T ∈ G⊥ provides a universal group CT for TFλ (T ), then C⊥

T ⊆ G⊥.
In a first contribution to Kulikov’s problem, Strüngmann [17] showed that in

Gödel’s universe (V = L) for every cardinal λ and torsion abelian group T there
exists a λ-universal group G ∈ TFλ (T ) if T has only finitely many non-trivial
bounded primary components. Moreover, if λ is finite, then this characterizes those
T that give rise to universal groups even in ZFC.

In this paper we prove that there is a model of ZFC in which the generalized
continuum hypothesis (GCH) holds with the property that for every abelian group
T which is not cotorsion and every uncountable regular cardinal κ there is a cardinal
λ � κ such that the class TFλ (T ) has no universal object. Moreover, for torsion
abelian groups T (not cotorsion) of cardinality less than or equal to ℵ1, there is no
uncountable regular cardinal λ such that TFλ (T ) has universal groups. This shows
that the result in [17] is not provable under ZFC and it answers Kulikov’s question
consistently in the negative.

The notations are standard, and for unexplained notions in abelian group theory
and set theory we refer to [1, 3, 4, 8]. For uniformization, see [9] or [13].

2. λ-universal groups

In this section we introduce the notions of λ-universal groups for a given group
T , and obtain some basic properties. We are mainly interested in the case when our
group T is torsion, but leave T arbitrary whenever this is possible. Let TF be the
class of all torsion-free groups. For a cardinal λ we denote by TFλ (T ) the class
of all torsion-free groups G of rank at most λ such that Ext (G,T ) = 0. Moreover,
we let TF (T ) =

⋃
λ TFλ (T ) be the class of all torsion-free groups G satisfying

Ext (G,T ) = 0.
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628 saharon shelah and lutz strüngmann

We recall from the introduction that G ∈ C is universal in the class C if any group
in C embeds into G. In particular we shall use the following definition.

Definition 2.1. If T is a group and λ a cardinal, then a group G is called
λ-universal for T if G is universal in the class TFλ (T ).

Kulikov [10, Question 1.66] posed the following question.

Problem 2.2. Do λ-universal groups exist for all uncountable cardinals and for
all torsion groups?

The starting point of this paper are the following results obtained recently by
Strüngmann [17]. For this we recall that a completely decomposable group is just a
direct sum of subgroups of the rational numbers �.

Proposition 2.3 [17]. Let T be a torsion group and λ a natural number. Then there
exists a λ-universal group G for T if and only if T has only finitely many non-trivial
bounded primary components. In this case, G is completely decomposable.

Theorem 2.4 (V = L, see [17]). If T is a torsion group with only finitely many
non-trivial bounded primary components and λ is a cardinal, then there is a λ-universal
group for T which is completely decomposable.

We want to omit the case λ = ℵ0, and therefore restrict ourselves to uncountable
(regular) cardinals λ.

It is well known that any torsion group T has a basic subgroup B ⊆ T which
is pure, a direct sum of cyclic groups, and divisible quotient T/B. We have the
following immediate lemma.

Lemma 2.5. Let T be a torsion group, let B be a basic subgroup of T and let λ be
a cardinal. A torsion-free group G is λ-universal for T if and only if G is λ-universal
for B.

Proof. Since Ext (H,T ) = 0 if and only if Ext (H,B) = 0 for any torsion-free
group H , the lemma follows immediately (see, for example, [17, Lemma 1.2]). �

Proposition 2.6. If λ is a cardinal, then a torsion-free group G is λ-universal for
T if and only if G is λ-universal for the reduced part of T .

Proof. Decompose T = D ⊕ R into the maximal divisible subgroup D and the
reduced part R. Then the lemma follows from Ext (H,D) = 0 and Ext (H,T ) =
Ext (H,R) for any group H . �

Thus it is enough to consider reduced groups. We may reduce the question about
the existence of λ-universal groups for T further and by Lemma 2.7 we also assume
that T is not cotorsion. Recall that a group T is called cotorsion if Ext (�, T ) = 0.

Lemma 2.7. There is a λ-universal group for every cardinal λ and any cotorsion
group T .
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kulikov’s problem on abelian groups 629

Proof. We have D =
⊕

λ � ∈ TFλ (T ) for any cotorsion group T and cardinal
λ, and D is λ-universal because any torsion-free group of rank at most λ embeds
into D. �

From [17] we also note the following.

Lemma 2.8. Let G be any group and let T be a torsion group. Then Ext(G,T ) = 0
if and only if Ext(G,T ′) = 0 for all pure subgroups T ′ of T such that |T ′| � |G|.

Thus it is no restriction to assume that |T | � λ, and we will even assume that
|T | < λ in the sequel of this paper.

3. (T , λ, γ)-suitable groups

Let γ < λ be fixed regular infinite cardinals.

Definition 3.1. Let T be a group with |T | < λ. Then a group G is called
(T , λ, γ)-suitable if the following conditions are satisfied:

(i) Ext (G,T ) �= 0.
(ii) There is an increasing chain (Fi : i � γ) of free groups such that the following

hold:
(a) |Fi| � |i| + ℵ0 for all i < γ.
(b) Fγ/Fi is free for all i < γ.
(c) Fγ/

⋃
i<γ Fi

∼= G.

Our next lemma shows that for any group T not cotorsion there is a (T , λ, ω)-
suitable group.

Lemma 3.2. Let T be a group with |T | < λ and let G be a countable group such
that Ext (G,T ) �= 0. Then G is (T , λ, ω)-suitable. If T is not cotorsion then � is
(T , λ, ω)-suitable.

Proof. Choose a free resolution

0 −→ K
id−→ F −→ G −→ 0

of G. We may assume that K and F have countable rank and write K =
⊕

i<ω �ei.
Then each Fn =

⊕
i�n ei� is a direct summand of F and hence G is (T , λ, ω)-suitable.

If T is not cotorsion, then Ext (�, T ) �= 0, and hence the same arguments show that
� is (T , λ, ω)-suitable. �

Next we show the existence of (T , λ, γ)-suitable groups for uncountable cardinals
γ. Recall that a group G is almost-free if all subgroups of smaller cardinality are
free.

Lemma 3.3. If T is a group with |T | < λ and G is almost-free with |G| = γ such
that Ext (G,T ) �= 0, then G is (T , λ, γ)-suitable.
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630 saharon shelah and lutz strüngmann

Proof. Choose a γ-filtration G =
⋃

α<γ Gα of G such that each Gα is free. By [1,
Lemma 1.4, p. 346], there is a free resolution associated with this filtration. This is
to say that there are free groups F =

⊕
α<γ Fα and K =

⊕
α<γ Kα such that the short

sequences

0 −→ K −→ F −→ G −→ 0

and

0 −→
⊕

α<β

Kα −→
⊕

α<β

Fα −→ Gβ −→ 0

are exact for all β < γ. Since each Gβ is free, it follows that G is (T , λ, γ)-suitable.
�

Lemma 3.4. Let H be an epimorphic image of the group T . If G is (H, λ, γ)-suitable
then G is (T , λ, γ)-suitable.

Proof. The claim follows immediately when we note that Ext (G,T ) = 0 implies
that Ext (G,H) = 0. �

Proposition 3.5. Let S ⊆ γ be stationary non-reflecting such that cf (α) = ω for
all α ∈ S , and assume that �S holds. Let T be a group which has an epimorphic image
of size at most γ that is not cotorsion. Then there is a strongly γ-free group of size γ

which is (T , λ, γ)-suitable.

The proposition has an immediate corollary.

Corollary 3.6. Suppose that γ and S satisfy the conditions in Proposition 3.5. If
T is not cotorsion and torsion or |T | � γ, then there is a (T , λ, γ)-suitable torsion-free
group.

Proof. If |T | � γ, then the corollary follows from Proposition 3.5. If T is
torsion, then we choose a basic subgroup B′ of T and a countable unbounded direct
summand B of B′ which is therefore not cotorsion. Note that B exists since T is not
cotorsion. It is well known that B is an epimorphic image of T (see [3, 4, Theorem
36.1]); hence Lemma 3.4 applies and it is enough to construct a (B, λ, γ)-suitable
group which follows from Proposition 3.5. �

Proof of Proposition 3.5. Let B be the epimorphic image of T as in the
proposition. Then by Lemma 3.4 it is enough to construct a (B, λ, γ)-suitable group.
Therefore, we may assume that |T | � γ. By Lemma 3.2, there is a countable torsion-
free group R which is (T , λ, ω)-suitable. If λn � ℵ0 (n ∈ ω) are cardinals, then, as in
[1, Corollary 1.2, p. 182], there exist free abelian groups K ⊆ F and an ascending
chain Kn (n ∈ ω) of subgroups with K =

⋃
n∈ω Kn and F/Kn is free for all n ∈ ω, K0

is free of rank λ0 and Kn+1/Kn is free of rank λn+1. From F/K ∼= R, it follows that
Ext(F/K,T ) �= 0. As in the proof of [1, Theorem 1.4, p. 185], we can construct a
torsion-free group G of cardinality γ which has a γ-filtration G =

⋃
α<γ Gα satisfying

the following conditions for all α < β < γ:

(i) Gα is free of rank |α| + ℵ0.
(ii) If α is a limit ordinal, then Gα =

⋃
δ<α Gδ .
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(iii) If α �∈ S , then Gβ/Gα is free of rank |β| + ℵ0.
(iv) If α ∈ S , then Ext(Gβ/Gα, T ) �= 0.

From �S , it follows that Ext (G,T ) �= 0 (see [1, Theorem 1.15, p. 353]); hence G

is (T , λ, γ)-suitable by Lemma 3.3. �

4. The uniformization

Besides regular cardinals ℵ0 � γ < λ, we also fix a stationary subset S of λ

consisting of limit ordinals of cofinality γ. To prove Theorem 4.6 and Theorem 4.9,
we shall use a construction developed in [2]. Thus we shall concentrate on the basic
steps.

Definition 4.1. A ladder system η̄ on S is a family of functions η̄ = 〈ηδ : δ ∈ S〉
such that ηδ : γ −→ δ is strictly increasing with sup (rg (ηδ)) = δ, where rg (ηδ)
denotes the range of ηδ . We call the ladder system tree-like if, for all δ, ν ∈ S and
every α, β ∈ γ, ηδ (α) = ην (β) implies that α = β and ηδ (ρ) = ην (ρ) for all ρ � α.

For a ladder system η̄ = 〈ηδ : δ ∈ S〉 on S , we can form a tree Bη̄ ⊆ �γλ of height
γ. Let Bη̄ = {ηδ �α : δ ∈ S, α � l (ηδ)}, where l (ηδ) denotes the length of ηδ . Note
that Bη̄ is partially ordered by defining η � ν if and only if η = ν �l(η).

From the ladder system η̄ and a group G which is (T , λ, γ)-suitable for some group
T , we want to find a new group Hη̄ . Fix a chain 〈Fα : α � γ〉 for G as in Definition
3.1. Hence Fγ/

⋃
α<γ Fα

∼= G. For each η ∈ Bη̄ , we let Hη = Fl(η), and, if η � ν ∈ Bη̄ ,
then let iη,ν be the inclusion map of Hη into Hν . Finally, let Hη̄ be the direct limit
of (Hη, iη,ν : η � ν ∈ Bη̄). More precisely, Hη̄ equals

⊕
{Hη : η ∈ Bη̄} /K , where K

is the subgroup generated by all elements of the form xη − yν , where yν ∈ Hν ,
xη ∈ Hη , η � ν and iη,ν(xη) = yν . Canonically, we can embed Hη into Hη̄ , and we
shall therefore regard Hη as a subgroup of Hη̄ in the sequel.

Definition 4.2. Let κ be an uncountable regular cardinal. The tree Bη̄ is called
κ-free if for every X ⊆ S with |X| < κ there is a function Ψ : X −→ γ such that

{{ηδ �α: Ψ (δ) < α � γ} : δ ∈ X}

is a family of pairwise disjoint sets. The ladder system η̄ is called κ-free if Bη̄ is
κ-free.

We now state some properties of the constructed group Hη̄ .

Lemma 4.3. If κ is an uncountable regular cardinal and Bη̄ is a κ-free tree, then
Hη̄ is a κ-free group.

Proof. See [2, Lemma 1.4]. �

Lemma 4.4. If S is non-reflecting, then Hη̄ is λ-free but not free.

Proof. Since S is non-reflecting, η̄ is λ-free, and by Lemma 4.3 the group Hη̄

is λ-free. However, if δ ∈ S , then there exists a ν � δ such that for all µ < γ,
ην �µ∈ {ηα �µ: α < δ}. Thus [2, Lemma 1.5] applies, and Hη̄ is not free. �
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We recall µ-uniformization for a ladder system η̄ and a cardinal µ.

Definition 4.5. If µ is a cardinal and η̄ is a ladder system on S , then we say
that η̄ has µ-uniformization if, for every family {cδ : δ ∈ S}, where cδ : rg (ηδ) −→ µ,
there exist Ψ : λ −→ µ and Ψ∗ : S −→ µ such that Ψ (ηδ (α)) = cδ (ηδ (α)) with
Ψ∗ (δ) � α < γ for all δ ∈ S .

Theorem 4.6. Let T be a group with |T | < λ and let G be (T , λ, γ)-suitable. If
S is non-reflecting and η̄ is a tree-like ladder system on S with 2(|T |γ)-uniformization,
then there exists a torsion-free group H of size λ such that the following hold:

(i) H has a λ-filtration 〈H̄α : α < λ〉.
(ii) If α ∈ S , then H̄α+1/H̄α

∼= G.
(iii) If α �∈ S , then H̄β/H̄α is free for all α � β.
(iv) Ext (H,W ) = 0 for all groups W with |W | � |T |.

Proof. Let T , S , η̄ and G be as stated, and choose the group

Hη̄ =
⊕

{Hη : η ∈ Bη̄} /K

as constructed above. Then Hη̄ is almost-free but not free by Lemma 4.4. From
[2, Theorem 1.7], it follows that Hη̄ satisfies Ext(Hη̄,W ) = 0 for every group W of
size at most |T |, and it is easy to see that Hη̄ has a λ-filtration as stated if we let
H̄α =

⋃
{(Hη + K)/K : η ∈ Bη̄, sup(rg(η)) < α}. �

We want to apply Theorem 4.6 in models of ZFC to ladder systems which have
µ-uniformization for all µ < λ. This is possible for many regular cardinals as long
as |T | is small enough for 2(|T |γ) < λ to be obtained, which is the case when λ is
strongly inaccessible or the successor of a singular cardinal. The case λ = κ+ with
γ = κ regular is not covered by Theorem 4.6, which explains our intention to prove
Theorem 4.9 next.

Definition 4.7. Let κ be regular and let λ = κ+. A ladder system η̄ = 〈ηδ : δ ∈ S〉
has strong κ-uniformization if, for every system P̄ = 〈Pα : α < λ〉 such that the
following hold:

(i) � �= Pδ ⊆ {f | f : rg (ηδ) −→ δ ∩ κ} if δ ∈ S;
(ii) if δ ∈ S and i < γ, then

Pηδ (i) =
{
f �rg(ηδ�(i+1))

∣∣ f ∈ Pδ

}
;

(iii) if δ ∈ S and i < γ is a limit ordinal, then, for every increasing sequence
〈fj : j < i〉, fj ∈ Pηδ (j), there exists an fi ∈ Pηδ (i) which extends the union⋃

j<i fj;

there exists a function f : λ −→ κ such that f �rg(ηδ )∈ Pδ for all δ ∈ S .

Proposition 4.8. Let λ = γ+ for some regular cardinal γ and let

η̄ = 〈ηδ : δ ∈ S〉

be a tree-like ladder system on S such that η̄ has γ-uniformization and �γ holds. Then
η̄ has strong γ-uniformization.
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Proof. Let P̄ be given as in Definition 4.7 and let J be a stationary subset of γ
such that �γ (J) holds. We may assume that J = γ. Thus there exists a system of
diamond functions h̄ = 〈hδ : δ −→ γ | δ < γ 〉 such that for every function h : γ −→ γ

the set {δ < γ : h �δ = hδ} is stationary in γ. For each δ ∈ S and i < γ, we define

hδi : rg(ηδ �i) −→ γ, ηδ (j) �−→ hi (j) .

If δ ∈ S , then let Eδ = {i < γ : hδi ⊆ f for some f ∈ Pδ} and choose gδi ∈ Pδ such
that gδi �rg(ηδ�i)= hδi for i ∈ Eδ . Define fδ : rg (ηδ) −→ H (γ) for δ ∈ S as follows:

fδ (ηδ (i)) =
〈
gδj �rg(ηδ�(i+1)): j � i, j ∈ Eδ

〉
.

Here H (γ) denotes the class of sets hereditarily of cardinality less than γ. Note that
H (γ) has size at most γ. By the γ-uniformization of η̄ we can find F : λ −→ H (γ)
such that for all δ ∈ S there exists an αδ < γ with fδ (ηδ (i)) = F (ηδ (i)) for all
αδ � i < γ. For i < γ let

F (ηδ (i)) =
〈
G

ηδ (i)
j : j � i, j ∈ Eηδ (i)

〉

for some Eηδ (i) ⊆ γ. Note that F (ηδ (i)) depends only on the value ηδ (i) and not on
δ. Moreover, F is well defined since η̄ is tree-like.

We now define f : λ −→ γ on
⋃

δ∈S rg (ηδ) and arbitrarily on the complement.
We use induction on i < γ. For i = 0 choose any member u ∈ Pηδ (0) and put
f (ηδ (0)) = u (ηδ (0)). Now assume that f (ηδ (j)) has been defined for j < i and
δ ∈ S such that for j < i,

f �rg(ηδ�(j+1))∈ Pηδ (j).

Put f̄δ = {f (ηδ (j)) : j < i} and let

Jδ
i =

{
j ∈ Eηδ (i) : Gηδ (i)

j �(rg(ηδ�i))⊆ f̄δ
}
.

If jδi = min(Jδ
i ) exists, then let

f (ηδ (i)) = G
ηδ (i)

jδi
(ηδ (i)) .

If min(Jδ
i ) does not exist, then we distinguish between two cases: if i is a limit

ordinal, then Definition 4.7(iii) implies that there is an fi ∈ Pηδ (i) which extends
⋃

j<i

f �rg(ηδ�(j+1)) .

If i is a successor ordinal, then Definition 4.7(ii) ensures that there is an fi ∈ Pηδ (i)

extending f �rg(ηδ�i). In both cases put f(ηδ(i)) = fi (ηδ (i)). Note that f is well defined
since η̄ is tree-like; hence min(Jδ

i ) exists if and only if min(Jν
j ) exists for ηδ (i) = ην (j)

(δ, ν ∈ S, i, j < γ). It remains for us to check that f �rg(ηδ )∈ Pδ . By the uniformization
we have

G
ηδ (i)
j = gδj �rg(ηδ�(i+1))

for all j � i, j ∈ Eηδ (i), i � αδ and δ ∈ S . We define

h : γ −→ γ, j �−→ f (ηδ (j)) .

By �γ , there exists a βδ � αδ such that h �βδ= hβδ , and hence

f �rg(ηδ�βδ )= hδβδ �rg(ηδ�βδ )= hδβδ .
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Thus βδ ∈ Jδ
βδ

and f (ηδ (i)) = G
ηδ (i)
j as above. Therefore

f �rg(ηδ�(βδ+1))= gδβδ �rg(ηδ�(βδ+1))

by definition of f. By induction on i � βδ it follows that f �rg(ηδ )= gδβδ ∈ Pδ and this
finishes the proof. �

The extension of Theorem 4.6 is now immediate.

Theorem 4.9. Let λ = γ+ and assume that �γ holds. Moreover, let η̄ be a tree-
like ladder system on a non-reflecting stationary subset S of λ whose elements have
cofinality γ. If T is a group with |T | < λ and G is (T , λ, γ)-suitable, then there is a
torsion-free group H of size λ such that the following hold:

(i) H has a λ-filtration 〈H̄α : α < λ〉.
(ii) If α ∈ S , then H̄α+1/H̄α

∼= G.
(iii) If α �∈ S , then H̄β/H̄α is free for all α � β.
(iv) Ext (W,T ) = 0 for all groups W with |W | � |T |.

Proof. (This is similar to [2, Proposition 1.8].) Let S , η̄ and G be as in Theorem
4.9 and choose the direct limit Hη̄ =

⊕
{Hη : η ∈ Bη̄} /K as constructed above.

Inspecting the proof of Theorem 4.6, we see that Hη̄ is an almost-free non-free group
of size λ which has the desired λ-filtration. It remains to show that Ext(Hη̄,W ) = 0
for all groups W with |W | � |T |. We must show that any short exact sequence

0 −→ W
id−→ N

π−→ Hη̄ −→ 0 (∗)

has a splitting map ϕ : Hη̄ −→ N such that ϕπ = id �Hη̄
. Choose any set function

u : Hη̄ −→ N such that uπ = id �Hη̄
. As in [2, Proposition 1.8], the splitting maps

ϕ of π are in one-to-one correspondence with set mappings h : Hη̄ −→ W with
h (0) = 0 such that for all x, y ∈ Hη̄ and z ∈ �, the following hold:

(i) zh (x) − h (zx) = zu (x) − u (zx).
(ii) h (x) + h (y) − h (x + y) = u (x) + u (y) − u (x + y) .

It is customary to denote Trans (H,W ) to be the set of all these maps h for a
fixed subgroup H ⊆ Hη̄ . Thus (∗) splits if and only if Trans(Hη̄,W ) is non-empty.

Fix a chain 〈Fα : α � γ〉 for G as in Definition 3.1. For δ ∈ S , i < γ and
h ∈ Trans(Hηδ�i ,W ), let

seq (h) : rg(ηδ �i) −→ W
(
ηδ(j) �−→ h �Fl(ηδ �j )

, j < i
)
.

For δ ∈ S let Pδ = {seq(h) : h ∈ Trans(Hηδ ,W )} and for i < γ put Pηδ (i) =
{seq(h) : h ∈ Trans(Hηδ�(i+1)

,W )}. Let Pα = � if it has not been defined yet (α < λ).
By Proposition 4.8, the ladder system η̄ has strong γ-uniformization and it is easy
to check that the system P̄ = 〈Pα : α ∈ λ〉 satisfies the conditions of Definition 4.7
since Fn and Fn/Fm are free for m < n � γ. Since |W | � γ, there exists a function
f : λ −→ W such that f �rg(ηδ )∈ Pδ for all δ ∈ S . We now define h : Hη̄ −→ W by
putting h �Hηδ

= f �rg(ηδ ), and clearly h is well defined and belongs to Trans(Hη̄,W )
and therefore (∗) splits. �
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5. The forcing theorem

Before we state the main theorem of this section we describe our strategy. Using
class forcing we shall construct a model of ZFC satisfying GCH in which for every
regular cardinal λ there exists a sequence of stationary non-reflecting subsets Sα of
λ of length λ+ on which we have ‘enough’ uniformization for some ladder system.
Using this and the existence of (T , λ, γ)-suitable groups (for some particular γ) we can
then construct, for a given group T , a sequence of torsion-free groups Gα (α < λ+)
of cardinality λ satisfying Ext(Gα, T ) = 0. These Gα have λ-filtrations 〈Gα,δ : δ < λ〉
whose quotients satisfy Ext(Gα,δ+1/Gα,δ , T ) �= 0 for δ ∈ Sα. We show that all these
groups are not subgroups of a single group G ∈ TFλ (T ) since this would force
Ext (G,T ) �= 0. Thus there cannot be any λ-universal group for the group T .

Theorem 5.1. Let V be a model of ZFC in which GCH holds. Then for some
class forcing P not collapsing cardinals and preserving GCH, the following is true in
VP.

Case A: If λ > γ are infinite regular cardinals such that γ = cf (µ) for λ = µ+, then
the following hold:

(i) There is a normal ideal J = Jλ
γ on λ.

(ii) There is a stationary subset S = Sλ
γ of λ such that S �∈ J .

(iii) If δ ∈ S , then cf (δ) = γ.
(iv) S is non-reflecting, that is, S ∩ α is not stationary in α for every α < λ.
(v) If S ′ ⊆ S is stationary in λ, then there is a stationary S∗ ∈ J such that S∗ ⊆ S ′.
(vi) If S ′ ⊆ S and S ′ �∈ J , then �S ′ holds.
(vii) If S ′ ⊆ S is stationary and S ′ ∈ J , then there exists a tree-like ladder system

on S ′ which has µ-uniformization for all µ < κ if λ = κ+ and κ is singular, and for
all µ < λ otherwise.

(viii) There are Sε = Sλ
γ,ε ∈ J for ε < λ+ such that the following hold:

(a) If η < ε < λ+, then Sη\Sε is bounded.
(b) If ε < λ+, then Sε+1\Sε is stationary.
(c) J = {S ′ ⊆ S : ∃ ε < λ+ ∀ ε < ν < λ+, S ′\Sν is not stationary}.

Case B: If λ = cf (λ) > γ, then there is a stationary S∗ = Sλ,∗
γ such that the following

hold:
(1) If α ∈ S∗, then cf (α) = γ.
(2) S∗ is non-reflecting.
(3) �S∗ holds.

The proof of Theorem 5.1 will be divided into several steps. First we deal with a
fixed regular cardinal λ and then we use Easton support iteration to put the forcings
together. We assume knowledge about forcing, and our notation will follow [9], with
the exception that p � q means that condition q is stronger than condition p. Recall
that a poset P is called λ-complete if for every cardinal κ < λ, every ascending chain

p0 � p1 � . . . � pα, α < κ,

has an upper bound. Moreover, P is said to be λ-strategically complete if player I
has a winning strategy in the following game of length κ for every κ < λ. Players I
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and II alternately choose an ascending sequence

p0 � p1 � . . . � pα, α < κ,

of elements of P , where player I chooses at the even ordinals; player I wins if and
only if at each stage there is a legal move and the whole sequence 〈pα : α < κ〉 has
an upper bound (see also [14, Definition A1.1]). Note that, if P is λ-strategically
complete and G is generic over P , then V [G] has no new functions from κ into V

for all κ < λ; hence cardinals at most λ and their cofinalities are preserved.

Proposition 5.2. Let λ be a regular cardinal with λ<λ = λ. For any regular κ < λ,
there exists a poset Q of cardinality at most λ which is λ-strategically complete (and
hence preserves all cardinals and preserves cofinalities at most λ) with the following
property. For G generic over P , in V [G] there exists a non-reflecting stationary and
co-stationary subset S of λ such that every member of S has cofinality κ.

Proof. The proof is similar to the proof of [2, Lemma 2.3]. We let Q be the set of
all functions q : α −→ 2 = {0, 1} (α < λ) such that q (µ) = 1 implies that cf (µ) = κ

and such that for all limits δ � α, the intersection of q−1 [1] with δ is not stationary
in δ. Then, for G generic over P ,

S =
⋃

{q−1[1] : q ∈ G}

will be the desired set. We have to prove that S is stationary and co-stationary in
λ. Hence assume that q forces f is the name of a continuous increasing function
f̄ : λ −→ λ; choose an ascending chain

qo � q1 � . . . � qα, α < κ,

such that for each α there exist βα, γα such that qα � f̄ (βα) = γα and

dom (qα) � γα > dom(qµ)

for all µ < α. Let δ = sup {γα : α < κ} = sup {dom (qα) : α < κ} and let

qi =
⋃

{qα : α < κ} ∪ {(δ, i)}

for i = 0, 1. Then qi ∈ Q (i = 0, 1) since q−1
i [1] is not stationary in δ, because δ has

cofinality κ. Moreover, q1 � δ ∈ rg (f) ∩ S and q0 � δ ∈ rg (f) ∩
(
λ\S

)
.

Since Q has cardinality � λ, it preserves cardinals > λ. To show that all cardinals
at most λ are preserved (and their cofinalities), it suffices to prove that Q is λ-
strategically complete. Let τ < λ be a limit ordinal. Let player I choose qα for even
α such that dom (qα) is a successor ordinal, say δα + 1, and qα (δα) = 0. Moreover,
at limit ordinals α, player I chooses qα to have the domain = sup {δβ : β < α} + 1.
Then q =

⋃
{qα : α < µ} is a member of Q because {δα : α < µ, α even } is a cub in

dom (q) which misses q−1 [1]. This is a winning strategy for player I and thus Q is
λ-strategically complete. �

The next proposition is a collection of results from [13–15] (see also [16]).
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Proposition 5.3. Let λ > γ be regular infinite cardinals. Moreover, assume that
λ<λ = λ, 2λ = λ+, and let S be a non-reflecting, stationary and co-stationary subset of
λ such that each member of S has cofinality γ. Furthermore, let γ = cf (κ) if λ = κ+.
Then there exists a poset P of cardinality � λ+ which is λ-strategically complete,
satisfies the λ+-chain condition, adds no new sequences of length less than λ, and has
the following properties:

(i) S is non-reflecting, stationary and co-stationary in λ as an element in VP .
(ii) If λ is inaccessible, then every ladder system on S has µ-uniformization for

all µ < λ; in particular, there exists a tree-like ladder system on S .
(iii) If ℵ2 � λ = κ+ and κ is regular, then every ladder system on S has

µ-uniformization for all µ < λ; in particular, there exists a tree-like ladder sys-
tem on S .

(iv) If λ = ℵ1, then there is a tree-like ladder system on S which has µ-uniform-
ization for all µ < λ.

(v) If λ = κ+ and κ is singular, then there is a tree-like ladder system on S which
has µ-uniformization for all µ < κ.

Proof. For λ inaccessible, the proof is contained in [14, Case A] and also for the
case of λ = κ+, κ regular, see [14, Case B]. For λ = ℵ1, see [13, Theorem 1.7] and
for λ = κ+, κ singular, see [15, Theorem 2.10, Theorem 2.12]. Moreover, simpler
versions with less complicated and comprehensive proofs can be found in [12] for
all cases if we drop the requirements ‘for every ladder system...’, which is in fact not
needed for our purposes. Finally, let us remark that co-stationarity is only needed
when λ is inaccessible or a successor of a regular cardinal. �

Theorem 5.4. Let λ be a regular cardinal such that λ<λ = λ and 2λ = λ+. Then
there is a poset P of cardinality � λ+ satisfying the λ+-chain condition which is λ-
strategically complete and adds no new sequences of length less than λ such that in
VP for every regular γ < λ with γ = cf (κ) if λ = κ+ the statements of case A and
case B of Theorem 5.1 hold.

First we deduce Theorem 5.1 from Theorem 5.4.

Proof of Theorem 5.1. Let V be a model of ZFC with GCH. For any ordinal α
let

Pα = 〈Pj,
.

Qi : j � α, i < α〉

be an iteration with Easton support; this is to say that we take direct limits when
ℵα is regular and inverse limits elsewhere, or equivalently we have bounded support

below inaccessibles and full support below non-inaccessibles. For any ordinal i, let
.

Qi

be the forcing notion in VPi described in Theorem 5.4 for λ = ℵi if ℵi is regular, and
let Q be 0 elsewhere. Let P be the direct limit of the Pα (α an ordinal). We claim that
P has the desired properties. The proof is very similar to that of [2, Theorem 2.1],
and hence we shall only state the main ingredients needed:

(i) For every κ and Easton support iteration

〈Pj,
.

Qi : κ � j � α, κ � i < α〉,

if each
.

Qi is κ-strategically complete, then so is Pα.
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(ii) P = Pα ∗ P�α, where, in VPα , P�α is the direct limit of Pα
β (β an ordinal),

with Pα
β being the Easton support iteration

〈
Pα
j ,

.

Qα
i : j � β, i < β

〉
,

where
.

Qα
i =

.

Qα+i.
(iii) |Pn| = 1 (for n ∈ ω); if ℵδ is singular, |Pδ | � ℵδ and |Pδ | � ℵδ+1 if ℵδ is

regular, and hence inaccessible.
(iv) P�α is ℵα-strategically complete, and P�α+1 is even ℵα+n- strategically

complete for all n ∈ ω.

By construction, Theorem 5.1(i)–(viii) and (1)–(3) are now satisfied in VP . Note
that stationarity is preserved in the iteration because P�α is ℵα-strategically complete.
It remains to prove that VP is a model of ZFC satisfying GCH and preserving
cofinalities (and hence cardinals). This follows as in [2, Theorem 2.1], and hence we
will omit the proof. �

It remains to prove Theorem 5.4.

Proof of Theorem 5.4. The proof follows from results in [14, 15], but for the
convenience of the reader we shall give some details. If λ = κ+ is a successor
cardinal, then the proof is immediate. There is only one γ with γ = cf (κ). We
choose P to be the two-step iterated forcing of the two forcings from Proposition
5.2 and from Proposition 5.3 with γ = cf (κ). Moreover, we may assume that P also
forces the sets S∗ = Sλ,∗

γ satisfying Theorem 5.1(1)–(3) by an initial forcing. Note
that the assumptions on λ in Theorem 5.4 are satisfied by [7, Exercise 12, p. 70].
If λ is inaccessible, then the argument is more complicated, since we have to deal
with all the regular cardinals γ < λ. However, this was established in [14, Case B],
where a stronger version of Proposition 5.3 was shown. It was proved that there
is a forcing notion P such that, for all regular γ < λ and given non- reflecting
stationary, co-stationary subsets Sγ of λ consisting of ordinals of cofinality γ, every
ladder system on Sγ has µ-uniformization for all µ < λ. Using this stronger result
and again forcing the sets Sλ,∗

γ satisfying Theorem 5.1(1)–(3), it remains to show that

we can define the ideal J = Jλ
γ satisfying Theorem 5.1(vi) and (viii) (Theorem 5.1(vii)

is clear).
Our forcing P (from [14, 15]) is the result of a (< λ)-support iteration of length

λ+, say

〈Pi,
.

Qj : i � λ+, j < λ+〉.

Let us assume that Pγ forces the set S = Sλ
γ and the tree-like ladder system η̄ on S .

In VPγ , there exists a sequence 〈Sε = Sλ
γ,ε : ε < λ+〉 such that the following hold:

(i) Sε ⊆ S .
(ii) η < ε < λ+ implies that Sη\Sε is bounded.
(iii) ε < λ+ implies that Sε+1\Sε is stationary.

Now we define J = Jλ
γ as

J = {S ′ ⊆ S : ∃ ε < λ+ ∀ ε < ν < λ+, S ′\Sν is not stationary}.
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For each i < λ+,
.

Qi forces µi-uniformization for the ladder system

(
.

Ai,
.

fi), where
.

fi =
〈 .

fiδ : δ ∈
.

S i

〉
.

Here
.

S i and
.

fiδ are Pi-names for a member of
.

Aδ (µi). Thus we obtain � ‘
.

S i ⊆
.

S is
stationary and there is ε < λ+ such that (∀ ε < η < λ+)

(
.

S i ∩
.

Sη\
.

S ε)

is not stationary’. A condition in
.

Qi is, for instance, given by g : α −→ µi such that

δ ∈
.

S i, δ � α implies that fiδ ⊆∗ g.
It remains to show that �S ′ holds for S ′ �∈ J . Choose i < λ+ such that S ′ comes

from VPi . For some j ∈ (i, λ+), Qj is adding λ Cohen reals, and we can interpret it as
adding a diamond sequence 〈ρε : ε ∈ S ′〉 by initial segments. Trivially, in VPj+1 , �S ′

holds, and we may work in VPj+1 now. For χ large enough, we can find for every
x ∈ H (χ (λ)) an increasing continuous sequence

N̄ = 〈Ni : i < λ〉
of elementary submodels of H(χ(λ), ε, <∗) of cardinality less than λ such that x ∈ N0,
S ′ ∈ N0 and N̄ �(i+1)∈ Ni+1 for all i < λ. Let E = {δ < λ : Nδ ∩ λ = δ}, which is
a cub in λ. Thus, for δ ∈ E, for every p ∈ (P/Pj+1) ∩ Nδ , there is a condition
p � q ∈ P/Pj+1 which is (Nδ, P/Pj+1) generic and forces a value to G ∩ Nδ . It is
known that we can now replace the diamond sequence on S ′ which we have in
VP/Pj+1 by one that is preserved by forcing with P/Pj+1, since P/Pj+1 adds no new
subsets of λ of length less than λ, and by the strategical completeness. This finishes
the proof. �

6. Application to Kulikov’s question

Finally we show that there is a model of ZFC and GCH in which Kulikov’s
question has a negative answer, this is to say that, for a given group T and any
cardinal λ large enough, there is no λ-universal group for T . This is in contrast to
the results in Gödel’s universe V = L; see [17].

Definition 6.1. Let T ,H be groups, where H is torsion-free with |T | < λ = |H |,
where H has a λ-filtration {Hα : α < λ}. Moreover, let S be as in Theorem 5.1(ii).
Then

Sλ
γ [H,T ] = {δ ∈ S : Ext(Hδ+1/Hδ, T ) �= 0}.

Note that Sλ
γ [H,T ] depends on the filtration of H , which could be traded into an

invariant of H , namely

ΓS
H (T ) = {E ⊆ S : there exists a cub C ⊆ λ such that E ∩ C = Sλ

γ [H,T ] ∩ C}.

Theorem 6.2. Let T ,H be groups, where H is torsion-free with |T | < λ = |H |. If
S = Sλ

γ [H,T ] and �S holds, then Ext (H,T ) �= 0.

Proof. The proof is standard, and can be found, for instance, in [1, Theorem
1.15, p. 353]. �
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We shall now work in the model VP obtained in Theorem 5.1. Thus all the
results will be consistent with ZFC and GCH. The symbol

(
VP)

indicates that the
statement holds in our model VP.

Theorem 6.3 (VP). Let T be an abelian group with |T | < λ and let G be (T , λ, γ)-
suitable for γ < λ regular, γ = cf (µ) for λ = µ+. If λ > 2(|T |γ) or µ is regular, then
there is no λ-universal group for T .

Proof. Assume that there is a λ-universal group U for T . If λ > 2(|T |γ), then for
ε < λ+ we apply Theorem 4.6 to Sλ

γ,ε, T , G and the tree-like ladder system η̄ε on Sλ
γ,ε

which comes from Theorem 5.1(vii). Note that no Sλ
γ,ε reflects in any α < λ and that

η̄ε has 2(|T |γ)-uniformization since λ > 2(|T |γ) (and µ > 2(|T |γ) if λ = µ+, µ singular).
If µ is regular, then we apply Theorem 4.9 instead of Theorem 4.6. Note that �µ

holds in VP by Theorem 5.1(1)–(3). Hence, for each ε < λ+, we obtain a torsion-free
group Hε =

⋃
α∈λ Hε,α satisfying Ext(Hε, T ) = 0 and Ext(Hε,α+1/Hε,α, T ) �= 0 for all

α ∈ Sλ
γ [Hε, T ] = Sλ

γ,ε. The universal group U allows an embedding iε : Hε −→ U

for all ε � λ+. We claim that Sλ
γ,ε [Hε, T ] ⊆ Sλ

γ [U,T ] modulo a non-stationary set
for each ε < λ+. To see this, choose a λ-filtration U =

⋃
α∈λ Uα of U such that

Ext(Uα+1/Uα, T ) = 0 if and only if for some β > α we have Ext
(
Uβ/Uα, T

)
= 0. Fix

ε < λ+; then there is a cub Cε ⊆ λ such that for all α ∈ Cε, we have Hε,α = Uα ∩ Hε.
Thus for α < β ∈ Cε, it follows that Hε,β/Hε,α = (Uβ ∩ Hε)/ (Uα ∩ Hε) ⊆ Uβ/Uα,
and hence Ext(Hε,β/Hε,α, T ) �= 0 implies that Ext(Uβ/Uα, T ) �= 0. Therefore, also,
Ext(Uα+1/Uα, T ) �= 0 and Cε ⊆ Sλ

γ [U,T ]. Thus, by the definition of the normal ideal

J (see Theorem 5.1(viii)), we have S̄ = Sλ
γ [U,T ] �∈ J , and therefore �S̄ holds by

Theorem 5.1(vi). Hence Ext (U,T ) �= 0 by Theorem 6.2, a contradiction. �

From (VP � GCH), it follows that

2(|T |γ) � max{γ++, |T |++}

for any group T .

Corollary 6.4 (VP). Let T be a group not cotorsion with |T | < λ. If λ is strongly
inaccessible, then there is no λ-universal group for T .

Proof. Since λ is strongly inaccessible it is a limit ordinal, and we may choose
γ = ω. Moreover, for every α < λ, we have 2α < λ; hence λ > 2(|T |ω). Lemma 3.2
implies that there is a (T , λ, ω)-suitable group for T , and hence Theorem 6.3 shows
that there is no λ-universal group for T . �

Corollary 6.5 (VP). Let T be a group not cotorsion such that |T |+ < λ. If
λ = µ+ and cf (µ) = ω, then there is no λ-universal group for T .

Proof. There is a (T , λ, ω)-suitable group by Lemma 3.2. Since cf (µ) = ω, we
have λ > 2(|T |ω), and hence we may choose γ = ω and apply Theorem 6.3 to see that
there is no λ-universal group for T . �
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Corollary 6.6 (VP). Let T be a group not cotorsion and let H be an epimorphic
image of T such that |T | < λ and |H | � cf (µ) if λ = µ+. If µ exists and is singular,
then let

2(|T |cf(µ)) < λ,

and 2(|T |ω) < λ otherwise. Then T has no λ-universal group.

Proof. We choose γ = ω if λ is a limit ordinal and γ = cf (µ) if λ = µ+. By
Theorem 5.1(1)–(3), there exists a stationary non-reflecting set S ⊆ γ consisting of
limit ordinals of cofinality ω such that �S holds. By assumption, we may apply
Proposition 3.5 to S , H and λ, γ to obtain a (T , λ, γ)-suitable group G. Since λ > 2(|T |γ)

or µ is regular, we apply Theorem 6.3 to see that there is no λ-universal group
for T . �

Corollary 6.7 (VP). For any group T not cotorsion and any cardinal λ, there
exists a regular uncountable cardinal δ � λ such that there is no δ-universal group
for T .

Corollary 6.8 (VP). If T is a torsion group not cotorsion with |T | regular, then
there is no λ-universal group for T for any regular cardinal λ > |T |.

Proof. Let T and λ be as stated. If λ is strongly inaccessible, then Corollary 6.4
applies. Hence assume that λ = κ+. Thus |T | � κ, and by Proposition 3.5 there
exists a (T , λ, cf (κ))-suitable group G for T . If κ is regular, then Theorem 6.3 shows
that there is no λ-universal group for T . If κ is singular, then κ > |T |++, since |T |
is regular. Hence

λ > 2(|T |cf(κ)),

and again Corollary 6.8 follows from Theorem 6.3. �

Corollary 6.9 (VP). There is no λ-universal Whitehead group for all λ > ℵ2.
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