Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/disc

Universal graphs omitting finitely many finite graphs

Péter Komjáth^{a,*}, Saharon Shelah^{b,1}

^a Institute of Mathematics, Eötvös University, Budapest, Pázmány P. s. 1/C, 1117, Hungary ^b Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel

ARTICLE INFO

Article history: Received 10 June 2019 Received in revised form 5 July 2019 Accepted 5 July 2019 Available online xxxx

Keywords: Infinite graphs Universal graphs

ABSTRACT

If \mathcal{F} is a family of graphs, then a graph is \mathcal{F} -free, if it contains no induced subgraph isomorphic to an element of \mathcal{F} . If \mathcal{F} is a finite set of finite graphs, λ is an infinite cardinal, we let $CF(\mathcal{F}, \lambda)$ be the minimal number of \mathcal{F} -free graphs of size λ such that each \mathcal{F} -free graph of size λ embeds into some of them. We show that if $2^{<\lambda} = \lambda$, then $CF(\mathcal{F}, \lambda) \leq c$ (continuum), there are examples such that $CF(\mathcal{F}, \lambda)$ is finite but can be arbitrarily large, and give an example such that $CF(\mathcal{F}, \lambda) \geq c$ for any infinite cardinal λ .

© 2019 Published by Elsevier B.V.

1. Introduction

It was R. Rado [7,8] who first constructed a countable graph containing all countable graphs as an induced subgraph. This became known as a *universal countable graph*. In general, if \mathcal{K} is a class of graphs, λ is an infinite cardinal, we let \mathcal{K}_{λ} be the set of graphs in \mathcal{K} of cardinality λ and call $G \in \mathcal{K}_{\lambda}$ a *universal graph in* \mathcal{K}_{λ} if all graphs in \mathcal{K}_{λ} can strongly (i.e., isomorphically) be embedded into *G*. There is a huge literature on universal countable graphs omitting a subgraph, see e.g., [2].

We are interested in the case when \mathcal{K} consists of those graphs, which has no induced subgraph (isomorphic to a graph) in \mathcal{F} , where \mathcal{F} is a finite set of finite graphs (\mathcal{F} -free graphs). For example, if \mathcal{F} consists of a single finite path, then there is a universal graph in every infinite cardinal [4]. If \mathcal{F} consists of a finite clique, $2^{<\lambda} = \lambda$, then an argument similar to Rado's shows that there is a universal graph of cardinality λ . If there is no universal graph in some \mathcal{K}_{λ} , it still can happen that there is a small subset L of \mathcal{K}_{λ} such that each $G \in \mathcal{K}_{\lambda}$ strongly embeds into some $H \in L$. Let $CF(\mathcal{F}, \lambda)$ denote the minimum size |L| such that an L as above exists for \mathcal{F} -free graphs of size λ . (This notion was introduced in [5] and investigated there and in [6].)

Here we prove that $CF(\mathcal{F}, \lambda) \leq c$ for any finite set of graphs \mathcal{F} and any cardinal λ with $2^{<\lambda} = \lambda$ (Theorem 1). In some cases, under the same conditions, there is a universal graph, namely if \mathcal{F} contains only connected graphs, or contains only complements of connected graphs, in particular, if $|\mathcal{F}| = 1$ (Theorem 2).

We give examples \mathcal{F}_k (k = 2, 3, ...) with $CF(\mathcal{F}_k, \lambda)$ finite but arbitrarily large (Theorem 3), and we construct a set \mathcal{F} such that $CF(\mathcal{F}, \lambda) \ge \mathfrak{c}$ for any infinite cardinal λ (Theorem 4).

Notation. Definitions. c denotes the cardinality continuum. If *f* is a function, *A* a set, then $f[A] = \{f(x) : x \in A\}$. If *S* is a set, κ a cardinal, then $[S]^{\kappa} = \{x \subseteq S : |x| = \kappa\}$. A graph is a pair (V, X) where $X \subseteq [V]^2$. If (V, X), (V', X') are graphs a weak embedding is $f : V \to V'$ where for $x \neq y \in V$ $\{x, y\} \in X$ implies $\{f(x), f(y)\} \in X'$. A strong embedding is $f : V \to V'$ where $\{x, y\} \in X$ iff $\{f(x), f(y)\} \in X'$.

If \mathcal{K} is a class of graphs, λ an infinite cardinal, then $CF(\mathcal{K}_{\lambda})$ is min |L| where $L \subseteq \mathcal{K}_{\lambda}$, such that each $G \in \mathcal{K}_{\lambda}$ strongly embeds into some element of L. If \mathcal{F} is a set of graphs, $CF(\mathcal{F}, \lambda)$ is $CF(\mathcal{K}_{\lambda})$ where \mathcal{K} is the set of \mathcal{F} -free graphs.

* Corresponding author. *E-mail addresses:* kope@cs.elte.hu (P. Komjáth), shelah@math.huji.ac.il (S. Shelah).

¹ Supported by European Research Council Grant 338821. Paper number 1161.

https://doi.org/10.1016/j.disc.2019.111596 0012-365X/© 2019 Published by Elsevier B.V. 2. Results

2

Theorem 1. If \mathcal{F} is a set of finite graphs, λ is an infinite cardinal, $2^{<\lambda} = \lambda$, then $CF(\mathcal{F}, \lambda) \leq \mathfrak{c}$.

Proof. Let *T* be the theory in the language of graphs stating that there is no induced copy of any $F \in \mathcal{F}$. There are continuum many complete extensions of *T*, $\{T_{\alpha} : \alpha < c\}$. For each T_{α} there is a universal model (V_{α}, X_{α}) of T_{α} of cardinality λ by the existence theorem of saturated and special models (see [1], Proposition 5.1.8 and Theorem 5.1.16). Then $\{(V_{\alpha}, X_{\alpha}) : \alpha < c\}$ witness that CF $(\mathcal{F}, \lambda) \leq c$. \Box

Theorem 2. If \mathcal{F} is any family of finite graphs, $\lambda > \omega$ is a cardinal, $2^{<\lambda} = \lambda$, then there exists a strongly universal \mathcal{F} -free graph of cardinality λ , assuming either

(a) each element of \mathcal{F} is connected, or

(b) the complement of each element of \mathcal{F} is connected, or

(c) $|\mathcal{F}| = 1$.

Proof. (a) Let $\{(V_{\alpha}, X_{\alpha}) : \alpha < c\}$ be the set of graphs as in the proof of Theorem 1 and let (V, X) be the vertex disjoint union of the (V_{α}, X_{α}) 's.

The graph (V, X) clearly isomorphically embeds each \mathcal{F} -free graph of cardinality λ , and omits each $F \in \mathcal{F}$, as F is connected.

(b) If $\overline{\mathcal{F}} = \{\overline{F} : F \in \mathcal{F}\}$, by (a) there is a universal graph U for $\overline{\mathcal{F}}$. Then \overline{U} is universal for \mathcal{F} .

(c) follows from (a) or (b) as for a finite graph X either X or \overline{X} is connected. \Box

Let \mathcal{F}_k be the set of all nonisomorphic graphs on 2k vertices, each containing a 1-factor (i.e., k independent edges). Clearly, $|\mathcal{F}_k| \le 2^{\binom{2k}{2}-k} < 2^{2k^2}$. Z. Füredi noticed that almost every random graph on 2k vertices has a 1-factor, and does not have automorphisms, consequently

$$|\mathcal{F}_k| \sim \frac{2^{\binom{2k}{2}}}{(2k)!}.$$

Notice that a graph *X* is \mathcal{F}_k -free iff there are no *k* independent edges in *X*.

Theorem 3 ($2^{<\lambda} = \lambda$).

(a) $CF(\mathcal{F}_2, \lambda) = 2.$ (b) $2^{\lfloor \sqrt{k} \rfloor} < p(k) \le CF(\mathcal{F}_{k+1}, \lambda) \le 2^{2k^2}(k+1)^{2^{2k}} \quad (k \ge 2).$

Here p(k) is the number of partitions of k, i.e., the number of sequences (a_1, \ldots, a_r) of positive natural numbers such that $a_1 \ge \cdots \ge a_r$ and $a_1 + \cdots + a_r = k$. $2^{\lfloor \sqrt{k} \rfloor} < p(k)$ is an easy lower estimate and in fact the

$$p(k) \sim \frac{1}{4k\sqrt{3}} e^{\pi\sqrt{2k/3}}$$

asymptotics holds (Hardy-Ramanujan, [3]).

Proof. (a) Two of the \mathcal{F}_2 -free graphs are X_0 , the triangle, and X_1 , the path of length 2 (i.e., the path containing two edges). However, inspection shows that if some graph Y isomorphically embeds both X_0 and X_1 , then Y contains two independent edges.

For the other direction, if $X_0(\lambda)$ is a triangle plus λ isolated vertices and $X_1(\lambda)$ is a λ -star plus λ isolated vertices, then every \mathcal{F}_2 -free graph of size λ embeds either into $X_0(\lambda)$ or into $X_1(\lambda)$.

(b) If $a_1 + \cdots + a_r = k$, $a_1 \ge a_2 \ge \cdots \ge a_r \ge 1$, then let $X(a_1, \ldots, a_r)$ be the vertex disjoint union of $C_{2a_1+1}, \ldots, C_{2a_r+1}$. It is easy to see that in $X(a_1, \ldots, a_r)$ the maximal number of independent edges is k, and this also holds if a vertex is removed. We can construct p(k) different graphs this way.

Claim 1. If *X* contains no more than *k* independent edges and *X* is an induced subgraph of *Y* which is isomorphic to some $X(a_1, \ldots, a_r)$, then *Y* contains no edges outside *X* (just vertices).

Proof. Let *V*, *W* denote the vertex set of *Y*, *X*, respectively. As *X* already contains *k* independent edges, no edge goes between two vertices of V - W. Assume that $a \in W$, $b \in V - W$ and $\{a, b\}$ is an edge of *Y*. Then there are *k* independent edges in $Y | (W - \{a\})$, adding $\{a, b\}$ gives k + 1 independent edges, a contradiction. \Box

By Claim 1, if for $\overline{a} = \langle a_1, \ldots, a_r \rangle$, $Y(\overline{a})$ is an \mathcal{F}_{k+1} -free graph of size λ embedding $X(\overline{a})$, then $Y(\overline{a})$ is $X(\overline{a})$ plus λ isolated vertices, consequently if $\overline{a} \neq \overline{a}'$, then $Y(\overline{a}) \neq Y(\overline{a}')$. This gives $CF(\mathcal{F}_{k+1}, \lambda) \geq p(k)$.

For the upper bound, let (V, X) be an \mathcal{F}_k -free graph. Choose $A \subseteq V$, |A| = 2k, that contains a maximal number of independent edges. There are at most $2^{\binom{2k}{2}} \leq 2^{2k^2}$ graphs on A. By maximality, there is no edge inside V - A, so all edges not in A go between A and V - A.

Define $H(B) = \{x \in V - A : \Gamma(x) = B\}$ for $B \subseteq A$. If, for some B, |H(B)| > k, we add λ more vertices to H(B), and so obtain the set $H^*(B)$, all whose points are joined exactly to B. This gives the enlarged graph X^* .

Claim 2. There are no k + 1 independent edges in X^* .

Proof. Let *I* be a set of k + 1 independent edges in X^* . For a fixed $B \subseteq A$, let $\{\{x_i, y_i\} : i < r\}$ be the elements of *I* with $x_i \in B$, $y_i \in H^*(B)$. Notice that the x_i 's are distinct and so are the y_i 's. We replace the y_i 's with distinct $z_i \in H(B)$, clearly we can do that. Performing this operation for all $B \subseteq A$, we obtain k + 1 independent edges in X, a contradiction. \Box

By Claim 2, the graphs of the form X^* embed all graphs omitting \mathcal{F}_{k+1} . We have to calculate the number of them: there are 2^{2k^2} graphs on A, for each $B \subseteq A$, $|H^*(B)|$ is either at most k or λ , that gives k + 1 possibility, the number of different B's is 2^{2k} , in total this gives $2^{2k^2}(k+1)^{2^{2k}}$ possibilities. \Box

Theorem 4. There is a finite set \mathcal{F} of finite graphs such that $CF(\mathcal{F}, \lambda) \geq c$ holds for every infinite cardinal λ .

Proof. We start with a Claim.

Claim 1. There exist graphs G_0 , G_1 , and G_2 with distinct specific vertices $x(G_i)$ and $y(G_i)$, such that

- (A) G_i is connected (i < 3);
- (B) the triangles of G_i cover the edges of G_i (i < 3);
- (C) if f is an isomorphism of G_i into an induced subgraph of G_j , then i = j, $f(x(G_i)) = x(G_i)$, and $f(y(G_i)) = y(G_i)$.

Proof. Let T_0 , T_1 , T_2 be trees with specified neighboring vertices $x(T_i)$, $y(T_i)$, whose degrees are (8,3), (7,4), and (6,5), respectively, and with all other vertices being of degree one. Then erect a triangle on each edge, to obtain G_i from T_i . That is, if $\{a, b\}$ is an edge of T_i , then add a new vertex $p_{a,b}$ and the edges $\{a, p_{a,b}\}$ and $\{b, p_{a,b}\}$ to G_i . Further, set $x(G_i) = x(T_i)$, $y(G_i) = y(T_i)$. Notice that T_i has 13 vertices and 12 edges, all vertices but $x(T_i)$ and $y(T_i)$ have degree 1. G_i has 25 vertices, $d(x(G_i)) = 2d(x(T_i))$ and $d(y(G_i)) = 2d(y(T_i))$, the other vertices have degree 2.

(A) and (B) hold clearly, (C) follows from degree considerations. \Box

If $u \subseteq \omega - \{0, 1\}$, then we obtain the graph H_u as follows. The vertex set P^u is the disjoint union $P_0^u \cup P_1^u \cup P_2^u \cup P_3^u \cup \cdots$ with $|P_i^u| = 25$, each P_i^u inducing some $G_{j(i)}$, with x_i^u , y_i^u being the special vertices $x(G_{j(i)})$ and $y(G_{j(i)})$. Further, j(0) = j(1) = 0, j(i) = 1 if $i \in u$ and j(i) = 2 if $2 \le i \in \omega - u$. Finally, the 'crossing' edges are of the type $\{x_i^u, y_i^u\}$ where j = i + 1 or i + 2.

Claim 2. If T is a triangle in H_u , then $T \subseteq P_i^u$ for some $i < \omega$.

Proof. Assume indirectly that *T* is a triangle of H_u such that $T \not\subseteq P_i^u$ for $i < \omega$. Set $B = \{i < \omega : T \cap P_i^u \neq \emptyset\}$.

Case 1. |B| = 3.

Let $B = \{i, j, k\}$ with i < j < k. The only edges between P_i^u , P_j^u , and P_k^u can be $\{x_i^u, y_j^u\}$, $\{x_i^u, y_k^u\}$, and $\{x_j^u, y_k^u\}$ but they do not contain a triangle.

Case 2. |B| = 2.

Set $B = \{i, j\}$ with i < j. There is at most one edge between P_i^u and P_j^u which contradicts the fact that either $|T \cap P_i^u| = 2$ or $|T \cap P_i^u| = 2$.

We obtain that |B| = 1, as claimed. \Box

Claim 3. If $K \subseteq P^u$ induces G_i for some j < 3, then $K = P_i^u$ for some *i*.

Proof. By the way G_j is constructed, $K = T_0 \cup \cdots \cup T_k$ where each T_m induces a triangle and $T_m \cap (T_0 \cup T_1 \cup \cdots \cup T_{m-1}) \neq \emptyset$. Pick *i* such that $T_0 \cap P_i^u \neq \emptyset$. By Claim 2, $T_0 \subseteq P_i^u$ and one obtains by induction on *m* that $T_m \subseteq P_i^u$, finally we have that $K \subseteq P_i^u$. By the above properties of the G_j 's, we must have $K = P_i^u$. \Box

Let \mathcal{F} be the set of finite graphs (V, X) such that either

- (a) $V = A \cup B$, $A \cap B \neq \emptyset$, $X | A \simeq G_i$, $X | B \simeq G_i$ for some *i*, *j*, or
- (b) $V = A \cup B \cup C$, A, B, C are pairwise disjoint, $X|A \simeq X|B \simeq X|C \simeq G_0$, or
- (c) *V* partitions as $V = A_0 \cup A_1 \cup A_2 \cup A_3$, $X|A_i \simeq G_{j_i}$ (*i* < 4), with the corresponding vertices x_i , y_i , and $\{x_0, y_2\}, \{x_0, y_3\}, \{x_1, y_2\}, \{x_1, y_3\} \in X$.

4

Claim 4. Each H_{μ} is \mathcal{F} -free.

Proof. By Claim 3 and the way H_u is defined. \Box

Notice that each H_u remains \mathcal{F} -free if an arbitrary number of isolated vertices are added.

Assume now that λ is an infinite cardinal, $\{(V_i, E_i) : i \in I\}$ are \mathcal{F} -free graphs of cardinality λ , $|I| < \mathfrak{c}$ and each H_u embeds into some (V_i, E_i) .

There is some (v_i, E_i) . There is some $i_0 \in I$ such that (V_{i_0}, E_{i_0}) embeds infinitely many of the H_u 's. In (V_{i_0}, E_{i_0}) , by (a) and (b), there are at most (actually, exactly) 2 copies of G_0 . There are, therefore, $u \neq u'$, with the embeddings $f : P^u \to V_{i_0}, f' : P^{u'} \to V_{i_0}$, such that $Q_i = f[P_i^u] = f'[P_i^{u'}]$ $(i < 2), f(x_i^u) = f'(x_i^{u'}) = x_i, f(y_i^u) = f'(y_i^{u'}) = y_i$ (i < 2).

Claim 5. $f[P_n^u] = f'[P_n^{u'}] (n < \omega).$

Proof. We prove the statement by induction on n. By assumption, we know this for n = 0, 1. Assume we have it for 0, 1, ..., n. Let Q_i be the common value of $f[P_i^u]$ and $f'[P_i^{u'}]$ for $i \leq n$. Further, let x_i, y_i be the uniquely determined common values of $f(x_i^u) = f'(x_i^{u'})$ and $f(y) = f'(y_i^{u'})$. Then, as (V_{i_0}, E_{i_0}) is \mathcal{F} -free, $Q_{n+1} = f[P_{n+1}^u] = f'[P_{n+1}^{u'}]$ is that uniquely determined set that Q_{n+1} induces a copy of some G_j (j < 3) such that x_{n-1} and x_n are joined to the y vertex of $E_{i_0}|Q_{n+1}$. This follows from conditions (a) and (c) above. \Box

From Claim 5 we obtain that $H_u | P_n^u \simeq H_{u'} | P_n^{u'}$ for $n < \omega$, which implies u = u' a contradiction. \Box

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors are thankful to the referees for their very careful job.

References

- [1] C.C. Chang, J. Keisler, Model Theory, 3rd edition, in: Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland, 1990.
- [2] G. Cherlin, S. Shelah, Universal graphs with a forbidden subgraph: block path solidity, Combinatorica 36 (2016) 249-264.
- [3] G.H. Hardy, S. Ramanujan, Asymptotic formulæin combinatorial analysis, Proc. Lond. Math. Soc. 17 (1918) 75–115.

[4] P. Komjáth, A. Mekler, J. Pach, Some universal graphs, Israel J. Math. 64 (1988) 158-168.

- [5] P. Komjáth, J. Pach, Universal graphs without large bipartite subgraphs, Mathematika 31 (1984) 282-290.
- [6] P. Komjáth, S. Shelah, Universal graphs without large cliques, J. Comb. Theory B 63 (1995) 125-135.
- [7] R. Rado, Universal graphs and universal functions, Acta Arith. 9 (1964) 331-340.

[8] R. Rado, Universal graphs, in: A Seminar in Graph Theory, 1967, pp. 83-85.