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Abstract

The splitting number s can be singular. The key method is to construct a forcing poset with finite support
matrix iterations of ccc posets introduced by Blass and Shelah (1989).
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1. Introduction

The cardinal invariants of the continuum discussed in this article are very well known (see
[4, van Douwen, p 111]) so we just give a brief reminder. They deal with the mod finite ordering
of the infinite subsets of the integers. A set S ⊂ ω is unsplit by a family Y ⊂ [ω]ℵ0 if S is
mod finite contained in one member of {Y, ω \ Y } for each Y ∈ Y . The splitting number s is
the minimum cardinal of a family Y for which there is no infinite set unsplit by Y (equivalently
every S ∈ [ω]ℵ0 is split by some member of Y). It is mentioned in [2] that it is currently unknown
if s can be a singular cardinal.

Proposition 1.1. The cofinality of the splitting number is not countable.

Proof. Assume that θ is the supremum of {κn : n ∈ ω} and that there is no splitting family of
cardinality less than θ . Let Y = {Yα : α < θ} be a family of subsets of ω. Let S0 = ω and
by induction on n, choose an infinite subset Sn+1 of Sn so that Sn+1 is not split by the family
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{Yα : α < κn}. If S is any pseudointersection of {Sn : n ∈ ω}, then S is not split by any member
of Y . □

One can easily generalize the previous result and proof to show that the cofinality of the
splitting number is at least t. In this paper we prove the following.

Theorem 1.2. If κ is any uncountable regular cardinal, then there is a λ > κ with cf(λ) = κ

and a ccc forcing P satisfying that s = λ in the forcing extension.

To prove the theorem, we construct P using matrix iterations.

2. A special splitting family

Definition 2.1. Let us say that a family {xi : i ∈ I } ⊂ [ω]ω is θ -Luzin (for an uncountable
cardinal θ ) if for each J ∈ [I ]θ ,

⋂
{xi : i ∈ J } is finite and

⋃
{xi : i ∈ J } is cofinite.

Clearly a family is θ -Luzin if every θ -sized subfamily is θ -Luzin. We leave to the reader the
easy verification that for a regular uncountable cardinal θ , each θ -Luzin family is a splitting
family. A poset being θ -Luzin preserving will have the obvious meaning. For example, any poset
of cardinality less than a regular cardinal θ is θ -Luzin preserving.

Lemma 2.2. If θ is a regular uncountable cardinal then any ccc finite support iteration of
θ -Luzin preserving posets is again θ -Luzin preserving.

Proof. We prove this by induction on the length of the iteration. Fix any θ -Luzin family
{xi : i ∈ I } and let ⟨⟨Pα : α ≤ γ ⟩, ⟨Q̇α : α < γ ⟩⟩ be a finite support iteration of ccc posets
satisfying that Pα forces that Q̇α is ccc and θ -Luzin preserving, for all α < γ . If γ is a successor
ordinal β + 1, then for any Pβ-generic filter Gβ , the family {xi : i ∈ I } is a θ -Luzin family in
V [Gβ]. By the hypothesis on Q̇β , this family remains θ -Luzin after further forcing by Q̇β .

Now we assume that α is a limit. Let J̇0 be any Pγ -name of a subset of I and assume that
p ∈ Pγ forces that | J̇0| = θ . We must produce a q < p that forces that J̇0 is as in the definition of
θ -Luzin. There is a set J1 ⊂ I of cardinality θ satisfying that, for each i ∈ J1, there is a pi < p
with pi ⊩ i ∈ J̇0. The case when the cofinality of α not equal to θ is almost immediate. There
is a β < α such that J2 = {i ∈ J1 : pi ∈ Pβ} has cardinality θ . There is a Pβ-generic filter Gβ

such that J3 = {i ∈ J2 : pi ∈ Gβ} has cardinality θ . By the induction hypothesis, the family
{xi : i ∈ I } is θ -Luzin in V [Gβ] and so we have that

⋂
{xi : i ∈ J3} is finite and

⋃
{xi : i ∈ J3}

is co-finite. Choose any q < p in Gβ and a name J̇3 for J3 so that q forces this property for J̇3.
Since q forces that J̇3 ⊂ J̇0, we have that q forces the same property for J̇0.

Finally we assume that α has cofinality θ . Naturally we may assume that the collection
{dom(pi ) : i ∈ J1} forms a ∆-system with root contained in some β < α. Again, we may choose
a Pβ-generic filter Gβ satisfying that J2 = {i ∈ J1 : pi ↾ β ∈ Gβ} has cardinality θ . In V [Gβ],
let {J2,ξ : ξ ∈ ω1} be a partition of J2 into pieces of size θ . For each ξ ∈ ω1, apply the induction
hypothesis in the model V [Gβ], and so we have that

⋂
{xi : i ∈ J2,ξ } is finite and

⋃
{xi : i ∈ J2,ξ }

is co-finite. For each ξ ∈ ω1 let mξ be an integer large enough so that
⋂

{xi : i ∈ J2,ξ } ⊂ mξ

and
⋃

{xi : i ∈ J2,ξ } ⊃ ω \ mξ . Let m be any integer such that mξ = m for uncountably many
ξ . Choose any condition p̄ ∈ Pα so that p̄ ↾ β ∈ Gβ . We prove that for each n > m there is
a p̄n < p̄ so that p̄n ⊩ n ̸∈

⋂
{xi : i ∈ İ } and p̄n ⊩ n ∈

⋃
{xi : i ∈ İ }. Choose any ξ ∈ ω1

so that mξ = m and dom(pi ) ∩ dom( p̄) ⊂ β for all i ∈ J2,ξ . Now choose any i0 ∈ J2,ξ so that
n ̸∈ xi0 . Next choose a distinct ξ ′ with mξ ′ = m so that dom(pi ) ∩ (dom( p̄) ∪ dom(pi0 )) ⊂ β for
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all i ∈ J2,ξ ′ . Now choose i1 ∈ J2,ξ ′ so that n ∈ xi1 . We now have that p̄ ∪ pi0 ∪ pi1 is a condition
that forces {i0, i1} ⊂ İ . □

Next we introduce a σ -centered poset that will render a given family non-splitting.

Definition 2.3. For a filter D on ω, we define the Laver style poset L(D) to be the set of
trees T ⊂ ω<ω with the property that T has a minimal branching node stem(T ) and for all
stem(T ) ⊆ t ∈ T , the branching set {k : t ⌢k ∈ T } is an element of D. If D is a filter base for a
filter D∗, then L(D) will also denote L(D∗).

The name L̇ = {(k, T ) : (∃t) t ⌢k ⊂ stem(T )} will be referred to as the canonical name for
the real added by L(D).

If D is a principal (fixed) ultrafilter on ω, then L(D) has a minimum element and so is forcing
isomorphic to the trivial poset. If D is principal but not an ultrafilter, then L(D) is isomorphic
to Cohen forcing. If D is a free filter, then L(D) adds a dominating real and has similarities to
Hechler forcing. As usual, for a filter (or filter base) D of subsets of ω, we use D+ to denote the
set of all subsets of ω that meet every member of D.

Definition 2.4. If E is a dense subset of L(D), then a function ρE from ω<ω into ω1 is a rank
function for E if ρE (t) = 0 if and only if t = stem(T ) for some T ∈ E , and for all t ∈ ω<ω and
0 < α ∈ ω1, ρE (t) ≤ α providing the set {k ∈ ω : ρE (t ⌢k) < α} is in D+.

When D is a free filter, then L(D) has cardinality c, but nevertheless, if D has a base of
cardinality less than a regular cardinal θ , L(D) is θ -Luzin preserving.

Lemma 2.5. If D is a free filter on ω and if D has a base of cardinality less than a regular
uncountable cardinal θ , then L(D) is θ -Luzin preserving.

Proof. Let {xi : i ∈ θ} be a θ -Luzin family with θ as in the Lemma. Let J̇ be a L(D)-name of
a subset of θ . We prove that if

⋂
{xi : i ∈ J̇ } is not finite, then J̇ is bounded in θ . By symmetry,

it will also prove that if
⋃

{xi : i ∈ J̇ } is not cofinite, then J̇ is bounded in θ . Let ẏ be the
L(D)-name of the intersection, and let T0 be any member of L(D) that forces that ẏ is infinite.
Let M be any < θ -sized elementary submodel of H ((2c)+) such that T0,D, J̇ , and {xi : i ∈ θ}

are all members of M and such that M ∩ D contains a base for D. Let iM = sup(M ∩ θ ). If
x ∈ M ∩ [ω]ω, then Ix = {i ∈ θ : x ⊂ xi } is an element of M and has cardinality less than θ .
Therefore, if i ∈ θ \ iM , then xi does not contain any infinite subset of ω that is an element of M .
We prove that xi is forced by T0 to also not contain ẏ. This will prove that J̇ is bounded by iM .
Let T1 < T0 be any condition in L(D) and let t1 = stem(T1). We show that T1 does not force that
xi ⊃ ẏ. We define the relation ⊩w on T0 × ω to be the set

{(t, n) ∈ T0 × ω : there is no T ≤ T0, stem(T ) = t, s.t. T ⊩ n ̸∈ ẏ}.

For convenience we may write, for T ≤ T0, T⊩wn ∈ ẏ providing (stem(T ), n) is in ⊩w, and this
is equivalent to the relation that T has no stem preserving extension forcing that n is not in ẏ. Let
T2 ∈ M be any extension of T0 with stem t1. Let L denote the set of ℓ ∈ ω such that T2 ⊩w ℓ ∈ ẏ.
If L is infinite, then, since L ∈ M , there is an ℓ ∈ L \ xi . This implies that T1 does not force
xi ⊃ ẏ, since T2 ⊩w j ∈ ẏ implies that T1 fails to force that ℓ ̸∈ ẏ.

Therefore we may assume that L is finite and let ℓ be the maximum of L . Define the set
E ⊂ L(D) according to T ∈ E providing that either t1 ̸∈ T or there is a j > ℓ such that
T ⊩w j ∈ ẏ. Again this set E is in M and is easily seen to be a dense subset of L(D). By the
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choice of ℓ, we note that ρE (t1) > 0. If ρE (t1) > 1, then the set {k ∈ ω : 0 < ρE (t ⌢
1 k) < ρE (t1)}

is in D+ and so there is a k1 in this set such that t ⌢
1 k1 ∈ T1 ∩ T2. By a finite induction,

we can choose an extension t2 ⊇ t1 so that t2 ∈ T1 ∩ T2 and ρE (t2) = 1. Now, there is a
set D ∈ D ∩ M contained in {k : t ⌢

2 k ∈ T1 ∩ T2} since M contains a base for D. Also,
DE = {k ∈ D : ρE (t ⌢

2 k) = 0} is in D+. For each k ∈ DE , choose the minimal jk so that
T ⌢

2 k ⊩ jk ∈ ẏ. The set { jk : k ∈ DE } is an element of M . This set is not finite because if it were
then there would be a single j such that {k ∈ DE : jk = j} ∈ D+, which would contradict that
ρE (t2) > 0. This means that there is a k ∈ D+

E with jk ̸∈ xi , and again we have shown that T1
fails to force that xi contains ẏ. □

3. Matrix iterations

The terminology “matrix iterations” is used in [3], see also forthcoming preprint (F1222)
from the second author. The paper [3] nicely expands on the method of matrix iterated forcing
first introduced in [1].

Let us recall that a poset (P, <P ) is a complete suborder of a poset (Q, <Q) providing
P ⊂ Q, <P ⊂ <Q , and each maximal antichain of (P, <P ) is also a maximal antichain of
(Q, <Q). Note that it follows that incomparable members of (P, <P ) are still incomparable in
(Q, <Q), i.e. p1⊥P p2 implies p1⊥Q p2. We use the notation (P, <P ) <◦ (Q, <Q) to abbreviate
the complete suborder relation, and similarly use P <◦ Q if <P and <Q are clear from the
context. An element p of P is a reduction of q ∈ Q if r ̸⊥Q q for each r <P p. If P ⊂ Q,
<P ⊂ <Q , ⊥P ⊂ ⊥Q , and each element of Q has a reduction in P , then P <◦ Q. The reason
is that if A ⊂ P is a maximal antichain and p ∈ P is a reduction of q ∈ Q, then there is an
a ∈ A and an r less than both p and a in P , such that r ̸⊥Q q .

Definition 3.1. We will say that an object P is a matrix iteration if there is an infinite cardinal κ

and an ordinal γ (thence a (κ, γ )-matrix iteration) such that P = ⟨⟨PP
i,α : i ≤ κ, α ≤ γ ⟩, ⟨Q̇P

i,α :

i ≤ κ, α < γ ⟩⟩ where, for each (i, α) ∈ κ + 1 × γ and each j < i ,

(1) PP
j,α is a complete suborder of the poset PP

i,α (i.e. PP
j,α <◦ PP

i,α),

(2) Q̇P
i,α is a PP

i,α-name of a ccc poset, PP
i,α+1 is equal to PP

i,α ∗ Q̇P
i,α ,

(3) for limit δ ≤ γ , PP
i,δ is equal to the union of the family {PP

i,β : β < δ}

(4) PP
κ,α is the union of the chain {PP

j,α : j < κ}.

When the context makes it clear, we omit the superscript P when discussing a matrix iteration.
Throughout the paper, κ will be a fixed uncountable regular cardinal.

Definition 3.2. A sequence λ⃗ is κ-tall if λ⃗ = ⟨µξ , λξ : ξ < κ⟩ is a sequence of pairs of
regular cardinals satisfying that µ0 = ω < κ < λ0 and, for 0 < η < κ , µη < λη where
µη = (2sup{λξ :ξ<η})+.

Also for the remainder of the paper, we fix a κ-tall sequence λ⃗ and λ will denote the supremum
of the set {λξ : ξ ∈ κ}. For simpler notation, whenever we discuss a matrix iteration P we shall
henceforth assume that it is a (κ, γ )-matrix iteration for some ordinal γ . We may refer to a forcing
extension by P as an abbreviation for the forcing extension by PP

κ,γ .
For any poset P , any P-name Ḋ, and P-generic filter G, Ḋ[G] will denote the valuation of

Ḋ by G. For any ground model x , x̌ denotes the canonical name so that x̌[G] = x . When x is
an ordinal (or an integer) we will suppress the accent in x̌ . A P-name Ḋ of a subset of ω will
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be said to be nice or canonical if for each integer j ∈ ω, there is an antichain A j such that
Ḋ =

⋃
{{ j} × A j : j ∈ ω}. We will say that Ḋ is a nice P-name of a family of subsets of

ω just to mean that Ḋ is a collection of nice P-names of subsets of ω. We will use (Ḋ)P if we
need to emphasize that we mean the P-name. Similarly if we say that Ḋ is a nice P-name of a
filter (base) we mean that Ḋ is a nice P-name such that, for each P-generic filter, the collection
{Ḋ[G] : Ḋ ∈ Ḋ} is a filter (base) of infinite subsets of ω.

Following these conventions, the following notation will be helpful.

Definition 3.3. For a (κ, γ )-matrix P and i < κ , we let BP
i,γ denote the set of all nice PP

i,γ -names
of subsets of ω. We note that this then is the nice PP

i,γ -name for the power set of ω. As usual,
when possible we suppress the P superscript.

For a nice P-name Ḋ of a filter (or filter base) of subsets of ω, we let (Ḋ)+ denote the set
of all nice P-names that are forced to meet every member of Ḋ. It follows that (Ḋ)+ is the nice
P-name for the usual defined notion (Ḋ)+ in the forcing extension by P. We let ⟨Ḋ⟩ denote the
nice P-name of the filter generated by Ḋ. We use the same notational conventions if, for some
poset P, Ḋ is a nice P-name of a filter (or filter base) of subsets of ω.

The main idea for controlling the splitting number in the extension by P will involve having
many of the subposets being θ -Luzin preserving for θ ∈ {λξ : ξ ∈ κ}. Motivated by the fact that
posets of the form L(D) (our proposed iterands) are θ -Luzin preserving when D is sufficiently
small we adopt the name λ⃗-thin for this next notion.

Definition 3.4. For a κ-tall sequence λ⃗, we will say that a (κ, γ )-matrix-iteration P is λ⃗-thin
providing that for each ξ < κ and α ≤ γ , PP

ξ,α is λξ -Luzin preserving.

Now we combine the notion of λ⃗-thin matrix-iteration with Lemma 2.2. We adopt Kunen’s
notation that for a set I , Fn(I, 2) denotes the usual poset for adding Cohen reals (finite partial
functions from I into 2 ordered by superset).

Lemma 3.5. Suppose that P is a λ⃗-thin (κ, γ )-matrix iteration for some κ-tall sequence λ⃗.
Further suppose that Q̇i,0 is the Pi,0-name of the poset Fn(λξ , 2) for each ξ ∈ κ , and therefore
Pκ,1 is isomorphic to Fn(λ, 2). Let ġ denote the generic function from λ onto 2 added by Pκ,1

and, for i < λ, let ẋi be the canonical name of the set {n ∈ ω : ġ(i + n) = 1}. Then the family
{ẋi : i < λ} is forced by P to be a splitting family.

Proof. Let Gκ,γ be a Pκ,γ -generic filter. For each ξ ∈ κ and α ≤ γ , let Gξ,α = Gκ,γ ∩ Pξ,α . Let
ẏ be any nice Pκ,γ -name for a subset of ω. Since ẏ is a countable name, we may choose a ξ < κ

so that ẏ is a Pξ,γ -name. It is easily shown, and very well-known, that the family {ẋi : i < λξ }

is forced by Pξ,1 (i.e. Fn(λξ , 2)) to be a λξ -Luzin family. By the hypothesis that P is λ⃗-thin, we
have, by Lemma 2.2, that {ẋi : i < λξ } is still λξ -Luzin in V [G ∩ Pξ,γ ]. Since ẏ is a Pξ,γ -name,
there is an i < λξ such that ẏ[Gξ,γ ] ∩ ẋi [Gξ,γ ] and ẏ[Gξ,γ ] \ ẋi [Gξ,γ ] are infinite. □

4. The construction of P

When constructing a matrix-iteration by recursion, we will need notation and language for
extension. We will use, for an ordinal γ , Pγ to indicate that Pγ is a (κ, γ )-matrix iteration.
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Definition 4.1.

(1) A matrix iteration Pγ is an extension of Pδ providing δ ≤ γ , and, for each α ≤ δ and i ≤ κ ,
PPδ

i,α = PPγ

i,α . We can use Pγ ↾ δ to denote the unique (κ, δ)-matrix iteration extended by Pγ .
(2) If, for each i < κ , Q̇i,γ is a PP

i,γ -name of a ccc poset satisfying that, for each i < j < κ ,
Pi,γ ∗ Q̇i,γ is a complete subposet of P j,γ ∗ Q̇ j,γ , then we let P ∗ ⟨Q̇i,γ : i < κ⟩ denote the
(κ, γ + 1)-matrix ⟨⟨Pi,α : i ≤ κ, α ≤ γ + 1⟩, ⟨Q̇i,α : i ≤ κ, α < γ + 1⟩⟩, where Q̇κ,γ is the
P-name of the union of {Q̇i,γ : i < κ} and, for i ≤ κ , Pi,γ = PP

i,γ , Pi,γ+1 = PP
i,γ ∗ Q̇i,γ , and

for α < γ , (Pi,α, Q̇i,α) = (PP
i,α, Q̇P

i,α).

The following, from [3, Lemma 3.10], shows that extension at limit steps is canonical.

Lemma 4.2. If γ is a limit and if {Pδ
: δ < γ } is a sequence of matrix iterations satisfying that

for β < δ < γ , Pδ ↾ β = Pβ , then there is a unique matrix iteration Pγ such that Pγ ↾ δ = Pδ

for all δ < γ .

Proof. For each δ < γ and i < κ , we define PPγ

i,δ to be PPδ

i,δ and Q̇Pγ

i,δ to be Q̇Pδ+1

i,δ . It follows that
Q̇Pγ

i,δ is a PPγ

i,δ -name. Since γ is a limit, the definition of PPγ

i,γ is required to be
⋃

{PPγ

i,δ : δ < γ } for
i < κ . Similarly, the definition of PPγ

κ,γ is required to be
⋃

{PPγ

i,γ : i < κ}. Let us note that PPγ

κ,γ is
also required to be the union of the chain

⋃
{PPγ

κ,δ : δ < γ }, and this holds by assumption on the
sequence {Pδ

: δ < γ }.
To prove that Pγ is a (κ, γ )-matrix it remains to prove that for j < i ≤ κ , and each q ∈ PPγ

i,γ ,
there is a reduction p in PPγ

j,γ . Since γ is a limit, there is an α < γ such that q ∈ PPα

i,α and, by
assumption, there is a reduction, p, of q in PPα

j,α . By induction on β (α ≤ β ≤ γ ) we note that

q ∈ PPβ

i,β and that p is a reduction of q in PPβ

j,β . For limit β it is trivial, and for successor β it
follows from condition (1) in the definition of matrix iteration. □

We also will need the next result taken from [3, Lemma 13], which they describe as well
known, for stepping diagonally in the array of posets.

Lemma 4.3. Let P,Q be partial orders such that P is a complete suborder of Q. Let Ȧ be a
P-name for a forcing notion and let Ḃ be a Q-name for a forcing notion such that ⊩Q Ȧ ⊂ Ḃ,
and every P-name of a maximal antichain of Ȧ is also forced by Q to be a maximal antichain of
Ḃ. Then P ∗ Ȧ <◦ Q ∗ Ḃ

Let us also note if Ḃ is equal to Ȧ in Lemma 4.3, then the hypothesis and the conclusion of
the Lemma are immediate. On the other hand, if Ȧ is the P-name of L(Ḋ) for some P-name of a
filter Ḋ, then the Q-name of L(Ḋ) is not necessarily equal to Ȧ.

Lemma 4.4 ([5, 1.9]). Suppose that P,Q are posets with P <◦ Q. Suppose also that Ḋ0 is a
P-name of a filter on ω and Ḋ1 is a Q-name of a filter on ω. If ⊩Q Ḋ0 ⊆ Ḋ1 then P ∗L(Ḋ0) is a
complete subposet of Q ∗ L(Ḋ1) if either of the two equivalent conditions hold:

(1) ⊩Q ((Ḋ0)+)P ⊆ Ḋ+

1 ,
(2) ⊩Q Ḋ1 ∩ V P

⊆ ⟨Ḋ0⟩ (where V P is the class of P-names).

Proof. Let Ė be any P-name of a maximal antichain of L(Ḋ0). By Lemma 4.3, it suffices to
show that Q forces that every member of L(Ḋ1) is compatible with some member of Ė . Let G
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be any Q-generic filter and let E denote the valuation of Ė by G ∩ P. Working in the model
V [G ∩P], we have the function ρE as in Definition 2.4. Choose δ ∈ ω1 satisfying that ρE (t) < δ

for all t ∈ ω<ω. Now, working in V [G], we consider any T ∈ L(Ḋ1) and we find an element
of E that is compatible with T . In fact, by induction on α < δ, one easily proves that for each
T ∈ L(Ḋ1) with ρE (stem(T )) ≤ α, T is compatible with some member of E . □

Definition 4.5. For a (κ, γ )-matrix-iteration P, and ordinal iγ < κ , we say that an increasing
sequence ⟨Ḋi : i < κ⟩ is a (P, λ⃗(iγ ))-thin sequence of filter bases, if for each i < j < κ

(1) Ḋi is a subset of Bi,γ (hence a nice PP
i,γ -name)

(2) ⊩Pi,γ Ḋi is a filter with a base of cardinality at most µiγ ,
(3) ⊩P j,γ ⟨Ḋ j ⟩ ∩ Bi,γ ⊆ ⟨Ḋi ⟩.

Notice that a (P, λ⃗(iγ ))-thin sequence of filter bases can be (essentially) eventually constant.
Thus we will say that a sequence ⟨Ḋi : i ≤ j⟩ (for some j < κ) is a (P, λ⃗(iγ ))-thin sequence
of filter bases if the sequence ⟨Ḋi : i < κ⟩ is a (P, λ⃗(iγ ))-thin sequence of filter bases where Ḋi

is the Pi,γ -name for Bi,γ ∩ ⟨Ḋ j ⟩ for j < i ≤ κ . When P is clear from the context, we will use
λ⃗(iγ )-thin as an abbreviation for (P, λ⃗(iγ ))-thin.

Corollary 4.6. For a (κ, γ )-matrix-iteration P, ordinal iγ < κ , and a (P, λ⃗(iγ ))-thin sequence
of filter bases ⟨Ḋξ : i < κ⟩, P ∗ ⟨Q̇i,γ : i ≤ κ⟩ is a γ + 1-extension of P, where, for each i ≤ iγ ,
Q̇i,γ is the trivial poset, and for iγ ≤ i < κ , Q̇i,γ is L(Ḋi ).

Definition 4.7. Whenever ⟨Ḋi : i < κ⟩ is a (P, λ⃗(iγ ))-thin sequence of filter bases, let
P ∗ L(⟨Ḋi : iγ ≤ i < κ⟩) denote the γ + 1-extension described in Corollary 4.6.

This next corollary is immediate.

Corollary 4.8. If P is a λ⃗-thin (κ, γ )-matrix and if ⟨Ḋi : i < κ⟩ is a (P, λ⃗(iγ ))-thin sequence of
filter bases, then P ∗ L(⟨Ḋi : iγ ≤ i < κ⟩) is a λ⃗-thin (κ, γ + 1)-matrix.

We now describe a first approximation of the scheme, K(λ⃗), of posets that we will be using to
produce the model.

Definition 4.9. For an ordinal γ > 0 and a (κ, γ )-matrix iteration P, we will say that P ∈ K(λ⃗)
providing for each 0 < α < γ ,

(1) for each i ≤ κ , PP
i,1 is Fn(λi , 2), and

(2) there is an iα = iP
α < κ and a (P ↾ α, λ⃗(iα))-thin sequence ⟨Ḋα

i : i < κ⟩ of filter bases, such
that P ↾ α + 1 is equal to P ↾ α ∗ L(⟨Ḋα

i : iα ≤ i < κ⟩).

For each 0 < α < γ , we let Ḋα
κ denote the P ↾ α-name of the union

⋃
{Ḋα

i : iα ≤ i < κ},
and we let L̇α denote the canonical P ↾ α + 1-name of the subset of ω added by L(Dα

κ ).

Let us note that each P ∈ K(λ⃗) is λ⃗-thin. Furthermore, by Lemma 3.5, this means that each
P ∈ K(λ⃗) forces that s ≤ λ. We begin a new section for the task of proving that there is a
P ∈ K(λ⃗) that forces that s ≥ λ.

It will be important to be able to construct (P, λ⃗(iγ ))-thin sequences of filter bases, and it
seems we will need some help.
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Definition 4.10. For an ordinal γ > 0 and a (κ, γ )-matrix iteration P we will say that P ∈ H(λ⃗)
if P is in K(λ⃗) and for each 0 < α < γ , if iα = iP

α > 0 then ω1 ≤ cf(α) ≤ µiα and there is a
βα < α such that

(1) for βα ≤ ξ < α, iξ ∈ {0, iα},
(2) if βα ≤ η < α, iη > 0 and ξ = η + ω1 ≤ α, then L̇η ∈ Ḋξ

iξ
, and Piξ ,ξ ⊩ Ḋα

iξ
has a

descending mod finite base of cardinality ω1,
(3) if βα < ξ ≤ α, iξ > 0, and η + ω1 < ξ for η < ξ , then {L̇η : βα ≤ η < α, cf(η) ≥ ω1} is a

base for Ḋξ

iξ
.

5. Producing λ⃗-thin filter sequences

In this section we prove this main lemma.

Lemma 5.1. Suppose that Pγ
∈ H(λ⃗) and that Y is a set of fewer than λ nice Pγ -names of

subsets of ω, then there is a δ < γ + λ and an extension Pδ of Pγ in H(λ⃗) that forces that the
family Y is not a splitting family.

The main theorem follows easily.

Proof of Theorem 1.2. Let θ be any regular cardinal so that θ<λ
= θ (for example, θ = (2λ)+).

Construct Pθ
∈ H(λ⃗) so that for all Y ⊂ Bκ,θ with |Y| < λ, there is a γ < δ < θ so that Y ⊂ Bκ,γ

and, by applying Lemma 5.1, such that Pθ ↾ δ forces that Y is not a splitting family. □

We begin by reducing our job to simply finding a (P, λ⃗(iγ ))-thin sequence.

Definition 5.2. For a (κ, γ )-matrix-iteration Pγ , we say that a subset E of Bκ,γ is (Pγ , λ⃗(iγ ))-thin
filter subbase if, iγ < κ , |E | ≤ µiγ , and the sequence ⟨⟨E ∩ Bi,γ ⟩ : i < κ⟩ is a (Pγ , λ⃗(iγ ))-thin
sequence of filter bases.

Lemma 5.3. For any Pγ
∈ H(λ⃗), and any (Pγ , λ⃗(iγ ))-thin filter base E , there is an α ≤

γ +µiγ +1 and extensions Pα, Pα+1 of Pγ in H(λ⃗), such that, Pα+1
= Pα

∗L(⟨Ḋα
i : iα ≤ i < κ⟩)

and Pα forces that E ∩ Bi,γ is a subset of Ḋα
i for all i < κ .

Proof. The case iγ = 0 is trivial, so we assume iγ > 0. There is no loss of generality to
assume that E ∩ Biγ ,γ has character µiγ . Let {Ėξ : ξ < µiγ } ⊂ E ∩ Biγ ,γ enumerate a filter
base for ⟨E⟩ ∩ Biγ ,γ . We can assume that this enumeration satisfies that Ėξ \ Ėξ+1 is forced to
be infinite for all ξ < µiγ . Let A be any countably generated free filter on ω that is not principal
mod finite. By induction on ξ < µiγ we define Pγ+ξ by simply defining iγ+ξ and the sequence
⟨Ḋ

γ+ξ

i : iγ+ξ ≤ i ≤ κ⟩. We will also recursively define, for each ξ < µiγ , a Pγ+ξ -name Ḋξ

such that Pγ+ξ forces that Ḋξ ⊂ Ėξ . An important induction hypothesis is that {Ḋη : η < ξ} ∪

{Ėζ : ζ < µiγ } ∪ E is forced to have the finite intersection property.
For each ξ < γ + ω1, let iξ = 0 and Ḋ

ξ

i be the Pξ -name ⟨A⟩ ∩ Bi,ξ for all i ≤ κ . The
definition of Ḋ0 is simply Ė0. By recursion, for each η < ω1 and ξ = η + 1, we define Ḋξ

to be the intersection of Ḋη and Ėξ . For limit ξ < ω1, we note that Piγ ,ξ forces that L(⟨A⟩) is
isomorphic to L(⟨{Ḋη ∩ Ėξ : η < ξ}⟩). Therefore, we can let Ḋξ be a Pξ+1-name for the generic
real added by L(⟨{Ḋη ∩ Ėξ : η < ξ}⟩). A routine density argument shows that this definition
satisfies the induction hypothesis.
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The definition of iγ+ω1 is iγ and the definition of Ḋγ+ω1
iγ is the filter generated by {Ḋξ : ξ <

ω1}. The definition of Ḋω1 is L̇γ+ω1 .
Let S denote the set of η < µiγ with uncountable cofinality. We now add additional induction

hypotheses:

(1) if ζ = sup(S ∩ ξ ) < ξ and ξ = ν + 1, then Ḋξ = Ḋν ∩ Ėξ , and iξ = 0 and Ḋ
γ+ξ

i = ⟨A⟩

for all i ≤ κ

(2) if ζ = sup(S ∩ ξ ) < ξ and ξ is a limit of countable cofinality, then iξ = 0 and
Ḋ

γ+ξ

i = ⟨A⟩ for all i ≤ κ , and Ḋξ is forced by Pγ+ξ+1 to be the generic real added
by L({Ḋη ∩ Ėξ : ζ ≤ η < ξ}),

(3) if ζ = sup(S ∩ ξ ) and ξ = ζ + ω1, then iξ = iγ , Ḋγ+ξ

iξ
is the filter generated by

{Ėξ ∩ Ḋη : ζ ≤ η < ξ} and Ḋξ is L̇γ+ξ ,
(4) if S ∩ ξ is cofinal in ξ and cf(ξ ) > ω, then iξ = iγ and Ḋ

γ+ξ

iξ
is the filter generated by

{Ḋγ+η : η ∈ S ∩ ξ} and Ḋξ = L̇γ+ξ ,
(5) if S ∩ ξ is cofinal in ξ and cf(ξ ) = ω, then iξ = 0 and Ḋ

γ+ξ

i = ⟨A⟩ for all i ≤ κ , and
Ḋξ is forced by Pγ+ξ+1 to be the generic real added by L({Ḋηn ∩ Ėξ : n ∈ ω}), where
{ηn : n ∈ ω} is some increasing cofinal subset of S ∩ (γ, ξ ).

It should be clear that the induction continues to stage µiγ and that Pγ+ξ
∈ H(λ⃗(iγ )) for all

ξ ≤ µiγ , with βγξ
= γ being the witness to Definition 4.10 for all ξ with cf(ξ ) > ω.

The final definition of the sequence ⟨Ḋδ
i : iδ = iγ ≤ i ≤ κ⟩, where δ = γ + µiγ is that Ḋδ

iγ
is the filter generated by {L̇γ+ξ : cf(ξ ) > ω}, and for iγ < i ≤ κ , Ḋδ

i is the filter generated by
Ḋδ

iγ ∪ (E ∩ Bi,γ ). □

Lemma 5.4. Suppose that E is a (Pγ , λ⃗(iγ ))-thin filter base. Also assume that i < κ and α ≤ γ

and E1 ⊂ Bi,α is a (Pα, λ⃗(iγ ))-thin filter base satisfying that ⟨E⟩ ∩ Bi,α ⊂ ⟨E1⟩, then E ∪ E1 is a
(Pγ , λ⃗(iγ ))-thin filter subbase.

Proof. Let E2 be equal to E ∪E1. The fact that each member of the sequence ⟨Ḋ j = ⟨E2 ∩B j,γ ⟩ :

j < κ⟩ is a name of a filter base with character at most µiγ is immediate. Now we verify that
if j1 < j2 < κ , then ⊩P j2,γ

Ḋ j2 ∩ B j1,γ ⊂ Ḋ j1 . Let ḃ ∈ B j2,γ and suppose there are p ∈ P j2,γ ,
Ė0 ∈ E∩B j2,γ , and Ė1 ∈ E1 such that p ⊩ b∩ Ė0 ∩ Ė1. It suffices to produce an Ė ∈ ⟨E2⟩∩B j1,γ

satisfying that p ⊩ ḃ ∩ Ė = ∅. First, using that E is (Pγ , λ⃗(iγ ))-thin, choose Ė2 ∈ ⟨E⟩ ∩ B j1,γ

such that p ⊩ (ḃ \ Ė0) ∩ Ė2 = ∅. Equivalently, we have that p ⊩ (ḃ ∩ Ė2) ⊂ Ė0, and therefore
p ⊩ (ḃ∩ Ė2)∩ Ė1 = ∅. Since Ė1 is a P j2,α-name, there is a P j1,α-name (which we can denote as)
(ḃ∩ Ė2) ↾ α satisfying that p ⊩ Ė2 ∩ (ḃ∩ Ė2) ↾ α is empty and that p ⊩ (ḃ∩ Ė2) ⊂ (ḃ∩ Ė2) ↾ α.
Now using that E1 is (Pα, λ⃗(iγ ))-thin, choose Ė3 ∈ ⟨E1⟩ ∩ B j1,α so that p ⊩ Ė3 ∩ (ḃ ∩ Ė2) ↾ α is
empty. Naturally we have that p ⊩ Ė3 ∩ (ḃ ∩ Ė2) is also empty. This completes the proof since
Ė2 ∩ Ė3 is in ⟨E2⟩ ∩ B j1,γ . □

Let Pγ
∈ H(λ⃗) and let ẏ ∈ Bκ,γ . For a family E ⊂ Bκ,γ and condition p ∈ Pγ say that p

forces that E measures ẏ if p⊩Pγ {ẏ, ω \ ẏ}∩ ⟨E⟩ ̸= ∅. Naturally we will just say that E measures
ẏ if 1 forces that E measures ẏ.

Given Lemma 5.3, it will now suffice to prove:

Lemma 5.5. If Y ⊂ Bκ,γ for some Pγ
∈ H(λ⃗) and |Y| ≤ µiγ for some iγ < κ , then there is a

(Pγ , λ⃗(iγ ))-thin filter E ⊂ Bκ,γ that measures every element of Y .
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In fact, to prove Lemma 5.5, it is evidently sufficient to prove:

Lemma 5.6. If Pγ
∈ H(λ⃗), ẏ ∈ Bκ,γ , and if E is a (Pγ , λ⃗(iγ ))-thin filter, then there is a family

E1 ⊃ E measuring ẏ that is also a (Pγ , λ⃗(iγ ))-thin filter.

Proof. Throughout the proof we suppress mention of Pγ and refer instead to component member
posets Pi,α, Q̇i,α of Pγ . Let i ẏ be minimal such that ẏ is in Bi ẏ ,γ . Proceeding by induction, we
can assume that the lemma holds for all ẋ ∈ B j,γ and all j < i ẏ .

We can replace ẏ by any ẋ ∈ Bi ẏ ,γ that has the property that 1 ⊩ ẋ ∈ {ẏ, ω \ ẏ} since if we
measure ẋ then we also measure ẏ. With this reduction then we can assume that no condition
forces that ω \ ẏ is in the filter generated by E .

Fact 1. If i ẏ ≤ iγ , then there is a Ė ∈ Bi ẏ ,γ such that E ∪ {Ė} is contained a (Pγ , λ⃗(iγ ))-thin
filter that measures ẏ.

Proof of Fact 1. It is immediate that ⟨{ẏ} ∪ (Bi ẏ ,γ ∩ E)⟩ is a (Pγ , λ⃗(iγ ))-thin filter. Therefore, by
Lemma 5.4, E ∪ {ẏ} is a (Pγ , λ⃗(iγ ))-thin filter subbase. □

We may thus assume that 0 < i ẏ and that the Lemma has been proven for all members of Bi,γ
for all i < i ẏ . Similarly, let αẏ be minimal so that ẏ ∈ Bi ẏ ,αẏ , and assume that the Lemma has
been proven for all members of Bi ẏ ,β for all β < αẏ . We skip proving the easy case when αẏ = 1
and henceforth assume that 1 < αẏ . Notice also that αẏ has countable cofinality since Pi ẏ ,γ

is ccc.
Now choose an elementary submodel M of H ((2λ·γ )+) containing λ⃗, Pγ , E, ẏ and so that M

has cardinality equal to µiγ and, by our cardinal assumptions, Mλ j ⊂ M for all j < iγ . Naturally
this implies that Mω

⊂ M .
By the inductive assumption we may assume that there is an E1 ⊃ E that is (Pγ , λ⃗(iγ ))-thin

and measures every element of M ∩ B j,γ for j < i ẏ as well as every element of M ∩ Bi ẏ ,β for
all β ∈ M ∩ αẏ . Moreover, it is easily checked that we can assume that E1 is a subset of M .
Furthermore, we may assume that E1 contains a maximal family of subsets of M ∩ Bi ẏ ,αẏ that
forms a (Pγ , λ⃗(iγ ))-thin filter subbase.

Fact 2. There is a maximal antichain A ⊂ Pi ẏ ,γ and a subset A1 ⊂ A such that

(1) each p ∈ A1 forces that E1 measures ẏ,
(2) for each p ∈ A \ A1, p forces that there is an i p < i ẏ such that Bi p,γ ∩ ⟨E1 ∪ {ẏ}⟩ is not

generated by the elements in M,
(3) for each p ∈ A \ A1, p forces that there is a jp < i ẏ such that i p ≤ jp and

B jp,γ ∩ ⟨E1 ∪ {ω \ ẏ}⟩ is not generated by the elements in M.

Proof of Fact 2. Suppose that p ∈ Pi ẏ ,γ forces that the conclusion (2) fails. We have already
arranged that p⊩Pi ẏ ,γ

ẏ ∈ ⟨E1 ∩ Bi ẏ ,γ ⟩
+. Define Ė ∈ Bi ẏ ,γ so that p forces Ė = ẏ and each

q ∈ Pi ẏ ,γ ∩ p⊥ forces that Ė = ω. It is easily checked that Bi ẏ ,γ ∩ ⟨E1 ∪ {Ė}⟩ is then (Pγ , λ⃗(iγ ))-
thin and that p forces that it measures ẏ. This condition ensures that p is compatible with an
element of A1.

If (2) holds but (3) fails, then by a symmetric argument as in the previous paragraph we can
again define Ė so that Bi ẏ ,γ ∩⟨E1 ∪{Ė}⟩ is then (Pγ , λ⃗(iγ ))-thin and that p forces that it measures
ω \ ẏ. □
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If by increasing M we can enlarge A1 we simply do so. Since Pγ is ccc we may assume
that this is no longer possible, and therefore we may also assume that A is a subset of M . Now
we choose any p ∈ A \ A1. It suffices to produce an Ė p ∈ Bi ẏ ,γ that can be added to E1 that
measures ẏ and satisfies that q ⊩ Ė p = ω for all q ∈ p⊥. This is because we then have that
E1 ∪ {Ė p : p ∈ A \ A1} is contained in a λ⃗(iγ )-thin filter that measures ẏ.

Fact 3. There is an α such that αẏ = α + 1.

Proof of Fact 3. Otherwise, let j = i p and for each r < p in Pi ẏ ,αẏ , choose β ∈ M ∩ αẏ such
that r ∈ Pi ẏ ,β , and define a name ẏ[r ] in M ∩ B j,γ according to (ℓ, q) ∈ ẏ[r ] providing there is
a pair (ℓ, pℓ) ∈ ẏ such that q< j pℓ and q ↾ β is in the set M ∩ P j,β \ (r ∧ pℓ ↾ β)⊥ . This set,
namely ẏ[r ], is in M because P j,β is ccc and Mω

⊂ M .
We prove that r forces that ẏ[r ] contains ẏ. Suppose that r1 < r and there is a pair (ℓ, pℓ) ∈ ẏ

with r1 < pℓ. Choose an r2 ∈ P j,γ so that r2< jr1. It suffices to show r2 ⊩ ℓ ∈ ẏ[r ]. Let q< j pℓ

with q ∈ M . Then r2 ̸⊥ pℓ implies r2 ̸⊥ q . Since r2 was any < j -projection of r1 we can assume
that r2 < q. Since r2 ↾ β is in (P j,β ∩ (r ∧ pℓ ↾ β)⊥)⊥, it follows that q ↾ β ̸∈ (r ∧ pℓ ↾ β)⊥.
This implies that (ℓ, q) ∈ ẏ[r ] and completes the proof that r2 ⊩ ℓ ∈ ẏ[r ].

Now assume that β < αẏ and r ⊩ ḃ ∩ Ė ∩ ẏ is empty for some r < p in Pi ẏ ,β , ḃ ∈ B j,γ ,
and Ė ∈ E1 ∩ Bi ẏ ,γ . Let ẋ = (Ė ∩ ẏ)[r ] (defined as above for ẏ[r ]). We complete the proof of
Fact 3 by proving that r ⊩ ḃ ∩ ẋ is empty. Since each are in B j,γ , we may choose any r1< jr ,
and assume that r1 ⊩ ℓ ∈ ḃ ∩ ẋ . In addition we can suppose that there is a pair (ℓ, q) ∈ ẋ such
that r1 < q . The fact that (ℓ, q) ∈ ẋ means there is a pℓ with (ℓ, pℓ) in the name Ė ∩ ẏ such
that q< j pℓ. Since r1 ∈ P j,γ and r1 < q, it follows that r1 ̸⊥ pℓ. Now it follows that r1 has an
extension forcing that ℓ ∈ ḃ ∩ (Ė ∩ ẏ) which is a contradiction. □

Fact 4. i ẏ = iα and so also i p < iα .

Proof of Fact 4. Since Pi,α+1 = Pi,α for i < iα , we have that iα ≤ i ẏ . Now assume that iα < i ẏ
and we proceed much as we did in Fact 3 to prove that i p does not exist. Assume that r < p in
Pi ẏ ,α+1 and r ⊩ ḃ∩(Ė ∩ ẏ) is empty for some Ė ∈ M ∩⟨E1⟩∩Bi ẏ ,γ and ḃ ∈ Bi p,γ . It follows from
Lemma 5.4 that we can simply assume that Ė ∈ E1 ∩ Bi ẏ ,α+1, and similarly that ḃ ∈ Bi p,α+1.

Let Ṫα be the Pi ẏ ,α-name such that r ↾ α ⊩ r (α) = Ṫα ∈ L(Dα
i ẏ

). We may assume that there is
a tα ∈ ω<ω such that r ↾ α ⊩ tα = stem(Ṫα).

Choose any M ∩Piα ,α-generic filter Ḡ such that r ↾ α ∈ Ḡ+. Since Piα ,α is ccc and Mω
⊂ M ,

it follows that M[Ḡ] is closed under ω-sequences in the model V [Ḡ].
In this model, define an L(Dα

iα )-name ẋ . A pair (ℓ, Tℓ) ∈ ẋ if tα ≤ stem(Tℓ) ∈ Tℓ ∈ L(Dα
iα )

and for each stem(Tℓ) ≤ t ∈ Tℓ, there is a pair (ℓ, qℓ,t ) ∈ M in the name (ẏ ∩ Ė) such that
qℓ,t ↾ α ∈ Ḡ+, qℓ,t ↾ α ⊩ t = stem(qℓ,t (α)), and (qℓ,t ↾ α ∧ r ↾ α) does not force (over the
poset Ḡ+ ) that t ̸∈ Ṫα . We will show that r forces over the poset Ḡ+ that ẋ contains Ė ∩ ẏ and
that ẋ ∩ ḃ is empty. This proves that p forces that ⟨E1⟩ ∩ Bi p,α+1 generates ⟨E1 ∪ {ẏ}⟩ ∩ Bi p,α+1
since ẋ must be forced to be in ⟨E1⟩. It then follows from Lemma 5.4 that E1 ∩ Bi p,γ generates
⟨E1 ∪ {ẏ}⟩ ∩ Bi p,γ , contradicting the assumption on i p.

To prove that r forces that ẋ contains ẏ ∩ Ė , we consider any rℓ < r that forces over Ḡ+ that
ℓ ∈ ẏ ∩ Ė . We may choose (ℓ, pℓ) ∈ M in the name (Ė ∩ ẏ) such that (wlog) rℓ < pℓ. We may
assume that rℓ ↾ α forces a value t on stem(rℓ(α)) and that this equals stem(pℓ(α)). Now show
there is a Tℓ ∈ L(Dα

iα ). In fact, assume t ∈ Tℓ with qℓ,t as the witness. Let L−
= {k : t ⌢k ̸∈ Tℓ};

it suffices to show that L−
̸∈ (Dα

iα )+.
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By assumption that qt,ℓ is the witness, there is an rt < (qℓ,t ↾ α ∧ r ↾ α) such that rt ⊩ t ∈ Ṫα

and rt ⊩ t = stem(qℓ,t (α)). By strengthening rt we can assume that rt forces a value Ḋ ∈ Ḋα
i ẏ

on {k : t ⌢k ∈ Ṫα ∩ qℓ,t (α)}. But now, it follows that rt forces that Ḋ is disjoint from L− since
if rt,k ⊩ k ∈ Ḋ for some rt,k < rt , rt,k is the witness to (ℓ, qℓ,t ⌢k) is in (ẏ ∩ Ė) etc., where
qℓ,t ⌢k ↾ α = qℓ,t ↾ α and qℓ,t ⌢k(α) = (qℓ,t (α))t ⌢k . Since some condition forces that L− is not
in (Ḋα

i ẏ
)+ it follows that L− is not in (Ḋα

iα )+

Finally we must show that r forces over Ḡ+ that ḃ is disjoint from ẋ . Since each are Pi p,α+1-
names, it suffices to assume that r̄ ∈ Ḡ+ is some Pi p,α+1-reduct of r that forces some ℓ is in ḃ∩ ẋ ,
and to then show that r fails to force that ℓ ̸∈ ḃ ∩ (Ė ∩ ẏ). Choose (ℓ, qℓ,t ) ∈ (ẏ ∩ Ė) witnessing
that r̄ ⊩ ℓ ∈ ẋ . That is, we may assume that r̄ ↾ α ⊩ t = stem(r̄ (α)), that qℓ,t ↾ α ∈ Ḡ+,
and (qℓ,t ∧ r ↾ α) does not force over Ḡ+ that t ̸∈ Ṫα . Of course this means that the condition
r̄ ∧ r ∧ [[t ∈ Ṫα]] ∧ qℓ,t is not 0. This condition forces that ℓ is in ḃ ∩ (Ė ∩ ẏ) as required. □

Fact 5. The character of Dα
iα is greater than µiγ .

Proof of Fact 5. We know that Dα
iα is forced to have an ω-closed base (in fact, descending mod

finite with uncountable cofinality). Even more, Piα ,α forces that for all T ∈ L(Dα
iα ), there is a

D ∈ Dα
iα such that the condition ([D]<ω)stem(T ) is below T . Let χα be the cofinality of α and fix

a list {Ḋβ : β < χα} ∈ M (closed under mod finite changes) of Piα ,α-names of elements of Ḋα
iα

that is forced to be a base.
Now, suppose that ḃ ∈ Bi p,α+1 = Bi p,α and there is an Ė ∈ E1 and an r < p forcing that

ḃ ∩ (Ė ∩ ẏ) is empty. We prove there is an ẋ ∈ E1 and an r2 < r ↾ α in Piα ,α such that r2 ⊩ ḃ ∩ ẋ
is empty. We may assume that r2 forces a value t on stem(r (α)) and that, for some β < χα ,
r2 ⊩ (Ḋ<ω

β )t < r (α). Let

ẋ = {(ℓ, qℓ ↾ α) : (ℓ, qℓ) ∈ (Ė ∩ ẏ) and qℓ ↾ α ⊩ qℓ(α) ≤ (Ḋ<ω
β )t }.

It is immediate that ẋ ∈ M and that (r2 ∧ r )⊩Piα,α+1 ẋ ⊇ (Ė ∩ ẏ). Since Ė ∩ ẏ is forced to be in
E+

1 , it follows that ẋ is forced by r2 to be in ⟨E1⟩. Now we verify that r2 ⊩ ḃ∩ ẋ is empty. Assume
that r3 < r2 in Piα ,α and that r3 ⊩ ℓ ∈ ḃ ∩ ẋ . We may assume there is (ℓ, qℓ ↾ α) ∈ ẋ such that
r3 < qℓ ↾ α. But now r2 ⊩ qℓ(α) ≤ r (α) and so r2 ∧ r ⊩ ℓ ∈ ḃ ∩ (Ė ∩ ẏ)— a contradiction.

The conclusion now follows from Lemma 5.4. □

Definition 5.7. For each t ∈ ω<ω, define that Piα ,α-name Ėt according to the rule that r ⊩ ℓ ∈ Ėt

providing r ∈ Piα ,α forces that there is a Ṫ with r ⊩ Ṫ ∈ L(Ḋα
iα ), r ⊩ t = stem(Ṫ ), and

r ∪ {(α, Ṫ )} ⊩ ℓ ̸∈ ẏ.

Fact 6. There is a Ṫ ∈ L(Ḋα
iα ) ∩ M such that p ↾ α forces the statement: Ėt ∈ E1 for all t such

that stem(Ṫ ) ≤ t ∈ Ṫ .

Proof of Fact 6. By elementarity, there is a maximal antichain of Piα ,α each element of which
decides if there is a Ṫ with Ėt ∈ E1 for all t ∈ Ṫ above stem(Ṫ ). Since p ∈ A \ A1 it follows that
there is an i p < iα as in condition (2) of Fact 2. Let t0 ∈ ω<ω so that p ↾ α ⊩ t0 = stem(p(α)). By
the maximum principle, there is a ḃ ∈ Bi p,γ and a Ė0 ∈ E1 satisfying that p ⊩ ḃ∩ Ė0∩ ẏ is empty,
while p ⊩ ḃ ∩ Ė is infinite for all Ė ∈ ⟨E1⟩. This means that p forces that ḃ ∩ Ė0 is an element
of ⟨E1⟩

+ that is contained in ω \ ẏ. As in the proof of Lemma 5.4, there is an Ė2 ∈ ⟨E1⟩ ∩ Bi p,γ

such that p forces that ḃ ∩ Ė2 is contained in Ė0. We also have that (ḃ ∩ Ė2) ↾ α is forced to be
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contained in ω \ ẏ. It now follows that p ↾ α forces that for all t0 ≤ t ∈ p(α), p ↾ α forces that
Ėt contains (ḃ ∩ Ė2) ↾ α and so is in ⟨E1⟩

+. Since Ėt is also measured by E1, we have that p ↾ α

forces that such Ėt are in E1. This completes the proof. □

Now we show how to extend E1 ∩ Biα ,γ so as to measure ẏ. Let β = sup(M ∩ α). By Fact 5,
β < α and by the definition of H(λ⃗), M ∩ Ḋα

iα is a subset of ⟨Ḋ
β

iβ
⟩, L̇β ∈ Ḋα

iα , and iβ = iα .

We also have that the family {L̇ξ : cf(ξ ) ≥ ω1 and βα ≤ ξ ∈ M ∩ β} is a base for Ḋβ

iβ
. For

convenience let q<M p denote the relation that q is an M ∩ Piα ,α+1-reduct of p. Let p̄ be any
condition in Piβ ,β+1 satisfying that p̄ ↾ β = p ↾ α and p̄ ↾ β ⊩ stem( p̄(β)) = tα; recall that
p ↾ α ⊩ tα = stem(p(α)).

Let us note that for each q ∈ M ∩ Pα,iα+1, q ↾ α = q ↾ β and q ↾ β ⊩ q(α) is also a
Pβ,iβ -name of an element of L(Ḋβ

iβ
). Let ẋ be the following Piβ ,β+1-name

ẋ = {(ℓ, q ↾ β ∪ {(β, q(β))}) : (ℓ, q) ∈ ẏ ∩ M and q<M p}.

We will complete the proof by showing that there is an extension of p that forces that
E1 ∪ {ω \ (ẋ[L̇β])} measures ẏ and that 1 forces that ⟨E1 ∪ {ω \ (ẋ[L̇β])}⟩ ∩Bi ẏ ,β+1 is λ⃗(iγ )-thin.
Here ẋ[L̇β] abbreviates the Piβ ,β+1-name

{(ℓ, r ) : (∃q) (ℓ, q) ∈ ẋ, q ↾ β = r ↾ β, and r ⊩ stem(q(β)) ∈ L̇<ω
β }.

The way to think of ẋ[L̇β] is that if p̄ is in some Piα ,α-generic filter G, then ẏ[G] is now an
L(Dα

iα )-name, L<ω
β = (L̇β[G])<ω is in L(Dα

iα ), and (ẋ[L̇β])[G] is equal to {ℓ : L<ω
β ̸⊩ ℓ ̸∈ ẏ}.

We will use the properties of ẋ to help show that E1 ∪ {ω \ (ẋ[L̇β])} is λ⃗(iγ )-thin. This semantic
description of ẋ[L̇β] makes clear that p̄ ∪ {(α, (L̇β)<ω)} ∈ Piα ,α+1 forces that ẋ[L̇β] contains ẏ.
This implies that E1 ∪ {ω \ (ẋ[L̇β])} measures ẏ.

Claim: It is forced by p̄ that ω \ ẋ is not measured by E1.
Each element of E1 is in M and simple elementarity will show that for any condition in q in

M that forces Ė ∩ (ω \ ẏ) is infinite, the corresponding q̄ = q ↾ α ∪ {(β, q(α))} will also force
that Ė ∩ (ω \ ẋ) is infinite.

It follows from Fact 5, with ω \ ẋ playing the role of ẏ, that E1 ∪ {ω \ ẋ} is λ⃗(iγ )-thin. Recall
that q ⊩ ẋ = ∅ for all q ⊥ p̄. Now to prove that E1 ∪ {ω \ (ẋ[L̇β])} is also λ⃗(iγ )-thin, we prove
that

⟨E1 ∪ {ω \ ẋ}⟩ ∩ Bi,α = ⟨E1 ∪ {ω \ (ẋ[L̇β])}⟩ ∩ Bi,α

for all i < iα . In fact, first we prove

⟨E1 ∪ {ω \ ẋ}⟩ ∩ Bi,β = ⟨E1 ∪ {ω \ (ẋ[L̇β])}⟩ ∩ Bi,β

for all i < iα .
We begin with this main Claim.

Claim 1. If ḃ ∈ Bi,β (i < iβ) and there is an Ė ∈ E1 ∩ Biα ,β and a p̄ ≥ q ∈ Piβ ,β+1 such that
q ⊩ ḃ ∩ (Ė \ ẋ) = ∅ then q ↾ β ⊩ (∃Ė ∈ E1) ḃ ∩ Ė = ∅.

Proof of Claim 1. We may assume that q ↾ β forces a value t on stem(q(β)). Recall that q ↾ β

forces the statement: there is a Ḋ ∈ M ∩ Ḋα
iα such that (Ḋ<ω)t ≤ q(β). The definition of ẋ

ensures that q ↾ β ∪ {(α, (Ḋ<ω)t )} ⊩ ḃ ∩ (Ė \ ẏ) is empty. There is a Piα ,α-name Ė1 ∈ M such
that q ↾ α ⊩ Ė1 = {ℓ : (Ḋ<ω)t ̸⊩ ℓ ̸∈ (Ė \ ẏ)}. By assumption q ↾ α ⊩ Ė1 ∈ ⟨E1⟩. Since ḃ is
also a Pi,α-name, we have that q ↾ α ⊩ ḃ ∩ Ė1 = ∅. □
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Now assume that ḃ ∈ Biβ ,β and q ⊩ ḃ∩(Ė∩(ω\(ẋ[L̇β]))) is empty for some q < p̄ in Piβ ,β+1.
By Lemma 5.4 it suffices to assume that Ė ∈ Biβ ,β . To prove that q forces that ḃ ̸∈ ⟨E1⟩

+, it
suffices to prove that there is some Ė1 ∈ E1 such that q ⊩ ḃ ∩ (Ė1 ∩ (ω \ ẋ)) is finite. We proceed
by contradiction.

We may again assume that q ↾ β forces that q(β) is (Ḋ<ω)t for some t ⊃ tα and some
Ḋ ∈ Ḋα

iα ∩ M . Let H be the range of t . Let, for the moment, G be a Piα ,α-generic filter with
q ∈ G. Now in M[G] we have the value Lβ of L̇β and H ⊂ Lβ . We can also let E denote the
value of Ė[G]. Recall that for each s ∈ H<ω, Es denotes the set of ℓ ∈ E such that there is
some T ∈ L(Dα

iα ) with s = stem(T ) and T ⊩ ℓ ̸∈ ẏ. We have shown in Fact 6 that there is a
T ∈ L(Dα

iα ) ∩ M such that Es ∈ E1 for all s ∈ T above stem(T ). This means that there is an
ℓ ∈ b ∩ E such that ℓ ∈ Es for each of the finitely many suitable s. For each s, choose Ts ⊂ T
witnessing ℓ ∈ Es . As before, and since there are only finitely many s involved, we can assume
that Ṫs = (Ḋ<ω)s for some H ⊂ Ḋ ∈ Ḋα

iα ∩ M and we then define an extension q of q so that
q ′(β) = (Ḋ<ω)tα ensures that (L̇<ω

β )s < Ts for each s. Note that for such a condition q ′ we have
that q ′

∪ {(α, (L̇β)<ω)} forces that ℓ ̸∈ ẏ. But then it should be clear that q ′ forces ℓ ̸∈ ẋ[L̇β].
This contradicts that q forces ℓ ̸∈ ḃ ∩ (Ė ∩ (ω \ (ẋ[L̇β]))). □
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