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The theory ZF(aa) was introduced in Kaufmann [5] and independently (in a 
slightly different form) in Kakuda [4], as an extension of ZF by way of a quantifier 
aacz (‘for almost all cz’). Intuitively, aaa! 4 asserts that +((Y) holds on a closed 
unbounded class of ordinals, though other interpretations are possible. The 
axioms of ZF(aa) consist of the ZF schemas together with a version of the 
schemas for the logic L(aa) from [l]; we need note only the ‘diagonal intersection 
schema’ 

Wx)(aao)+ -+ (aacu)(Vx E RJ@, 

where as usual R, is the set of all sets of rank less than (Y. 
Although ZF(aa) is already stronger than ZF (for example it proves the 

existence of natural models of ZF, cf. [5]), its strength is greatly increased by 
adding the following ‘determinacy’ schema 

[DET] aaa 4 v aaa 14, 

where 4 may have any number of free variables. In fact it was shown in [5, §5] 
that ZF(aa) + DET is equiconsistent with 

ZF+{(~K)(K is n-ineffable): n <w}. 

(n-ineffable cardinals are studied in Baumgartner [2].) Part of the proof shows 
that 

ZF(aa)+DET+(%)(V= ~D(x))~(~K)(K is n-ineffable), 

for all n < o. Here the statement (3x)( V = OD(x)) is really a formal statement of 
global choice. The question then naturally arises whether a global choice 
hypothesis is necessary, and this was left open in [S, 5.101. In light of the 
conservativity of a form of global choice over ZFC (cf. Felgner [3], for example), 
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it is perhaps surprising that this question has a negative answer, as we prove: 

Theorem. The statement ACr\l(3(_~) (CL is a Mahlo cardinal) is relatively consis- 

tent with ZF(aa) + DET. 

Since ineffable cardinals are Mahlo, this answers the question. We leave open, 
however, whether ZF(aa) + DET 1(3~) ( K is strongly inaccessible), although we 
know from [5, 4.10 and 5.61 that 

ZF(aa) +DET t- (~K)(K is n-ineffable in L), for all n <o. 

The consistency of ZF(aa) + DET+ AC + 13 K(K is Mahlo) was first proved by 
Shelah assuming the consistency of ZF+(~K) (K is a measurable cardinal). The 
details needed for the present relative consistency result were worked out by 
Kaufmann. 

Proof of the Theorem. Assume ZF(aa) f DET is consistent and fix n E o - (0). By 
Proposition 4.10 of [5], the theory To = ZF+ V = L + “K is n-ineffable” is consis- 
tent. It is convenient to let T be the result of adding the schema “RA <,,, V” (all 
m < o) plus “K <A” to T,,; then T is consistent, by the Reflection Theorem. We 
will work in T to produce a model of the theory 

[ZF(aa) + DET+ AC] rl F” + 1(3~)(~ is Mahlo), 

where F” is defined as follows. First let qr(&) be the aa-quantifier rank of 4, i.e. 

qr(+) = 0 for atomic 4, 

qr(i6) = qr((Bx)+) = qr(+), 

qr(4 A ti) = m=(qr@), qr(#)), and 

qr((aao)+) = qr(b) + 1. 

Then F” = (4 : qr(&) Q n}. In particular, F” is the language of ZF. 
Working in T, for all cxo < f * * < CY,_~ < K, let 

so0...4_, = G&o, . * * 9 x,_,, y, ii) E F”: RA I=+,,, . . . , a,_l, P, ii), ii E RJ, 

where P is the partial order defined below. 
Applying the definition of n-ineffability (and a slight argument as in the proof 

of [5, 5.3]), we obtain a stationary set X-c K which has the following indiscernibil- 
ity property: 

(*) Let [W ={&iXXn:(Yg<* - - < CX,,_~}_ Then for 6, s E [Xl” and all 4 E F” 
with parameters in RPonBo, RA I= qS(cW, P) c* q% (6, P’). 

Our plan is now to use a form of Easton forcing to ‘destroy’ every Mahlo 
cardinal below K, and yet use X to define an interpretation of ‘aa’ so that with this 
interpretation, RzCG1 is still a model of ZF(aa) + DET. Formally let S = {CI! < K : a 
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is Mahlo}, and for a! E S let P(a) = {Xc (Y :X is a closed bounded set of non- 
inaccessibles}. Now let P consist of all sequences (p, : (Y E S) with the property that 
pp E P, for all OL E S and if p < K is regular, and if we set supp(p) = {a E S : pa # @}, 
then supp(p) fl p is bounded below p. P is ordered by coordinate-wise end 
extension: that is, p <q iff for all a E S, q_ = pn n (max(q,) + 1). Our model of the 
given extension of ZF(aa) nF” is found in the forcing extension V[G]: let 
R: = (R,V’G’, E, X) where we define 

R:C(aacu)+(ol, ii) iff R:!=(Vy)(Sz E X- ?)&(a, ii). 

To show that R: is the desired model we prove a sequence of claims. 

Claim 1. R:Cl(3a)(a is Muhlo). 

Proof. This is clear from the choice of 5’. 

Claim 2. P has the K-C.C. 

Proof. This is a standard pressing-down argument; a similar proof appears in (for 
example) Kunen [6, Lemma VIII.4.4 and Exercise VIII.J4]. Suppose A is an 
antichain of power K ; we may enumerate A as (a, : a! E S) where S is the set of 
inaccessible cardinals below K. Define a function f : S -+ K by: f(cw) = 
sup(supp(u,> n a). Notice f(a) <(Y by definition of P. By F&lor’s Lemma we may 
choose S’E S such that (S’( = K and f[S’] ={y} for some y < K. Since K is 
inaccessible, there exists S” c_ S’ such that IS”\ = K and for all cy, 6 E S”, a, U as E P 
and a, U a, C a,, a@, a contradiction. 

For the next claim, set 

P, = {p E P : supp(p) E (Y} and P” = {p E P : supp(p) n a = 8). 

A standard trick in iterated forcing is to notice that P = P, x P” for all (Y < K, and 
use nice properties of P, and P” to obtain results about nG]. The following 
claim is typical. Recall that a partial order is A-distributiue if the intersection of 
fewer than A dense open sets is dense, and that no such forcing adds bounded 
subsets of A. 

Claim 3. For all cardinals CY <K, P” is a-distributive. 

Proof. Suppose cu < K and (Oi : i C 0) is a sequence of dense open subsets of P”, 
where 0 is a cardinal below CY ; we show n {Di : i < ~3) is dense. Given p E P, define 
a sequence (pi : i < 0) by induction on i. Set p. = p, and choose pi+l E Oi such that 
pi+1 s pi and such that for all y E SUP&i), fi CSUp((pi)y). This guarantees that for 
limit i, if we set py = lJ {(pi), : j < i} for all y E lJ {supp(p,) : j < i}, and then set 
(pi>, = py U {suP(P’)} for all such y ((p,), = fi for all other y), then pi E P”. 

Finally, pe E Di for all i <p and pe < p, so we’re done. 
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claim 4. K is inaccessible in V[G]. 

Proof. K is regular in V[G] because In’ is K-C.C. (Claim 2). Fix cardinals (Y < 0 < K. 

We may write G = G@ x Gp where GP is P@-generic over V and Gp is Pa-generic 
over V[Ga]; see any treatment of product forcing, e.g. [6, VIII.1.31. Since Pp is 
p-distributive (Claim 3), V[GP] contains no new subsets of CY, so 2” <K in 
V[G@]. Since (Ppp(<~ in V[G@], it is clear that 2” remains less than K in 

VC@Il-&I= VEGI. 

Claim 5. Suppose A E a! < K and A E V[G]. Then A E V[G,] for some p < K. 

Proof. This is standard using the K-c.c.; see for example Lemma VIII.5.14 of [6], 
which is similar. 

For the remainder of the proof we return to the metatheory. 

Claim 6. For all 4 E F’, the following is provable in T: 

(!!6 < K)(vii E R:cG81)($’ < K)(~c? E [x- rl”) 

(vP~[X--yl”)[V[Gsl~~(a, 4 PI * 46% b, WI. 

Proof. Fix 4 E F”; we work in T. Fix ii E RycGel. In V, let 

D = {p EP, : (Vy C ~)(30L E [X- yj”)(p decides +(a, E, P))}, 

where we confuse elements of v[G,] with their names in the forcing language (for 
notational simplicity). We show D is dense. Fix p E Ps. For all (11 E [Xl” choose 
pC Sp such that pC decides r$(ii, Cr, P). Since IIPsl < K we may choose K-many Cr 
such that pE is constant and the set of all (Ye has supremum K, and this pE belongs 
to D. Now it follows easily from the indiscernibility property (*) of X that for all 
p E D, either 

or 

(V& E [Xj”)(p, si E R, --, p It-&=& d, IP)) 

(Va! E [Xl” (p, li E %, + p II--@(ii, G, P)). 

Since D is dense, the conclusion follows. 

Claim 7. Suppose 4 E F”, m <n. Then the following are theorems of T. 

(i) 4 is equivalent in R: to a formula of the form (aact,) - * * (aaa,_,)8 where 
8EF0. 

(ii) (Vd E R:)(3y < K)(VC% E [X-y-j’-“‘) 

(V~E[X--yl”-m(R:t~(a,(Y)~~(ii, 6)). 

Proof. First we prove (ii) for m = 0, working within T. Given 4 = 4(Z, 9) E F” and 
CiERZ, we choose p < K such that ii E V[G,], by Claim 5. It is routine to check 
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that Pp is homogeneous in V[G@], so for all (Y E [X]“, either PB Ik[R, l=+(zi, E)] or 
Pp lt[R, FT~(& E), where here R, refers to R, in V[G]. So for + = 4 or $ = 14, 

(VT < K)(% E [x- rl”)p’ It-[R, b +(ii, E)]. 

Claim 6 then gives the desired result, since the predicate “lP@ I!-[R, l=$(ii, ?i!)]” is 
definable from ii, B, 5, and P. 

Next, we prove (ii) restricted to formulas 4 of the form 
aaq - - - aaz,_,@f, X, y), where 8 E F” and ]jjl= n-m. By the case m = 0 proved 
above, either 

(1) R: !=aay aaZ 0(5, ii, jr), or 

(2) 
- - 

R: l=aay aaf 18(Z, a, y). 
- - 

This suffices, since (2) implies R:kaay laaz 0(Z, a, y). 
It remains to prove (i); then (ii) follows from (i) together with the case of (ii) 

just shown. The proof is by induction on formulas. The atomic step is trivial, and 
the negation step follows from the case of (ii) proved above. The cases +1 A & and 
aaz 4 are obvious, so it suffices to check that 

R: l=Vx aaq . . . aaa,_,Ot, aaaO. . . aacz,-l Vx E %, 0, 

for all 8 E F” with parameters in R:. The reverse direction is an easy exercise, so 
let us assume R: k=Vx aa& 0. It follows that in the standard interpretation of ‘aa’, 

and hence (also in the standard interpretation) 

R:~aacu,VxER,aacul...aacu,_,(~ij[[Xlm-,e), 

by the closure of the closed unbounded filter under diagonal intersections. By the 
K -completeness of this filter, 

R:baacuOaacul - + * aaly,_r Vx E %, (a E [Xlm -+ 0), 

again in the standard intepretation. Since X is stationary, we have 

Finally, the case m = 0 of (ii) implies 

and the proof of Claim 7 is complete. 
Finally, we prove that for all 4 in [ZF(aa) + DET+ AC] tl F”, Tb(R: C+); this 

combined with Claim 1 proves the theorem. Since K is inaccessible in V[G] 
(Claim 4), the ZFC schemas hold in R:. The other axioms of ZF(aa) (cf. [5]) 
trivially hold in R:, except that the argument for the V step in proving Claim 7(i) 
is appropriate for proving the validity of the diagonal intersection axiom in R:. 

That R:i=DETtl F” is an easy exercise using Claim 7; see for example the proof 
of Claim 7(ii) restricted to formulas aa 8 with 8 E F”. 
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