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A sufficient condition for the existence of a system of distinct representatives 
for a family S is that x E A ES implies the number of elements of A is not 
smaller than the number of sets in S to which x belongs. 

The celebrated Hall’s Theorem [I, 21 gives a necessary and sufficient 
condition for the existence of a system of distinct representatives for a 
family S of finite sets: the union of any m sets of S is a set of at least m 

elements. Synonyms for “a system of distinct representatives” are 
“a transversal” and “a one-to-one choice function.” The problem of 
finding such conditions for an arbitrary family of sets seems to be difficult 
(see [5, 61 for partial results and for explanation of the difficulty). So 
Mirsky suggested looking for sufficient conditions, and successively 
he, Knight, and Milner formulated such conditions. In [4] it was shown 
that Knight’s condition A E S a [{B: B E S, A n B # ,@a>1 < 1 A 1 is 
sufficient for the family S to have a system of distinct representatives. 
It was also pointed out in that paper that in order to prove the sufficiency 
of Mimer’s weaker condition, stated in the abstract, it is enough to prove 
it in the case in which S is a denumerable family of sets. This will be 
proved here. Unlike [4], no set-theory is needed and the proof is combi- 
natorial and computational. Unfortunately it is not elegant. For more 
information on transversals, see Mirsky [3]. This is a partial answer to 
Problem 15 of [3]. 

NOTATION. N will be the set of natural numbers including zero. By a 
family of sets we mean an indexed one, that is, with possible repetitions. 
S will be a fixed countable family of non-empty sets, that is, 
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S = {A,: II E N}. L will denote a subfamily of S consisting of finite sets 
only. K will denote a finite subfamily of S consisting of finite sets only. For 
any S’ C S, D(S) = dom(S’) = UAES, A. X, Y, A, and B are subsets of, 
and x, y points of, dam(S). The letters i, j, k, Z, m, n, p, q, r always denote 
natural numbers. 1 A / is the number of elements of A-which is here a 
natural number or cc; the same with 1 L 1 -the number of sets A E L. 
u(x) = I{A: x E A E S}l. A transversal of S is a one-to-one function F, 
F(A) E A. Using indexes, we agree pi = p(i) etc. 

MAIN THEOREM. If S is a countable famiIy of non-empty sets and 
x E A E S implies v(x) ,< 1 A 1 then S has a transversal. 

Proof. W.1.o.g. for every x E dam(S): 

(1) v(x) = min{ I A / : x E A E S>. 

For otherwise we shall add to S infinite sets A,’ (which may 
have points outside dam(S)) such that, for x E dam(S), x E A,’ iff 
n+l ~min(/AI:xEAES}--(x).LetSf={A:AES,Afinite}.W.l.o.g. 
we may assume that Si = S - S, = {Y,: n E N} is infinite and that the 
sets Y, are denumerable (for any infinite member of S can be replaced by 
a denumerable subset). 

A set B C dom(SJ is acceptable if S, has a transversal F, which avoids B, 
that is, F(A) C# B for any A E S. By Hall’s Theorem, B is acceptable iff 
I D(K) - B I - I K I > 0 for any KC S. If equality holds, K is called 
B-critical. It is easy to see that K is B-critical zfl S has a transversal 
avoiding B, and any such transversal F satisfies {F(A): A E K} = D(K) - B. 
Hence the union of B-critical sets is a B-critical set, when B is acceptable. 

Define 

(2) d(K)= l~(K)I-l/l, 

(3) d(K,B)= ID(K)--1 -lKl, 

(4) 4% L) = c 
z&4..+ ) 

(5) t(x, L) = 1 - w(x, L). 

Note that 

6% for any B, K d(K, B) > d(K) - I B 1, 

09 

(C) 

by definition, K is B-critical @Td(K, B) = 0, 

by Hall’s Theorem, B is acceptable zr, for any K, d(K, B) > 0. 
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By the condition in the theorem x E A E S implies that u(x) < 1 A / and 
hence that 

0 0 < w(x, L) < 1, and 0 < t(x, L) < 1. 

Let us try to connect these numbers: 

= se;K) w(x, a* 
So using (2) 

(7) d(K) = / D(K)1 - I K 1 = c 1 - c w(x, K) 
ED(K) ED(K) 

BY (A) 

(8) d(K,B)>d(K)-l/l= c t(x,K)-jIBI. 
SD(K) 

Let us prove. We shall define by induction on it distinct Yn E Y, such that 

(*)% S, has a transversal avoiding B, = { yi: i < n}, or equivalently 
for any K, d(K, B,) > 0. 

Suppose we succeed in defining the JIM so that (*)n holds. Let 
B = U B, = { y. , yI ,... }. Then, for any K, as D(K) is finite, there is no 
such that D(K) n B = D(K) n Bn, and hence d(K, B) = d(K, Bno) > 0. 
Therefore, by Hall’s Theorem, S, has a transversal F avoiding B. Extend F 
by putting F(Y,) = yn and we are done. All that remains is to define the 
yn . BY (7) and (W, 

4K 4) = d(K) b c 6 K) 2 C 0 = 0, 
OED(K) 

and so (*)n is satisfied for n = 0. 

aeD 

Sh:29



202 SAHARON SHELAH 

From now on n is a fixed (natural) number, yi E Yi are defined for i < n, 
and (*)n is satisfied. If there is y E Y, - B, such that, for any B,-critical K, 
y 4 D(K) then we define y,, = y and (*)n+l is satisfied. So assume from now 
that such y does not exist, and we shall get a contradiction. Let Y, - B, = 
ix m: m E N}. So for every m there is a B,-critical K, , x, E D(K,,). Define 
K, inductively so that 1 D(&,, KJ is minimal (for the already chosen Ki , 
i < n). Define 

(9) K”” = u K, , L = u K, , D, = D(K”), D = D(L). 
D<?n WN 

As the union of B,-critical families is a B,-critical family, K” is 
B,-critical. 

03 d(K”, B,) = 0 for every m E N. 

So by (8) 

O=d(Km,B,)3 1 t(x,Km)-/BJ. 
XED, 

Hence, as ( B, I = n, 

n 3 1 t(x, K”). 
%E D,,, 

Since Km C L, it follows from (4) and (5) that w(x, K”) < w(x, L), 
t(x, Km) > t(x, L). Therefore, n > CzeD, t(x, L). This inequality holds 
for any m, and, since D, C Dm+l , D = u,,, D, , it follows that 

Hence 

(F) c t(x, L) converges. 
XPD 

The rest of the proof is dedicated to contradicting (F). For any 
m,x,ED,CD,x,EY,$L,andso 

Therefore 

(11) en 2 L) = 1 - w(x, , L) 2 -& . m 
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As Cm t(x, L) converges, {x E D; t(x, L) > l/p} is finite for any p, 
hence 

(G) lim z&J = co. m-m 

Notice that 

and 

1 1 -__ 
m 

ml = y (+ - -.L) 
p=m 

for 0 < m < m, . Using these identities, we obtain from (4), (5), and (1) 
that 

(12) t(x, L) = 1 - 1 __ 
XEAEL 1 ’ 1 

= c 5 (&&) 
EAES-L P=VIX) 

Let 

(13) C(P, xl = i 
0, if p < v(x), 
U(X)-l{A:x~~~~,(7+c) GIlAl <PII, 

if p 2 v(x); 
thus 

(14) a L> = Dtl [; - $1 C(P, x). 

Let 

(15) c, = c C(P, x). 
CZE 
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The convergence of these sums follows from 

= f  (’ - &) c, 
P=l p 

So clearly by (15) and (16) 

(HI each c, is a natural number and 

2 (’ - 6) CP 
P=l p 

converges. 

Also 

(I) lime, = cc. D-m 

As x, E D, x, E Y, E S - L, we have c( p, x,) 3 1 if v(x,) < p. There- 
fore, c, 3 I{m: v(x,) < p}I -+ 00. 

We next prove that for any p 

(*) L, = {A E L: I A / = p} is finite. 

Call x E D balanced if x E A E S 3 1 A I = v(x), A E L and let 
A* = (X E D: v(x) < p, x not balanced}. For x E A* we have 

4x, L) = & & G 
v(x) - 1 

44 + 
l 

v(x) + 1 ’ 

t(x, L) 
3 1 v(x)@(x) + 1) 3 P(P 1 * + 1) 

Therefore A* is finite by (F). Hence there are m, , m, so that A * C Dmo 
and A E Km1 whenever A E L, and A n A * # 0. To prove (*) it will be 
enough to prove that L, C PI. Suppose this is false. Thus there is a least 
integer q > m, such that L,’ = (K* - Kml) n L, # D. By the definition 
of A*, if x E A E L,‘, then x is balanced and A E K’J - Kg-l. 

Notice that A EL,, BEL- L, implies AnBCA*CDmo and 
x, E u {A: A E L,} implies x, E A*. Considering any transversal F of KQ 
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avoiding B, , it covers D(G) - B, , hence its restriction Fl to K’J - L,’ 
covers D(K”1) - B, , as K”1 is B,-critical. Also Fl covers D(KQ - L,‘) - 
D(Kml) - B, , so Fl is a transversal of Kq - L,’ which covers 
D(K” - L,‘) - B, . It follows that Kq - L,’ is B,-critical. By the 
minimality of D(Kq) it follows that L,’ is empty and this is a contradiction. 

We now prove that 

(J) c, = c~,+~ (modp + 1). 

All the congruences in the following will be modulo p + 1. By (13) we have 

I 

0, if u(x) >p+ 1, 
C(P,X)--c(p+l,.u)= --c(p+l,x), if v(x) =p+ 1, 

I{A:xEAEL, I.41 =p+l)l, 
if v(x) <p+ 1. 

Therefore, since c(p+ 1,x) = -~{A:xEAEL,zJ(x) < /Al <p+ l}] 
for u(x) = p + 1, it follows that 

c(p, x) - c(p + 1, x) = /{A: x E A EL, I A ( = p + l}l. 

Now 

CD - %I+1 = a& MP? 4 - C(P + 1,x)) 

since the summation contains only finitely many terms by (*). So (I) was 
proved. 

It remains to prove only 

LEMMA 1. If c, , p >, 1 is a sequence of natural numbers, lim,,, c, = co, 
and c, = c,+~ (modp + l), then 

f (~--&)cp= co. 
II=1 p 

Proof of Lemma 1. We shall assume it converges and get a contra- 
diction. 
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Choose E, 0 < E < 0.1. Define 

(r may be co). 

Notice 

W If p(k) is an increasing sequence k < 1 then 

Z-l 

c;g; = & c;&+" . 

Choose n, such that E > CcO. Let 

(18) CP = cP+l - 4,+1,(P + I), 

(19) 4P, 4) = f &J. 
i=p+1 

so 

( 1 1 
CP 1 

CP CP c?l c B+l - h,+dP + 1) 
--Pfl =P 

--I-- 

P P+l P P+l 

CP =- 
P 

- * + 49+1) * 

(20) c,g = y c, (j- - --&) 
i=p 

_ CP cQ + Z(p, 4). 
P 4 

If there is q,, such that, for q 3 q. , c, 3 cq then 

a contradiction. So 

CL) for arbitrarily large q, co < cq. 

Choose q. > no , cao -c eqo . Now for any r > q. by (20) 

Cio = 2 - G + Z(q, , r) 
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or 
CT 
- - l(qor) = 2 - c;, . 
r 

(21) ] C, - rZ(g,, r)l = r 12 - Cio ) < r ($ + 6) = 2Er, 

as c, , r, and l(q, , r) are integers, c, 3 0, and 2~ < 1 necessarily 

(M) l(q, , r> 3 0, for r 2 q. . 

Define 
T-l 

(22) Wqo, r> = C 4q0,9- 
i=n, 

BY (Ml 
(N) k(q, , r) 3 0, for r 2 q. . 

We now prove by induction on r that 

(23) c, = cao + r4qo , r> - k(qo , r), for r b q. . 

For r = q. , Z(q, , r) = 0 and k(q, , r) = 0 so (23) holds. Assume it holds 
for r. 

c r+l = c, + h+dr + 1) 

= coo + 4qo , r) - Hq, , r) + (r + 1) &+I 

= ego + (r + 1) ho, r> + (r + 1) h+1 - k(qo , r) - 4qo p r) 

= c,, + (r + lMqo, r) + b+J - W(qoy r> + Qh v r>l 

= cQo + (r + 1) ko, r + 1) - MO, r + 1). 

So (23) holds. 
From (23) and (N) we can deduce c, < cqO + rl(qO, r). But we noticed 

in (L) that, for arbitrarily large r, c, < cr. Hence by (21) Z(q, , r) = 0, 
hence c, < cQO , contradicting lim,,, c, = cc. 

Remark. Instead of lim,,, c, = co, it suffices to demand that c, is not 
eventually constant. 
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