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SATURATED NULL AND MEAGER IDEAL

ASHUTOSH KUMAR AND SAHARON SHELAH

ABSTRACT. We prove that the meager ideal and the null ideal could both be
somewhere Ni-saturated.

1. INTRODUCTION

In [2], starting with a measurable cardinal, Komjath constructed a model of
Zermelo—Fraenkel with choice (ZFC) in which there is a nonmeager set of reals
which cannot be partitioned into uncountably many nonmeager sets. In [3], starting
with a measurable cardinal, Shelah constructed a model of ZFC in which there is
a nonnull set of reals which cannot be partitioned into uncountably many nonnull
sets. Our main result is that the two consistency results can be combined.

Theorem 1.1. Suppose that there is a measurable cardinal. Then there is a count-
able chain condition (ccc) forcing P such that in V¥, there is a set X C R such
that X is neither null nor meager, X cannot be partitioned into uncountably many
nonnull sets, and X cannot be partitioned into uncountably many nonmeager sets.

Let us briefly point out why other boolean combinations are also possible. Ulam
showed that if there is an N;-saturated sigma ideal Z on some set X such that 7
contains every countable set, then there is a weakly inaccessible cardinal below | X]|.
It follows that, under the continuum hypothesis, every nonmeager (resp., nonnull)
set of reals can be partitioned into uncountably many nonmeager (resp., nonnull)
sets.

Suppose that X is a nonmeager set of reals that cannot be partitioned into
uncountably many nonmeager sets. Let P be the forcing for adding X; Cohen reals.
Then in V¥, X continues to be nonmeager and it is easy to check that it still cannot
be partitioned into uncountably many nonmeager sets. Also, in VF, the real line
can be covered by ¥; null sets. It follows that every nonnull set in V¥ can be
partitioned into uncountably many nonnull sets.

Similarly, if X is a nonnull set of reals that cannot be partitioned into uncount-
ably many nonnull sets, then adding X; random reals gives us a model where X
remains nonnull, it cannot be partitioned into uncountably many nonnull sets, and
every nonmeager set can be partitioned into uncountably many nonmeager sets.
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Notation 1.2. A subset W C 2% is fat if for every clopen set C, either WNC = ()
or W(WNC)>0. Asubtree T C <“2isfatif [T]={ze€2¥: (Vn<w)(z|nel)}
is fat. For a clopen subset C' C 2%, define supp(C) to be the smallest (finite) set
F such that (Vz,y € 2“)((z | F=y | F) = (r € C <= y € ()). Random
denotes the random real forcing. Note that {[T]: T C <“2 is a fat tree} is dense in
Random. Cohen denotes Cohen forcing. Its conditions are members of <“w ordered
by end extension. In forcing, we use the convention that a larger condition is the
stronger one; so p > ¢ means that p extends ¢. If P, Q are forcing notions and Q C P,
we write Q < PP if every maximal antichain in Q is also a maximal antichain in P.
For z,y € w¥, define x ®y € w* by (x®y)(2n) = z(n) and (z B y)(2n+1) = y(n).

2. EVENTUALLY DIFFERENT FORCING

Suppose that Y = (y; : i < ), where each y; € w”. Define a forcing notion
E = E(Y) as follows. p € E iff p = (0,,F,) = (0,F), where 0 € <“w and
F € [0]<®. For p,q € E, p < qiff 0, < 04, F, C F, and for every k € [|o,], |0g|),
for every i € F),, 04(k) # y;(k). It is easy to see that E is a sigma-centered forcing
that makes the set {y; : i < 8} meager since it adds the real 74 = (J{op, : p € G}
which satisfies (Vi < 0)(V*°k)(y;(k) # mr(k)). The following lemma is well known.
We include a short proof for completeness.

Lemma 2.1. Let Y, E=E(Y), and 7 be as above. Let & € 2 N VE. Then there
is a Borel function B :w* — 2% such that g B(mg) = &.

Proof of Lemma 211 For each n < w and i < 2, choose A;, C E such that for
every p € A; pn, p Ik 2(n) =i and Ag,, U Ay, is a maximal antichain in E. Define
B w¥ — 2% as follows. Given z € w* and n < w, look for unique 7 < 2 and
(0,F) € A;,, such that ¢ C z and for every k € [|o|,w) and v € F, z(k) # y,(k),
and define B(z)(n) = i. If there are no such unique i and (o, F'), define B(z)(n) = 0.
Note that if (09, Fo), (01, F1) € Aon U A; ,, are incompatible, then either o¢ and
o1 are incomparable or (say) og < o1 and for some k € [|ogl,|o1]) and v € Fy, we
have o1 (k) # y,(k). Hence IFg B(mg) = . O

Note that if Y = (), then E(Y) is Cohen forcing. We can think of E(Y) as adding
a “partial Cohen” real with memory Y which becomes decreasingly Cohen-like with
increasing memory.

3. BACKGROUND IDEAS

Let us describe some of the ideas that led to the model witnessing Theorem [[111
By a result of Solovay, we must start with a measurable cardinal x. Let Z be a
witnessing normal prime ideal. We are going to construct a ccc forcing P that adds
two sets of reals X = {z, : a < k} and Y = {y, : @ < x} such that (A]) and (B)
below hold. Let J = {W C x: (3W' € Z)(W C W)} be the ideal generated by T
in VP, Since P is cce, J is an Ni-saturated x-additive ideal on k. We would like to
have for every W C &

(A) WeJ < {zq:a€ W} is meager,

(B) WeJ < {ys:a€W}isnull,
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This would suffice for Theorem [LLT] since if N is a dense G null subset of R,
then the set (NNX)U((R\ N)NY) is both nonmeager and nonnull, and it cannot
be partitioned into uncountably many nonmeager or nonnull sets.

In [2], Komjath starts by adding x Cohen reals X = {z, : @ < k}. So every
meager subset of X is currently countable. Using a finite support product, he then
makes every subset of X of the form {z, : @ € W} (where W € 7) meager. He
finally invokes the properties of product forcing to show that X remains nonmeager
in the final model. Note that the analogous construction fails for the null ideal:
If we start by adding a set Y of x random reals and then, using a finite support
iteration (for ccc), add null sets containing some subsets of Y, then we inevitably
add Cohen reals at stages of cofinality w which make all of ¥ null. To get around
this difficulty, Shelah [3] proceeds as follows. Let (X, : o < A) be a list where
each member of Z occurs A = 27 times. First add A\ Cohen reals (¢, : o < ).
Each ¢, codes a null Gs-set N, in a natural way. We now do a finite support
iteration of length x adding a “partial random” y¢ at stage { < x whose memory
is Vi = V[{ca : € ¢ X)[(yy : 1 < €)]. This means that y is Random"*-generic.
The expectation is that if { € X,, then y. € N, (although showing this requires
some work) and that ¥ = {y¢ : £ < x} would be the desired set of reals in the final
model.

To combine these two constructions via a single forcing, we first reverse Komjath
construction as follows. Let (X, : o < A) be the list mentioned above. First add
A Cohen reals (¢, : @ < A). Each ¢, codes an F,-meager set—namely, M, = {y €
w? 1 (V°k)(y(k) # ca(k))}. Now do a finite support iteration of length x adding a
partial Cohen real z¢ at stage £ < x with memory C¢ = {c, : € € X, }. This means
that z¢ is E(C¢)-generic. Note that if £ € X, then z¢ € M,. It is not difficult
to check that X = {z¢ : £ < k} is a nonmeager set on which the meager ideal is
N, -saturated.

The next section begins by describing iterations Py = (P, Q4 : @ < A + &) for
Ao < A< AJY (where \g = 2%) which combine partial Cohen and partial random
reals. The reason behind considering Py for various A’s and not just for A = \g
will become clear during the proof of Lemma [.9] where we use automorphisms of
Py, for A > )¢ to construct certain finitely additive measures on P(w) N VEro+¢
for £ < k.

4. FORCING

Suppose k is measurable and Z is a normal prime ideal on x. Put Ay = 2%. For
Ao <A < AF¥, define the following.

(1) (Xq:a < AJY) is a sequence of members of Z.

(2) For every n <w and X € Z, [{a < A\{" : Xo = X} = A"

(3) For & < R, C§+E = Chte = {a < A:§ € X,}. This is the memory of the
partial Cohen real to be added at stage A + &£ (see item (7)).

(4) For £ <k, Ay, = Axre = {a < X : € ¢ Xo} UNA+€). This is the
memory of the partial random real to be added at stage A + £ (see item
(7).

(5) Px = (Pra,Qra @ @ < A+ k) is a finite support iteration with limit
Py +x- In the contexts where the value of A is constant, we drop the A in
the subscript and just write P, and Q.

(6) For o < A, Q, = Cohen with generic real 7, € w*.
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(7) For & < K, Qxye = Q)¢ ¥ Q§\+£, where Q3 = (Random)V [{Ti4€ Ax1¢)]
with generic partial random 73,, € 2 and Q3 = E((7o : @ € Cxy¢))
with generic 7'/\2+f € w?. Let Taye = T§+f 2] T/\2+f.

(8) Define P =Py, rg++-

The model for Theorem [T will be VF. The verification of this will conclude
with the proof of Lemma In the remainder of this section, we establish some
basic facts about these iterations.

The following claim is easily proved by induction on £ < k using Lemma 2.T] and
the standard properties of Cohen and random forcings.

Claim 4.1. For every £ < k, # € 22NVF +¢, there are a Borel function B : w® — 2%
and ((ng,7x) : k < w) such that every v, < A+ ¢ and ng < w, and that IFp & =
B((1y, (nk) : k < w)).

Definition 4.2. Let P\ =P}, be the set of conditions p € Py, satisfying
the following requirements.

(a) Foreach o € A\ndom(p), p(«) = 0 € <“w. In this case, define supp(p(a)) =

(b) For every a € dom(p) N[\, A+ k), letting p(a) = (p()(1), p(a)(2)), we have
the following.
(i) There exist ((ng,vx) : k < w), p € <¥2, and a Borel function B such
that for every k, ny < w, 7% € Aq, the range of B consists of fat trees
in <“2 and IFp, p(a)(1) = [B((7y,(nk) : k < w))] is a subset of [p]
of relative measure more than 1 — 2~ ("=7%10) where n = |dom(p) N
[\, A+ k)] and j = |dom(p) N [A, ). Recall that for X CY C 2, the
relative measure of X in Y is pu(X)/u(Y).
(ii) ke, p(a)(2) = (v, F), where F € [C,]<Y, v € <*w, F C dom(p) and
where, for each 8 € F, |og| > |v].
(iii) In this case, define supp(p(«)) = {yx : k <w} U F.
(c) Define supp(p) = dom(p) U |J{supp(p(e)) : « € dom(p)}.

For ¢ < &, Pl)\7/\+£ = P’/\+€ C Py4¢ is defined analogously.

Using Claim [T and the Lebesgue density theorem, it is easily checked that P te
is dense in Py, ¢ for every £ < k.
Suppose that A\g < \ < /\(Tw and & < k. Let h: A+ & — A+ & be a bijection
satisfying the following.
(1) AT [A A+ &) is the identity.
(2) For every £ < &, and o < A, «a € Axye iff (o) € Axje (equivalently,
a € C)\+5 iff h(a) S C)\+5).
Define h : Pie, = Py, as follows. For p e P\ . , put h(p) = p/, where
(a) dom(p’) = {h(a) : v € dom(p)};
(b) for a € dom(p) N A, p/'(h(a)) = p(«); and
(c) for a € dom(p) N[N\, A+ &), put p'(a)(1) = B({Th(vy) (k) : k < w)), where
B, {(ng, k) : k < w) are as in Definition [L2lb)(i) for the ath coordinate of
p and p'(a)(2) = (v, h[F]), where (v, F) = p(a)(2).

Claim 4.3. h is an automorphism of IP”/H_&.

Proof. By induction on &,. O
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Definition 4.4. For \g < )\ < )\5“" and A C A +k, define IP”/\)A =P,={pe ]P)/A—m :
supp(p) € A}.

The following lemma describes a sufficient condition on A C A + £ for ensuring
that P’y <Pyi¢. It is used in the proofs of Corollary and Claim [ 111

Lemma 4.5. Let & < k, let A C A+&,, and let [\, A+ &) C A. Suppose that for
every countable B C \, there is a bijection h : A+ & — X+ &, such that
(a) h [ (BNA)U[NA+E)) is the identity;
(b) for every § <& and a < A, o € Axye iff () € Axges
(c) h[B] C A; and
(d) h[BMNAxie,] S AN Apye, .
Then Py <P} ¢ .

Proof of Lemma A3l By induction on &. If & = 0 or the limit, this is clear.
So assume & = £+ 1 and put @ = A+ £ By inductive hypothesis, Py, <
IP’,, so it suffices to check the following: If {p, : n < w} C Py, p € P4, and
plre,  Apn(a) :n <w,p, [ @ € Gp,_ } is predense in (Random)V [{7s:€ANAa)] 5
E({rg : B € ANCy)), then p lkp, {pn(a) : n < w,p, | a € Gp } is predense in
(Random)V[(7a:8€A0] » B((15 : B € Cy)).

Suppose that this fails for some {p, : n < w} C P/, and p € P/;,. Choose

qeP,, v, F, D, {(ng, ) : k <w) such that
® q=>p;
o v € ¥y, F € [C,]<N, D is a Borel function on w* whose range consists
of fat trees, each v, € A,; and
o qlbp, v = [D({7y, (nk) : k < w))] A (r, (v, F)) is incompatible with every
member of {p,(a):n <w,p, [ @ € Gp }.

Let W be the union of the following sets: dom(q), supp(q), supp(p), J{dom(p,,) :
n < w}, U{supp(pn) : n < w}, and {y; : K < w} U F. Using the hypothesis on A4,
we can find a bijection h : @« — « such that
h 1 ((BNA)UIA «)) is the identity,

(Y <&(VB < A)(B € Any <= h(B) € Ariy),
e h[B] C A, and
o WBNA]C ANA,.

So h is an automorphism of P/,. As h[B] C A, h(q) € P, Since h | (BN A) is
the identity, it follows that iL(p) = p and, for every n < w, iL(pn) = p,. Since
{m k< wlUF C W and h[BNA,] € AN A,, we have that Ikp o =
ﬁ(r) = [D(Th(yy(ne) + kB < w))] € (Random)vKTﬁ’BEAﬂAQH and Ikp, (v, h[F]) €
E[(rs : B € ANC,)]. It follows that h(q) IFpr  (+', (v, h[FT)) is incompatible
with every condition in {p,(a) : n < w,p, | @ € Gp, }. Since P}, < P}, we

also get that h(q) kg (1, (v, h[F])) is incompatible with every condition in
{pn(oz) n<w,p, | a€ G]p/ma}. But since p = h(p) < h(q) and p Ibp, . {pn(a):
n < w,pp | @ € Gp,__} is predense in (Random)VITs:A€ANA)] » B((r5 : B €
ANC,)), we get a contradiction. O

/
Axte,

Proof of Corollary 4.8l Let B C A be countable. By Lemma [4.3] clauses (a)—(d), it
suffices to construct a bijection h : A+ & — XA+ &, such that i [ ((B N Axye,) U

Corollary 4.6. For every &, < k, P < ]P”)\JFE*.
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A, A+ &) is the identity, (V€ < &)(Va < N)(a € Axye <= h(a) € Axye),
and h[B] C Axye,. For each o C &, let W, = {a < A : X, N& = z}. Let
Weo={aeW,: & ¢ Xptand Wy ={ae Wy 1 & € Xt so Wy = Wy oUW, 1.
Note that for every x C &, |Wy 0| = |[Wa1| = A. So for each = C &,, we can choose
a bijection hy : W, — W, such that h,[W, 0N B] C W, 1 and that hy, [ (W, 1N DB)
is the identity. Put h [ A = J{h. : ¢ C &}. O

5. MEAGER IDEAL

Recall that P = Py, z,+x. Throughout this section and the next, we fix A =
M =25 TnVE let 7 ={Y Ckr:(3X €)Y C X)} be the ideal generated by
Z. Since P is ccc, J is an Nj-saturated x-additive ideal over x. The next lemma
says that the meager ideal restricted to {Tf_i_,5 : £ < K} is isomorphic to J and is,
therefore, Ni-saturated. Its proof will conclude at the end of Section [7}

Lemma 5.1. In V¥, for every Y C &, {T/\2+§ : £ €Y} is meager iff Y € J.

Proof of Lemma Bl Suppose that Y € J. Since P is ccc, we can find X € T
such that I Y € X. Choose @ < A such that X = X,. Note that IF (V¢ €
Xao)(Vk) (1R (F) # Ta(k)). Hence {73, : £ € Y} is meager in V7. O

Next suppose that Y ¢ J. Toward a contradiction, Wlog, suppose that p € P’
forces {7’AJrg ¢ € Y} to be nowhere dense in w®. Let 7' C <“w be a nowhere

dense subtree such that p - {73, : € € Y} CIT ] For each 0 € <“w, let A, be a

maximal antichain of conditions in P’ deciding o € T. Put W = |J{supp(p) : p €
As,p e Az}

Choose £ < k and p’ € P’ such that p’ > p, £ ¢ [ J{Xq:a € WNAL A+ >
sup(W)and p’ I+ € € Y, and hence p/ IF 7'/\2+f € [T] By extending p’, we can assume
that A+ ¢ € dom(p’). Let ¢ € P" be such that dom(q) = dom(p’) N (A + & + 1),

a I (A+8) =p" [ (A+€), a(A+8)(1) = 2¥, and ¢(A+£)(2) = (0,0). Since T e Vs,
q H_PA+5+1 T)\+5 € [T}

Put dom(q) N A = {o : j < mu}U{B; : j < ri}, where {§; : j < 1.} =
{8 € dom(q) N A : & ¢ Xg} and the a;’s and §;’s are increasing with j. Note
that WN{a; : j < my} = 0. Put dom(q) N[AMA+E) = {AN+& 7 < n.},
where the &;’s are increasing with j. For j < r,, let ¢(8;) = n;. For j < n,, let
g A+&5)(2) = (v), Fj), and let p; € <“2 be such that B, g(A+&5)(1) is a fat

subset of [p;] of relative measure more than 1 — 2~ ("+=i+10) By extending ¢, we

can also assume that

qA +&)(2) = (v, F)), where v, € bw;

F, ={a; : j <m,} is nonempty;

for every j < m., q(a;)=o0; € “w, so |o;| = |v4]; and
for each j < n,, v; € L.

To produce such a ¢, first extend each ¢(«) for a € dom(g) N A such that they
all have the same sufficiently large length [,. Let K C w be the finite set of values
these g()’s take. Next for each j < n,, extend each v; to a member of "*w with
new values from w \ K. Finally extend q(A + £)(2) to (v, F), where v, € *w and

F, ={a; : j <m,}. This is permissible because § € X,,, for every j < m,.

For a < A, define S, o = {v € <“w: (v, = v) A (V& 6 [vals v]) (v (k) # 7o (k)]
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Claim 5.2. ¢ | A+ &) e, T2 [ Sv.ay-

J<my
Proof of Claim B2l Suppose not Choose ¢ | ()\ +) <@ eP\ v S €W
such that ¢ IFp,, v1 € ﬂ <m, Svee; A1 ¢ T. Let Q@ > q, ¢ € IP’/\+£+1 be such
that g2 | A+ &) =aq1 | (/\ + &) and qg()\ +¢)(2) = (11, F). Then ¢» > ¢ and
Q2 H_PA+§+1 vy C T)\+£ Hence g5 H_PA+§+1 7'/\+5 ¢ T. This is a contradiction. O

Choose (a; ;i < A, j < my) such that the following hold.

e For every i < A and j < m,, a;; € A\ (W Udom(q)).
o For every iy,ip < A and ji,j2 < My, a4, 5, = Qu, 5, i (i1, 51) = (i2,52).
e For every i < A and j < my, Xq,; = Xq;-
For i < A, the map h; : A+ & — A+ £ defined by
a;; if 7 <m, and a = oy,
hi(a) =< a; if j <m, and o = o j,

« otherwise

induces an automorphism h; of P}, ¢ that fixes T. Let ¢; = hi(g I (A +€)). Then
for each ¢« < A, we have the following.

1) dom(g;) = {7 <m yU{B; 7 <rfU{A+& :j<n}

2) For every j < my, gi(ai;) = qla;) =0; € bw.

3) For every j < s, ¢i(83;) =q(B;) = nj.

4) For every j < ny, Fesre, ¢i(A+&;5)(1) is a fat subset of [p,] of fractional

measure more than 1 — 2~ (+—7+10),
(5) For every j < ny, ¢i(A+&)(2) = (vj, F ), where v; € “w and F;; =
hilFy). )
6) gilbe, e T2 () Suvian,-
J<m
Since A is uncountable, by a A-system argument, we can further assume that for
some (I : j < n,), for every j < ny, (F} ; 1 i <w) forms a A-system with root .
For i < w, define g(4) : [l«,lx +4) — w such that for every k € dom(g(%)),

9(@)(k) = i.

Definition 5.3. For each i < w, define ¢; € P}, by dom(g;) = dom(g;) and

I e el
Let ¢ = (¢f : i < w).
The next claim provides a sufficient condition to complete the proof of Lemma[5.11
Claim 5.4. Suppose that there exists a g, € P such that
g« = (370) (g} € Gp).
Then ¢, I [T] has a nonempty interior.

Proof of Claim B4l Let G be P-generic over V with ¢, € G. Suppose that v, <
v € <“w. Choose i < w such that (Vk € dom(v))(v(k) < i) and ¢ € G. Since
i (aij) = 0 U g(i) for every j < m,, it follows that v € (;_,, Sv,.ai;- By
Claim 5.3 it follows that v € T. Hence ¢, I [v,] C [T]. O
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So to complete the proof of Lemma [E.1] it is sufficient to construct ¢, € P,
satisfying the hypothesis of Claim [5.4l This will be done in Section [7l

6. NULL IDEAL

Definition 6.1. For each n < w, let (C} : k < w) be a one-to-one listing of all
clopen subsets of 2 of measure 27". For a < A, define No =, U,154 €7 () S0

Na is a null Gs-set coded by 7.

The next claim says that the null ideal restricted to {T/% e €< K} is isomorphic
to J and is, therefore, Nj-saturated. Its proof will be completed at the end of
Section [

Lemma 6.2. In V?, for every Y C &, {T){JFE &eYhriasnull iff Y € J.

Proof of Lemma [6.21 Toward a contradiction, suppose that p I+ Y ¢ J A {7’AIJrg :
e Y} is null. Let N be a null Borel set in V¥ such that p IF N D {Tiﬁ €€ Y}
Choose a Borel function B coded in V, and choose {(ng,vx) : k < w) such that
for every k < w, v < A+ K, np < w, and |- B((7y, (nx) : k < w)) = N. Let
A={X,, :k<wA~v <A} Then A € Z. Choose ¢ > p and { < k such that
qlF&eY\Aand A+€ > sup({yx : k < w}). Since N is coded in V(7o : o € Axye)]
(as {yk 1 k <w} C Axye), it follows that g IF 7y ¢ N. This is a contradiction.

Next suppose that Y € J. Since P is cce, we can find X € 7 such that IF Y C X.
We would like to show that {TLrg : & € X}isnull. Choose v < A such that X = X,,.
It is clearly enough to show that for every § € Xo, Ibp, ., T/%_‘_g € N,. Suppose
that this fails, and fix { € Xa, p € Py ¢, and ke < w such that p I+ (Vk >
ko) (Taye & C’fa(k)). We can assume that a € dom(p) and p(a) = o, € "*w for some
l. > ky. Choose a Borel function B and ((n;,v;) : j < w) such that v; € Axye,
that the range of B consists of fat trees and Ibp, , B((7,(n;) : j < w)) = T, and
that [T] = p(A+¢)(1). Tt follows that p [ (A+&) e, . (Vk > k)(TINCE ) =10).
Let W = {v, : j <w}, and note that o ¢ W.

Put dom(p)NA = {a}U{p; : j < r.} and dom(p)N[A,A+E) = {A+&; 1 j < ny},
where 8; and &; are increasing with j. For j < r,, let p(8;) = n;. For j < n,, let
p(A+&5)(2) = (v;, Fj), and let p; € <“2 be such that Fpsre, p(A+&;)(1) is a fat

subset of [p;] of relative measure more than 1— 2~ (n.=j+10) By possibly extending
p, we can assume that for every j < n,, v; € lvw. Choose (a; : i < A) such that
the following hold.

e Foralli <j <A, oy <oy <A
o X,, =X, (soa; ¢ W).
* o; ¢ supp(p).
For ¢ < A, the map h; : A+ & — A + £ defined by
a ify=aqy,
v  otherwise

induces an automorphism h; of P} ¢ that fixes T. Let p; = hi(p | (A+€)). Then
for each ¢ < A, we have the following.
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(1) dom(p;) = {ai} U{B; : J < pU{AFE  <nit

(2) pi(ai) =ple) =0, €

(3) For every j < 7y, pZ(BJ) p(Bj) =

(4) For every j < ny, Fes pi( A+ §J)( ) is a fat subset of [p;] of fractional

measure more than 1 — 2~ (=7 +10),
(5) For every j < ns, pi()\ +&)(2) = (vj, Fi ;), where v; € bw F; j = h;[Fj].
( ) y23 H_P)\+§ (Vk > ks )([ } mck (k) — Q))
As before, by thinning out we can assume that for some (F} : j < ny), for every
J <n, (Fij:i<w) forms a A-system with root Ff. a

For each ¢ < w, we will extend p; on the a;th coordinate to get p; as follows.
Definition 6.3. For each n < w, let K, = {k <w: supp(C ) C n}. Note that for
alln > 1., |K,| = (,2,). Define k= (k, : n < w) by ko =0, ki1 —kn = (5°1,)-

on—lyx

Let f : w — w be such that f[[ky, knt1)] = Kp. For each i < w, v € dom(p;), define
Z o U{, f(1))} ify = ai.

Lemma 6.4. Suppose that K < w, that F C [\, A+ k) is finite, that {(pg : 0 € F) is
a sequence i <2, that (ag : 0 € F) is a sequence in (1/2,1), and that (g; : j < K)
is a sequence of conditions in P’ such that for every j < K, dom(g;) = F, for each
0 € F, Irp, q;(0)(1) is a subset of [pg] of relative measure > ag, and q;(6)(2) is
the empty condition. Then there exists a ¢* € P’ with dom(q*) = F such that for
every 0 € F, Ikp, ¢*(0)(1) is a fat subset of [pe] of relative measure > 2ag — 1 and
q*(0)(2) is the empty condition and

¢ e |{j <K :q; € Gp} > K27 T ao.
0cF

Proof of Lemma 6.4l By induction on |F|. Suppose that F = {#}. Work in V.
Define ¢ = .y 14;(0)(1), where 1y (g)(1) is the characteristic function of ¢;(6)(1).
Put A= {z € [pg] : p(x) > £g2}. Tt suffices to show that p(A) > u([pe])(2ag — 1).

We have
_ KG,Q
Kaon(lpo) < [ odn = [ o [ o < K(4) 5 (utlal) — ()5
Solving gives M’”EE;;) > 5 ieae > 2a9 — 1

Now suppose that |F| > 2 and that 8 is the largest member of F. Let F’' =
F\{B}, ¢; = q | F'. Choose ¢’ € P’ with domain F" such that for every 0 € F",
IFp, ¢'(0)(1) is a subset of [pg] of relative measure > 2ag — 1, ¢'(0)(2) is the empty
condition, and ¢’ IFp [{j < K : ¢} € Gp}| > K27 e ag. Let W= {j < K :
q; € Gp}. Let {W; : 4 < N} list all subsets of K of size > K2~ IFl [Isc s ao. Choose
a maximal antichain {r; : i < N} in IP’/’B above ¢’ such that each r; IFp W =W,
Work in VFs. For each i < N, arguing as above, we can get a condition s; € Qé

Wi
such that 7; IFp, pu(s;) > 2ap—1and s; kg, [{7 € Wi q;(8)(1) € G%H > m.

Choose ¢* such that ¢*(0) = ¢'(0) if & € F’" and for each i < N, r; IFp, ¢*(5)(1)
= Si‘ |:|
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For i < w, let p!/ be defined by dom(p!) = {A+¢&; : j < n,}, and for every j < n,,
PiAN+&)(1) = pi(A+&5)(1) and p (A +&;)(2) is the empty condition. Note that
p € P\ ;. For each n < w, apply Lemma [6.4] to the sequence (p; : i € [ky, kpi1))
to obtain ¢} such that the following hold.

Definition 6.5.

(a) qn € P\ ¢ and dom(gy) = {A+&; 1 j <nu}.
(b) For every j < ny, My, gn(A+¢&;) is a subset of [p;] of relative measure
>2(1 — 2= (=i H10)) _ ] =1 — 2= (=i +9)
(C) q:L “7]P7>\+§ |{Z € [knvkn+1) : p;/ € G]P)_*,{}‘ Z (kn"l‘l - kn)an* H]<n*(]‘ -
27 (=i H10)) > (K yq — Ky )47
Definition 6.6. For eachn <w and i € [ky, kp11), define p; € Py . by dom(p}) =
dom(p;) and

o U{(le, FEG)YU{(k, i) : k € [lh+1,i+lL+1)}  if a=q,,
pi(a)=q pi(B;)=n; if j < 7. and a=p;,
(Pi(@)(1) Vg (@) (1), (v, Fij)) if j < n, and a=\+¢;.
Let p* = (pf : i < w).
Note that for every j < n., IFp, . pi(A+ &;)(1) is a subset of [p;] of relative

measure more than 1 — 2~ ("+=J+8) The next claim provides a sufficient condition
to complete the proof of Lemma

Claim 6.7. Suppose that for some p, € P and € > 0,

[{i € [kn, knya) s pf € G}
knJrl - kn B

i IF (3%n)

Then p, IF [T] is finite.
Proof of Claim 6.7l For n < w, let W, = {i € [kn,kn+1) : pf € Gp}, and let
an = |T N"™2|. Note that p, I+ (Vi € W,,)(Vo € T N "2)(C}*(i) N [o] = 0) because
Le > ky, p(ci)(lx) = f(i) and pf IF (Vk > k*)(Cfa‘(k) N [T] = 0). It follows that
W,| < (QH_&"). Hence

on—1ly
1 2" —an an n—1I, n—1l, \ @n
e 1 (B I (L=
ko1 = kn (3n1.) j=1 2" —dn ] 2n

Therefore )
M <(1- 271*)&n.
kn-i—l - k;n

As a, is increasing with n, it follows that p, forces lim, a,, < oo, and hence

forces [T] to be finite. O

To complete the proof of Theorem [I1] it suffices to construct conditions gy, px
satisfying the hypotheses of Claims [5.4] and Let us try to illustrate the main
difficulty in doing this for p*.

Let

A={i<w: (@ <w)(i€ [kn,knp1) A (Vk € [kn,kny1))(0h T X € Gp))},
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and for each £ < k, let
Be={i<w:p; | (A +&) € Ge}.

Putdom(p,) ={B; : 7 <mjU{A+& i <nutandp, [ {8 :j<r}=pf [ {B;:
J <7y} (this does not depend on i < w). For j < ny, define p,(A+§;)(2) = (v, F).

Note that p, | A IF A is infinite. It is clearly necessary to choose the random
coordinates p,(A+¢;)(1) for j < n, such that p, I- jlﬂf?gn*fl“ is infinite. Suppose
that we have constructed p, [ (A +¢&;) such that p, [ (A+§;) IF An f?gj is infinite,
and that we would like to choose p,(A+&;)(1) € Random" [(Te:@€Ax+e0) (recall that
Px(A+§5)(2) = (vy, F})) such that p, [ (A +&j1) IF An éng is infinite. The
problem is that we do not have access to égj eV in V[(ra ta € Axye;)], and
hence it is unclear how to proceed.

To get around this difficulty, we will construct an auxiliary finitely additive
measure m on P(w) N V¥ which carries enough information about the partial ran-
doms appearing at stages {A + &; : j < n.} to allow us to choose appropriate
Pi(A 4+ &5)(1)’s. Definition [T7] lists a sufficient set of requirements on m for this.
The construction of m in LemmalZ.9lis inductive and uses Lemma[Z.3]to code enough
information about the partial randoms to allow the inductive step to proceed. The
class of blueprints in Definition [.4lis general enough to allow a Lowenheim—Skolem
type argument (Claim [Z.I0]) in the proof of Lemma

7. MEASURES AND BLUEPRINTS

An algebra A is a family of subsets of w that contains all finite subsets of w and
is closed under complementation and finite union. A finitely additive measure on
an algebra A is a function m : A — [0, 1] that satisfies the following.

e For every finite F' C w, m(F) = 0.
e m(w) =1.
o If A17A2 S .A, and A1 N A2 = @7 then m(A1 U AQ) = m(Al) + m(Ag)

Suppose that m : P(w) — [0, 1] is a finitely additive measure and that f :w —
[0,1]. Following Lebesgue, define

2" ka
/ fdm= lim ¥ —%,
n—o00 on
k=0
where a, = m({n <w: k/2" < f(n) < (k+1)/2™}).
The following is a standard application of the Hahn—-Banach theorem.

Lemma 7.1. Suppose that m : A — [0,1] is a finitely additive measure on an
algebra A, and that X C w. Let a € [0,1] be such that for every A,B € A, if
AC X C B, then m(A) < a<m(B). Then there exists a finitely additive measure
m’: P(w) — [0,1] that extends m and m’'(X) = a.
The proofs of the next two lemmas can be found in [I].

Lemma 7.2. Suppose that m : P(w) — [0,1] is a finitely additive measure. For
i € {1,2}, let R; be a forcing notion, and let m; € V®i be such that lIFg, m; : P(w) —
[0,1] is a finitely additive measure extending m. Then there exists a g € VRixRz

such that Ik, xr, M3 : P(w) — [0,1] is a finitely additive measure extending both
ﬁll and Tﬁg.
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Lemma 7.3. Suppose that m : P(w) — [0,1] is a finitely additive measure. Let
B = Random, 7 € B. Define m, € VE as follows. For X € P(w) N VE, define

ﬁ"tr()%) = sup{inf{/ g < X]]B)dm 1 q >p} p>r,pe GB}.

1(q)
Then the following hold.
(1) rlFwm, : P(w) = [0,1] is a finitely additive measure extending m.
N n € X]Js)
p(r)

(2) If)of € P(w)NV® and a > 0 satisfy, for everyn < w, p(r -

then there exists an s > r such that s I fﬁr()o() > a.

The next definition introduces blueprints. Their role is clarified in Claim [Z.8
Note the return of variable \g < A < )\ar “ here.

Definition 7.4. For M\ <\ < )\ar“’, let Ty be the set of tuples
t = (a,m,a,B,r,1,&n,p,0, F,1,6) = (a',m',a", B',rt, i7", £ nt, p, 0 FH 1P ),

)
) &= (a;;:i<w,j<m), where each a; ; < X;
(iii) for every 1,42 < w and ji,jo <m, ;4 = Qy, j, i (i1,71) = (i2,j2);
(iv) @ = (0ij 1 i <w,j < m), where each 0; ; € <“w;

) B=(Bj :j <r)is a sequence of pairwise distinct members of A\ {c ; :
1

) a=(n;:j< r) where each n; € ““w;
) €= (& :j < n) is an increasing sequence in x;
(vili) p = (p; : j < n), where each p; € <“2;
(ix) v = (vj : j < n), where each v; € lw;
) F = (F,;:i<wj<n), where each F;; € [Cxy¢,]<™, and for every
j<mn, (F;;:i<w) forms a A-system with root F}; and
(xi) €= (g;:j <n), where ,_1 € (0,278) and 2¢; < &;41 for every j <n — 1.

We call members of T, blueprints. They are intended to code information about
certain sequences of conditions in P} that look like §* and p* from Definitions [5.3]
and [6.6] in the following sense.

Definition 7.5. Suppose that t = (a,m,&, 3,7,7,&,n,p, 7, F,1,&) € Ty and that

P = (p;i : i < w) is a sequence in Py. We say that p is of type t if the following hold.
a) For every i <w, dom(p;) ={cu;:j <m}u{B;:j<riu{r+§ :j<n}
b) For every i <w and j <m, pi(e ;)= 0;;.

c) For every i <w and j <r, p;i(8;) =n;.

c) Foreveryi <wand j <n, Irp, . pi(A+&;)(1) is a subset of [p;] of relative

measure more than 1 — ¢;.
(d) For every i <w and j <n, lkp, . pi(A+&5)(2) = (v, Fij)-

Definition 7.6. Let \g < A < A\{“, and let t = (a,m, &, B3,7,%,&,n,p, 0, F,1,€)
€ Tx.

(1) We say that ¢ is ¢-like for every ¢ < w and j < m, |o;;| = I + ¢, and
(ks € [L,1+ ) (055 (k) = ).
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(2) We say that t is p-like if for every n < w, ¢ € [kn,knt1), and j < m,
loij| =1+ 1+14, (0:;() : i € [kn, kny1)) are pairwise distinct and (Vk €
I+ 1,1+1+1))(0s;(k) =1), where (k, : n < w) is as in Definition 6.3

Note that if ¢* is of type ¢, then ¢ is ¢-like, and if p* is of type ¢, then ¢ is p-like.
For t € Ty, £ < k, we write t | £ for the blueprint which is obtained by restricting
the sequence & to ordinals below ¢ and modifying pt, v, F*, &, and n accordingly.
The next definition relates finitely additive measures in VP> ++ and blueprints in 7.

Definition 7.7. Suppose that t = (&, m,a,3,7,7,&,n,p, 7, F,1,8) € Tx, k = {(ky, :
n < w) is an increasing sequence in w with ko = 0, §,—1 <& < K, and m € VPate,
We say that m satisfies (¢, k) if the following hold.

1) IFp, ., m:P(w) — [0,1] is a finitely additive measure.
Ate

(2) For every j < n, letting V; = V[(14 : @ € Axye,)], we have Ibp, , m |

(P(w)NV;) € Vj.
(3) For every p = (p; : i < w) of type t, there exists a p; € IE”’/H_5 such that the

following hold.

(a) dom(pp) = {Bj:j <rjyU{A+&:j <n}

(b) For every j <r, ps(B;) =n;.

(c¢) For every X € P(w) NV that satisfies (Vn < w)(|X N [kn, knt1)] < 1),

we have
pp [ AlFp, m(X) =0.

(d) pp | ey, m(A,f) = 1, where
Am—c ={i<w:(3n <w)(i€ [kn,kny1) N (VE € [kn, kny1))(or [ X € Gp))}.

(e) For every .7 < n, “_]P’,\+§]. pﬁ()‘ + 5])(1) - [pj] and pﬁ(/\ + 5])(2) =

(Vj’Fj)~ . .
(f) For every j < n, pp lFp,, (Y1 ;) = 1, where i € Y5 . iff letting
N < w be such that i € [ky,kyy1), we have p;i(A 4 &;)(2) € Gge

A+

and |{’L/ S [kN;kN—i-l) :pi/(/\—i—fj)(Q) S GQ§+£ }| > kN+1 —ky — mt.

j
(g) For every j <n, pplrp,, m(Xp;) > 1—2¢; >0, where
X@j = {Z <w:p; [[)\,)\—l—g]—i-l) GGP}.
The next claim provides a sufficient condition for the existence of ¢, and p,
satisfying the hypotheses of Claims [5.4] and [6.7] respectively.

Claim 7.8. Suppose that for every ¢t € T, if ¢ is either g-like or p-like, then there
are & | < ¢ < k and m € VPr¢ such that m satisfies (¢, k), where k is as in
Definition Then there exist g, and p, satisfying the hypotheses of Claims [(.4]
and [6.7] respectively.

Proof of Claim [L8. Choose t € T\ such that ¢* from Definition 5.3 is of type .
Choose &,, -1 < £ < k and m € VEr+¢ such that m satisfies (¢, k). Let g, = pg+ be
as in clause (3) of Definition [[711 Let Xgs -1 = {i < w : g | [\, A+ &) € Gp},
and let

App=1{i <w:(3@n <w)(i € [kn,kns1) A (Vk € [k kns1)) (g5 T A € Gp))} -
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Then g, forces m(Xg«,, 1) > 0 and m(A . 5) = 1 and hence forces /Ol,j*’,; N

q
X3+ n,—1 to be infinite. It follows that g, I (3°°%)(¢; € Gp). Hence g, satisfies the
hypothesis of Claim 5.4

Next choose ¢ € Ty such that p* from Definition 6.6l is of type ¢. Choose &,, -1 <
¢ < k and m € VPr+¢ guch that m satisfies (¢,k). Let p, = pp- be as in clause (3)
of Definition [[.71 )

Let Xpe n,—1 ={i <w :pj [ [\, A+&) € Gp}. For j < ny, let Y. j i be defined
by i € %*,,;J iff pf(A+¢5)(2) € G@§+g-’ and for some N < w, i € [ky,kny+1) and
{i" € kv, knga) : pi(A+E5)(2) € Gz, }H = ki —ky —1 (recalling that mt =1
for the blueprint of p*). Finally let

Ay p={i <w: (@ <w)(i € [kn, kns1) A (Vk € [k, kns1)) (P} | X € Gp))} .

o o

Then p, forces m(A. ;) = 1, m(Xp+ ,, 1) > 0, and for every j < n,, ﬁ‘l(f/—*’fc’j) =
1. Hence it also forces
Aﬁ*ﬁ ﬂXZ—,*’n*,l N m Yﬁ*,l_c,j
J<mns
to be infinite. Let ¢ be a member of this set, and fix n such that ¢ € [k, kn41). The
set {7’ € [kn,knt1) : p} ¢ Gp} has size at most n, + (kpq1 — kn)(1 —47™). The
first contribution comes from Definition [TT7)(3)(f) (noting that m' = 1), and the

second comes from the partial random coordinates (see Definitions [6.6] and [6.5)(c)).
It follows that

{7 € ks knin) : pF € GRY ) —(nas1)
kn+1 - kn N

Hence p, satisfies the hypothesis of Claim O

px IF (3%°n)

The following lemma finishes the proof of Theorem [T.11

Lemma 7.9. Suppose that \g < A < Ag“, that t=(a,m,&,B,r,0,&n,p, v, F,1,8)e
Ty €n—1 < € < K, and that k = (k,, : n < w) is as in Definition 63 Assume that
t is either g-like or p-like. Then there exists an m € VPre such that m satisfies
(t, k).

Proof of Lemma [L9. The proof is by induction on n = nt = |€|. a

Suppose that n = 0. Fix £ < k. Since n = 0, there is a unique p of type t.
Put p; = {(8;,m;) : j < r}. Define X; = {i : (3n < w)(i € [kn,kny1) A (Vk €
s kny1)) ok € Gpy())} Let W = {X : X € Plw)nNV AW < w(XnN
[knsknt1)] < 1)}, Since limy, (kp41 — k) = oo, it follows that for every finite
FCW, pslp, )E'ﬁ \ U F is infinite. Hence we can choose m € VFx+¢ such that
IFp,,e m @ P(w) — [0,1] is a finitely additive measure and, for every X € F,
Pp IFpy e m(X, \ X) = 1. It follows that m satisfies (¢, k).

Next fix \g < A < A\J“ and t = (a,m,a,3,r,7,&,n +1,p,,F,1,8) € Ty such
that ¢ is either g-like or p-like. It suffices to construct m € VFA+én+1 such that m
satisfies (t,k). Let T\, = {t' € T+ : t/ = @' m,a, B ri,€ | nyn,p | nyw |
n, (Fij:i<w,j<n),l,& [ n)}. By inductive assumption, for every ¢ € T}, there
exists an m? € VFatat+en such that m! satisfies (¢, k). Fix such a map ' — m?
on Ty, .
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Claim 7.10. There exists an m € VEAaten that satisfies (t | &ny1, k), where t |
bnt1 = (a,0,6,1& | nyn,a,p | n,v | n(F; : i < w,j < n),l,¢ | n) and
IFp m | (P(w)NVFa) e VP4, where A = A>\+£

XAtén
Proof of Claim [[ 10l Let x be sufficiently large. Choose My, My elementary sub-
models of (H,, €, <y) such that My € My, |My| = |M;y| = A, and for [ € {0,1},
Py, T\:, and the map t' m! are in M;, A+ 1 C M;, and =*M; C M,. Note

that if B; € {/\OAAJrg ,)\\A)\+§ } for j < mn+1, then [, Bj| = A Also,
if D; € {>‘+0A>\++5 ,)\"’\A)\ﬂr5 }for j < m+1, then [Mo N (., 1 Djl = A
and (M1 \ Mo) N ();<,01 Djl = A So we can choose a bijection h : A + &, —

N (AT +&,) such that the following hold.

(i) For every € < &,, h(A+&) =T +¢&.

(ii) For every j < nand a < A\, «a € A§+§j iff h(a) € A>\++§ ; hence also

@ € Qe I h(a) € O, .

(iii) For every a < A\, a € A)\%n iff h(a) € M.

Let ' = ((h(avuj) 1 i < w,j < m),m,a,(h(Bj) : § <r),r,i & nyn,p | n,v |
n, (h[Fi;] i <w,j <n),l,En). As“M; C M, t' € M;. Hence also m’ € M.

Define h : P} aén — Phs pe g, as follows: h(p) = p/, where dom(p’) =

{h() : @ € dom(p)}. Ifozedom()ﬁ/\ then p'(h(a)) = p(a). If a € dom(p) N
(A, A+&n), then p/(a)(1) = B((Thy,) (nk) : B < w)), where B, ((ng, ) : k < w) are
as in Definition [L2(b)(i) for coordinate o and p'(«)(2) = (v, h[F]), where (v, F) =

p(a)(2).

Subclaim 7.11. The following hold.
(1) h:P yye, — IE”’/\+7(/\++£")HM1 is an isomorphism.
(2) Phs o reynnty <P+ o teymnn <Phs s e,

(3) Forj <m, put A; = A/\Jr+£ N M;. Then ||_]P>i\+,)\++£. wl T (P(w)N VPA‘F,A]‘) €

yia,

(4) Forl€{0,1}, I ' | (P(w) NV 0t remnin) € PErEotremnm

/
PA+,A++£n

O

Proof of Subclaim [[TT] (1) and (4) should be clear. For (2), use Lemma 5 For
(3), use the fact that /! satisfies (¢, k).

. P’
Choose m’ € V' AT, F+&n)nMy guch that

e, . =0t [ (P(w) NV 0 ssonin)
+

and define m € VFAx+en by () = . B
By Subclaim [[IT] m satisfies (¢ [ &p41,k), where t | £pa1 = (o, 0, ,8,7“§ i

n,n,a,p [ n,o [ n,(Fi; : 1 < w,j<n),l,& n)and, moreover, g, e m |
(P(w)NVFra) € VA4, where A = A§+fn- This completes the proof of Clalmm
(]

To complete the proof of Lemma[.9] we would like to extend mtom; € VErtent
such that m; satisfies (¢, k). We do this in two steps.
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Let ¢ = ((B;,m;) : j < 7). Note that for every X € P(w) NV, if (¥n <
W) (| X N [kn, knt1)] < 1), then ¢ IFpy e, m(X) =0.

Claim 7.12. q forces the following to hold in VFPr+én: Letting Q = Q%\Jrgn, there
exists a Q-name my such that IFg ma : P(w) — [0,1] is a finitely additive measure
that extends m and (v, F},) IFg ma(Y) = 1, where i € Y iff for some N < w,
1 E [kﬁN,kN+1), (VnaFim) (S GQ, and

|{i/ S [kN,kN+1) : (VnaFi’,n) S GQ}l > ]{?N+1 —ky —m.

Proof of Claim [[I2 Work in Vi = VF e above ¢. By Lemma [T1] it suffices to
show that for every A € P(w) N V; satisfying m(A) > 0, (v, F,) kg ANY # 0.
Toward a contradiction, suppose that this fails. Choose (v,F) € Q and A € V;
such that (v, F,) < (v, F), m(4) > 0, and (1, F) kg ANY = (). We can assume
that |v| > |v,| = 1. Choose the ¢; € PS\JF&”, g1 > q that forces this.

First suppose ¢ is ¢-like. Then, for every i < w and j < m, |o; ;| =+ and
(Vk € [I,1 +1))(0;,(k) = i). Let H be Pyi¢,-generic over V with ¢; € H. Work
in V[H]. Since m(A) > 0, A is infinite. Choose N < w and i € [kn,kyy1) N A
such that kx > |v|, (Vk € dom(v))(kn > v(k)), and for every i’ € [kn,kni1),
Fyno\ F, C{ay;:j < m}. It follows that (v, F U Uke[kN,kNH)Fkvn) extends
(Vn, Fyr ) for every i € [kn,kn1), and hence that (v, F U Uke[kN,kN+1) Fy ) kg
i € Y N A. This is a contradiction.

Next suppose t is p-like. Then, for every N < w, i € [kn,kn+t1), and j < m,
loi ;| =14+ 141, (0;;(1) : i € [kn, kn41)) are pairwise distinct and (Vk € [+ 1,1+
1+d)(oijk) =1). Let X ={i <w: (@n <w)3j <m)(@ € [kn,knt1) Av(l) =
0;,;(1))}. Then, for every n < w, |X N [k,,knt1)] < m, and hence ¢ e,
m(X) = 0. Let H be Pyi¢, -generic over V with ¢; € H. Work in V[H]. Since
m(A\ X) > 0, A\ X is infinite. Choose N < w and i € [kn,knt1) N (A\ X)
such that kxy > |v|, (Vk € dom(v))(ky > v(k)) and for every i € [kn,kny1),
Fin\ F, C {a;; : j <m}. It follows that the set of i’ € [kn,kn41) for which
(v, FUUpehy kw1 ) Fen) does not extend (v, Fyv ) has size at most m, and hence

(W FUUkeppon tonsr) Fom) FQ i € Y N A. This is a contradiction. O

Claim 7.13. The following holds in VP +én: Let B = Q) ¢, There exist s € B
and a B-name mj such that s > [p,], IFg m3 : P(w) — [0,1] is a finitely additive
measure extending m, and that s lbg ms({i <w:p;(A+&,) € Gp}) > 1 —¢,.

Proof of Claim [TI3 Put V,, = V"*4x+¢n so that B = (Random)¥». Working in
Vi, apply Lemma [3] to m | (P(w) N'V,), with r = [p,], to obtain the extension
m, € (V,,)® as defined there. By Lemma [Z3(2), we can choose s € B, s > [p,] such
that slkp m.({i <w:p;(A+ &) € Gr}) > 1 —¢p.

Since P A < P} ¢, , we can write VPien = (V)R for some R € V,. By

Lemma [T2] it follows that 1, € (V;,)B and m € (V,)@ have a common extension
g € (V) @B = VErren*@iien So s and rhg are as required.

Since Prye,+1 = Page, * (Q/H_g” X Qi-i-g")v using Lemma [[2] again, we can find
a common extension m; € VEr+en+1 of my and mj.

Let us check that my satisfies (¢,k). So fix p = (p; : j < w) of type t, and
construct p; as follows. Put ¢ = (p; [ (A +&,) 1 j < w). Since m satisfies ¢ [ &,41,
we can find p; € P} , satisfying clauses (3)(a)—(f) in Definition [L.7 for g.
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Deﬁne pﬁ by pﬁ fo()\ + fn) = p177 pﬁ(A + gn)(l) =S and pﬁ(A + fn)(Q) = (Vna Fn)

For j <mn,put X5, ={i <w:p [ [MNA+E +1) € Gp}. Clause (3)(f) in
Definition [77] follows from Claim For clause (3)(g), we need to check that
pp Ik fnl()z'z—,,n) > 1 —2¢e,. Since p; IF ﬁm()oi'@n,l) >1-—2e,_1, &y > 2e,_1, and
pplEmi({i <w:p; [ {A+&} € Gp}) > 1 — ¢, (using Claims [[12 and [LT3)), it
follows that p; IF ﬁzl()o(@n) >1—26, 1 —€n > 1 —2¢,. Hence 1 satisfies (¢, k).
This completes the proof of Lemma [.9], and therefore of Theorem [l |
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