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A new notion of independence relation is given and associated to it, the class 
of flat theories, a subclass of strong stable theories including the superstable 
ones is introduced. More precisely, after introducing this independence relation, 
flat theories are defined as an appropriate version of superstability. It is shown 
that in a flat theory every type has finite weight and therefore flat theories are 
strong. Furthermore, it is shown that under reasonable conditions any type is non-
orthogonal to a regular one. Concerning groups in flat theories, it is shown that 
type-definable groups behave like superstable ones, since they satisfy the same 
chain condition on definable subgroups and also admit a normal series of definable 
subgroup with semi-regular quotients.
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1. Introduction

The notions of forking, orthogonality and regular types, among others, play a fundamental role in un-
derstanding the structure of stable theories. These were not only essential to carry out the classification 
programme, inside stable theories, but also have turned out to be relevant for the developments of geometric 
stability theory.

A stationary type is regular if it is orthogonal to all its forking extensions; recall that two stationary 
types p and q are orthogonal if, for any set C over which both types are based and any realizations a |= p|C
and b |= q|C, we have that a |�C

b. Minimal types are the simplest example of regular types, where forking 
means being algebraic. Similar to minimal ones, regular types carry a notion of geometry associated to their 
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set of realizations, and hence a dimension. Their main feature is that any type can be coordinatizated by 
regular ones, as long as the theory contains enough regular types. Consequently, their associated geometries 
determine many properties of the theory.

Formally, the fact that a theory has enough regular types can be rephrased as follows: Every type is 
non-orthogonal to a regular one. This holds for superstable theories but this property is not exclusive of 
superstability. Therefore, one may try to find reasonable conditions beyond superstability which yield the 
existence of enough regular types. In this paper we pursue this line of investigation on an attempt to find 
some reasonable structure theory beyond superstability.

We introduce the class of flat theories, a subclass of stable theories which extends superstability, and 
analyze the existence of regular types in this context. More precisely, in Section 2 we define the notion 
of ω-forking,1 which implies the usual notion of forking, and show that in a stable theory it satisfies the 
usual properties of independence (see Theorem 2.12), except algebraicity since it can be the trivial relation. 
Afterwards, a flat theory is defined as a stable theory where every type does not ω-fork over a finite set. 
Since non-forking implies non-ω-forking, it follows immediately that a superstable theory is flat. As in the 
superstable case, a notion of ordinal-valued rank among types, called Uω-rank, is available and we point 
out some of its basic properties, such as the Lascar inequalities.

In the third section, a more careful analysis of flat theories is carried out. Roughly speaking, we see that 
any type has a non-ω-forking extension which is non-orthogonal to a regular type. Consequently, every type 
is close to be non-orthogonal to a regular one, see Theorem 3.9. In particular, if all forking extensions of a 
type are also ω-forking, then it is non-orthogonal to a regular type. This is Corollary 3.10. Nevertheless, we 
cannot ensure that in general every type is non-orthogonal to a regular one, but we show that flat theories 
are strong (Theorem 3.20) and consequently every type is non-orthogonal to a type of weight one. In fact, 
this holds locally for a flat type under the mere assumption that the theory is stable.

Finally, in the last section groups in flat theories are analyzed. We show that any type-definable group in 
a flat theory looks like a superstable one, in the sense that they satisfy the same descending chain condition 
on definable subgroups and also admit a semi-regular decomposition. It should be noted that, while the 
notion of p-semi-regularity (also p-simplicity) originated in [7, Chapter V], here semi-regularity corresponds 
to a reformulation due to Hrushovski. Hence, in Theorem 4.5, by a semi-regular decomposition we mean 
that every such flat group admits a finite series of normal subgroups such that any generic type of each 
quotient is domination-equivalent to suitable finite product of some regular type.

2. A new independence relation

From now on, we work inside the monster model of a complete stable first-order theory, and we assume 
that the reader is familiarized with the general theory of stability theory.

2.1. Skew dividing and ω-forking

We introduce the notion of skew k-dividing and k-forking for a natural number k ≥ 1.

Definition 2.1. Let π(x̄) be a partial type. It is said to skew k-divide over A if there is an A-indiscernible 
sequence (b̄n)n<ω and a formula ϕ(x̄; ȳ0, . . . , ȳk−1) such that

π(x̄) � ϕ(x̄; b̄0, b̄2, . . . , b̄2(k−1)) and π(x̄) � ¬ϕ(x̄; b̄i0 , . . . , b̄ik−1)

for any i0 < . . . < ik−1 < 2k with (i0, i1, . . . , ik−1) �= (0, 2, . . . , 2(k − 1)).

1 Originally, called gorking by the second author.
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In fact, in the definition of skew dividing we may allow formulas with parameters.

Remark 2.2. A partial type π(x̄) skew k-divides over A if and only if there are a formula ϕ(x̄; ȳ0, . . . , ȳk−1, ̄z), 
a tuple c̄, and an Ac̄-indiscernible sequence (b̄n)n<ω such that

π(x̄) � ϕ(x̄; b̄0, b̄2, . . . , b̄2(k−1), c̄) and π(x̄) � ¬ϕ(x̄; b̄i0 , . . . , b̄ik−1 , c̄)

for any i0 < . . . < ik−1 < 2k with (i0, i1, . . . , ik−1) �= (0, 2, . . . , 2(k − 1)).

Proof. Left to right is obvious by the definition of skew k-dividing. To prove the other direction, assume that 
the condition holds for ϕ(x̄; ȳ0, . . . , ȳk−1, ̄z), a tuple c̄, and a sequence (b̄n)n<ω. Set ȳ′i = ȳiz̄ and b̄′n = b̄nc̄. 
Then the formula ψ(x̄; ȳ′0, . . . , ȳ′k−1) defined as ϕ(x̄; ȳ0, . . . , ȳk−1, ̄z) and the sequence (b̄′n)n<ω witness that 
π(x̄) skew k-divides over A. �
Definition 2.3. A partial type π(x̄) is said to k-fork over A if it implies a finite disjunction of formulas, each 
of them skew k-dividing over A.

In other words, the set of formulas that k-fork over A is nothing else than the ideal generated by the 
formulas that skew k-divide over A. Furthermore, note that both notions are preserved under automorphisms 
of the ambient model.

Remark 2.4. The following holds:

(1) If π1(x̄) � π2(x̄) and π2(x̄) skew k2-divides over A2, then π1(x̄) skew k1-divides over A1 for any k1 ≤ k2

and A1 ⊆ A2. The same holds for k-forking.
(2) If π(x̄) skew k-divides over A, then so does some finite subset π0(x̄) of π(x̄). Similarly for k-forking.
(3) If a partial type π(x̄) skew k-divides over A, then so does it over acl(A).
(4) Extension property. If a partial type π(x̄) over B does not k-fork over A, then there is p(x̄) ∈ S(B)

extending π(x̄) which does not k-fork over A.

Proof. We only prove (1) for skew dividing, the rest is standard. Assume that ϕ = ϕ(x̄; ȳ0, . . . , ȳk2−1) and 
(b̄α)α<ω witness that π2(x̄) skew k2-divides over A2. Now, set z̄ = ȳk1 . . . ȳk2−1 and let ψ(x̄; ȳ0, . . . , ȳk1−1, ̄z)
= ϕ. Then the result follows from Remark 2.2 by enlarging the sequence (b̄α)α<ω to (b̄α)α<ω+ω and taking 
c̄ = b̄ω . . . b̄ω+k2−k1+1. �
Lemma 2.5. A partial type π(x̄) does not fork over A if and only if it does not 1-fork over A.

Proof. It is clear that a global type is Lascar invariant over A if and only if it does not 1-fork over A. Thus, 
the statement follows as non-forking and non-1-forking satisfy the extension property. �

Nevertheless, for k > 1 forking and k-forking does not agree in general.

Example 2.6. Consider the first-order theory of an infinite set and let φ(x; y) be the formula x = y. For any 
element a, we have that the partial type {φ(x; a)} forks over ∅, but it does not 2-fork.

Lemma 2.7. If the type tp(ā/B) does not skew k-divide over A, then for any A-indiscernible sequence I
contained in B, there is some J ⊆ I with |J | < k such that I \ J is an indiscernible set over AJā.
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Proof. Inductively on n ≤ k, we obtain a strictly increasing sequence of natural numbers (kn)n≤k with 

k0 = 0 for which there is a subsequence Jn = (b̄m)m∈(kn,kn+1) of I without repetitions and a formula 

φn(x̄; ȳ0, . . . , ȳkn+1−1, ̄z) such that:

•1 there is some finite tuple c̄n in AI such that φn(ā; ̄b0, . . . , ̄bkn+1−1, ̄cn) holds,
•2 there is some finite subset In of I, containing In−1, such that ¬φn(ā; ̄b0, . . . , ̄bkn−1, ȳ′kn

, . . . , ȳ′kn+1−1, ̄cn)
also holds for any b̄′kn

, . . . , ̄b′kn+1−1 in I \ In, and
•3 kn+1 is minimal with these properties.

Let Δn be the closure of φn under permuting the variables ȳ0, . . . , ȳkn+1−1, and let Δ be the union of all 
these Δn. As tp(ā/AI) does not k-fork over A, there is some n∗ ≤ k for which we cannot keep doing the 

construction for n∗. If |J<n∗ | < k, then as the truth value of any formula over AāJ<n∗ is constant in a 

cofinal segment of I \ J<n∗ , the choice of n∗ yields that I \ J<n∗ is indiscernible over AāJ<n∗ , as desired.
Assume now that |J<n∗ | ≥ k. Thus, by construction we have that

⊗1 kn∗ ≥ k and so n∗ ≥ 1.

Now, take some b̄∗0, . . . , ̄b
∗
2kn∗−1 ∈ I \ (I<n∗ ∪ J<n∗) without repetitions and set b̄∗ = b̄∗kn∗

. . . b̄∗2kn∗−1 and 

b̄1i = b̄i and b̄2i = b̄∗i for i < kn∗ .
Put z̄ = z̄0 . . . z̄n∗ and also c̄∗ = c̄0 . . . c̄n∗ . Then let ψ(x̄; ȳ0, . . . , ȳkn∗+1−1, ̄z, ̄b∗) denote the conjunction of 

the finite partial type tpΔ(āb̄0 . . . b̄kn∗−1c̄∗/b̄∗).
Notice that ψ(ā; ̄b10, . . . , ̄b1kn∗−1, ̄c∗, ̄b∗) holds by construction. Thus, the set Λ of functions η :

{0, . . . , kn∗ − 1} −→ {1, 2} such that ψ(ā; ̄bη(0)
0 , . . . , ̄bη(kn∗−1)

kn∗−1 , ̄c∗, ̄b∗) holds is non-empty. Moreover, note 

that b̄10, ̄b20, . . . , ̄b1kn∗−1, ̄b
2
kn∗−1 cannot witness that tp(ā/AI) k-forks over Ab̄∗, as tp(ā/AI) does not k-fork 

over A. Thus, there is some η ∈ Λ such that uη = {l < kn∗ : η(l) = 2} is non-empty.
Fix some η ∈ Λ with uη �= ∅, and let n∗∗ < n∗ be minimal with the property that uη ∩ [kn∗∗ , kn∗∗+1) �= ∅. 

Since the formula ψ is symmetric on ȳ0, . . . , ȳkn∗+1−1 by construction, we can rearrange the variables cor-
responding to the indices of uη so that uη ∩ [kn∗∗ , kn∗∗+1) = [k∗, kn∗∗+1) for some k∗ ∈ [kn∗∗ , kn∗∗+1). Now, 
set d̄0 = b̄0 . . . b̄kn∗∗−1, d̄1 = b̄kn∗∗ . . . b̄k∗−1, d̄1

2 = b̄1k∗
. . . b̄1kn∗∗+1−1 and d̄2

2 = b̄
η(0)
k∗

. . . b̄
η(kn∗∗+1−1)
kn∗∗+1−1 . Hence, by 

•1 we have that

⊗2 φn∗∗(ā; d̄0, d̄1, d̄1
2, ̄cn) holds.

On the other hand, the choice of ψ and η ∈ Λ yield that

⊗3 φn∗∗(ā; d̄0, d̄1, d̄1
2, ̄cn) holds if and only if so does φn∗∗(ā; d̄0, d̄1, d̄2

2, ̄cn).

Hence, by ⊗2 and ⊗3 we get that

⊗4 φn∗∗(ā; d̄0, d̄1, d̄2
2, ̄cn) holds.

Observe that since n∗∗ < n∗, we have that In∗∗ is contained in I<n∗ and so d̄2
2 is formed with elements from 

I \ In∗∗ . Thus, by •2 we have that

⊗5 ¬φn∗∗(ā; d̄0, ̄b′k , . . . , ̄b′k −1, d̄
2
2, ̄cn∗∗) holds for any pairwise distinct elements ̄b′k , . . . , ̄b′k −1 of I \In∗∗ .
n∗∗ ∗ n∗∗ ∗



D. Palacín, S. Shelah / Annals of Pure and Applied Logic 169 (2018) 835–849 839

Sh:1133
Therefore, by ⊗4, ⊗5 and setting c̄′n∗∗ = d̄2
2c̄n∗∗ , we contradict the minimality of kn∗∗+1 given by •3 since 

k∗ < kn∗∗+1. This finishes the proof. �
Proposition 2.8. Let ā be a finite tuple, and let A be a subset of an (|A| + |T |)+-saturated model M . Then, 
the following are equivalent:

(1) The type tp(ā/M) does not k-fork over A.
(2) For any A-indiscernible sequence I contained in M , there is some J ⊆ I with |J | < k such that I \ J is 

an indiscernible set over AJā.

Moreover, the above properties implies the following:

(3) For any A-independent sequence I contained in M , there is some J ⊆ I with |J | < k such that I \ J is 
independent from AJā over A.

Proof. (1) ⇒ (2) is the lemma above. To show (2) ⇒ (1), suppose that tp(ā/M) k-forks over A. Thus there 
is some formula ψ(x̄) ∈ tp(ā/M) that k-forks over A. That is, the formula ψ(x̄) implies a finite disjunction 
of formulas that skew k-divide over A. Note that by saturation of M each of these formulas can be taken 
with parameters over M . Thus we can find a formula φ(x̄; ȳ0, . . . , ȳk−1) and an A-indiscernible sequence 
(b̄n)n<ω witnessing this. Notice again by saturation that we may take (b̄n)n<ω inside M . By (2), there is 
a finite subset J of ω with |J | < k such that I \ J is indiscernible over AāJ . Thus, there is some l < k

such that 2l /∈ J and so φ(ā; ̄bi0 , . . . , ̄bik−1) holds by indiscernibility taking ij = 2j for j �= l and il = 2l + 1, 
a contradiction.

Finally we see that (2) ⇒ (3). Assume that I = (ās)s<α is an A-independent sequence and consider 
a Morley sequence (ās,t)t<α in ps = stp(ās/A) with ās = ās,s in a way that the array (ās,t)s,t<α is an 
independent set over A. By saturation, we may take this array inside M . Set b̄t = (ās,t)s<α and note 
that it realizes the stationary type 

⊗
s<α ps. Consequently, as (b̄t)t<α is A-independent, we obtain that 

it is an A-indiscernible sequence. Hence, by (2) there exists some J ⊆ α with |J | < k such that (b̄t)t/∈J

is indiscernible over Aā ∪ {b̄t}t∈J . Whence, since (b̄t)t/∈J is Morley sequence in 
⊗

s<α ps, we have that 
ā ∪ {b̄t}t∈J is independent from (b̄t)t/∈J over A, and so I \ {ās}s∈J is independent from Aā ∪ {āt}t∈J , as 
desired. �
Remark 2.9. In view of Remark 2.4(4) and Proposition 2.8 we could have defined k-forking as follows: 
A partial type π(x̄) does not k-fork over A if it can be extended to a complete type p(x̄) over an (|A| +
|T |+)-saturated model M such that for any ā |= p and any A-indiscernible sequence I contained in M , there 
is some J ⊆ I with |J | < k such that I \ J is an indiscernible set over AJā.

Lemma 2.10. If tp(ā1/B) does not k1-fork over A ⊆ B and tp(ā2/Bā1) does not k2-fork over Aā1, then 
tp(ā1ā2/B) does not (k1 + k2)-fork over A.

Proof. Consider an (|A| + |T |)+-saturated model M extending B. By extension, i.e. Remark 2.4(4), there 
is some ā′1 |= tp(ā1/B) such that tp(ā′1/M) does not k1-fork over A. Let ā′2 be such that ā1ā2 ≡B ā′1ā

′
2 and 

note that tp(ā′2/B, ̄a′1) does not k2-fork over Aā′1 by invariance. Hence, again by extension there is some 
ā′′2 ≡Bā′

1
ā′2 such that tp(ā′′2/M, ̄a′1) does not k2-fork over Aā′1. Now, given an A-indiscernible sequence I

contained in M , applying twice Lemma 2.7 we find two disjoint subsets J1 and J2 of I with |J1| < k1 and 
|J2| < k2 such that I \ (J1 ∪ J2) is indiscernible over AJ1J2ā

′
1ā

′′
2 . Hence by Proposition 2.8, we get that the 

type tp(ā′1ā′′2/M) does not (k1 + k2)-fork over A and neither does tp(ā1ā2/M) by invariance. �
In the light of the previous result we introduce the following notion.
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Definition 2.11. A partial type π(x̄) ω-forks over A if it k-forks over A for every natural number k. We write 
ā |�

ω

A
B whenever tp(ā/AB) does not ω-fork over A.

This notion satisfies the usual axioms of a ternary independence relation.

Theorem 2.12. The ternary relation |�
ω defined among imaginary sets satisfies the following properties:

(1) Invariance: |�
ω is invariant under Aut(M).

(2) Finite character: ā |�
ω

A
B if and only if ā′ |�

ω

A
B′ for any finite tuple ā′ ⊆ ā and any finite set B′ ⊆ B.

(3) Transitivity: If ā |�
ω

Ab̄
B and b̄ |�

ω

A
B, then āb̄ |�

ω

A
B.

(4) Base monotonicity: If ā |�
ω

A
BC, then ā |�

ω

AB
C.

(5) Extension: If ā |�
ω

A
B, then for any C there exists some ā′ ≡AB ā with ā′ |�

ω

A
BC.

(6) Local character: For every finite tuple ā and any set B there is some A ⊆ B with |A| < |T |+ such that 
ā |�

ω

A
B.

(7) Symmetry: ā |�
ω

A
b̄ if and only if b̄ |�

ω

A
ā.

Proof. Invariance, finite character and base monotonicity are straightforward from the definition. Extension 
follows from Remark 2.4(4), and transitivity from Lemma 2.10. Furthermore, notice that the relation |�

ω

satisfies local character by stability, Lemma 2.5 and Remark 2.4(1).
Finally, symmetry holds by [1, Theorem 2.5]. We offer a shorter proof using stability. By extension and 

finite character we can find an indiscernible sequence (āi)i<|T |+ in tp(ā/A, ̄b) such that āi |�
ω

A
b̄, (āj)j<i for 

every i < |T |+. In particular, we have that āi |�
ω

A
(āj)j<i. As any indiscernible sequence is an indiscernible 

set, we obtain inductively on i that (āj)j<i |�
ω

A
āi by invariance, finite character and transitivity. Now, 

local character of |�
ω implies the existence of some i < |T |+ such that b̄ |�

ω

A,(āj)j<i
āi. Hence, we obtain 

that b̄, (āj)j<i |�
ω

A
āi by transitivity and so b̄ |�

ω

A
āi by finite character. Whence, we obtain the result by 

invariance. �
2.2. Flat theories

Next we introduce a subclass of stable theories which includes the superstable ones.

Definition 2.13. A stable theory is flat if for every finite tuple a and every set A, there exists a finite subset 
A0 of A such that a |�

ω

A0
A.

It follows from the definition of flatness and ω-forking that any superstable theory is flat. Nevertheless, 
not every flat theory is superstable. The following exhibit can be seen as the archetypical example of flat 
non-superstable theory.

Example 2.14. Consider the first-order theory of countably many nested equivalence relations {Ei(x, y)}i<ω

such that E0(x, y) has infinitely many classes, and each Ei-class can be partitioned into infinitely many 
Ei+1-classes. This is a stable flat theory which is not superstable theory.

The importance of flatness is that the foundation rank associated to the binary relation of being an 
ω-forking extension among finitary complete types over sets takes ordinal values.

Definition 2.15. The Uω-rank is the least function from the collection of all types (with parameters from 
the monster model) to the set of ordinals or ∞ satisfying for every ordinal α:
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Uω(p) ≥ α + 1 if there is an ω-forking extension q of p with Uω(q) ≥ α.

As usual, to easer notation we write Uω(a/A) for Uω(tp(a/A)).

The Uω-rank is invariant under automorphism and clearly Uω(p) ≤ U(p) for any finitary complete type p. 
Since every type does not fork over a set of cardinality at most |T |, there are at most 2|T | different U-ranks 
and so at most 2|T | different Uω-ranks. As these values form an initial segment of the ordinals, all of them are 
smaller than (2|T |)+. Thus, it follows that every type of Uω-rank ∞ has a forking extension of Uω-rank ∞.

Proposition 2.16. The following holds:

(1) If q extends p, then Uω(p) ≥ Uω(q). Moreover, if q is a non-ω-forking extension of p, then Uω(p) =
Uω(q).

(2) A theory is flat if and only if Uω(p) < ∞ for every finitary complete (real) type p.

Proof. The proof is standard and it is left to the reader. �
Remark 2.17. It follows from the definition of Uω-rank that a finitary complete type has Uω-rank zero if and 
only if it has no ω-forking extensions. In particular, by the extension property we have that Uω(a/A) = 0
if and only if a |�

ω

A
a.

Recall that every ordinal α can be written in the Cantor normal form as a finite sum ωα1 ·n1+. . .+ωαk ·nk

for ordinals α1 > . . . > αk and natural numbers n1, . . . , nk. If additionally β = ωα1 ·m1 + . . . + ωαk ·mk, 
then the sum α ⊕ β, which is defined as ωα1 · (n1 + m1) + . . . + ωαk · (nk + mk), is commutative. In 
fact, the sum ⊕ is the smallest symmetric strictly increasing function f among pairs of ordinals such that 
f(α, β + 1) = f(α, β) + 1.

The proof of the following result is standard, see for instance [3, Theorem 4].

Theorem 2.18 (Lascar Inequalities). The following holds:

(1) Uω(a/Ab) + Uω(b/A) ≤ Uω(ab/A) ≤ Uω(a/Ab) ⊕ Uω(b/A).
(2) If Uω(a/Ab) < ∞ and Uω(a/A) ≥ Uω(a/Ab) ⊕ α for some ordinal α, then Uω(b/A) ≥ Uω(b/Aa) ⊕ α.
(3) If Uω(a/Ab) < ∞ and Uω(a/A) ≥ Uω(a/Ab) +ωα for some ordinal α, then Uω(b/A) ≥ Uω(b/Aa) +ωα.
(4) If a |�

ω

A
b, then Uω(ab/A) = Uω(a/A) ⊕ Uω(b/A).

We finish this section by pointing out the existence of a link between forking and ω-forking via canonical 
bases and types of Uω-rank zero.

Proposition 2.19. If a |�
ω

A
b, then Uω(cb(stp(a/Ab))/A) = 0. Furthermore, the opposite holds assuming that 

Uω(a/A) < ∞.

Proof. As non-ω-forking independence has finite character, notice that the type tp(cb(stp(a/Ab))/A) has 
Uω-rank zero if and only if Uω(c/A) = 0 for any finite tuple of cb(stp(a/Ab)). Now, suppose that a |�

ω

A
b and 

let ā = (ai)i<ω be a Morley sequence in stp(a/Ab). Thus one can easily see that ā |�
ω

A
b using Theorem 2.12. 

Since any finite tuple c of cb(stp(a/Ab)) belongs to dcl(ā) ∩acl(Ab), we then have c |�
ω

A
c and so Uω(c/A) = 0.

For the opposite, assume that Uω(a/A) < ∞ and set C = cb(stp(a/Ab)). Thus, by the Lascar inequalities

Uω(a/A) ≤ Uω(a/A,C) ⊕ Uω(C/A) = Uω(a/A,C),
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so Uω(a/A) = Uω(a/A, C) < ∞ and hence a |�
ω

A
C. Moreover, since a |�C

Ab we have that a |�
ω

CA
b and 

therefore a |�
ω

A
b by transitivity, as desired. �

3. Searching for enough regular types

3.1. Types without ω-forking extensions

As we point out before, a type has Uω-rank zero if and only if it has no ω-forking extensions. In this 
section we shall see that these types play a fundamental role towards the existence of enough regular types 
in flat theories.

Let P be an ∅-invariant family of partial types. A stationary type p ∈ S(A) is foreign to P if for all 
sets B ⊇ A and all realizations a of p|B we have that a |�B

c for any c such that tp(c/B) extends some 
member of P. The type p is (almost) P-internal if there exists some B ⊇ A, a realization a |= p|B and some 
tuple b̄ = (b1, . . . , bn) such that ā ∈ dcl(B, ̄b) (ā ∈ acl(B, ̄b), respectively) and each type tp(bi/B) extends a 
member of P. Finally, it is P-analyzable in α steps if for some realization a of p there is a sequence (ai)i<α

in dcl(A, a) such that each type tp(ai/A, (aj)j<i) is P-internal, and a ∈ acl(A, (ai)i<α).
The following result, see [6, Corollary 7.4.6], plays an essential role in this section.

Fact 3.1. If the type stp(a/A) is not foreign to P, then there is some imaginary element a0 ∈ dcl(Aa) \acl(A)
such that stp(a0/A) is P-internal.

Let P0 denote the family of types of Uω-rank zero. It is easy to see that any finitary complete type which 
is P0-analyzable in finitely many steps must have Uω-rank zero by the Lascar inequalities. Consequently, 
we obtain the following:

Lemma 3.2. If the type stp(a/A) is not foreign to P0, then there is some imaginary element a0 ∈ dcl(Aa) \
acl(A) such that Uω(a0/A) = 0.

Given a set A, set clP0(A) to be the set of all elements b such that tp(b/A) has Uω-rank zero. By 
[4, Corollary 6] we obtain the following decomposition lemma, see also [3, Corollary 6]. For the sake of 
completeness we give a (direct) proof.

Lemma 3.3. For any tuple a and any set A, the type stp(a/A0) is foreign to P0, where A0 = dcl(A, a) ∩clP0(A). 
Moreover, it has the same Uω-rank as tp(a/A).

Proof. Suppose that stp(a/A0) is not foreign to the family of types of Uω-rank zero. Thus, there is some 
a0 ∈ dcl(A0, a) \ acl(A0) such that tp(a0/A0) is internal to the family of types of Uω-rank zero. That is, 
there are is some C |�A0

a and some b1, . . . , bn with Uω(bi/A0C) = 0 such that a0 ∈ dcl(A0C, b1, . . . , bn). 
Hence we have that Uω(a0/A0) = 0. On the other hand, notice that a0 ∈ dcl(A, a) by definition of A0 and 
moreover that Uω(A0/A) = 0 since any finite tuple of elements from A0 has Uω-rank zero over A again by 
Lascar inequalities. Thus

Uω(a0/A) ≤ Uω(a0A0/A) ≤ Uω(a0/A0) ⊕ Uω(A0/A) = 0

and so a0 ∈ A0, a contradiction. Finally, the second part of the statement follows once more by the Lascar 
inequalities since Uω(A0/A) = 0. �
Definition 3.4. We say that a complete type is ω-minimal if every forking extension of it is also an ω-forking 
extension.
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Lemma 3.5. A non-forking extension of an ω-minimal type is again ω-minimal.

Proof. To see this, let q be a non-forking extension of an ω-minimal type p with parameters over A. Assume 
that q = p|B and consider a forking extension q′ of q over a set B′. Let a be a realization of q′. Notice that 
a � |�B

B′ and a |�A
B. Thus a � |�A

BB′ and so a � |�
ω

A
BB′ since p = tp(a/A) is ω-minimal. Moreover, we 

obtain that a � |�
ω

B
B′ by transitivity since a |�

ω

A
B, yielding that q′ is an ω-forking extension of q = tp(a/B). 

Thus, the type q is also ω-minimal. �
Remark 3.6. If an ω-minimal type p has ordinal Uω-rank, then every forking extension of it has strictly 
smaller Uω-rank. Hence, using the Lascar inequalities it is easy to see that any ω-minimal stationary type 
of monomial Uω-rank is regular. Namely, if p is an ω-minimal stationary type with Uω(p) = ωα but there 
is a forking extension p′ of p which is non-orthogonal to p, then there is set A and realizations a of p|A
and a′ of p′|A with a � |�A

a′. However, this implies that Uω(a/Aa′) < Uω(a/A) = ωα since tp(a/A) = p|A
is ω-minimal and also that Uω(a′/A) = Uω(p′) < Uω(p) = ωα, yielding that

ωα = Uω(a/A) ≤ Uω(a/Aa′) ⊕ Uω(a′/A) < ωα,

a contradiction.

Proposition 3.7. A stationary type is ω-minimal if and only if it is foreign to P0.

Proof. Assume first that p is ω-minimal but it is not foreign to the family of type of Uω-rank zero. Thus, 
there is some set A, some realization a of p|A and some tuple b̄ = (b̄1, . . . , bn) with each tp(bi/A) of Uω-rank 
zero such that a � |�A

b̄. As p is ω-minimal, then so is tp(a/A) and so a � |�
ω

A
b̄. It then follows that b̄ � |�

ω

A
a by 

symmetry and so Uω(b̄/A) > 0, a contradiction.
For the other direction, suppose towards a contradiction that p = tp(a/A) is foreign to P0 but there is 

some tuple b such that a � |�A
b and a |�

ω

A
b. We then have that cb(stp(b/Aa)) is not algebraic over A and 

so cb(stp(b/Aa)) � |�A
a. Consequently, there is some finite tuple c ∈ cb(stp(b/Aa)) such that a � |�A

c and so 
Uω(c/A) > 0, since p = tp(a/A) is foreign to P0. On the other hand, as b |�

ω

A
a, Proposition 2.19 yields that 

Uω(c/A) = 0, a contradiction. Therefore the type tp(a/A) is an ω-minimal extension of p. �
As a consequence of Lemma 3.3 and Proposition 3.7 we obtain the following:

Corollary 3.8. Any stationary type p = tp(a/A) has an ω-minimal extension of the same Uω-rank, namely 
the type tp(a/dcl(Aa) ∩ clP0(A)).

The next result shows the existence of many regular types in a flat theory.

Theorem 3.9. If the type p has rank Uω(p) = β + ωαn, with n > 0 and β ≥ ωα+1 or β = 0, then it has a 
non-ω-forking extension q which is not weakly orthogonal to an ω-minimal regular type of Uω-rank ωα.

Proof. Let p = tp(a/A) and suppose that Uω(a/A) = β +ωαn with n > 0 and β ≥ ωα+1 or β = 0. Let b be 
a tuple such that Uω(a/Ab) = β + ωα(n − 1) and set b′ to be cb(stp(a/Ab)). Since a |�b′

Ab, we have that 
a |�

ω

Ab′
Ab and so Uω(a/Ab′) = Uω(a/Ab). Thus, we may assume that b′ = b.

The Lascar inequalities yield that Uω(b/A) ≥ ωα, and so we can find some set B with Uω(b/B) = ωα. 
Moreover, note that we may take B containing A in a way that B |�Ab

a and B = acl(B). Now, by 
Corollary 3.8, we know that tp(b/B0) is ω-minimal and has Uω-rank ωα, where B0 = dcl(Bb) ∩ clP0(B). 
Furthermore, since B0 ⊆ dcl(Bb) we have that B0 |�Ab

a and so

Uω(a/B0, b) = Uω(a/A, b) = β + ωα(n− 1)
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and

b = cb(stp(a/Ab)) = cb(stp(a/B0b)).

Observe that since ωα = Uω(b/B0), the type tp(b/B0) cannot be algebraic and so a � |�B0
b. As tp(b/B0)

is ω-minimal we then have Uω(b/B0, a) < Uω(b/B0) = ωα and hence ωα = Uω(b/B0) ≥ Uω(b/B0a) + ωα. 
Whence

Uω(a/B0) ≥ Uω(a/B0b) + ωα = β + ωα(n− 1) + ωα = Uω(a/A)

by the Lascar inequalities and so a |�
ω

A
B0. Since tp(b/B0) is ω-minimal of monomial Uω-rank, it is regular 

by Remark 3.6. This finishes the proof. �
Corollary 3.10. If p is foreign to P0 and Uω(p) = β + ωαn, with n > 0 and β ≥ ωα+1 or β = 0, then p is 
non-orthogonal to an ω-minimal regular type of Uω-rank ωα.

Proof. By Theorem 3.9 there exists a non-ω-forking extension q of p which is not weakly orthogonal to an 
ω-minimal regular type q′ of Uω-rank ωα. Since p is also ω-minimal by Proposition 3.7, the type q is indeed 
a non-forking extension of p and so p is not orthogonal to q′. �
Remark 3.11. So far all results given in this section follow from the fact that the ω-forking independence is 
an independence relation (in the sense of Theorem 2.12) with a well-behaved notion of rank. In other words, 
if in a stable theory we have an independence relation |�

∗ then one can define the corresponding notions 
of U∗-rank, ∗-minimality, ∗-flatness and all results of this section adapt to this context.

3.2. Hereditarily triviality

In this subsection we will show that types which are not foreign to P0 must have finite weight. For this, 
we introduce the following notion.

Let λ denote an arbitrary cardinal.

Definition 3.12. A partial type π over A is hereditarily λ-trivial if for any a realizing π, any set B ⊇ A and 
any independent sequence I over B, there is some J ⊆ I with |J | < λ for which aJ |�B

I \ J .

Observe that any hereditarily λ-trivial complete type has weight strictly smaller than λ. However, in 
Exercise 3.17 [7, Chapter V] it is given an example of a finite weight type p which is not hereditarily 
w(p)-trivial.

Example 3.13. Consider an infinite vector space over a finite field, and let I be a linearly independent 
set. Fix a finite set J ⊆ I with |J | > 1 and let a =

∑
x∈J x. Then there is no finite subset J ′ of I with 

|J ′| ≤ w(a) = 1 such that I \ J ′ is independent from J ′a.

Now, we show some basic lemmas on hereditarily trivial types.

Lemma 3.14. Assume a |�A
B with A ⊆ B. If tp(a/B) is hereditarily λ-trivial, then so is tp(a/A).

Proof. Let I be an independent sequence over C ⊇ A, and consider a set B′ such that B′ ≡Aa B and 
B′ |�Aa

CI. Thus B′ |�A
CI by transitivity and invariance, and so the sequence I is independent over 

C ∪ B′. As tp(a/B) is hereditarily λ-trivial, so is tp(a/B′) and hence there exists some subset J of I with 
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|J | < λ such that I \ J |�B′C
aJ . On the other hand, as B′ |�A

CI we have that B′ |�C
I and so the 

sequence I \ J is independent from aJ over C by transitivity, as desired. �
Lemma 3.15. If tp(a/A) is hereditarily λ1-trivial, and tp(b/A, a) is hereditarily λ2-trivial, then tp(ab/A) is 
hereditarily (λ1 + λ2)-trivial.

Proof. Consider an independent sequence I over a set B ⊇ A. As tp(a/A) is hereditarily λ1-trivial, there 
exists some J1 ⊆ I with |J1| < λ1 and J1a |�B

I \ J1. Thus, the sequence I \ J1 is independent over BaJ1. 
Since tp(b/A, a) is hereditarily λ2-trivial, we can find a subset J2 ⊆ I \ J1 such that J2b |�BaJ1

I \ (J1 ∪ J2)
and |J2| < λ2. Therefore, we get J1J2ab |�B

I \ (J1 ∪ J2) by transitivity. Hence, the type tp(ab/A) is 
hereditarily (λ1 + λ2)-trivial, as desired. �

As a consequence we obtain:

Proposition 3.16. Suppose that λ is infinite. A finitary type analyzable in the family of hereditarily λ-trivial 
types is itself hereditarily λ-trivial.

Proof. Firstly we show that a finitary type p = tp(a/A) that is internal to a family of hereditarily λ-trivial 
types is itself hereditarily λ-trivial. To do so, suppose that there is some set B with a |�A

B and some tuple 
b̄ = (b1, . . . , bn) with tp(bi/B) hereditarily λ-trivial such that a ∈ dcl(B, ̄b). It follows from the definition 
that tp(bi/B, b<i) is also hereditarily λ-trivial and so is tp(b̄/B) by Lemma 3.15. Again it follows easily 
from the definition that tp(a/B) is also hereditarily λ-trivial, and then so is tp(a/A) by Lemma 3.14.

Now, suppose that p = tp(a/A) is analyzable in a family of hereditarily λ-trivial types. By definition, 
there is a sequence (ai)i<α in dcl(A, a) such that each type tp(ai/A, (aj)j<i) is internal to the given family 
of hereditarily λ-trivial types, and a ∈ acl(A, (ai)i<α). We have just seen in the paragraph above that each 
tp(ai/A, (aj)j<i) is hereditarily λ-trivial. Hence, as a is a finite tuple, we have that α is indeed a natural 
number and so applying α many times Lemma 3.15 we obtain that tp((ai)i<α/A) is also hereditarily λ-trivial. 
Whence, the type tp(a/A) is hereditarily λ-trivial as well since a ∈ acl(A, (ai)i<α). �

For an infinite cardinal λ, let Pht,λ be the family of all hereditarily λ-trivial types. It follows from the 
result above that given a set A, the set clPht,λ(A) of all tuples b such that tp(b/A) is hereditarily λ-trivial 
is a closure operator. Alternatively, this can be easily seen using Lemma 3.14 and 3.15.

Similarly as in Lemma 3.3 (or by [4, Corollary 6]) we get the existence of types foreign to Pht,λ.

Corollary 3.17. For any tuple a and any set A, the type tp(a/A0) is foreign to the family of hereditarily 
λ-trivial types, where A0 = dcl(A, a) ∩ clPht,λ(A).

Now, we focus our attention to the family of hereditarily ω-trivial types, which contains P0 as it is shown 
in the next lemma.

Lemma 3.18. Let ā be a possibly infinite tuple and a a finite tuple such that ā is contained in acl(a). If a 
type p = tp(ā/A) has Uω-rank zero, then it is hereditarily k-trivial for some natural number k.

Proof. Suppose that p = tp(ā/A) has Uω-rank 0, where ā ⊆ acl(a) and a is a finite tuple. Let B and I
be as in the definition of hereditarily ω-trivial and consider an (|A| + |T |)+-saturated model M containing 
B, I and a. Since

Uω(ā/M) ≤ Uω(ā/A) = 0
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we have that ā |�
ω

A
M . Now, let a′ be a finite tuple such that a′ ≡Aā a with a′ |�Aā

M and so a′ |�
ω

A
M by 

transitivity. It then follows that tp(a′/M) does not k-fork over B for some natural number k by definition. 
Hence, Proposition 2.8 yields the existence of a subset J of I with |J | < k such that I \ J is independent 
from Ja′ over B. Whence, as ā ⊆ acl(a′) by invariance, we get that I \ J is independent from Jā over B
and so p = tp(ā/A) is hereditarily k-trivial. �
Proposition 3.19. If a type is not foreign to Pht,ω, then it dominates an hereditarily ω-trivial type and it is 
non-orthogonal to a type of weight one.

Proof. Let p = tp(a/A) be a type which is not foreign to Pht,ω. Thus, there exists some element a0 of 
dcl(A, a) \ acl(A) such that tp(a0/A) is internal to Pht,ω by Fact 3.1. Hence, by Proposition 3.16 the latter 
type is indeed hereditarily ω-trivial and clearly it is dominated by tp(a/A).

Now, as tp(a0/A) has finite weight it is non-orthogonal to a type of weight one by a result of Hyttinen, 
see [2, Proposition 5.6.6]. Hence, the type tp(a/A) is also non-orthogonal to a type of weight one. �
3.3. Flatness and finite weight

Now, we are ready to prove that a flat theory is strong, i.e. every type has finite weight. In fact, we 
obtain a local version of this.

Theorem 3.20. A finitary type p with Uω(p) < ∞ has finite weight and therefore it is non-orthogonal to a 
type of weight one.

Proof. We proceed by induction on the Uω-rank of the type. The case of Uω-rank 0 follows by Lemma 3.18
and the fact that an hereditarily trivial type has finite weight.

Now, let p ∈ S(∅) be a finitary type and assume that Uω(p) = β + ωα · n with n > 0 and β ≥ ωα+1 or 
β = 0. Let a be a realization of p and set A = dcl(a) ∩ clP0(∅). By Lemma 3.3 the type stp(a/A) is foreign 
to P0 and Uω(a/A) = Uω(p). Thus, applying Corollary 3.10 we can find an ω-minimal regular type q which 
is non-orthogonal to tp(a/A). Let C and b be such that a |�A

C and b |= q|C with a � |�C
b. Note that the 

latter implies the existence of some imaginary element

a0 ∈ dcl(cb(b/C, a)) \ acl(C).

Thus a0 ∈ acl(C, a) and also a0 ∈ dcl(b0, . . . , bm) for some initial segment b0, . . . , bm of a Morley sequence 
in stp(b/C, a). Hence, we then have that

w(a0/C) ≤ w(b0, . . . , bm/C) ≤ m,

since tp(b/C) = q|C is regular and so of weight 1.
Since a |�A

C, the type tp(a/C) is also foreign to P0 and thus Uω(a0/C) > 0, as a � |�C
a0 by the choice 

of a0. Hence, by the Lascar inequality

Uω(a/C, a0) + Uω(a0/C) ≤ Uω(a, a0/C) = Uω(a/C)

we then have that Uω(a/C, a0) < Uω(a/C). Therefore, putting altogether we get

w(a/A) = w(a/C) = w(a, a0/C) ≤ w(a/C, a0) + w(a0/C) < ω,

since by induction the type tp(a/C, a0) has finite weight.



D. Palacín, S. Shelah / Annals of Pure and Applied Logic 169 (2018) 835–849 847

Sh:1133
Finally, notice that tp(A) has Uω-rank zero, since A ⊆ clP0(∅). As a is finite and A ⊆ dcl(a), using 
Lemma 3.18 we then see that tp(A) has finite weight, which yields that tp(a) has also finite weight, since

w(a) = w(a,A) ≤ w(a/A) + w(A).

This finishes the first part of the statement. For the second, it suffices to notice as before that a type of 
finite weight is non-orthogonal to a type of weight one. �

As an immediate consequence we obtain:

Corollary 3.21. Any flat theory is strong.

In the light of these results, it seems reasonable to ask the following:

Question 1. In a flat theory, is every type non-orthogonal to a regular type? Or, is every type hereditarily 
1-trivial type non-orthogonal to a regular type?

4. Flat groups

In this final section we describe the structure of type-definable groups in flat theories. It turns out that 
this resemblances to the structure of a superstable group, since in the framework of groups we can find 
enough regular types. More precisely, we recover [5, Corollary 5.3] where a superstable group G is shown to 
admit a normal series of definable subgroups

G = G0 � G1 � · · · � Gm � {1}

such that each group Gi/Gi+1 is pi-semi-regular for some regular type pi. We refer the reader to [6, Chapter 7]
for the general theory of p-simplicity and semi-regularity; which was originally introduced (in a different 
way) in [7, Chapter V]. We recall some of the basic definitions.

Fix a regular type p. Recall that a stationary type q is said to be hereditarily orthogonal to p if p is 
orthogonal to any extension of q. A stationary type q is p-simple if for some set B with p and q based 
on B, there exist c |= q|B and an independent sequence I of realizations of p|B such that stp(c/B, I) is 
hereditarily orthogonal to p. The type q is p-semi-regular if it is p-simple and domination-equivalent to p(n). 
In fact, a p-simple type q = stp(a/A) is p-semi-regular if and only if tp(d/A) is not hereditarily orthogonal 
to p for every d ∈ dcl(A, a) \ acl(A), see [6, Lemma 7.1.18] for a proof. Finally, concerning groups, we say 
that a group is p-simple if some (any) generic type is p-simple, and it is p-semi-regular group if some (any) 
generic is p-semi-regular.

The main facts concerning p-simplicity for groups, which we recall bellow, are shown by Hrushovski in 
[5], see also [6, Lemma 7.4.7] for a proof.

Fact 4.1. Let G be a type-definable group and let q ∈ SG(∅) be some generic type.

(1) If q is not foreign to an ∅-invariant family P of types, then there exists a relatively definable normal 
subgroup N of G of infinite index such that G/N is P-internal.

(2) If q is non-orthogonal to a regular type p, then there exists a relatively definable normal subgroup N of 
G such that G/N is p-simple (even p-internal), and that a generic type of G/N is non-orthogonal to p.

Before proceeding to analyze flat groups, we first see that the Uω-rank behaves as the U-rank for groups. 
Note that a generic type p ∈ SG(A) has maximal Uω-rank: If tp(h/A) is another type, then taking g |= p|A, h
we get
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Uω(h/A) = Uω(h/A, g) = Uω(gh/A, g) ≤ Uω(gh/A)

= Uω(gh/A, h) = Uω(g/A, h) = Uω(p),

since g |�
ω

A
h, h |�

ω

A
g and gh |�

ω
A, h. We then set Uω(G) to be the Uω-rank of some (any) generic type; 

note that a priori a type of maximal Uω-rank might not be generic. Similarly, we can define the Uω-rank of a 
coset space to be the Uω-rank of its generic type. More precisely, if g is generic of G over A and E(x, y) is the 
equivalence relation x−1y ∈ H for some relatively definable subgroup H of G, then tp(gE/A) is the generic 
for G/H and moreover note that tp(g/A, gE) is a generic for the coset gH. Thus, since Uω(gH) = Uω(H), 
using the Lascar inequalities, we get

Uω(H) + Uω(G/H) ≤ Uω(G) ≤ Uω(H) ⊕ Uω(G/H).

The following key fact is a generalization of Example 3.13.

Lemma 4.2. A generic type of an infinite type-definable group is not hereditarily k-trivial for any natural 
number k. In particular, there is no hereditarily k-trivial partial type defining an infinite group.

Proof. Let G be an infinite type-definable group and suppose, towards a contradiction, that the principal 
generic p ∈ SG(∅) of G is hereditarily k-trivial. Now, let (ai)i<k+2 be an independent sequence of realizations 
of p and set a =

∏
i<k+1 ai. As a realizes p, by assumption there is some subset J with |J | < k such that 

(ai)i∈Ja |�(ai)i/∈J . Thus, the definition of a yields the existence of some k /∈ J such that ak ∈ dcl(a, (ai)i∈J)
and so ak is independent from itself. This implies that p is an algebraic type and so G is finite, a contradiction.

The second part of the statement follows from the fact that if G is type-defined by an hereditarily k-trivial 
type, then so is any generic. �

As a consequence, we then have by Lemma 3.18 that a group of Uω-rank zero must be finite. More 
generally, we obtain:

Lemma 4.3. Let G be a type-definable group and let H be a relatively definable subgroup of H. Then Uω(G) =
Uω(H) < ∞ if and only if G/H is finite.

Proof. It is enough to use the above Lascar inequalities for groups and notice that by Lemma 3.18 a 
type-definable group has Uω-rank 0 if and only if it is finite. �
Corollary 4.4. Let G be a type-definable group with Uω(G) < ∞. Then, there is no infinite sequence of 
relatively definable subgroups, each having infinite index in its predecessor.

Now, we can obtain the semi-regular decomposition for flat groups.

Theorem 4.5. Let G be a type-definable group with Uω(G) < ∞. Then, there exist finitely many regular types 
p0, . . . , pm and a series of relatively definable subgroups

G = G0 � G1 � · · · � Gm � {1}

such that each group Gi/Gi+1 is pi-internal and pi-semi-regular.

Proof. We proceed by induction on the Uω-rank. Assume that Uω(G) = β+ωα ·n for some ordinal β ≥ ωα+1

or β = 0 and some n ≥ 0. Moreover, since a group of Uω-rank zero is finite we may assume that n > 0.
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We first claim that a generic type of G is foreign to the set of types of Uω-rank strictly smaller than ωα. 
Otherwise, the previous fact yields the existence of a relatively definable normal subgroup N of G of infinite 
index such that G/N is internal to the family of types of Uω-rank strictly smaller than ωα. Thus, we then 
have that Uω(G/N) < ωα by the Lascar inequalities and so, the inequation

β + ωα · n = Uω(G) ≤ Uω(N) ⊕ Uω(G/N)

yields that Uω(N) = Uω(G), a contradiction by Lemma 4.3 since G/N is infinite. Therefore, any generic 
type of G is foreign, and so orthogonal, to any type of Uω-rank strictly smaller than ωα. In particular, 
it is foreign to P0 and consequently, by Corollary 3.10, some generic type q of G is non-orthogonal to an 
ω-minimal regular type p of Uω-rank ωα. Thus, the second point of the previous fact yields the existence of 
a relatively definable normal subgroup H such that G/H is p-internal (so p-simple), and some generic type 
q′ of G/H is non-orthogonal to p.

Assume p, q and q′ are stationary over A. Since p is ω-minimal, any forking extension of p has smaller 
Uω-rank and hence, the first part of the proof implies that q is orthogonal to any forking extension of p. 
Whence, the same is true of q′ since q dominates q′. Consequently, a standard argument (see the proof 
of [6, Corollary 7.1.19]) yields that q′ is p-semi-regular. Namely, as q′ is p-internal, there is some set B
containing A, some c1, . . . , ck realizing p and some a |= q′|B such that a ∈ dcl(B, c1, . . . , ck). Fix some 
d ∈ dcl(a, A) \ acl(A), and note then that there exists some m ≤ k such that d |�A

Bc<m but d � |�B,c<m
cm. 

Setting r = tp(cm/B, c<m), we clearly have that tp(d/A) is non-orthogonal to r and then so is q′ = tp(a/A), 
since d ∈ dcl(A, a). Thus, necessarily r must be a non-forking extension of p, as q′ is orthogonal to any forking 
extension. This implies that r is a regular type, as so is p, and moreover that p and r are non-orthogonal. 
Hence, we then have tp(d/A) is non-orthogonal to p, yielding that q′ is semi-regular by [6, Lemma 7.1.18], 
say. Therefore, we have shown that G/H is p-internal and p-semi-regular.

Finally, as G/H is infinite and so Uω(H) < Uω(G) by Lemma 4.3, the inductive hypothesis applied to 
H yields the statement. �

To finish the paper, a question:

Question 2. Is there a flat non-superstable group?
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