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a b s t r a c t

If F is a family of graphs, then a graph is F-free, if it contains no induced subgraph
isomorphic to an element of F . If F is a finite set of finite graphs, λ is an infinite cardinal,
we let CF(F, λ) be the minimal number of F-free graphs of size λ such that each F-free
graph of size λ embeds into some of them. We show that if 2<λ

= λ, then CF(F, λ) ≤ c
(continuum), there are examples such that CF(F, λ) is finite but can be arbitrarily large,
and give an example such that CF(F, λ) ≥ c for any infinite cardinal λ.

© 2019 Published by Elsevier B.V.

1. Introduction

It was R. Rado [7,8] who first constructed a countable graph containing all countable graphs as an induced subgraph.
This became known as a universal countable graph. In general, if K is a class of graphs, λ is an infinite cardinal, we let
Kλ be the set of graphs in K of cardinality λ and call G ∈ Kλ a universal graph in Kλ if all graphs in Kλ can strongly
(i.e., isomorphically) be embedded into G. There is a huge literature on universal countable graphs omitting a subgraph,
see e.g., [2].

We are interested in the case when K consists of those graphs, which has no induced subgraph (isomorphic to a graph)
in F , where F is a finite set of finite graphs (F-free graphs). For example, if F consists of a single finite path, then there is
a universal graph in every infinite cardinal [4]. If F consists of a finite clique, 2<λ

= λ, then an argument similar to Rado’s
shows that there is a universal graph of cardinality λ. If there is no universal graph in some Kλ, it still can happen that
there is a small subset L of Kλ such that each G ∈ Kλ strongly embeds into some H ∈ L. Let CF(F, λ) denote the minimum
size |L| such that an L as above exists for F-free graphs of size λ. (This notion was introduced in [5] and investigated there
and in [6].)

Here we prove that CF(F, λ) ≤ c for any finite set of graphs F and any cardinal λ with 2<λ
= λ (Theorem 1). In some

cases, under the same conditions, there is a universal graph, namely if F contains only connected graphs, or contains only
complements of connected graphs, in particular, if |F| = 1 (Theorem 2).

We give examples Fk (k = 2, 3, . . . ) with CF(Fk, λ) finite but arbitrarily large (Theorem 3), and we construct a set F
such that CF(F, λ) ≥ c for any infinite cardinal λ (Theorem 4).

Notation. Definitions. c denotes the cardinality continuum. If f is a function, A a set, then f [A] = {f (x) : x ∈ A}. If S is a
set, κ a cardinal, then [S]κ = {x ⊆ S : |x| = κ}. A graph is a pair (V , X) where X ⊆ [V ]

2. If (V , X), (V ′, X ′) are graphs a
weak embedding is f : V → V ′ where for x ̸= y ∈ V {x, y} ∈ X implies {f (x), f (y)} ∈ X ′. A strong embedding is f : V → V ′

where {x, y} ∈ X iff {f (x), f (y)} ∈ X ′.
If K is a class of graphs, λ an infinite cardinal, then CF(Kλ) is min |L| where L ⊆ Kλ, such that each G ∈ Kλ strongly

embeds into some element of L. If F is a set of graphs, CF(F, λ) is CF(Kλ) where K is the set of F-free graphs.
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2. Results

Theorem 1. If F is a set of finite graphs, λ is an infinite cardinal, 2<λ
= λ, then CF(F, λ) ≤ c.

Proof. Let T be the theory in the language of graphs stating that there is no induced copy of any F ∈ F . There are
continuum many complete extensions of T , {Tα : α < c}. For each Tα there is a universal model (Vα, Xα) of Tα of
cardinality λ by the existence theorem of saturated and special models (see [1], Proposition 5.1.8 and Theorem 5.1.16).
Then {(Vα, Xα) : α < c} witness that CF(F, λ) ≤ c. □

Theorem 2. If F is any family of finite graphs, λ > ω is a cardinal, 2<λ
= λ, then there exists a strongly universal F-free

graph of cardinality λ, assuming either

(a) each element of F is connected, or
(b) the complement of each element of F is connected, or
(c) |F| = 1.

Proof. (a) Let {(Vα, Xα) : α < c} be the set of graphs as in the proof of Theorem 1 and let (V , X) be the vertex disjoint
union of the (Vα, Xα)’s.

The graph (V , X) clearly isomorphically embeds each F-free graph of cardinality λ, and omits each F ∈ F , as F is
connected.

(b) If F = {F : F ∈ F}, by (a) there is a universal graph U for F . Then U is universal for F .
(c) follows from (a) or (b) as for a finite graph X either X or X is connected. □

Let Fk be the set of all nonisomorphic graphs on 2k vertices, each containing a 1-factor (i.e., k independent edges).
Clearly, |Fk| ≤ 2(

2k
2 )−k < 22k2 . Z. Füredi noticed that almost every random graph on 2k vertices has a 1-factor, and does

not have automorphisms, consequently

|Fk| ∼
2(

2k
2 )

(2k)!
.

Notice that a graph X is Fk-free iff there are no k independent edges in X .

Theorem 3 (2<λ
= λ).

(a) CF(F2, λ) = 2.
(b)

2⌊
√
k⌋ < p(k) ≤ CF(Fk+1, λ) ≤ 22k2 (k + 1)2

2k
(k ≥ 2).

Here p(k) is the number of partitions of k, i.e., the number of sequences ⟨a1, . . . , ar⟩ of positive natural numbers such
that a1 ≥ · · · ≥ ar and a1 + · · · + ar = k. 2⌊

√
k⌋ < p(k) is an easy lower estimate and in fact the

p(k) ∼
1

4k
√
3
eπ

√
2k/3

asymptotics holds (Hardy–Ramanujan, [3]).

Proof. (a) Two of the F2-free graphs are X0, the triangle, and X1, the path of length 2 (i.e., the path containing two edges).
However, inspection shows that if some graph Y isomorphically embeds both X0 and X1, then Y contains two independent
edges.

For the other direction, if X0(λ) is a triangle plus λ isolated vertices and X1(λ) is a λ-star plus λ isolated vertices, then
every F2-free graph of size λ embeds either into X0(λ) or into X1(λ).

(b) If a1 +· · ·+ar = k, a1 ≥ a2 ≥ · · · ≥ ar ≥ 1, then let X(a1, . . . , ar ) be the vertex disjoint union of C2a1+1, . . . , C2ar+1.
It is easy to see that in X(a1, . . . , ar ) the maximal number of independent edges is k, and this also holds if a vertex is
removed. We can construct p(k) different graphs this way.

Claim 1. If X contains no more than k independent edges and X is an induced subgraph of Y which is isomorphic to some
X(a1, . . . , ar ), then Y contains no edges outside X (just vertices).

Proof. Let V , W denote the vertex set of Y , X , respectively. As X already contains k independent edges, no edge goes
between two vertices of V −W . Assume that a ∈ W , b ∈ V −W and {a, b} is an edge of Y . Then there are k independent
edges in Y |(W − {a}), adding {a, b} gives k + 1 independent edges, a contradiction. □

By Claim 1, if for a = ⟨a1, . . . , ar⟩, Y (a) is an Fk+1-free graph of size λ embedding X(a), then Y (a) is X(a) plus λ isolated
vertices, consequently if a ̸= a′, then Y (a) ̸= Y (a′). This gives CF(Fk+1, λ) ≥ p(k).
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For the upper bound, let (V , X) be an Fk-free graph. Choose A ⊆ V , |A| = 2k, that contains a maximal number of
independent edges. There are at most 2(

2k
2 ) ≤ 22k2 graphs on A. By maximality, there is no edge inside V − A, so all edges

not in A go between A and V − A.
Define H(B) = {x ∈ V − A : Γ (x) = B} for B ⊆ A. If, for some B, |H(B)| > k, we add λ more vertices to H(B), and so

obtain the set H∗(B), all whose points are joined exactly to B. This gives the enlarged graph X∗.

Claim 2. There are no k + 1 independent edges in X∗.

Proof. Let I be a set of k + 1 independent edges in X∗. For a fixed B ⊆ A, let {{xi, yi} : i < r} be the elements of I with
xi ∈ B, yi ∈ H∗(B). Notice that the xi’s are distinct and so are the yi’s. We replace the yi’s with distinct zi ∈ H(B), clearly
we can do that. Performing this operation for all B ⊆ A, we obtain k + 1 independent edges in X , a contradiction. □

By Claim 2, the graphs of the form X∗ embed all graphs omitting Fk+1. We have to calculate the number of them: there
are 22k2 graphs on A, for each B ⊆ A, |H∗(B)| is either at most k or λ, that gives k + 1 possibility, the number of different
B’s is 22k, in total this gives 22k2 (k + 1)2

2k
possibilities. □

Theorem 4. There is a finite set F of finite graphs such that CF(F, λ) ≥ c holds for every infinite cardinal λ.

Proof. We start with a Claim.

Claim 1. There exist graphs G0, G1, and G2 with distinct specific vertices x(Gi) and y(Gi), such that

(A) Gi is connected (i < 3);
(B) the triangles of Gi cover the edges of Gi (i < 3);
(C) if f is an isomorphism of Gi into an induced subgraph of Gj, then i = j, f (x(Gi)) = x(Gi), and f (y(Gi)) = y(Gi).

Proof. Let T0, T1, T2 be trees with specified neighboring vertices x(Ti), y(Ti), whose degrees are (8,3), (7,4), and (6,5),
respectively, and with all other vertices being of degree one. Then erect a triangle on each edge, to obtain Gi from Ti. That
is, if {a, b} is an edge of Ti, then add a new vertex pa,b and the edges {a, pa,b} and {b, pa,b} to Gi. Further, set x(Gi) = x(Ti),
y(Gi) = y(Ti). Notice that Ti has 13 vertices and 12 edges, all vertices but x(Ti) and y(Ti) have degree 1. Gi has 25 vertices,
d(x(Gi)) = 2d(x(Ti)) and d(y(Gi)) = 2d(y(Ti)), the other vertices have degree 2.

(A) and (B) hold clearly, (C) follows from degree considerations. □

If u ⊆ ω−{0, 1}, then we obtain the graph Hu as follows. The vertex set Pu is the disjoint union Pu
0 ∪Pu

1 ∪Pu
2 ∪Pu

3 ∪· · · with
|Pu

i | = 25, each Pu
i inducing some Gj(i), with xui , y

u
i being the special vertices x(Gj(i)) and y(Gj(i)). Further, j(0) = j(1) = 0,

j(i) = 1 if i ∈ u and j(i) = 2 if 2 ≤ i ∈ ω − u. Finally, the ‘crossing’ edges are of the type {xui , y
u
j } where j = i + 1 or i + 2.

Claim 2. If T is a triangle in Hu, then T ⊆ Pu
i for some i < ω.

Proof. Assume indirectly that T is a triangle of Hu such that T ̸⊆ Pu
i for i < ω. Set B = {i < ω : T ∩ Pu

i ̸= ∅}.

Case 1. |B| = 3.
Let B = {i, j, k} with i < j < k. The only edges between Pu

i , P
u
j , and Pu

k can be {xui , y
u
j }, {x

u
i , y

u
k}, and {xuj , y

u
k} but they do

not contain a triangle.

Case 2. |B| = 2.
Set B = {i, j} with i < j. There is at most one edge between Pu

i and Pu
j which contradicts the fact that either |T ∩ Pu

i | = 2
or |T ∩ Pu

j | = 2.
We obtain that |B| = 1, as claimed. □

Claim 3. If K ⊆ Pu induces Gj for some j < 3, then K = Pu
i for some i.

Proof. By the way Gj is constructed, K = T0 ∪· · ·∪Tk where each Tm induces a triangle and Tm ∩ (T0 ∪T1 ∪· · ·∪Tm−1) ̸= ∅.
Pick i such that T0 ∩ Pu

i ̸= ∅. By Claim 2, T0 ⊆ Pu
i and one obtains by induction on m that Tm ⊆ Pu

i , finally we have that
K ⊆ Pu

i . By the above properties of the Gj’s, we must have K = Pu
i . □

Let F be the set of finite graphs (V , X) such that either

(a) V = A ∪ B, A ∩ B ̸= ∅, X |A ≃ Gi, X |B ≃ Gj for some i, j, or
(b) V = A ∪ B ∪ C , A, B, C are pairwise disjoint, X |A ≃ X |B ≃ X |C ≃ G0, or
(c) V partitions as V = A0 ∪ A1 ∪ A2 ∪ A3, X |Ai ≃ Gji (i < 4), with the corresponding vertices xi, yi, and

{x0, y2}, {x0, y3}, {x1, y2}, {x1, y3} ∈ X .
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Claim 4. Each Hu is F-free.

Proof. By Claim 3 and the way Hu is defined. □

Notice that each Hu remains F-free if an arbitrary number of isolated vertices are added.
Assume now that λ is an infinite cardinal, {(Vi, Ei) : i ∈ I} are F-free graphs of cardinality λ, |I| < c and each Hu

embeds into some (Vi, Ei).
There is some i0 ∈ I such that (Vi0 , Ei0 ) embeds infinitely many of the Hu’s.
In (Vi0 , Ei0 ), by (a) and (b), there are at most (actually, exactly) 2 copies of G0. There are, therefore, u ̸= u′, with the

embeddings f : Pu
→ Vi0 , f

′
: Pu′

→ Vi0 , such that Qi = f [Pu
i ] = f ′

[Pu′

i ] (i < 2), f (xui ) = f ′(xu
′

i ) = xi, f (yui ) = f ′(yu
′

i ) = yi
(i < 2).

Claim 5. f [Pu
n ] = f ′

[Pu′

n ] (n < ω).

Proof. We prove the statement by induction on n. By assumption, we know this for n = 0, 1. Assume we have it for
0, 1, . . . , n. Let Qi be the common value of f [Pu

i ] and f ′
[Pu′

i ] for i ≤ n. Further, let xi, yi be the uniquely determined
common values of f (xui ) = f ′(xu

′

i ) and f (y) = f ′(yu
′

i ). Then, as (Vi0 , Ei0 ) is F-free, Qn+1 = f [Pu
n+1] = f ′

[Pu′

n+1] is that uniquely
determined set that Qn+1 induces a copy of some Gj (j < 3) such that xn−1 and xn are joined to the y vertex of Ei0 |Qn+1.
This follows from conditions (a) and (c) above. □

From Claim 5 we obtain that Hu|Pu
n ≃ Hu′ |Pu′

n for n < ω, which implies u = u′ a contradiction. □
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