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Abstract. We describe a framework for proving consistency results about
singular cardinals of arbitrary cofinality and their successors. This framework
allows the construction of models in which the Singular Cardinals Hypothesis
fails at a singular cardinal κ of uncountable cofinality, while κ+ enjoys various
combinatorial properties.

As a sample application, we prove the consistency (relative to that of ZFC
plus a supercompact cardinal) of there being a strong limit singular cardinal
κ of uncountable cofinality where SCH fails and such that there is a collection

of size less than 2κ
+

of graphs on κ+ such that any graph on κ+ embeds into
one of the graphs in the collection.

Introduction

The class of uncountable regular cardinals is naturally divided into three disjoint
classes: the successors of regular cardinals, the successors of singular cardinals and
the weakly inaccessible cardinals. When we consider a combinatorial question about
uncountable regular cardinals, typically these classes require separate treatment and
very frequently the successors of singular cardinals present the hardest problems.
In particular there are subtle constraints (for example in cardinal arithmetic) on
the combinatorics of successors of singular cardinals, and consistency results in this
area often involve large cardinals.

To give some context for our work, we review a standard strategy for proving
consistency results about the successors of regular cardinals. This strategy involves
iterating <κ-closed κ+-cc forcing with <κ-supports for some regular cardinal κ,
with the plan that the whole iteration will also enjoy the κ+-chain condition. The
κ+-chain condition of the iteration will of course ensure that all cardinals are pre-
served, and is also very helpful in the “catch your tail” arguments which frequently
appear in iterated forcing constructions.
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When κ = ω this proof strategy is completely straightforward as any finite sup-
port iteration of ccc forcing is ccc; for regular κ > ω we need to assume that
κ<κ = κ and that the iterands have some strong form of κ+-cc and some other
properties in order to ensure κ+-cc for the iteration (this issue is extensively dis-
cussed in §1 below). When κ is singular the strategy is no longer available, and
this is one difficulty among many in proving consistency results involving singular
cardinals and their successors.

Džamonja and Shelah [7] introduced a new idea, which we briefly describe. Ini-
tially κ is a supercompact cardinal whose supercompactness is indestructible under
<κ-directed closed forcing. The final model is obtained by a two-step forcing. The
first step, P, is a <κ-directed closed and κ+-cc iteration, whilst the second step is
Prikry forcing, PrU , defined from a normal measure U on κ in V [G], where G is
a P-generic filter over V . The iteration P is designed to anticipate and deal with
PrU -names for subsets of κ+, so that after forcing over V [G] with PrU we obtain
the desired consistency result. Džamonja and Shelah used this method to obtain
the consistency, relative to that of a supercompact cardinal, of the existence for a
κ singular strong limit of cofinality ω of a family of κ++ many graphs on κ+ which

are jointly universal for all graphs on κ+. In this model 2κ = 2κ
+

and this value
can be made arbitrarily large.

A well-known early interaction between model theory and set theory gives one
that if 2κ = κ+ there is a saturated graph (i.e., model of the theory of graphs) on
κ+ and any such graph is universal. So the point of results such as that of Džamonja
and Shelah is to address the possibility of having small universal families of graphs
on κ+ when 2κ > κ+.

In this paper we build a similar framework in which the final forcing step is a
version of Radin forcing and changes the cofinality of κ to become some uncountable
cardinal less than κ. After building the framework, we prove a version of the result
on universal graphs mentioned in the last paragraph.

Theorem 7.10. Suppose κ is a supercompact cardinal, λ < κ is a regular cardinal
and Θ is a cardinal with cf(Θ) ≥ κ++ and κ+3 ≤ Θ. There is a forcing extension
in which cofinally many cardinals below κ, κ itself and all cardinals greater than κ

are preserved, cf(κ) = λ, 2κ = 2κ
+

= Θ and there is a universal family of graphs
on κ+ of size κ++.

The need for large cardinals in the broad context of combinatorics at singular
cardinals and their successors is at least partially explained by the theory of core
models and covering lemmas. If there is no inner model with a Woodin cardinal,
then there is an inner model K with many strong combinatorial properties (for
example GCH and square hold), and such that κ+ = (κ+)K for every singular
cardinal κ. This resemblance between V and K in the absence of inner models
with large enough cardinals exerts a strong influence on the combinatorics of κ+ in
V ; for example it implies that �κ holds in V under this hypothesis.

In the instance of the results on universal graphs we obtain a model in which
κ is a singular strong limit cardinal where 2κ > κ+, i.e., the singular cardinal
hypothesis fails. It is known through work of Gitik, Mitchell, Shelah and Woodin
that the consistency strength of the singular cardinal hypothesis failing alone is
exactly that of a measurable cardinal κ of Mitchell order o(κ) = κ++. Specifically,
in one direction Woodin gave a forcing construction of a model in which the singular
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cardinal hypothesis fails from a certain large cardinal hypothesis and Gitik showed
this hypothesis follows from that of the existence of a measurable cardinal κ of
Mitchell order o(κ) = κ++ ([9]). In the other direction Gitik showed ([10]), building
on Mitchell’s Covering Lemma ([19]) and ideas of Shelah developed in the course of
his pcf theory ([23]), that if the singular cardinal hypothesis fails there is a model
in which there is a measurable cardinal κ of Mitchell order o(κ) = κ++. Thus some
large cardinal hypotheses are necessary for these results on universal graphs that
we prove.

This paper is in some sense a sequel to the work by Džamonja and Shelah [7],
and so we briefly record some of the innovations introduced here.

• Prikry forcing at κ is homogeneous and adds no bounded subsets of κ, while
Radin forcing has neither of these features. This entails major changes in
the analysis of names for κ+ in the final model, the proof of κ+-cc for
the main iteration, and the proof that the final model has a small jointly
universal family.

• The arguments of [7] involve a complex iteration scheme which is used to
build a Prikry forcing PrU , and would have become even more complex
if we had used it to build a suitable Radin forcing. In this paper we use
diamond sequences to achieve similar goals.

• One of the central points is that our main iteration enjoys a strong form of
the κ+-chain condition. None of the standard preservation theorems were
quite suitable to show this, so we took a detour into iteration theory to
formulate and prove a suitable preservation theorem.

The paper is organized as follows: §1 shows that cardinals are preserved in
<κ-support iterations of certain types of <κ-closed, κ+-stationary chain condition
forcings (and as a spin-off we give a generalized Martin’s axiom for these forcings).
§2 is on preservation of diamond through forcing iterations. §3 collects relevant
material on Radin forcing. §4 describes the long Mathias forcing and its variant for
adding Radin names for universal graphs. §5 contains the proof of the stationary
κ+-chain condition for the forcings of §4. §6 gives the main iteration. §7 gets a
small family of universal graphs at a cardinal of uncountable singular cofinality.

The problem of the existence of a small family of universal graphs has some
independent interest, and is also a natural test question for our forcing framework.
In [3] the methods of this paper are applied to prove a result parallel to Theorem
7.10 concerning graphs on ℵω+1. As part of his thesis work in progress, Jacob Davis
has also obtained a parallel result for graphs on ℵω1+1.

Notation. Card and On are the classes of cardinals and ordinals respectively. The

size of a set A is denoted by either A or |A|. If X is a set and κ is a cardinal, then
P (X) is the set of all subsets of X and [X]κ is the set of all subsets of X of size κ.
We define [X]<κ, etc., in the obvious way. If X, Y are sets, then XY is the set of
functions from X to Y . As in [15], Definition VII.6.1, if I and J are sets and κ is a
cardinal we write Fn(I, J, κ) for the set of partial functions from I to J of size less
than κ, {p | p is a function & p < κ & dom(p) ⊆ I & rge(p) ⊆ J }.

We designate names for the projection functions on cartesian products. If X, Y
are sets we define π0 : X × Y −→ X and π1 : X × Y −→ Y by π0(x, y) = x and
π1(x, y) = y if x ∈ X and y ∈ Y .
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We write f · g for the composition of the functions f and g. When f and g
agree on dom(f) ∩ dom(g) we write f + g for the unique function h such that
dom(h) = dom(f) ∪ dom(g), h � dom(f) = f and h � dom(g) = g.

If f : A × B −→ C is a function, a ∈ A and b ∈ B we write f(a, . ) for the
function g : B −→ C such that g(d) = f(a, d) for all d ∈ B and f( . , b) for the
function h : A −→ C such that h(c) = f(c, b) for all c ∈ A.

If X is a set of ordinals we write ssup(X) for the strong supremum of X, that
is, the least ordinal α such that X ⊆ α, and cl(X) for the closure of X in the order
topology. If α, β are ordinals we write αβ for their ordinal multiplication product.

One non-standard piece of notation which will be useful and which we define
here is the following. If y = 〈yτ | τ < lh(y)〉 is a sequence of sets and y0 ∈ Card we
often write κy for y0, the first entry in y.

If μ, κ are regular cardinals with μ < κ we write, on occasion, Sκ
μ for {ξ <

κ | cf(ξ) = μ}, and similarly for Sκ
<μ, S

κ
≥μ and so on. If S is a stationary subset of

κ we say that T ⊆ S is a club relative to S if there is some club C ⊆ κ such that
T = S ∩ C.

A function g : κ −→ κ is regressive on a set S ⊆ κ if for every ε ∈ S we have
g(ε) < ε.

A subset X of a partial order (P,≤) is linearly ordered if for all p, q ∈ X either
p ≤ q or q ≤ p, directed if every finite subset of X has a lower bound in X, and
centred if every finite subset of X has a lower bound in P. A partial order (P,≤)
is <κ-closed if every linearly ordered subset of size <κ of P has a lower bound,
<κ-directed closed if every directed subset of size <κ of P has a lower bound, and
<κ-compact if every centred subset of size <κ of P has a lower bound. P is countably
compact if and only if it is <ω1-compact. Clearly any <κ-compact partial order is
<κ-directed closed, and any <κ-directed closed partial order is <κ-closed.

If (P,≤) is a partial order and q, r ∈ P we write q ‖ r to mean that q and r
are compatible in P, that is, there is some p ∈ P such that p ≤ q, r. If (Q,≤) is
a sub-partial order of (P,≤) and q, r ∈ Q we write q ‖Q r to mean q and r are
compatible in Q, that is, there is some p ∈ Q such that p ≤ q, r. A partial order is
splitting if every element has two incompatible extensions.

A partial order (P,≤) is well-met if every compatible pair of elements has a
greatest lower bound: i.e., for all p, q ∈ P if p ‖ q, then there is some r ∈ P such
that r ≤ p, q and for all s ∈ P with s ≤ p, q we have s ≤ r.

For a regular cardinal κ, a partial order P has the κ+-stationary chain condition
(abbreviated later as the κ+-stationary cc) if and only if for every sequence 〈pi | i <
κ+ 〉 of conditions in P there is a club set C ⊆ κ+ and there is a regressive function

f on C ∩ Sκ+

κ such that for all α, β ∈ C ∩ Sκ+

κ with f(α) = f(β) the conditions pα
and pβ are compatible. We note that by an easy application of Fodor’s lemma, this
property implies that P enjoys the strengthened form of the κ+-Knaster property
in which any κ+-sequence of conditions has a stationary subsequence of pairwise
compatible conditions. A stronger notion (see Lemma 1.5 and Example 1.6 below)
is that P is κ-linked if P is the union of κ many sets of pairwise compatible elements.

When forcing with a partial order (P,≤) over a model V we take the notions of
names and canonical names to be as in [15], writing ẋ for a P-name in V and ŷ for a
standard P-name for y ∈ V . We will freely use the well-known Maximum Principle,
which states that if � ∃xφ(x, ŷ, Ġ), then there is a name ẋ such that � φ(ẋ, ŷ, Ġ).
Usually our usage should be clear: as is customary we take the Boolean truth values
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0, 1 to be identified with the (ordinal) elements of {0, 1}. Thus forcing names for
truth values are names for ordinals < 2. In the context of forcing, if p, q ∈ P, then
p ≤ q means that p is stronger than q.

Cohen forcing to add λ many subsets of a regular cardinal κ, which we denote
by Add(κ, λ), is the collection of partial functions of size less than κ from λ to 2,
Fn(λ, 2, κ), ordered by reverse inclusion.

The Laver iteration L for a supercompact cardinal κ is a κ-cc forcing poset
of cardinality κ which makes the supercompactness of κ indestructible under <κ-
directed closed forcing [16].

If κ+ is a successor cardinal a κ+-tree is a tree of size κ+, height κ+ and each
level of size at most κ. A binary κ+-tree is a κ+-tree such that each point in the
tree has exactly two successors in the tree order. If Υ is a cardinal greater than
κ+ a κ+-Kurepa tree with Υ-many branches is a κ+-tree with Υ-many branches
of length κ+. If there is such a tree there is one which is binary and a subtree

of the complete binary tree <κ+

2 (see, for example, [15], Chapter 2). In a slight

abuse of terminology, we refer here to binary κ+-Kurepa subtrees of <κ+

2 as binary
κ+-Kurepa trees.

The usual forcing to add a κ+-Kurepa tree with Υ-many branches, due to Stewart
[26], is the forcing notion in which conditions are pairs (t, f) consisting of a binary

sub-tree, t, of <κ+

2 of successor height, say γ + 1 < κ+, each level of size at most
κ and each point in the tree having a successor of height γ, and a bijection f
between a subset of Υ and the set of points of height γ. The ordering is that
p = (tp, fp) ≤ q = (tq, fq) if tq is obtained by, in Kunen’s [15] vivid précis, ‘sawing
off tp parallel to the ground’: i.e., there is some α < κ+ such that tq = tp ∩ α2,
dom(fq) ⊆ dom(fp) and fq(ξ) <p fp(ξ), where <p is the tree order on tp. This
forcing has the κ++-chain condition and is <κ+-directed closed with greatest lower
bounds: every directed set of conditions of size at most κ has a greatest lower
bound.

We recall here in one place, for the reader’s convenience, the definitions of various
variants of the ♦ principle. The reader can also consult, for example, [15] and
Rinot’s article [21] for further information about these principles. Let κ be a regular
cardinal and B a stationary subset of κ.

A sequence 〈Aα | α ∈ B 〉 is a ♦κ(B)-sequence if Aα ⊆ α for each α ∈ B and
whenever A ⊆ κ the sequence frequently predicts A correctly: {α ∈ B |A∩α = Aα}
is a stationary subset of κ.

A sequence 〈Aα | α ∈ B 〉 is a ♦∗(B)-sequence if Aα ∈ [P (α)]≤α for each α < κ
and whenever A ⊆ κ there is a closed unbounded subset C of κ such that C ∩B ⊆
{α ∈ B |A ∩ α ∈ Aα}.

A sequence 〈Aα | α ∈ B 〉 is a ♦+(B)-sequence if Aα ∈ [P (α)]≤α for each α < κ
and whenever A ⊆ κ there is a closed unbounded subset C of κ such that C ∩B ⊆
{α ∈ B |A ∩ α, C ∩ α ∈ Aα}.

We say that ♦κ(B) holds (resp. ♦∗
κ(B) holds, ♦+

κ (B) holds) if there is a ♦κ(B)-
sequence (resp. a ♦∗

κ(B)-sequence, a ♦+
κ (B)-sequence).

When B is the whole of κ, i.e., B = {α | α < κ}, we omit mention of it. So, for
example, a ♦κ-sequence is a ♦κ({α | α < κ})-sequence and so on.

A ♦κ(B)-sequence on κ × κ is a sequence 〈Aα | α ∈ B 〉 such that Aα ⊆ α × α
for each α ∈ B and whenever A ⊆ κ× κ one has that {α ∈ B |A ∩ α× α = Aα} is
stationary in κ.
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7410 J. CUMMINGS, M. DŽAMONJA, M. MAGIDOR, C. MORGAN, AND S. SHELAH

Clearly, if there is a ♦κ(B)-sequence, then there is a ♦κ(B)-sequence on κ × κ
– the closure points of any enumeration of κ × κ in order type κ form a closed
unbounded subset of κ. We talk similarly of ♦∗

κ(B)-sequences and ♦+
κ (B)-sequences

on κ× κ.
If G = (X,E) and H = (Y, F ) are graphs, then f : G −→ H is an embedding of G

into H as an induced subgraph if ∀x0 ∈ X ∀x1 ∈ X ( x0 E x1 ←→ f(x0) F f(x1) ).
Since this is the only kind of graph embedding which concerns us we will simply
call them embeddings.

Let κ be a regular cardinal. We say that a family F of graphs on κ is jointly
universal for graphs of size κ if for every graph G = (κ,E) there is some H =
(κ, F ) ∈ F and some embedding f : G −→ H of G into H . We say that F is a

small universal family if F < 2κ.

1. Some iterated forcing theory

In the classical exposition of iterated forcing Baumgartner [1, §4] wrote:
The search for extensions of MA for larger cardinals has proved to
be rather difficult.

One reason for this is that for κ regular and uncountable, an iteration of <κ-closed
and κ+-cc forcing posets with supports of size less than κ does not in general have
the κ+-cc. For example, a construction due to Mitchell described in a paper of
Laver and Shelah [17] shows that in L there is an iteration of length ω of countably
closed ℵ2-cc forcing posets such that the inverse limit at stage ω does not have the
ℵ2-cc.

The literature contains several preservation theorems for iterations involving
strengthened forms of closure and chain condition, along with corresponding forcing
axioms. The first results in this direction are in unpublished work by Laver [1, §4].
Baumgartner [1] proved that under CH an iteration with countable supports of
countably compact ℵ1-linked forcing posets is ℵ2-cc, and proved the consistency of
some related forcing axioms. Shelah [22] proved that under CH an iteration with
countable supports of posets which are countably closed and well-met and which
enjoy the ℵ2-stationary cc also enjoys the ℵ2-stationary cc. Shelah also proved more
general results for certain iterations of κ+-stationary cc posets with supports of size
less than κ, and proved the consistency of a number of related forcing axioms.

The main result of this section is a common generalisation of the results of
Baumgartner and Shelah quoted above. In order to state the theorem we require a
definition.

Definition 1.1. Let (P,≤) be a partial order.

• Two descending sequences 〈qi | i < ω 〉 and 〈ri | i < ω 〉 from P are pointwise
compatible if for each i < ω we have qi ‖ ri.

• (P,≤) is countably parallel-closed if each pair of pointwise compatible de-
scending ω-sequences has a common lower bound.

Theorem 1.2. Let κ be an uncountable regular cardinal with κ<κ = κ. Every iter-
ation of countably parallel-closed, <κ-closed, κ+-stationary cc forcing with supports
of size less than κ has the κ+-stationary cc.
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Proof. Let P = 〈〈Pξ | ξ ≤ χ〉, 〈 Q̇ξ | ξ < χ〉〉 be a <κ-support iteration of forcings

such that for each ξ < χ it is forced by Pξ that Q̇ξ is countably parallel-closed, <κ-
closed and κ+-stationary cc. We prove, by induction on ξ and following the proof
of Lemma 1.3 of [22] closely, that for each ξ ≤ χ, Pξ has the stationary κ+-chain
condition.

Suppose that Pε has the stationary κ+-chain condition for all ε < ξ. Let 〈pi | i <
κ+ 〉 ∈ κ+

Pξ. We construct for each i < κ+ a decreasing ω-sequence 〈pni | n < ω 〉
such that p0i = pi and pni ∈ Pξ for each n < ω.

Induction step n + 1. Suppose we have already defined 〈pni | i < κ+ 〉. For each

i < κ+ and ε < ξ we have �Pε
“pni (ε) ∈ Q̇ε” and pni (ε) = 1q̇ε if ε /∈ supp(pni ).

As �Pε
“Q̇ε has the κ+-stationary cc” and 〈pni (ε) | i < κ+ 〉 names a κ+-sequence

of elements of Q̇ε, we may find Pε-names Ċn
ε for a club subset of κ+ and ġnε for a

regressive function on Ċn
ε witnessing the κ+-stationary cc for the sequence named

by 〈pni (ε) | i < κ+ 〉.
As Pε has the κ+-chain condition, if �Pε

“ Ḋ is a club subset of κ ” there is

some club D′ ∈ V such that �Pε
“ D′ ⊆ Ḋ ”. So we may as well assume that

Ċn
ε = Ĉn

ε for some club Cn
ε ∈ V .

For each i < κ+, dealing with each ε ∈ supp(pni ) inductively and using the

<κ-closure of Pξ, find some pn+1
i ≤ pni such that

∀ε ∈ supp(pni ) pn+1
i � ε �Pε

“ ġnε (i) = ρnε (i) ”

for some ordinal ρnε (i) < i. Let ρnε (i) = 0 for ε /∈ supp(pni ).
Let {εα | α < μ}, for some μ ≤ κ+, enumerate

⋃
{supp(pni ) | n < ω & i < κ+}.

For each ε < ξ let Cε =
⋂

n<ω Cn
ε and let C = {i < κ+ | ∀α < i (i ∈ Cεα)}.

Claim 1.3. Using the hypothesis that κ<κ = κ, we can find a club E ⊆ C and

a regressive function k on Sκ+

κ ∩ E such that if i, i′ ∈ Sκ+

κ ∩ E, k(i) = k(i′) and
i < i′, then:

(1)
⋃
{supp(pni ) | n < ω} ∩ {εγ | γ < i}
=

⋃
{supp(pni′) | n < ω} ∩ {εγ | γ < i′ }.

(2)
⋃
{supp(pni ) | n < ω} ⊆ {εγ | γ < i′ }.

(3) If γ < i′, n < ω and εγ ∈ supp(pni′), then ρnεγ (i) = ρnεγ (i
′).

(Note that, by (1), for every γ to which clause (3) applies we have γ < i and
εγ ∈

⋃
{supp(pni ) | n < ω}.)

Proof. We start by making some auxiliary definitions.
Let H = {h | dom(h) ∈ [κ+]<κ and h : dom(h) −→ ωκ+ }. By the hypothesis

that κ<κ = κ we have that H = κ+. So we can enumerate H as, say, 〈hη | η < κ+ 〉.
Noticing that H ⊂ [κ+ × ωκ+]<κ, for i < κ+, define Hi = H ∩ [i× ωi]<κ. Since

κ<κ = κ we have, for each i < κ, that Hi = κ.
So we can define f : κ+ −→ κ+ by, for i < κ+, letting f(i) = the least τ < κ+

such that Hi ⊆ {hη | η < τ }.
Also, for each i < κ+, set Fi = {γ < κ+ | εγ ∈

⋃
{supp(pni ) | n < ω}} and

Di = Fi ∩ i.
Let E = {i < κ+ | f“i ∪

⋃
{Fj | j < i} ⊆ i}. It follows that E is a closed

unbounded subset of κ+.
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In order to see this let us define for n < ω the functions gn : κ+ −→ κ+ by g0(i)
is the least ordinal i such that f“i ∪

⋃
{Fj | j < i} ⊆ i, and gn+1(i) = g0(gn(i))

for n < ω. Then for any i < κ+ we have that i <
⋃

n<ω gn(i) ∈ E. This shows

that E is unbounded. Moreover, if B ⊆ E is of limit order type less than κ+

and d ∈ sup(B) ∪
⋃
{Fj | j < sup(B)}, then there is some b ∈ B such that d ∈

b ∪
⋃
{Fj | j < b} and hence f(d) < b < sup(B).

Now define, for each i < κ+, the function ki : Di −→ ωi by letting ki(γ)(n) =
ρnεγ (i) if εγ ∈ supp(pni ), and = 0 otherwise.

So for each i < κ+ we have ki ∈ Hi.
Define k : κ+ −→ κ+ by setting k(i) = that η such that ki = hη.
For each i < κ+ we have ki = hk(i) and thus k(i) < f(i).
Now if i ∈ E and cf(i) = κ, simply because ki is a function of size <κ, there is

some i∗ < i such that ki ∈ Hi∗ . Hence for such i we have k(i) < f(i∗). We also
have f(i∗) < i since i ∈ E.

Hence if i ∈ E and cf(i) = κ we have k(i) < i, and so we have shown that k is

regressive on E ∩ Sκ+

κ .

Moreover, if i, i′ ∈ E ∩ Sκ+

κ and k(i) = k(i′) we have that ki = ki′ , and hence
that (1) and (3) hold. Finally, if i < i′ as well we have, since i′ ∈ E, that Fi ⊆ i′

and hence (2) holds. �1.3

With Claim 1.3 in hand, suppose that i < i′ < κ+, i, i′ ∈ Sκ+

κ ∩ E and k(i) =
k(i′). We now construct, by an induction of length ξ, a condition q ∈ Pξ which is
a common refinement of pni and pni′ for all n, and hence of pi and pi′ . The support
of q will be the union of

⋃
{supp(pni ) | n < ω} and

⋃
{supp(pni′) | n < ω}.

For σ ∈
⋃
{supp(pni ) | n < ω} \

⋃
{supp(pni′) | n < ω}, as �Pσ

“ Q̇σ is countably
closed ”, take q(σ) to be any r such that q � σ �Pσ

“ ∀n < ω (r ≤ pni (σ)) ”.
Similarly, for σ ∈

⋃
{supp(pni′) | n < ω} \

⋃
{supp(pni ) | n < ω}, take q(σ) to be any

r such that q � σ �Pσ
“ ∀n < ω (r ≤ pni′(σ)) ”.

Finally, if σ ∈
⋃
{supp(pni ) | n < ω}∩

⋃
{supp(pni′) | n < ω}, then σ = εγ for some

γ < i (by conditions (1) and (2) above), for each n < ω we have ρnεγ (i) = ρnεγ (i
′)

(by (3) above), and i, i′ ∈ Cεγ (by the construction of C and the choice of E).
By construction, for each n < ω we have q � σ �Pσ

“ pni (σ) ‖Q̇σ
pni′(σ) ”. By the

fact that �Pσ
“ Q̇σ is countably parallel-closed ”, we can choose q(σ) to be some r

such that q � σ �Pσ
“ ∀n < ω (r ≤ pni (σ), pni′(σ)) ”. Thus for all n < ω we have

that q � (σ + 1) ≤ pni � (σ + 1), pni′ � (σ + 1). �1.2

We remark that the previous theorem allows us to give ‘generalised Martin’s
axiom’ forcing axioms similar to those formulated by Baumgartner [1] and Shelah
[22]. One example is given by the following theorem.

Theorem 1.4. Let κ be an uncountable regular cardinal such that κ<κ = κ, and let
λ > κ+ be a cardinal such that γ<κ < λ for every γ < λ. Then there is a <κ-closed
and κ+-stationary cc forcing poset P such that if G is P-generic, then in V [G] we
have 2κ = λ and the following forcing axiom holds:

For every poset Q which is <κ-closed, countably parallel-closed and κ+-stationary
cc, every γ < λ and every sequence 〈Di | i < γ 〉 of dense subsets of Q there is a
filter on Q which meets each set Di.

As in [1] and [22], there are variations with weaker hypotheses on λ, yielding
weaker forcing axioms which only apply to posets Q of bounded size.
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The following straightforward lemma indicates some connections between the
hypotheses used in [1] and [22] and the ones used here.

Lemma 1.5. Let P be a forcing poset.

(1) If P is well-met and countably closed, then it is countably compact.
(2) If P is countably compact, then it is countably parallel-closed.
(3) If P is κ-linked, then it is κ+-stationary cc.

Proof. For (1), note that by an easy induction any finite subset of a well-met poset
with a common lower bound has a greatest lower bound. Now suppose that C ⊆ P is
a countable centred set and enumerate it as 〈pn | n < ω 〉; then let qm be the greatest
lower bound for 〈pn | n ≤ m〉. The conditions qm form a decreasing sequence which
has a lower bound by countable closure.

For (2), suppose (P,≤) is countably compact and that Q = 〈qi | i < ω 〉 and
R = 〈rj | j < ω 〉 are two pointwise compatible descending sequences from P. If
i0 < i1 < · · · < im < ω and j0 < j1 < · · · < jn < ω let k = max({im, jn }) and note
that since qk ‖ rk there is some p ∈ P such that for all l ≤ m and all e ≤ n we have
p ≤ qil , rje . That is, any finite subset of Q ∪ R has a lower bound. Hence, by the
countable compactness of (P,≤), we have that Q ∪R has a lower bound. Thus we
have shown that (P,≤) is countably parallel-closed.

For (3), suppose P is κ-linked and that 〈Aγ | γ < κ〉 is a partition of P such
that each Aγ is a pairwise compatible subset. Let 〈pi | i < κ+ 〉 ⊆ P. Define

f : Sκ+

κ −→ κ by f(i) = γ if and only if pi ∈ Aγ for i ∈ Sκ+

κ . Then f is a regressive
function and if f(i) = f(j) we have that pi and pj are compatible. �1.5

One cannot reverse Lemma 1.5(3). For example, it is a folklore result that
Add(κ, λ) is κ+-stationary cc if κ<κ = κ but is not κ-linked if 2κ < λ. We give
proofs of these facts for completeness. The reader may also find the proof of the
former useful as a dry run for the considerably more elaborate proof in §5 that the
forcing Q(w) of §4 is κ+-stationary cc; the notation used here closely mirrors that
used there.

Example 1.6. Let κ and λ be cardinals, with κ regular, κ<κ = κ and 2κ < λ.
Then Add(κ, λ) is not κ-linked, however it is κ+-stationary cc.

Proof. In order to see that Add(κ, λ) is not κ-linked let us suppose that 〈Bi | i < κ〉
is a collection of κ many pairwise compatible subsets of Fn(λ, 2, κ). For each i < κ
and α < λ we have that if p, q ∈ Bi and α ∈ dom(p) ∩ dom(q), then p(α) = q(α).
Hence for each i < κ there is a function fi ∈ λ2 such that for each p ∈ Bi we have
p ⊆ fi.

For each α < λ define dα : κ −→ 2 by dα(i) = fi(α). Since 2κ < λ there are α,
β < λ such that dα = dβ . Now consider p ∈ Fn(λ, 2, κ) such that α, β ∈ dom(p)
and p(α) �= p(β). Then for each i < κ we cannot have that both p(α) = fi(α) and
p(β) = fi(β). Hence

⋃
{Bi | i < κ} �= Fn(λ, 2, κ).

We now verify that Add(κ, λ) is κ+-stationary cc.
Suppose 〈pi | i < κ+ 〉 is a collection of conditions in Add(κ, λ). For each i < κ+

let t i = dom(pi). Let {αγ | γ < γ∗ } be an enumeration of
⋃
{t i | i < κ+ }, for some

γ∗ ≤ κ+.
Next, for each i < κ+ let {αi

γ | γ < γi }, for some γi < κ, be the increasing

enumeration of t i, let θi = ssup({γ | αγ ∈ t i}), let T i = {γ < i | αγ ∈ t i}, and let
qi ∈ Fn(T i, 2, κ) be defined by qi(γ) = pi(αγ).
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So each γ < κ+, each αi
γ < λ, each θi < κ+, each T i ∈ [i]<κ and each qi ∈

Fn(T i, 2, κ) ⊆ Fn(i, 2, κ).
For i ∈ [κ, κ+] let Hi = [i]<κ × Fn(i, 2, κ)× κ, and write H for Hκ+ . Let h∗ be

an injection from H into κ+. Define k : [κ, κ+) −→ κ+ by setting k(i) to be the
least i∗ < κ+ such that Hi ⊆ h∗−1“i∗.

Let C̃ = {j < κ+ | ∀i < j (θi, k(i) < j)}. As the intersection of the sets of

closure points of the two given functions, C̃ is a club subset of κ+.

Let h(i) = h∗(T i, qi, otp(t i)) for i ∈ C̃ ∩ Sκ+

κ , and h(i) = 0 otherwise.

We have that h∗−1(h(i)) ∈ Hi for all i ∈ [κ, κ+). If i ∈ C̃ ∩ Sκ+

κ , since

h∗−1(h(i)) < κ, there is some i′ < i such that h∗−1(h(i)) ∈ Hi′ , and hence there is

some ĩ < i such that h(i) < k(̃i).
Hence, as i is a closure point of k, we have h(i) < i for all non-zero i < κ+.

Now suppose that i, j ∈ C̃ ∩ Sκ+

κ , i < j and h(i) = h(j). So we have T i = T j ,
qi = qj and otp(t i) = otp(t j).

Set t = t i ∩ t j .

Lemma 1.7. (a) (t j \ t i) ∩ {αγ | i ≤ γ < j } = ∅, and
(b) t ⊆ {αγ | γ < i}.

Proof. Suppose αγ ∈ t j . If γ < j, then γ ∈ T j . But T j = T i, so γ ∈ T i. Hence
γ < i and αγ ∈ t i, proving (a). If αγ ∈ t i, then γ < θi < j. (Since the definition of

θi immediately gives that γ < θi and since i, j ∈ C̃ and i < j, one has that θi < j.)
Thus if αγ ∈ t i ∩ t j we have γ < i by (a). So (b) holds. �1.7

By Lemma 1.7(b) we have for αγ ∈ t that pi(αγ) = qi(γ) = qj(γ) = pj(αγ), and
hence pi and pj agree on the intersection of their domains, and thus are compatible
conditions. �1.6

2. Preserving diamond under forcing

In this section we give an account of how versions of the diamond principle at a
regular cardinal χ are preserved by certain forcing posets. We are most interested
in the situation where the forcing poset is an iteration Pχ of length χ, and we can
find a diamond sequence 〈Sα | α < χ〉 ∈ V [Gχ] such that Sα ∈ V [Gα] for all α. We
will use the results of this section in §6 and §7.

The following result is well-known. For the reader’s convenience we will sketch a
proof. Similar arguments appear, for example, in the proof that ♣ does not imply
♦ω1

in [24], §I.7, and in a preservation theorem for ♦+
ω1

in [4], §12.

Theorem 2.1. Let χ be a regular uncountable cardinal, let P be a forcing poset of
cardinality χ which preserves the regularity of χ and let G be P-generic over V .

(1) If ♦χ holds in V and P preserves stationary subsets of χ, then ♦χ holds in
V [G].

(2) If ♦∗
χ (resp ♦+

χ ) holds in V , then ♦∗
χ (resp ♦+

χ ) holds in V [G].

Proof. (1) Enumerate the elements of P as pi for i < χ, fix in V a diamond sequence
〈Tα ⊆ α×α | α < χ〉 which guesses subsets of χ×χ, and in V [G] define Sα = {η <

α | ∃i < α (pi ∈ G and (i, η) ∈ Tα)}. Now if S = ṠG ⊆ χ we let T = {(i, η) | pi �
η̂ ∈ Ṡ }, and observe that {α | T ∩ α × α = Tα} is stationary in V (hence also in

V [G]) and E = {α | ∀η ∈ S ∩ α ∃i < α pi ∈ G and pi � η̂ ∈ Ṡ } is club in V [G].
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At any point α ∈ E such that T ∩ α × α = Tα we have that S ∩ α = Sα. Hence
〈Sα | α < χ〉 is a ♦χ-sequence in V [G].

(2) The proofs for ♦∗
χ and ♦+

χ are very similar. The key difference is that the
hypothesis that the regularity of χ is preserved suffices to see that E is club in
V [G], and the stronger form of guessing occurring in the ♦∗

χ and ♦+
χ gives a club

from V with which to intersect it. �2.1

Observation 2.2. For future reference we note that:

(1) An entirely similar argument shows that if B is a stationary subset of χ and
P preserves stationary subsets of B, then P preserves ♦χ(B). If P preserves
the stationarity of B, then P preserves ♦∗

χ(B) and ♦+
χ (B).

(2) In both parts of Theorem 2.1, the value of the diamond sequence in V [G] at
α is computed in a uniform way from G � α where G � α = G∩{pi | i < α}.
In fact the restriction of the diamond sequence to α+ 1 (i.e., 〈Si | i ≤ α〉)
can be computed in a uniform way from G � α.

(3) In the proof of part ((1)) of Theorem 2.1, let A be the stationary set in V [G]
given by A = {α | S ∩ α = Sα}. For every α ∈ E, S ∩ α ∈ V [G � α] and so
easily E ∩α ∈ V [G � α]. Also, by the preceding remarks, A∩α ∈ V [G � α].
If we now let H = A ∩E, then H is a stationary set on which S is guessed
correctly and additionally H ∩ α ∈ V [G � α] for all α in the closure of H.

Proposition 2.3. Let κ, χ be regular cardinals with κ < χ. Let P = 〈〈Pξ | ξ ≤
χ〉, 〈 Q̇ξ | ξ < χ〉〉 be a forcing iteration with <κ-supports with Pξ < χ for each
ξ < χ. Let G be P-generic over V .

Suppose A is a stationary subset of Sχ
≥κ and ♦χ(A) holds. Then there is a

sequence 〈 Ṡξ | ξ ∈ A〉 such that:

(1) For all ξ ∈ A, Ṡξ is a Pξ-name for a subset of ξ.

(2) If in V [G] we define Sξ as the interpretation of Ṡξ by Gξ, then the sequence
〈Sξ | ξ ∈ A〉 has the following strengthened form of the ♦χ(A)-property: for
every S ⊆ χ there is a stationary set H ⊆ A such that S ∩ ξ = Sξ for all
ξ ∈ H, and in addition H ∩ ξ ∈ V [Gξ] for all ξ in the closure of H.

Proof. We start by observing that by arguments as in Baumgartner’s survey paper
on iterated forcing [1, §2] the poset P is χ-cc. We sketch the proof briefly: given a
sequence 〈pi | i < χ〉 of elements of P we apply Fodor’s theorem and the bound on
the size of initial segments to find a stationary set U ⊆ Sχ

κ and an ordinal η < χ
such that supp(pi) ∩ i ⊆ η and pi � η is constant for i ∈ U . Then find i, j ∈ U such
that supp(pi) ⊆ j and argue that pi is compatible with pj .

Noting that |P| = χ, we enumerate P as 〈pξ | ξ < χ〉 and identify each Pξ with
the set of conditions p ∈ P such that supp(p) ⊆ ξ for ξ < χ.

Let F be {ξ < χ | ∀ε < ξ (supp(pε) < ξ & Pξ = {pε | ε < ξ})}. Since P is an
iteration with <κ-support, F is club relative to Sχ

≥κ. Let us define h : χ −→ χ by

setting h(ε) = the least ξ such that supp(pε) ⊆ ξ and Pε ⊆ {pζ | ζ < ξ}, and define
C to be the set of closure points of h.

For each ξ ∈ C ∩ Sχ
≥κ and ε < ξ we have that supp(pε) ⊆ h(ε) < ξ and, since

cf(ξ) ≥ κ and the size of the support of each condition is less than κ, there is some
γ ∈ C ∩ ξ such that h(ε) < γ and so Pε ⊆ {pζ | ζ < γ }. Hence ξ ∈ F . Thus A \ F
is non-stationary.

Sh:963



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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Since P is χ-cc it preserves stationary subsets of χ, and we may therefore appeal
to Theorem 2.1 and Observation 2.2 to obtain a sequence 〈 Ṡξ | ξ ∈ A ∩ F 〉 such
that:

(1) For all ξ ∈ A ∩ F , Ṡξ is a Pξ-name for a subset of ξ.

(2) If in V [G] we define Sξ as the realisation of Ṡξ by Gξ, then for every S ⊆ κ
there is a stationary set H ⊆ A∩ F such that S ∩ ξ = Sξ for all ξ ∈ H and
additionally H ∩ ξ ∈ V [Gξ] for all ξ in the closure of H.

To finish the proof we fill in the missing values by defining Ṡξ = ∅̂ for ξ ∈
A \ F . �2.3

3. Radin forcing

As we commented in the introduction, our proof involves Radin forcing. There
are several accounts of this forcing in the literature (see [20], [18], [5], [11] and [13]),
each subtly different from the others, and it turns out that it does matter which
version of the forcing we use. Although the proofs of the various properties of the
forcing are easiest, or at least slickest, for the versions given in Cummings-Woodin
([5]) and in Gitik ([11]), using either of these here creates technical difficulties.
Consequently, we shall define and use a version of Radin forcing which, except
for one small alteration to which we draw attention below, closely follows that of
Mitchell in [18].

First of all, we give, by induction on κ ∈ Card, the definition of the set of
ultrafilter sequences at κ.

Definition 3.1. Let κ be a cardinal and let Uκ be the collection of ultrafilter
sequences at cardinals smaller than κ. A sequence u = 〈uτ | τ < lh(u)〉 is an
ultrafilter sequence at κ if lh(u) is a non-zero ordinal, u0 = κ, so that, using the
notation of the introduction, κu = κ, and, for τ ∈ (0, lh(u)), each uτ is a κ-complete
ultrafilter on Vκ with Uκ ∈ uτ and satisfies the following normality and coherence
conditions (with respect to u):

(normality) if f : Uκ −→ Vκ and {w ∈ Uκ | f(w) ∈ Vκw
} ∈ uτ , then there is

some x ∈ Vκ such that {w ∈ Uκ | f(w) = x} ∈ uτ .
(coherence 1) if f : Uκ −→ κ and {w ∈ Uκ | f(w) < lh(w)} ∈ uτ there is σ < τ

such that uσ = {X ⊆ Vκ | {w ∈ Uκ |X ∩ Vκw
∈ wf(w)} ∈ uτ }.

(coherence 2) if σ < τ and X ∈ uσ, then {w ∈ Uκ | ∃σ̄ < lh(w)X∩Vκw
∈ wσ } ∈

uτ .

Definition 3.2. The class U is the class of all ultrafilter sequences on any cardinal:
U =

⋃
κ∈Card Uκ.

Definition 3.3. For clarity we reiterate the following special cases of notation of
Definition 3.1: Uκ+ is the set of ultrafilter sequences at cardinals less than or equal
to κ and Uκ+ \ Uκ is the set of ultrafilter sequences at κ.

Observation 3.4. As Mitchell comments in [18], by the coherence properties, if
u ∈ U and lh(u) ≤ κu, then for τ ∈ (0, lh(u)) one has that uτ concentrates on
{w ∈ Uκu

| lh(w) = τ } (i.e., {w ∈ Uκu
| lh(w) = τ } ∈ uτ ).

Observation 3.5. We need some large cardinal assumption in order to construct
non-trivial ultrafilter sequences. For the purposes of this paper we can use a con-
struction due to Radin [20]. Let j : V → M witness that κ is 2κ-supercompact.
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Derive a sequence u by setting u0 = κ and then uα = {X ⊆ Vκ | u � α ∈ j(X)} for
α > 0. One can verify that for every α < (2κ)+ we have u � α ∈ Uκ. In fact we
will only need ultrafilter sequences of length less than κ in the sequel.

Definition 3.6. If u ∈ U, then F (u) =
⋂

τ∈(0,lh(u)) uτ .

Definition 3.7. A pair is some (u,A) with u ∈ U and A ∈ F (u) if lh(u) > 1 and
A = ∅ if lh(u) = 1.

(Note that our notation thus far is marginally, but inessentially, different from
that of [18].)

Definition 3.8. Let w ∈ U. Rw, Radin forcing at w, has as conditions sequences
of pairs 〈(u0, B0), . . . , (un, Bn)〉 such that un = w and, writing κi for κui

, (ui, Bi) ∈
Uκi+1

and Bi+1 ∩ Vκ+
i
= ∅ for i < n.

Let p = 〈(u0, B0), . . . , (un, Bn)〉 and q = 〈(v0, D0), . . . , (vm, Dm)〉 ∈ Rw. Then
q ≤ p (q refines p) if m ≥ n and

(i) for every i ≤ n there is j ≤ m such that ui = vj and Dj ⊆ Bi,
(ii) for every j ≤ m, either vj = ui for some i or for the least i such that

κvj < κui
, vj ∈ Bi and Dj ⊆ Bi.

We also define q ≤∗ p if 〈ui | i ≤ n〉 = 〈vi | i ≤ n〉 and for each i ≤ n we have
Di ⊆ Bi. We say that q is a (Radin-)direct extension of p. Thus q ≤∗ p implies
q ≤ p.

Definition 3.9. Let p = 〈(u0, B0), . . . , (un, Bn)〉 be a condition in Run
. A pair

(u,B) appears in p if there is some i ≤ n such that (u,B) = (ui, Bi). Similarly an
ultrafilter sequence u appears in p if there is some i ≤ n such that u = ui.

Thus clause (ii) in the definition of ≤ in Definition 3.8 reads: if vj does not
appear in p and i is minimal such that κvj < κui

, then vj ∈ Bi and Dj ⊆ Bi.

Observation 3.10. [18] omits the last clause in the definition of what it is to be a
condition. However our conditions form a dense subset of the conditions as defined
in [18] and the facts that we quote from [18] are also true of our forcing. This minor
change is advantageous for technical reasons in order to make the proof below run
smoothly.

To help orient the reader, we record a few remarks (without proof) about the
nature of the generic object for the forcing poset Rw. This generic object is best
viewed as a sequence 〈ui | i < δ 〉 where ui ∈ Uκw

and 〈κui
| i < δ 〉 is increasing

and continuous. When lh(w) > 1 the sequence 〈κui
| i < δ 〉 is cofinal in κw, and we

will view this sequence as enumerating a club set in κw which we call the Radin-
generic club set. When i = 0 or i is a successor ordinal, then lh(ui) = 1, otherwise
lh(ui) > 1. The translation between the generic sequence and the generic filter is
given by the following.

Definition 3.11. Let G be an Rw-generic filter over V . The sequence 〈ui | i < δ 〉
is the corresponding generic sequence if it enumerates {u ∈ Uκw

| ∃p ∈ G u appears
in p}, i.e., the set of u ∈ Uκw

which appears in some condition in G.

Lemma 3.12. Let G be an Rw-generic filter over V and 〈ui | i < δ 〉 the corre-
sponding generic sequence. Then

G = {p ∈ Rw | ∀u ∈ Uκw
(u appears in p −→ ∃i < δ u = ui) &

∀i < δ ∃q ≤ p (ui appears in q)};
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i.e., G is the set of conditions p ∈ Rw such that every u ∈ Uκw
which appears in p

is among the sequences ui, and every sequence ui appears in some extension of p.

Definition 3.13. A lower part for Rw is a condition in Ru for some u ∈ Uκw
.

We note that any condition in Rw has the form y�(w,B) where y is empty or a
lower part for Rw, and B ∈ F (w). In the case when y is non-empty we will say that
y is the lower part of y�(w,B). It is easy to see that any two conditions with the
same lower part are compatible, so that Rw is the union of κw-many κw-complete
filters and in particular it enjoys the κ+

w-chain condition.
A key point is that below a condition of the form y�(w,B) with y non-empty,

everything up to the last ultrafilter sequence appearing in y is controlled by pairs
in y. More formally:

Definition 3.14. Let y = 〈(ui, Bi) | i ≤ n〉 be a lower part for Rw. Then κy = κun

and Ry = {q ∈ Run
| q ≤ y}.

Lemma 3.15. Let p = y�(w,B) be a condition in Rw with y non-empty. Then
the subforcing {q ∈ Rw | q ≤ p} is isomorphic to the product Ry × {q ∈ Rw | q ≤
(w,B \ Uκ+

y
)}.

It follows from these considerations that if 〈ui | i < δ 〉 is a generic sequence for
Rw and ζ < δ, then 〈ui | i < ζ 〉 is a generic sequence for Ruζ

. More generally, if
there is a condition in the generic filter with lower part y, then the generic sequence
induces an Ry-generic object in the natural way.

Definition 3.16. Let y be a lower part for Rw and let G be Rw-generic over V .
We say that y conforms with G if and only if y is the lower part of some condition
in G.

The following lemma is a “local” version of Lemma 3.12.

Lemma 3.17. Let G be an Rw-generic filter over V and let 〈ui | i < δ 〉 be the
corresponding generic sequence. Let y = 〈(vk, Bk) | k ≤ n〉 be a lower part. Then
the following are equivalent:

(1) y conforms with G.
(2) For every k ≤ n the sequence vk appears among the sequences ui, and for

every i with κui
≤ κvn the ultrafilter sequence ui appears in some extension

of y in Ry.

Moreover, if i < δ, then ui appears in some lower part y′ which conforms with
G and with κy′ = max({κy, κui

}), and such that if y�(w,B) ∈ G there is some
B′ ∈ F (w) such that y′�(w,B′) ≤ y�(w,B).

The following result by Radin captures a key property of Rw.

Theorem 3.18 (Radin). (The Prikry property for Radin forcing.) Let p ∈ Rw and
let φ be a sentence in the forcing language. Then either there is some p′ ≤∗ p such
that p′ �Rw

φ or there is some p′ ≤∗ p such that p′ �Rw
¬φ.

Combining Theorem 3.18 and Lemma 3.15, we obtain a lemma (due to Radin)
which will be very important in the proof of κ+-cc for the main iteration. Recall
that by our conventions a name for a truth value is just a name for an ordinal which
is either 0 (false) or 1 (true).
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Lemma 3.19 (Radin). Let y�(w,B) be a condition in Rw with y non-empty, and

let ḃ be an Rw-name for a truth value. Then there exist C ⊆ B with C ∈ F (w)
and an Ry name for a truth value ċ such that whenever G is Rw-generic with

y�(w,C) ∈ G and G′ is the induced generic object for Ry, then (ḃ)G = (ċ)G
′
.

Proof. Using the factorisation given by Lemma 3.15 and the Product Lemma, we
may view ḃ as an R∗-name for an Ry-name for a truth value where R∗ = {q ∈
Rw | q ≤ (w,B \Uκ+

y
)}. Since |Ry| < κ and a name for a truth value amounts to an

antichain in Ry, there are fewer than κ many Ry-names for truth values. Since F (w)
is κ-complete we may appeal to the Prikry property for R∗ and shrink (w,B \Uκ+

y
)

to (w,C) in order to decide which Ry-name ċ is in question. �3.19

In the situation of Lemma 3.19, we will sometimes say that the condition
y�(w,C) reduces the Rw-name ḃ to the Ry-name ċ. Similar arguments (which
we omit) about reducing names for sets of ordinals give another important result.

Theorem 3.20 (Radin). Let w ∈ U, let G be Rw-generic over V and let 〈uj | j < δ 〉
be the corresponding generic sequence. For every α < κw, if i is largest such that
κui

≤ α, then every subset of α lying in V [G] lies in the Rui
-generic extension given

by 〈uj | j < i〉.

It follows readily that forcing with Rw preserves all cardinals. However cofinali-
ties may change, and the general situation is a little complicated. The main point
for us is given by the following result.

Theorem 3.21 (Radin). Let w ∈ U, let G be Rw-generic over V and assume that
lh(w) is a regular cardinal λ with λ < κw. Let G be Rw-generic. If λ is not a limit
point of the Radin-generic club, then V [G] |= λ is regular and cf(κ) = λ.

We note that the condition on λ in this theorem is easy to arrange by working
below a suitable condition in Rw. For example we may arrange that the least point
of the generic club is greater than λ.

We will also require a characterisation of Radin-genericity which is due to
Mitchell.

Theorem 3.22 (Mitchell). Let 〈ui | i < δ 〉 be a sequence of ultrafilter sequences in
some outer model of V . Then the following are equivalent:

(1) The sequence 〈ui | i < δ 〉 is Rw-generic.
(2) For every j < δ the sequence 〈ui | i < j 〉 is Ruj

-generic, and if lh(w) > 1,
then F (w) = {X ∈ V | ∃j < δ ∀i j < i < δ =⇒ ui ∈ X }; i.e., if
lh(w) > 1, then F (w) is the tail filter generated on the V -powerset of Vκ

by the generic sequence.

Definition 3.23. Sequences which satisfy the Mitchell criterion from Theorem 3.22
are sometimes called geometric sequences.

The following considerations will play a central role in the proof of Theorem
7.10.

Observation 3.24. Suppose that V ⊆ V ′ with V V
κ = V V ′

κ (e.g., V ′ might be
a generic extension of V by <κ-closed forcing). Suppose that in V ′ there is an
ultrafilter sequence w′ such that lh(w) = lh(w′) and w(α) = w′(α)∩ V for 0 < α <
lh(w). Let 〈ui | i < δ 〉 be an Rw′-generic sequence over V ′.
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• By the Mitchell criterion for genericity and the observation that F (w) ⊆
F (w′), the sequence 〈ui | i < δ 〉 is also an Rw-generic sequence over V .

Lemma 3.25. Let G be an Rw-generic filter over V and let 〈ui | i < δ 〉 be the
corresponding generic sequence. Let y = 〈(vk, Bk) | k ≤ n〉 be a lower part. Then
the following are equivalent:

(1) y conforms with G.
(2) For every k the sequence vk appears among the sequences ui, and for every

i with κui
≤ κvn either ui appears among the sequences vk or ui ∈ Bk for

the least k such that κui
< κvk .

Proof. It is immediate that the first condition implies the second. For the converse
direction, by Lemma 3.17, we need to verify that every sequence ui with κui

≤ κvn

appears in some element of Ry. This is immediate when ui appears among the vk,
so we assume that it does not and let k be least with κui

< κvk . If lh(ui) = 1, then
we may extend y by shrinking Bk to Bk \ Uκ+

ui
and inserting the pair (ui, ∅). If

lh(ui) > 1, then i is the limit and by hypothesis uj ∈ Bk for all large j < i, so that
(by the geometric condition from part (2) of Theorem 3.22) Bk ∩ Vκui

∈ F (ui).

In this case we may extend y by shrinking Bk to Bk \ Uκ+
ui

and inserting the pair

(ui, Bk ∩ Vκui
). �3.25

A very similar argument gives:

Lemma 3.26. Let G be an Rw-generic filter over V and let 〈ui | i < δ 〉 be the
corresponding generic sequence. Let y�(w,B) be a condition. Then y�(w,B) ∈ G
if and only if y conforms with G and ui ∈ B for all i such that κui

> κy.

For use later we make a technical definition which is motivated by the Mitchell
criterion for genericity, and will be used in the definition of the main iteration.

Definition 3.27. For y = 〈(ui, Bi) | i < n〉 a lower part for Rw, A = 〈Aρ | ρ < ρ∗ 〉
a sequence of subsets of Vκw

and η < κw we say y is harmonious with A past or
above η if for each i with i < n one of the following conditions holds.

• κui
< η.

• κui
= η, ui = 〈η 〉 and Bi = ∅.

• κui
> η, and {ui } ∪Bi ⊆

⋃
ρ<ρ∗ Aρ \ Uη+ .

Observation 3.28. We record some remarks about the preceding definition.

• If a lower part y is harmonious with A past η it divides rather strictly into
a part below η and a part above: there is no (ui, Bi) appearing in y such
that η ≤ κui

while κv ≤ η for some v ∈ Bi.
• Definition 3.27 depends only on the set

⋃
ρ<ρ∗ Aρ rather than the sequence

A itself. It is phrased in this way to avoid encumbering later definitions
with union signs.

The following lemma shows how to thin a lower part conforming with a Radin
generic sequence to one which still conforms and which is also harmonious past
some η with a sequence of sets whose union contains the interval of the generic
sequence consisting of those measure sequences with critical point at least η and
which it can ‘see’. This, also, is useful for the proof of Theorem 7.10.
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Lemma 3.29. Let G be an Rw-generic filter over V and let 〈ui | i < δ 〉 be the
corresponding generic sequence. Let A = 〈Aρ | ρ < ρ∗ 〉 be such that each Aρ is a
set of measure sequences with a common critical point κρ < κ, let a = {κρ | ρ < ρ∗ }
and let D =

⋃
ρ<ρ∗ Aρ.

Suppose that η is a successor point in the generic club set C such that ui ∈ D
for all i such that η ≤ κui

< ssup(a).
Let y be a lower part conforming with G with κy < ssup(a), and suppose that

〈η 〉 appears in y. Then there is a lower part y′ such that

(1) y′ is a direct extension of y in Ry,
(2) y′ conforms with G, and
(3) y′ is harmonious with A past η.

Proof. By the definition of conformity all sequences appearing in y have the form
ui for some i. We will obtain y′ by some judicious shrinking of the measure one
sets appearing as the second entries of pairs in y.

Consider the pairs (v,B) appearing in y. If κv < η there is no problem, and if
κv = η, then (as η is a successor point in C) we have v = 〈ηε 〉 and B = ∅, so again
there is no problem.

Suppose now that (v,B) appears in y and κv > η. By the definition of con-
ditionhood, B contains no measure sequence u with κu ≤ η. Let j be such that
v = uj , and recall that lh(v) = 1 and B = ∅ for j a successor, and lh(v) > 1 and
B ∈ F (v) for j a limit.

By hypothesis we have ui ∈ D for all i such that κui
≥ η; it follows by the

“geometric” criterion for genericity (see Theorem 3.22) that if j is a limit, then
D ∩ Vκv

∈ F (v). So when v = vj for j a limit, we may shrink B to obtain a set
B′ = B ∩D with B′ ∈ F (v). We define y′ to be the resulting lower part. �3.29

Lemma 3.30. If y is a lower part which is harmonious with A past η and y′ ∈ Ry,
then y′ is harmonious with A past η.

Proof. We consider each pair (u,B) appearing in y′. If u already appears in y, then
we have that (u,B′) appears in y for some B′ such that B ⊆ B′, and it is easy
to see that in all cases the harmoniousness conditions are satisfied. If u does not
appear in y, then let (v, C) be the unique pair appearing in y such that u ∈ C,
and consider the various cases of the definition for the pair (v, C): if κv < η, then
κu < η and we are done; the case κv = η cannot occur as C �= ∅; and if κv > η,
then {u} ∪B ⊆ C ⊆

⋃
ρ<ρ∗ Aρ \ Uη+ . �3.30

4. The definition of Q(w) and useful properties of it

Suppose that U is a measure on a measurable cardinal κ. Recall that κ-Mathias
forcing using U has as conditions pairs (s, S) with s ∈ [κ]<κ, S ∈ U and ssup(s) ≤
min(S) and ordering given by (t, T ) ≤ (s, S) if s = t ∩ ssup(s) and T ∪ (t \ s) ⊆ S.
This forcing preserves cardinals as it is <κ-directed closed and has the κ+-chain
condition. If G is a generic filter over V for the forcing and y =

⋃
{s | ∃S ∈

U (s, S) ∈ G}, then for all S ∈ P (κ) we have that S ∈ U if and only if there is
some α < κ such that y \ α ⊆ S. Consequently, the forcing is also known as the
forcing to diagonalise U .1

1The earliest uses of this forcing of which we have evidence are in unpublished work from
1992 by Shizuo Kamo [14] and Tadatoshi Miyamoto, independently, on the splitting number for
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We also recall Ellentuck’s topologically inspired notation [8] that if (s, S) is a
condition in this forcing, then [s, S] = {y ∈ [κ]κ | s ⊆ y ⊆ s ∪ S }. Using this
notation we have that (t, T ) ≤ (s, S) if and only if [t, T ] ⊆ [s, S].

In this section we define two forcing posets. The first poset M(w) is the analogue
of the κ-Mathias forcing for ultrafilter sequences w; it will diagonalise the filter
F (w). The second poset Q(w) is the variant of M(w) which is tailored, in the style
of the analogous forcing from [6], to deal with Radin forcing names for graphs, and
binary relations more generally, on κ+.

One can view κ-Mathias forcing as adding a subset y of κ which is potentially a
member of U ′ for some normal measure U ′ extending U in some generic extension.
In the same spirit, M(w) is designed to add a set A ⊆ Vκw

which is potentially a
member of F (w′) for some sequence w′ in a < κw-closed generic extension where
lh(w′) = lh(w) and w′

i ⊇ wi for 0 < i < lh(w).
For the rest of this section we fix an ultrafilter sequence w with lh(w) > 1, and

write κ for κw.

Definition 4.1. M(w) is the forcing with conditions p = (A,B), with:

• A = 〈Aρ | ρ < ρ p 〉, where ρ p < κ,
• ∀ρ < ρ p (Aρ ⊆ Uκ & Aρ �= ∅ & ∃κρ < κ ∀u ∈ Aρ κu = κρ),
• ∀ρ < ρ p ∀u ∈ Aρ ∀τ ∈ (0, lh(u)) u � τ ∈ Aρ,
• 〈κρ | ρ < ρ p 〉 is strictly increasing,
• B ∈ F (w),
• ∀v ∈ B ∀τ ∈ (0, lh(v)) (v � τ ∈ B), and
• ssup({κρ | ρ < ρ p }) ≤ min({κv | v ∈ B }).

If p, q ∈ M(w), then q ≤ p if Ap = Aq � ρ p and Bq ∪
⋃

ρ∈[ρ p, ρ q) A
q
ρ ⊆ Bp, while

q ≤∗ p if q ≤ p and Aq = Ap. If p, q ∈ M(w) and q ≤∗ p we say that q is a direct
extension of p.

Definition 4.2. Set [Ap, Bp] to be

{〈Dρ | ρ < κ〉 | ∀ρ < κ (Dρ ⊆ Uκ & ∃κρ < κ ∀u ∈ Dρ (κu = κρ) &

∀u ∈ Dρ ∀τ ∈ (0, lh(u)) (u � τ ∈ Dρ) ) & 〈κρ | ρ < κ〉 is strictly

increasing & 〈Dρ | ρ < ρ p 〉 = Ap &
⋃

{Dρ | ρ ∈ [ρ p, κ)} ⊆ Bp }.

Then (Aq, Bq) ≤ (Ap, Bp) if and only if [Aq, Bq] ⊆ [Ap, Bp].
It is useful to have a name for the set of cardinals which are the first elements

of the various ultrafilter sequences appearing anywhere in Ap for p ∈ M(w). Ac-
cordingly we make the following definition.

Definition 4.3. If p = (A,B) ∈ M(w) let ap = {κρ | ρ < ρ p}.

uncountable cardinals. See, for example, the reports on this work in [27] and [28]. The latter
paper, in particular, gives a full account of their principal result, that it is consistent relative
to there being a supercompact cardinal, that there is an uncountable cardinal κ with splitting
number sκ greater than κ+, and its proof via iterating this forcing. Unfortunately we have not
had access to the preprint [14] itself. The forcing has also at times been named long Prikry forcing.

A rather similar forcing, however, was given by Henle [12] in the early 1980s in the choiceless
context of cardinals with strong partition properties. Henle called his forcing Radin-like forcing,
the descriptor referring to properties of the subset of the cardinal added rather than the form of
the conditions.
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Now we move on to the definition of the forcing Q(w). This is carried out under
the following running combinatorial assumption.

Setting 4.4. Suppose T is a binary κ+-Kurepa tree with Υ many branches.

Definition 4.5. Let 〈bα | α < Υ〉 enumerate a set of branches through T . Let

〈Ėα | α < Υ〉 be a list of canonical Rw-names for binary relations on κ+. We will

use the sequences 〈bα | α < Υ〉 and 〈Ėα | α < Υ〉 as parameters in the definition of
the forcing Q(w).

Q∗(w) is the forcing with conditions p = (A,B, t, f) satisfying the following four
clauses.

(1) (A,B) ∈ M(w) (see Definition 4.1). We set a = a(A,B).
(2) t ∈ [(a ∩ sup(a))× Υ]<κ and f = 〈fη

α | (η, α) ∈ t〉. For η ∈ a ∩ sup(a), set
tη = {α | (η, α) ∈ t}.

(3) ∀η ∈ a ∩ sup(a) ∀α ∈ tη dηα = dom(fη
α) ∈ [κ+]<κ.

(4) ∀η ∈ a ∩ sup(a) ∀α ∈ tη ∀ζ ∈ dηα ∃ν < κ fη
α(ζ) = (bα � ζ, ν).

If p, q ∈ Q∗(w), then q ≤ p if [Aq, Bq] ⊆ [Ap, Bp], tp ⊆ tq and ∀(η, α) ∈
tp (fη

α)
p ⊆ (fη

α)
q; and q ≤∗ p if q ≤ p and Aq = Ap, tq = tp and fq = fp. (If q ≤∗ p

we say q is a direct extension of p.)
We write Q(w) for the suborder of Q∗(w) consisting of conditions which also

satisfy:

(5) for all η ∈ a ∩ sup(a), for all α, β ∈ tη, for every lower part y for Rw

harmonious with A past η, and for all ζ, ζ ′ ∈ dηα ∩ dηβ we have

fη
α(ζ) = fη

β (ζ) �=fη
α(ζ

′) = fη
β (ζ

′)

=⇒ y�(w,B) �Rw
“ ζ Ėα ζ ′ ←→ ζ Ėβ ζ ′ ”.

Observation 4.6. Observe that in clause (5), if y = 〈(ui, Bi) | i ≤ n〉 and y is
harmonious with A past η for some η ∈ a, then κun

≤ sup(a).

Observation 4.7. It is important to remember that Q(w) and Q∗(w) depend on

the tree T and the sequences 〈bα | α < Υ〉 and 〈Ėα | α < Υ〉 even though their
names do not make this dependence explicit.

The poset Q(w) is designed to add a sequence A∗ which diagonalises F (w) in
a sense made precise in Corollary 4.9 below, together with various objects that
can potentially be understood as Rw∗ -names where w∗ is an ultrafilter sequence
existing in some <κ-directed closed forcing extension of V , with lh(w) = lh(w∗),
w∗

τ ∩ V = wτ for 0 < τ < lh(w) and
⋃
A∗ ∈ F (w∗).

The aim is that if 〈ui | i < η 〉 is an Rw∗ -generic sequence (where we note that
by the Mitchell criterion this sequence is also Rw-generic) and ui ∈

⋃
A∗ for all

i such that κui
≥ η (along with various other technical conditions), then the “η-

coordinate” in the poset Q(w) will add an Rw∗ name for a binary relation of size

κ+ together with embeddings of all the relations named by the names Ėα into this
relation.

We are particularly interested in the posets Q(w) for certain specific lists of

relations, for example when 〈Ėα | α < Υ〉 is a list of canonical names for all graphs
on κ+. In this case the “η-coordinate” will add a name for a graph whose realisation
will be universal for the graphs named by the names in the list.
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Lemma 4.8. For every ε < κ, the set of q ∈ Q(w) such that ε < κq
ρ for some

ρ < ρq is dense and open.

Proof. It is immediate that this set is open, so we only need to verify that it is dense.
Let p ∈ Q(w) and let ρ = ρp. Find v ∈ Bp such that κv > max({ε, sup(ap)}) and
note that v � τ ∈ Bp for 0 < τ ≤ lh(v). Now let ρq = ρ + 1, Aq � ρ = Ap,
Aq

ρ = {v � τ | 0 < τ ≤ lh(v)}, Bq = {v′ ∈ Bp | κv′ > κv }, tq = tp and fq = fp.
We claim that q ∈ Q(w) and q ≤ p. The only non-trivial point is to check

that q satisfies clause (5) in the definition of Q(w). Let η, α, β, ζ, ζ ′ be such that
fη
α(ζ) = fη

β (ζ) �= fη
α(ζ

′) = fη
β (ζ

′), and note that since (η, α) ∈ tq = tp we have that

η ∈ ap ∩ sup(ap).
Let y be harmonious with Aq above η. By the definition of harmonious, Defini-

tion 3.27, we have that κy ≤ κv.
If κy < κv, then clearly y is harmonious with Ap above η, and we are done by

clause (5) for p and the remark that y�(w,Bq) ≤ y�(w,Bp).
If κy = κv, then we have y = y′�(v � τ,D) for some τ ≤ lh(v), where κy′ < κv,

y′ is harmonious with Ap and also D ⊆
⋃

ρ<ρp Ap
ρ. By the choice of κv to be strictly

greater than sup(ap) we see that D is bounded in Vκv
and so cannot be of measure

1 for any measure on v; hence necessarily τ = 1 and D = ∅, so that actually
v � τ = 〈κv 〉. It follows that y�(w,Bq) ≤ y′�(w,Bp), and again we are done by
clause (5) for p. �4.8

Corollary 4.9. If G is Q(w)-generic over V and A∗ is the union of the sequences
Ap for p ∈ G, then A∗ is a κ-sequence and for every B ∈ F (w) there is ρ∗ < κ
such that A∗

ρ ⊆ B for ρ∗ < ρ < κ.

The proof of Lemma 4.8 also gives the following result.

Corollary 4.10. The set of p ∈ Q(w) such that ρp is a successor ordinal is dense
in Q(w).

Notation 4.11. For η < κ, α < Υ and ζ < κ+ let Dη
ζ,α = {p ∈ Q(w) | α ∈

(tη)p & ζ ∈ (dηα)
p)}.

Lemma 4.12. Suppose p ∈ Q(w), η ∈ ap, α < Υ and ζ < κ+. Then there is q ∈
Dη

ζ,α with q ≤ p, Aq = Ap, Bq = Bp, (tη)q = (tη)p ∪ {α} and (dηα)
q = (dηα)

p ∪ {ζ }.
(In the last clause we formally take (dηα)

p = ∅ if α /∈ (tη)p.)

Proof. If p ∈ Dη
ζ, α, then take q = p and there is nothing more to do.

So suppose that p �∈Dη
ζ, α. If α �∈(tη)p observe that 〈Ap, Bp, tp∪{(η, α)}, fp�〈∅〉〉

is a condition in Q(w) and refines p. (The concatenated 1-tuple consisting of
the empty set records that the value of the new f -part of the condition 〈Ap, Bp,
tp ∪ {(η, α)}, fp�〈∅〉〉 at the co-ordinate (η, α) is the empty function.) Conse-
quently we may assume without loss of generality that α ∈ (tη)p and ζ /∈ (dηα)

p.
Pick ν ∈ κ\

⋃
(η,β)∈tp rge((π1 ·fη

β )
p), let (fη

α)
q = (fη

α)
p∪{〈ζ, (bα � ζ, ν)〉} and set

(fη′

β )q = (fη′

β )p for (η′, β) ∈ tp with (η′, β) �= (η, α). Then q = 〈Ap, Bp, tp, 〈(fη
β )

q|
(η, β) ∈ tp〉〉 is clearly an element of Q∗(w) and refines p.

Moreover, q satisfies (5) of the definition of Q(w). In brief this is true because
q inherits the truth of (5) from p for every collection of data for instances of (5)
except one, and for that collection we have ensured (5) holds vacuously.

In more detail, suppose η′ ∈ a(A
q,Bq) ∩ sup(a(A

q,Bq)), β, γ ∈ (tη
′
)q, y is a

lower part for Rw harmonious with Aq past η′ and ζ ′, ζ
′′ ∈ (dη

′

β )q ∩ (dη
′

γ )q. Either
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η′ ∈ a(A
p,Bp) ∩ sup(a(A

p,Bp)), β, γ ∈ (tη
′
)p, y is a lower part for Rw harmonious

with Ap past η′ and ζ ′, ζ
′′ ∈ (dη

′

β )p ∩ (dη
′

γ )p, and hence

fη′

γ (ζ ′) = fη′

β (ζ ′) �=fη′

γ (ζ ′′) = fη′

β (ζ ′′)

=⇒ y�(w,Bp) �Rw
“ ζ ′ Ėγ ζ

′′ ←→ ζ ′ Ėβ ζ ′′ ”

or η′ = η, γ = α and ζ ′′ = ζ and we have that ν was chosen specifically so that
(fη

α)
q(ζ) �= (fη

β )
p(ζ ′), and hence the antecedent of the instance of the implica-

tion in (5) of the definition of Q(w) is false, and so for this collection of data (5)
holds. �4.12

Corollary 4.13. For each η < κ, each α < Υ and each ζ ∈ κ+, the set Dη
ζ,α =

{p ∈ Q(w) | α ∈ (tη)p & ζ ∈ (dηα)
p)} is dense and open in {p ∈ Q(w) | η ∈ ap}.

Proof. Immediate from Lemma 4.12. �4.13

Corollary 4.14. If G is Q(w)-generic over V , η ∈
⋃
{ap | p ∈ G} and α < Υ,

then
⋃
{fp,η

α | p ∈ G, (η, α) ∈ tp} is a function with domain κ+.

Lemma 4.15. Q(w) has splitting.

Proof. This is proved using an argument very similar to the one for Lemma 4.12.
As observed there, given a condition p we can easily find a condition in Q(w)
refining it with a non-empty t-part, so without loss of generality we may as well
assume tp �= ∅. Let (η, α) ∈ tp. Now pick ζ ∈ κ+ \ (dηα)p, and working exactly as
before we can define two extensions q0, q1 of p which are both in Dη

ζ,α but satisfy

(fη
α)

q0(ζ) �= (fη
α)

q1(ζ), simply by choosing, at the ultimate stage of that argument,
two distinct elements ν0 and ν1 of κ \

⋃
(η,β)∈tp rge((π1 · fη

β )
p), where previously we

merely picked one. Then q0 and q1 are incompatible. �4.15

Lemma 4.16. (1) The forcing poset Q(w) is <κ-compact.
(2) Descending sequences from Q(w) of length less than κ have greatest lower

bounds.

Proof. We start by proving (1). Let C = {qi | i < μ} be a centred subset of Q(w)
for some μ < κ, and fix for each finite set Y ⊆ μ some condition sY ∈ Q(w)
such that sY ≤ qi for all i ∈ Y . We will define a quadruple (A∗, B∗, t∗, f∗) of the
appropriate type, and prove that it is a condition in Q(w) and forms a lower bound
for C.

Let ρ∗ = sup{ρqi | i < μ}. By the hypothesis that C is centred it is easy to see
that there is a unique sequence A∗ = 〈Aρ | ρ < ρ∗ 〉 such that A∗ � ρqi = Aqi for all
i < μ. If i < j < μ there is some p ∈ Q(w) such that p ≤ qi, qj , and hence by the
definition of ≤ (see Definition 4.1) one has that Ap � ρqi = Aqi and Ap � ρqj = Aqj .
Thus either Aqi is an initial segment of Aqj or vice versa. We write κρ for the
common value of κv for sequences v ∈ Aρ, and a∗ for {κρ | ρ < ρ∗ }.

Let B∗ =
⋂

Y ∈[μ]<ω BsY . By the completeness of the filter F (w) we see that

B∗ ∈ F (w). It also follows from the definition of Q(w) that κρ < κv for every
ρ < ρ∗ and every v ∈ B∗, for if κρ ∈ a∗ there is some i < μ such that κρ ∈ aqi , and
hence for all v ∈ Bqi one has κρ < κv, and thus, as B∗ ⊆ Bqi , one has κρ < κv.

Let t∗ =
⋃

i<μ t
qi . Clearly t∗ ⊆ (a∗ ∩ sup(a∗))×Υ and |t∗| < κ.

For each (η, α) ∈ t∗, let d∗,ηα =
⋃
{dqi,ηα | (η, α) ∈ tqi , i < μ}.
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By the hypothesis that C is centred it is easy to see that there is a unique
sequence of functions f∗ = 〈f∗,η

α | (η, α) ∈ t∗ 〉 with dom(f∗,η
α ) = d∗,ηα , and f∗,η

α (ζ) =
fqi,η
α (ζ) for all ζ ∈ dqi,ηα .
It should be clear that (A∗, B∗, t∗, f∗) is a condition in Q∗(w), and that if

(A∗, B∗, t∗, f∗) is a condition in Q(w), then it forms a lower bound for C. So
to finish the proof, we must verify clause (5) in the definition of Q(w).

Let η ∈ a∗ ∩ sup(a∗) with η < sup(a∗), let α, β ∈ t∗,η, let y = 〈(ui, Bi) | i ≤ n〉
be a lower part harmonious with A∗ past η, and let ζ, ζ ′ ∈ d∗,ηα ∩ d∗,ηβ be such that

f∗,η
α (ζ) = f∗,η

β (ζ) �= fη,∗
α (ζ ′) = f∗,η

β (ζ ′).
Choose a finite set Y large enough that:

• There is i0 ∈ Y with η ∈ aqi0 , η < sup(aqi0 ) and κun
≤ sup(aqi0 ).

• There is i1 ∈ Y with (η, α) ∈ tqi1 , and ζ ∈ d
qi1 ,η
α .

• There is i2 ∈ Y with (η, β) ∈ tqi2 , and ζ ∈ d
qi2 ,η

β .

• There is i3 ∈ Y with (η, α) ∈ tqi3 , and ζ ′ ∈ d
qi3 ,η
α .

• There is i4 ∈ Y with (η, β) ∈ tqi4 , and ζ ′ ∈ d
qi4 ,η
α .

Now consider the condition sY . By the construction Aqi0 is an initial segment
of AsY , and so by the choice of i0 one has that y is harmonious with AsY past η.
Since sY ∈ Q(w) it follows easily that

y�(w,BsY ) �Rw
“ ζ Ėα ζ ′ ←→ ζ Ėβ ζ ′ ”.

By construction B∗ ⊆ BsY , and so y�(w,B∗) also forces this equivalence and we
are done.

In order to see that (2) holds, suppose that C as in the proof of (1) is a
descending sequence of conditions. Then (A∗, B∗, t∗, f∗) is a greatest lower bound
for C. �4.16

Corollary 4.17. Q(w) is both <κ-directed closed and countably compact.

The following result is useful in the proof, which appears in the next section,
that Q(w) has the stationary κ+-chain condition.

Lemma 4.18. Let p = (A,B, t, f) ∈ Q(w). Let t =
⋃
{tη | η ∈ ap} and let

d =
⋃
{dηα | η ∈ ap & α ∈ tη }. Then there is q ∈ Q(w) with q ≤ p, Aq = Ap,

Bq = Bp, tη = t for all η ∈ ap and (dηα)
q = d for all η ∈ ap and α ∈ tη.

Proof. As in the second paragraph of the proof of Lemma 4.12, we have that r =
〈Ap, Bp, tp ∪ {(η, α) | η ∈ ap & α ∈ t \ tη }, fp�〈∅ | η ∈ ap & α ∈ t \ tη 〉〉 is a
condition in Q(w) which refines p and is such that ar = ap and (tη)r = t for all
η ∈ ar.

Now enumerateD = {(η, α, ζ) | η ∈ ap & α ∈ t & ζ ∈ d \dηα } as {(ηi, αi, ζi) | i <
γ } for some γ ≤ ap × t × d .

If D = ∅, then p itself satisfies the properties required for q.
Otherwise, carry out an induction on γ, using Lemma (4.12) at initial and suc-

cessor stages and Lemma 4.16(2) at limits, to construct a descending sequence of
conditions 〈ri | i < γ 〉 with r0 ≤ r and such that ζi ∈ (dηi

αi
)ri for each i < γ.

Finally, if γ is a limit ordinal use Lemma 4.16(2) to choose a lower bound q for
〈ri | i < γ 〉, and if γ = γ′ + 1 is a successor set q = rγ′ . �4.18

We now introduce the notion of a weakening of a condition.
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Definition 4.19. Let p be a condition in Q(w) such that ρp is a successor or-
dinal and let ρ∗ < ρp. We define the ρ∗-weakening of p to be the quadruple
r = (Ar, Br, tr, fr) where Ar = Ap � ρ∗, ar = {κp

ρ | ρ < ρ∗ }, Br = Bp∪
⋃
{Ap

ρ | ρ∗ ≤
ρ < ρp}, tr = {(η, α) ∈ tp | η ∈ ar ∩ sup(ar)} and fr = 〈fp,η

α | (η, α) ∈ tr 〉.

Lemma 4.20. Let p ∈ Q(w) with ρp a successor ordinal, let ρ∗ < ρp and let r be
the ρ∗-weakening of p. Then

(1) r ∈ Q(w),
(2) p ≤ r,
(3) and for every η ∈ ar and every lower part y which is harmonious with

Ar past η, if fp,η
α (ζ) = fp,η

β (ζ) �= fp,η
α (ζ ′) = fp,η

β (ζ ′), then y�(w,Br) �
“ ζĖαζ

′ ⇐⇒ ζĖβζ
′ ”.

Proof. It is easy to see that r ∈ Q∗(w) and that p refines r in Q∗(w). Since
fp,η
α = fr,η

α when (η, α) ∈ tr, clause ((3)) in the conclusion implies that r satisfies
clause (5) in Definition 4.5 (and hence that r is in Q(w)). It will therefore suffice
to verify clause ((3)).

Suppose for a contradiction that y�(w,Br) does not force the desired equiva-
lence; then there is an extension y′�(w,B) forcing that the equivalence is false.
Shrinking B if necessary we may assume that B ⊆ Bp.

We will break up y′ as y0
�y1

�y2, where y0 ∈ Ry, y1 consists of pairs (u,C)
such that u is drawn from

⋃
{Ap

ρ | ρ∗ ≤ ρ < ρp}, and y2 consists of pairs (u,C) such
that u is drawn from Bp. This is possible because, by the definition of extension in
Rw, all pairs (u,C) in y′ with κu > κy have u ∈ Br.

We claim that y0
�y1 is harmonious with Ap above η. An appeal to Lemma 3.30

shows that y0 is harmonious with Ar above η, which handles the pairs appearing in
y0. Let (u,C) be a pair appearing in y1, and observe that η ∈ ar = {κp

ρ | ρ < ρ∗ },
while u ∈ {Ap

ρ | ρ∗ ≤ ρ < ρp}, so that η < κρ∗ ≤ κu. By the definition of the
ordering of Rw we have C ⊆ Br, and since κu = κρ for some ρ < ρp in fact
C ⊆

⋃
{Ap

ρ | ρ∗ ≤ ρ < ρp}. In particular as η < κρ∗ we have that C ∩ Vη+1 = ∅.
We claim that by shrinking measure one sets appearing in y2 (if necessary) we

may assume that

y′�(w,B) = y0
�y1

�y2
�(w,B) ≤ y0

�y1
�(w,Bp).

For pairs (u,C) appearing in y2 we have that u ∈ Bp and C ⊆ Br = Bp ∪⋃
{Ap

ρ | ρ∗ ≤ ρ < ρp}. Since ρp is a successor ordinal we have that κv ≤ κρp−1 < κu

for all v ∈
⋃
{Ap

ρ | ρ∗ ≤ ρ < ρp}, so that we may shrink C to obtain a pair (u,D)
with D ⊆ Bp.

Since y0
�y1 is harmonious with Ap above η and p is a condition, y0

�y1
�(w,Bp)

forces the equivalence ζĖαζ
′ ⇐⇒ ζĖβζ

′. This is a contradiction as y′�(w,B) is an
extension of y0

�y1
�(w,Bp) and forces that the same equivalence fails. �4.20

Corollary 4.21. Let p and q be conditions in Q(w) with p ≤ q and ρp a successor
ordinal. Let ρq ≤ ρ∗ < ρp and let r be the ρ∗-weakening of p. Then p ≤ r ≤ q.

Proof. By Lemma 4.20 we already know that p ≤ r so we need only to check that
r ≤ q. It is routine to check that Ar � ρq = Ap � ρq = Aq, tr ⊇ tq, fr,η

α = fp,η
α ⊇ fq,η

α

for all (η, α) ∈ tq, and finally Br ∪
⋃
{Ar

ρ | ρq ≤ ρ < ρr } = Bp ∪
⋃
{Ap

ρ | ρq ≤ ρ <
ρp} ⊆ Bq. �4.21
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5. Q(w) has the stationary κ+
w–chain condition

For the duration of this section we fix an ultrafilter sequence w with lh(w) > 1
and let κ = κw. As in the previous section, let T be a κ+-Kurepa tree, let 〈bα | α <

Υ〉 be an enumeration of a set of branches through T and let 〈Ėα | α < Υ〉 be a
list of canonical Rw-names for binary relations on κ+. Let Q = Q(w).

Notation 5.1. For each α < κ+ let Tα = {x ∈ T | lh(x) = α} and let eα : Tα −→
Tα be a bijection enumerating Tα.

As T is a κ+-Kurepa tree one has for α < κ+ that Tα ≤ κ.2

Notation 5.2. For α < β < Υ let Δ(α, β) be the least ζ such that bα � ζ �= bβ � ζ.

Notation 5.3. If p = (A,B′, t, f) ∈ Q and there are t ∈ [Υ]<κ and d ∈ [κ+]<κ

such that t = tη for all η ∈ a and d = dom(fη
α) for all η ∈ a and α ∈ t , let Zp

be the set of all tuples (η, y, x, ζ, ζ ′, δ, δ′) where η ∈ a ∩ sup(a), y is a lower part
harmonious with A past η, x ∈ T , ζ < ζ ′ < κ+, ζ, ζ ′ ∈ d and δ, δ′ < κ.

Lemma 5.4. Suppose p′ = (A,B′, t, f) ∈ Q and there are t ∈ [Υ]<κ and d ∈
[κ+]<κ such that t = tη for all η ∈ a and d = dom(fη

α) for all η ∈ a and α ∈ t .
Then there is some B ∈ F (w) with B ⊆ B′, so that p = (A,B, t, f) ≤ p′ and such
that whenever z = (η, y, x, ζ, ζ ′, δ, δ′) ∈ Zp and α ∈ t is such that x = bα � ζ ′,
fη
α(ζ) = (x � ζ, δ) and fη

α(ζ
′) = (x, δ′) there is an Ry-name σ̇z such that y�(w,B)

forces that σ̇z is the truth value of the assertion that ζĖαζ
′.

Proof. First of all notice that Zp = Zp′
. For each z ∈ Zp we may define an Rw-

name τ̇z such that for all α ∈ t with fη,i
α (ζ) = (x � ζ, δ) and fη,i

α (ζ ′) = (x, δ′),

y�(w, B̄i) forces that τ̇z is the truth value of the assertion that ζĖαζ
′. (Condition

(5) in the definition of being a condition shows τ̇z does not depend on α.)
By Lemma 3.19, for each z ∈ Zp there is a set Bz ⊆ B̄ such that y�(w,Bz)

reduces τ̇z to an Ry-name σ̇z. As Zp < κ any B ∈ F (w) such that B ⊆
⋂

z∈Zp Bz

suffices. �5.4

Proposition 5.5. Q has the stationary κ+-chain condition.

Proof. Let {p′i | i < κ+ } ∈ [Q]κ
+

. Let p′i = (Ai, B′i, t′i, f ′i) for each i < κ+, write

ai for ap
i

, ρi for ρp
i

, and for each ρ < ρi write κi
ρ for (κρ)

pi

.

We start by tidying up, for each i < κ+, the collection of domains of constituents
of the f ′i. We want to emphasize that this step in the argument is not strictly nec-
essary. At the cost of a more elaborate case analysis below, proofs of the stationary
chain condition can be given which do not rely on the forcing having the property
of having greatest lower bounds for descending sequences of length less than κ, a
property which we do use in carrying out this tidying up.

2We remark that we use Kurepa trees in the definition of the Q(w) rather than arbitrary κ+-
trees with Υ-many branches, because the fact that each Tα has size at most κ saves us a little
work in the proof of the κ+-stationary chain condition given in this section; see the definitions of
the gη,i and Xη,i and their roles in the definition of the function h below. In [3] an analogous
chain condition argument is given without this nicety.
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By applying Lemma 4.18 and then Lemma 5.4 we can find {pi | i < κ+ } ∈ [Q]κ
+

such that for each i < κ+ we have pi = (Ai, Bi, ti, f i) ≤ p′i and there is some
t i ∈ [Υ]<κ and some d i ∈ [κ+]<κ such that

• t i = tη,i for all η ∈ ai,
• d i = dom(fη,i

α ) for all η ∈ ai and α ∈ t i, and
• Bi has the property stated in the conclusion of Lemma 5.4.

Now we make a plethora of auxiliary definitions for each i, set out in the list
below.

Let {αγ | γ < γ∗ } be an enumeration of
⋃
{t i | i < κ+ } for some γ∗ ≤ κ+. Let

{αi
γ | γ < γi } be the increasing enumeration of t i, for some γi < κ, for each i < κ+.

Next, for each i < κ+ and η ∈ ai let

• θi0 = ssup({γ | αγ ∈ t i}), θi1 = ssup(d i),
• Γi = {Δ(α, α′) | α, α′ ∈ t i }, νi = ssup(Γi),
• T i = {γ < i | αγ ∈ t i }, Δi = Γi ∩ i, Di = d i ∩ i,
• Y η,i = {y | y is a lower part harmonious with Ai past η},
• gη,i(ζ, γ) = (eζ(π0(f

η,i
αγ

(ζ))), π1(f
η,i
αγ

(ζ))) for γ ∈ T i and ζ ∈ Di,

• Xη,i = {〈y, ε, ζ, ζ ′, F η
ε , σ̇ 〉 | y ∈ Y η,i & ε < γi & ζ, ζ ′ ∈ Di & ζ < ζ ′ &

on setting α = αi
ε one has F η

ε : Di −→ κ × κ is given by F η
ε (ζ

∗) =
(eζ∗(π0(f

η,i
α (ζ∗))), π1(f

η,i
α (ζ∗))) for ζ∗ ∈ Di & letting x = bα � ζ ′, fη,i

α (ζ)
= (x � ζ, δ) and fη,i

α (ζ ′) = (x, δ′), we have σ̇ = σ̇i
(y,x,η,ζ,ζ′,δ,δ′) }.

Recall that πl is a projection onto the lth co-ordinate, so in the definition of gη,i,
for example, π0(bαγ

� ζ, ν) = bαγ
� ζ and π1(bαγ

� ζ, ν) = ν, while, as per Notation
5.1, eζ is the function enumerating the ζth level of the κ+-Kurepa tree T , so that
eζ(bαγ

� ζ) ∈ κ. Thus gη,i : Di × T i −→ κ× κ and dom(gη,i(., γ)) = Di for γ ∈ T i.
Notice, also, that the various F η

ε , σ̇, x, δ and δ′ appearing in the definition of
Xη,i are uniquely determined by i, η and the 〈y, ε, ζ, ζ ′ 〉.

For the convenience of the reader we record the types of objects which we have
just defined: αγ ∈ Υ for γ < γ∗ ≤ κ+, αi

γ ∈ Υ for γ < γi < κ, θi0 < κ+,

Γi ∈ [κ+]<κ, νi < κ+, θi1 < κ+, T i ∈ [i]<κ, Δi ∈ [i]<κ, Di ∈ [i]<κ, Y η,i ∈ Vκ, and
gη,i is a partial function of size less than κ from i× i to κ× κ.

We next argue similarly to the proof of Claim 1.3 and define a regressive function

on a set which is club relative to Sκ+

κ . Recall from the section on notation that if
I and J are sets and κ is a cardinal, then Fn(I, J, κ) is the set of partial functions
from I to J of size less than κ.

Let h∗ be an injection from Vκ×([κ+]<κ×Fn(κ+×κ+, κ×κ, κ)×[κ+]<κ×[κ+]<κ×
κ× (Vκ × κ× κ+ × κ+ × Vκ ×Fn(κ+, κ× κ, κ))<κ)× κ into κ+. Let us write H for
the domain of h∗.

For κ ≤ i < κ+ let Hi be defined similarly to H with i in place of κ+: Hi =
Vκ × ([τ ]<κ × Fn(τ × τ, κ × κ, κ) × [τ ]<κ × [τ ]<κ × κ × (Vκ × κ × τ × τ × Vκ ×
Fn(τ, κ× κ, κ))<κ)× κ.

Define k : [κ, κ+) −→ κ+ by k(i) as the least i∗ < κ+ such that Hi ⊆ h∗−1“τ∗.

Let C̃ = {j < κ+ | ∀i < j (θi0, θ
i
1, ν

i, k(i) < j)}.
As the intersection of the sets of closure points of the four given functions, C̃ is

a club subset of κ+.
Let h(i) = h∗(Ai, 〈(T i, gη,i, Di,Δi, otp(t i), Xη,i) | η ∈ ai 〉, κi) for i ∈ C̃ ∩ Sκ+

κ

and h(i) = 0 otherwise.
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7430 J. CUMMINGS, M. DŽAMONJA, M. MAGIDOR, C. MORGAN, AND S. SHELAH

We have that h∗−1(h(i)) ∈ Hi for all i ∈ [κ, κ+). If i ∈ C̃ ∩ Sκ+

κ , since

h∗−1(h(i)) < κ, there is some i′ < i such that h∗−1(h(i)) ∈ Hi′ , and hence there is

some ĩ < i such that h(i) < k(̃i).
Hence, as i is (amongst other things) a closure point of k, we have h(i) < i for

all non-zero i < κ+.
Now suppose that i, j ∈ C̃ ∩ Sκ+

κ , i < j, and h(i) = h(j). In particular we have
that Ai = Aj (and hence ai = aj) and κi = κj , that θi0, θ

i
1, ν

i < j, and finally that
for all η ∈ ai,

〈T i, gη,i, Di,Δi, otp(t i), Xη,i 〉 = 〈T j , gη,j , Dj ,Δj , otp(t j), Xη,j 〉.
We prove a series of lemmas which together describe the common parts of pi and

pj . Let A be the common value of Ai and Aj and a that of ai and aj .

Lemma 5.6. (a) (t j \ t i) ∩ {αγ | i ≤ γ < j } = ∅, and (b) t i ∩ t j ⊆ {αγ | γ < i}.

Proof. Suppose αγ ∈ t j . If γ < j, then γ ∈ T j . But T j = T i, so γ ∈ T i. Hence
γ < i and αγ ∈ t i, proving (a). If αγ ∈ t i, then γ < θi0 < j (for the definition of θi0
immediately gives that γ < θi0, and since i, j ∈ C̃ and i < j one has that θi0 < j).
Thus if αγ ∈ t i ∩ t j we have γ < i by (a). So (b) holds. �5.6

Lemma 5.7. d i ∩ d j ⊆ i.

Proof. If ζ ∈ d i ∩ d j , then ζ < θi1 < j. So ζ ∈ d j ∩ j = Dj = Di = d i ∩ i. �5.7

Lemma 5.8. If η ∈ a and α ∈ t i ∩ t j, then fη,i
α � d i ∩ d j = fη,j

α � d i ∩ d j.

Proof. Let η ∈ a and α ∈ t i∩ t j . By Lemma 5.6, if α = αγ , then γ < i. By Lemma
5.7, d i ∩ d j ⊆ i, and hence d i ∩ d j ⊆ i ∩ d i = Di = Dj , the first equality being
the definition of Di and the second holding since h(i) = h(j).

As unpacked in the paragraph starting “Recall . . . ” immediately after the bullet-
pointed list of definitions above, Di = dom(gη,i( . , γ)) and Dj = dom(gη,j( . , γ)),
and hence dom(gη,i( . , γ)) = dom(gη,j( . , γ)).

As α ∈ t i ∩ t j , if ζ ∈ d i ∩ d j we have eζ(π0(f
η,i
α (ζ))) = eζ(π0(f

η,j
α (ζ))) and, as

eζ is a bijection, π0(f
η,i
α (ζ)) = π0(f

η,j
α (ζ)) = bα � ζ. Hence we have the claimed

agreement. �5.8

Recall that f i + f j is the unique function f such that dom(f) = dom(f i) ∪
dom(f j), f � dom(f i) = f i and f � dom(f j) = f j .

Let q = (A,Bi ∩Bj , ti ∪ tj , f i + f j).

Lemma 5.9. The quadruple q is a condition in Q∗.

Proof. Recall that we defined A = Ai = Aj . Lemma 5.8 shows that f i and f j are
compatible. �5.9

Lemma 5.10. Γi ∩ Γj ⊆ i.

Proof. If ζ ∈ Γi ∩ Γj , then ζ < νi < j (the latter since i, j ∈ C̃ and i < j). So
ζ ∈ Δj . But Δj = Δi, so ζ < i. �5.10

Notation 5.11. For α ∈ t i ∪ t j define dqα = d i ∪ d j if α ∈ t i ∩ t j , dqα = d i if
α ∈ t i \ t j , and dqα = d j if α ∈ t j \ t i.

Lemma 5.12. For α ∈ t i ∪ t j and η ∈ a we have dqα = dom(fη,q
α ).
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Proof. Immediate from the definition of q, specifically the definition of fq as f i+f j ,
the fact that dom(fη,i

α ) = d i for all η ∈ ai and α ∈ t i. See the third paragraph
of the proof of Proposition 5.5 and the definition by cases of the notation dqα just
given. �5.12

Lemma 5.13. Suppose α, β ∈ t i ∩ t j, ζ, ζ ′ ∈ dqα ∩ dqβ, ζ < ζ ′, η ∈ a and

fη,q
α (ζ) = fη,q

β (ζ) �= fη,q
α (ζ ′) = fη,q

β (ζ ′). Then ζ, ζ ′ ∈ d i ∩ d j.

Proof. Let α = αγ and β = αγ′ . Then γ, γ′ < i by Lemma 5.6 and Δ(α, β) ∈
Γi ∩ Γj ⊆ i by Lemma 5.10. As bα � ζ ′ = π0(f

η,q
α (ζ ′)) = π0(f

η,q
β (ζ ′)) = bβ � ζ ′ we

have ζ ′ < Δ(α, β) and hence ζ, ζ ′ < i. Thus ζ ′ ∈ d j ∩ i ⊆ Dj = Di ⊆ d i. Similarly
ζ ∈ d j . �5.13

Finally, we can now show that q satisfies (5) of the definition of Q.

Lemma 5.14. Suppose α, β ∈ t i∪t j, ζ, ζ ′ ∈ dqα∩d
q
β, η ∈ a and fη,q

α (ζ) = fη,q
β (ζ) �=

fη,q
α (ζ ′) = fη,q

β (ζ ′) and y is harmonious with Aq past η. Then y�(w,Bq) �Rw

“ ζĖαζ
′ ⇐⇒ ζĖβζ

′ ”.

Proof. If for some k ∈ {i, j } we have α, β ∈ tk, then, using Lemma 5.13, if α,

β ∈ t i∩t j , ζ, ζ ′ ∈ d k. As pk ∈ Q we have y�(w,Bk) � “ ζĖαζ
′ ⇐⇒ ζĖβζ

′ ”. But

Bq = Bi ∩ Bj ⊆ Bk, so y�(w,Bq) ≤ y�(w,Bk) and y�(w,Bq) � “ ζĖαζ
′ ⇐⇒

ζĖβζ
′ ”.

Otherwise, either we have α ∈ t i \ t j , β ∈ t j \ t i and ζ, ζ ′ ∈ d i ∩ d j or we have
the symmetric case with the roles of i and j exchanged. We treat the former; for
the symmetric case exchange i and j throughout.

Suppose β is the εth element of t j . As otp(ti) = otp(tj), we can define β′ to
be the εth element of ti. As Xη,i = Xη,j we have that the ‘F η

ε ’ for the tuple

that starts 〈y, ε, ζ, ζ ′, . . .〉 is the same for both i and j. Hence eζ′(π0(f
η,i
β′ (ζ ′))) =

eζ′(π0(f
η,j
β (ζ ′))). As eζ′ is a bijection and π0 is a projection onto the first coordinate,

this gives bβ � ζ ′ = bβ′ � ζ ′. Let x = bβ � ζ ′ = bβ′ � ζ ′, fη,i
β′ (ζ) = fη,j

β (ζ) = (x � ζ, δ),
fη,i
β′ (ζ ′) = fη,j

β (ζ ′) = (x, δ′), and, finally, z = (η, y, x, ζ, ζ ′, δ, δ′).

Then z ∈ Zpi ∩ Zpj

, and σ̇i
z = σ̇j

z = σ̇, say, where σ̇ is an Ry-name for a truth
value. Since Bq = Bi ∩ Bj , y�(w,Bq) simultaneously reduces the truth values

of the statements “ζ Ėβ ζ ′ ” and “ζ Ėβ′ ζ ′ ” to σ̇, so y�(w,Bq) � “ ζ Ėβ′ ζ ′ ⇐⇒
ζ Ėβ ζ ′ ”. If β′ = α we are done. Otherwise, as pi ∈ Q we also have that

y�(w,Bi) � “ ζ Ėα ζ ′ ⇐⇒ ζ Ėβ′ ζ ′ ”, and hence y�(w,Bq) � “ ζ Ėα ζ ′ ⇐⇒
ζ Ėβ ζ ′ ”, as required. �5.14

Lemma 5.9 showed q ∈ Q∗ and Lemma 5.14 shows that in fact q ∈ Q as well.
Since by construction q ≤ pi, pj , and both pi ≤ p′i and pj ≤ p′j , we have shown

that there is a suitable function h such that if i, j ∈ C̃∩Sκ+

κ , i < j and h(i) = h(j),
then p′i and p′j are compatible. Hence Q has the κ+-stationary chain condition.

6. The main iteration

Let V be a model in which κ is supercompact, λ is a regular cardinal less than κ,
and χ is a successor cardinal with predecessor χ− such that cf(χ−) ≥ κ++. Suppose
also that GCH holds in V and hence, by [25], ♦χ(S

χ
κ+) holds.
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Let L be the Laver iteration ([16]), as defined in V , making the supercompactness
of κ indestructible under <κ-directed closed forcing.

Let ė be a canonical L-name such that �L “ ė : κ −→ Vκ is a bijection ”.
Using Theorem 1.2, Lemma 1.5, Proposition 2.3, Lemma 4.16 and Proposition

5.5, we will define an L-name Ṗχ so that �L “ Ṗχ is an iteration of length χ consisting

of Q̇0, a name for the usual forcing to add a κ+-Kurepa tree with χ−-many branches
followed by a <κ-support iteration of <κ-directed closed, countably parallel-closed
κ+-stationary cc forcings each of size less than χ ”. Thus the iteration will add
χ-many subsets of κ, but at each intermediate stage 2κ = χ−. The constituents
of the iteration will depend on a fixed sequence 〈 ẋα | α < χ− 〉 of L ∗ Q̇0-names for
distinct branches through the κ+-Kurepa tree. As we define the iteration we also
build an enumeration of L ∗ Ṗχ as 〈pξ | ξ < χ〉. As χ is a regular cardinal and since
�L “ the iterands are of size less than χ ” there will be a club set relative to Sχ

≥κ

of ξ < χ such that L ∗ Ṗξ = {pε | ε < ξ}; formally, such that for all ε < ξ we have

supp(pε) ⊆ ξ and L ∗ Ṗξ = {pε � ξ | ε < ξ}. (See the proof of Proposition 2.3.) We

simultaneously inductively define L ∗ Ṗξ-names Ṡξ as in §2 and derive L ∗ Ṗξ-names
u̇ξ.

As each Ṡξ is a canonical name for a subset of ξ, when ξ = κλξ (ordinal multipli-
cation) we can easily convert it into a name for a set of order type λ of sequences of

ξ many subsets of κ. In order to do this, for each τ < λ, set u̇ξ
1+τ to be the name de-

rived from Ṡξ for { ė“{η < κ | κλε+κτ + η ∈ Ṡξ ∩ ̂[κλε+ κτ, κλε+ κ(τ + 1))} | ε <
ξ} and set u̇ξ = κ̂�〈 u̇ξ

1+τ | 1 + τ < λ〉.
We use the sequence u̇ξ to help define the next stage in the iteration. Let U̇ξ

be a L ∗ Ṗξ-name for the class of all ultrafilter sequences. (As for each ξ < χ

we have �L “ Ṗξ is < κ-directed closed ”, we will have for all ξ < ξ′ ≤ χ that

�L∗Pξ′ U̇ξ
κ = U̇ξ′

κ .)

If cf(ξ) = κ+, L ∗ Ṗξ = {pε | ε < ξ}, ξ = κλξ and �L∗Pξ
“u̇ξ ∈ U̇ξ and κ̇u̇ξ = κ”,

let 〈Ėξ
α | α < χ− 〉 enumerate the canonical L ∗ Ṗξ∗?Ru̇ξ -names for graphs on κ+

and let Q̇ξ = Q̇(u̇ξ), where Q̇(u̇ξ) is an L ∗ Ṗξ-name for the forcing defined from u̇ξ,

〈 ẋα | α < χ− 〉 and 〈Ėξ
α | α < χ− 〉 as in §4. Otherwise let Q̇ξ name trivial forcing.

Fix G which is L-generic over V and H which is ṖG
χ -generic over V [G]. For ξ < χ

let Hξ be the restriction of H to ṖG
ξ , let Qξ = Q̇G∗Hξ

ξ , and let uξ = (u̇ξ)G∗Hξ .

If V [G][Hξ] |= uξ ∈ U, κuξ = κ and lh(uξ) = λ, let

• Kξ be the Q(uξ)-generic over V [G][Hξ] induced by H,
• Aξ = 〈Aρ | ρ < κ & ∃p ∈ Kξ Aρ = (Aρ)

p 〉,
• and aξ =

⋃
{ap | p ∈ Kξ }.

Fix an enumeration 〈Ḋξ | ξ < χ〉 of the L ∗ Ṗχ-names for subsets of Vκ such that

each Ḋξ is an L ∗ Ṗξ-name.
Let j : V −→ M witness that κ is 2χ-supercompact, such that in the iteration

j(L) we force with Ṗχ at stage κ and then do trivial forcing at all stages between

κ and (2χ)+. Let j(L) = L ∗ Ṗχ ∗ L̇ , where L̇ is an L ∗ Ṗχ-name and note that by

the choice of j we have �L∗Ṗχ
“ L̇ is <(2χ)+-closed ”.

We now carry out, in V [G][H], an inductive construction of length χ in which we

build a chain of conditions (rξ, q̇ξ) ∈ L̇G∗H ∗j(Ṗχ) for ξ < χ. Note that forcing with

L̇G∗H over V [G][H] always adds a generic embedding j : V [G] −→ M [j(G)] (see
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[2, §9]) so that the name j(Ṗχ) is well defined. The construction includes arranging

for each ξ < χ that �L̇G∗H “ q̇ξ ∈ j(Ṗξ) ” and that for all p ∈ Hξ we have that
rξ �L̇G∗H “ q̇ξ ≤ j(p) ”.

Define U = ({v ∈ U | κv = κ& lh(v) ≤ λ})V [G][H]. As V [G][H] |= 2κ = χ, χ is

a successor cardinal and λ < κ, we have that V [G][H] |= U ≤ ((22
κ

)λ) = 2χ.

Inductive case: ξ = 0 or limit ξ. By the <χ-closure of L̇G∗H ∗ j(Ṗχ), just

choose some (rξ, q̇ξ) such that �L̇G∗H “ q̇ξ ∈ j(Ṗξ) ”, and for all ξ′ < ξ we have
(rξ, q̇ξ) ≤ (rξ′ , q̇ξ′). Then for each p ∈ Hξ we have rξ �L̇G∗H “ q̇ξ ≤ j(p) ”.

Inductive case: ξ + 1. If ξ = 0, then Q0 is the usual forcing to add a κ+-Kurepa
tree with χ−-many branches as computed in V [G], and we set r1 to be the trivial
condition and q̇1 to be a name for the greatest lower bound of the union of the
pointwise image of the Q0-generic filter. We now assume that ξ > 0.

If V [G][Hξ] |= uξ /∈ U or uξ ∈ U but κuξ �= κ or uξ ∈ U and κuξ = κ but

lh(uξ) �= λ, there is nothing to do and we can take (rξ+1, q̇ξ+1) = (rξ, q̇ξ
�1̇j(Qξ)).

So assume otherwise: V [G][Hξ] |= uξ ∈ U, κuξ = κ and lh(uξ) = λ.
By the construction so far (rξ, q̇ξ) �L̇G∗H∗j(Ṗξ)

“ there is a lifting j : V [G][Hξ] −→
M [j(G)][j(Hξ)] of j.”

As 2χ is less than the closure of L̇G∗H ∗ j(Ṗχ) we may, by shrinking if necessary,

assume that there is some (r′ξ, q̇
′
ξ) ≤ (rξ, q̇ξ) such that (r′ξ, q̇

′
ξ) ‖ “v ∈ j(Ḋξ)” for

every v ∈ U.

Definition 6.1. If v ∈ UV [G][H], lh(v) = λ and for all τ < λ we have vτ ∩
V [G][Hξ] = uξ

τ we say v fills out uξ.

Note that if v fills out uξ, then, a priori, v ∈ U.

Lemma 6.2. Suppose there is a lifting j : V [G][Hξ] −→ M [j(G)][j(Hξ)] of j. Set

B =
⋂
{j(Bq) | (Aq, Bq, tq, fq) ∈ Kξ }. Suppose there is some v ∈ UV [G][H] which

fills out uξ and for all τ < λ we have v � τ ∈ B.
Then there is a master condition for j(Qξ) such that on forcing below the master

condition there is a lifting of j to a map j : V [G][Hξ][Kξ] −→ M [j(G)][j(Hξ)][j(Kξ)]

such that for every v ∈ U∩B filling out uξ and every τ < λ we have v � τ ∈ j(Aξ)κ.

Proof. We construct a suitable master condition p∗ = (A∗, B∗, t∗, f∗).

• A∗ = Aξ�{v � τ | τ < λ & v ∈ B ∩ (Uκ+ \ Uκ) & v fills out uξ }.
• B∗ = B \ Uκ+ .
• t∗ = κ× j“χ−.
• For each η ∈ aξ and α < χ−, f∗,η

j(α) =
⋃
{j(fp,η

α ) | p ∈ Kξ }.
We note that since fp,η

α is a partial function of size less than κ and we have the
density lemmas, Lemma 4.8 and Corollary 4.13, it is easy to see that d∗,ηj(α) =

dom(f∗,η
j(α)) = j“κ+ and f∗,η

j(α)(j(ζ)) = j(fp,η
α (ζ)) for any p ∈ Kξ such that (η, α) ∈

tp. We also note that ap
∗
= aξ ∪ {κ}.

It is routine to verify that p∗ ∈ j(Q∗
ξ) and that p∗ ≤j(Q∗

ξ)
j(q) for q ∈ Kξ. We

must now show that p∗ satisfies (5) in the definition of j(Qξ).
Let η∈aξ, and suppose that f∗,η

j(α)(j(ζ))=f∗,η
j(β)(j(ζ)) �=f∗,η

j(α)(j(ζ
′))=f∗,η

j(β)(j(ζ
′))

for some α, β ∈ χ− and ζ, ζ ′ ∈ κ+. Let y be harmonious with A∗ past η. If κy < κ
let y′ = y. Otherwise let y′, τ < λ, v ∈ B∗ which fills out uξ, and B ∈ F (v � τ ) be
such that y = y′�(v � τ, B).
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Using Corollary 4.10 and the definition of p∗ we may find p ∈ Kξ with ρp a
successor ordinal such that

• η ∈ ap with η < max(ap),
• κy′ < max(ap),
• (η, α), (η, β) ∈ tp,
• ζ, ζ ′ ∈ dp,ηα ∩ dp,ηβ ,

• fp,η
α (ζ) = fp,η

β (ζ) �= fp,η
α (ζ ′) = fp,η

β (ζ ′),

• and y′ is harmonious with Ap past η.

If y = y′ we have that y is harmonious with Ap past η and

y�(j(uξ), B∗) ≤ y�(j(uξ), j(Bp)) = j(y�(uξ, Bp)).

As p is a condition in Qξ we have y�(uξ, Bp) � “ ζ
˙

Eξ
αζ ′ ←→ ζ

˙
Eξ

βζ
′ ”, and we are

done by elementarity.
So we may assume that we are in the other case, that is, y = y′�(v � τ, B)

for some v ∈ B which fills out uξ. We note that v � τ ∈ B, since each of the
sets Bq is closed under taking initial segments. Let ρ∗ < ρp be minimal such that
max({η, κy′ }) < κρ∗ .

Since y was chosen to be harmonious with A∗ past η, B∗ ∩ Vκ = ∅, and η <
κ = κv, we see that B ⊆

⋃
{Aξ

ρ | η < κρ, ρ < κ} and κw > η for all w ∈ B. Since
y′�(v � τ, B) is a condition, we also have that κw > κy′ for all w ∈ B. So by the
choice of ρ∗, B ⊆

⋃
{Aξ

ρ | ρ∗ ≤ ρ < κ}.
Since the condition p ∈ Kξ, Aσ = Ap

σ for ρ∗ ≤ σ < ρp and Aσ ⊆ Bp for
ρp ≤ σ < κ. It follows that B ⊆

⋃
{Ap

σ | ρ∗ ≤ σ < ρp} ∪Bp.
We now appeal to Lemma 4.20 to obtain the ρ∗-weakening of p, that is to say,

the condition q ∈ Qξ such that ρq = ρ∗, p ≤ q, Aq = Ap � ρ∗, Bq =
⋃
{Aσ | ρ∗ ≤

σ < ρp}∪Bp, tq = {(η′, α′) ∈ tp | η′ ∈ aq ∩ sup(aq)} and fq = 〈fp,η′

α′ | (η′, α′) ∈ tq 〉.
Since p ≤ q we have q ∈ Kξ, and so B∗ ⊆ j(Bq). By the choice of ρ∗, since

ρq = ρ∗, Aq = Ap � ρ∗, max({η, κy′ }) < κρ∗ and y′ is harmonious with Ap past η,
we have that y′ is harmonious with Aq past η.

By clause (3) of the conclusion of Lemma 4.20, the condition q enjoys a strength-
ened form of condition (5) in the definition of Q(w), which implies in this case that

y′�(uξ, Bq) � “ ζ
˙

Eξ
αζ ′ ←→ ζ

˙
Eξ

βζ
′ ”.

We claim that y�(j(uξ), B∗) ≤ y′�(j(uξ), j(Bq)) = j(y′�(uξ, Bq)).
The only non-trivial point is that the pair (v � τ, B) can be added to the condition

y′�(j(uξ), j(Bq)). This holds because v � τ ∈ B ⊆ j(Bq), and B ⊆
⋃
{Ap

σ | ρ∗ ≤
σ < ρp} ∪Bp = Bq = j(Bq)∩ Vκ. As in the case when y = y′, we are now done by
elementarity.

Now that we have shown that p∗ is a condition in j(Qξ) we have that p∗ ≤j(Qξ)

j(q) for q ∈ Kξ, and so p∗ is a master condition. The last thing to check in order
to complete the proof of the lemma is that p∗ is a master condition of the type
required. However, this is almost immediate from its definition.

For as j : V [G][Hξ][Kξ] −→ M [j(G)][j(Hξ)][j(Kξ)] is a lifting we have that
p∗ ∈ j(Kξ) (see [2, Proposition 9.1]). We also have, by definition, that Aξ =⋂

q∈Kξ [Aq, Bq], and so j(Aξ) = j(
⋂

q∈Kξ [Aq, Bq]) =
⋂

q∈j(Kξ)[A
q, Bq]. Hence if

q ∈ j(Kξ) and ρq ≥ κ+ 1, then, by the definition of compatibility under ≤Qξ
and

since Kξ is a filter, we must have Aq
κ = A∗

κ.
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Consequently, if v fills out uξ and v � τ ∈ B, then by the definition of p∗ we have
v � τ ∈ A∗

κ and hence, by the previous paragraph, v � τ ∈ j(Aξ). �6.2

Having established the preceding lemma, we can now complete the inductive
step.

Case (i). There is some (r, q̇) ≤ (r′ξ, q̇
′
ξ) with �L̇G∗H q̇ ∈ j(Ṗξ) such that

(r, q̇) �L̇G∗H∗j(Ṗξ)
“∃v ∈ U ( v fills out uξ & ∀τ < λ

v � τ ∈ B =
⋂
{j(Bq) | (Aq, Bq, tq, fq) ∈ Kξ } )”.

Let rξ+1 = r and use Lemma 6.2 to choose q̇ξ+1 such that q̇ξ+1 � ξ = q̇,
(rξ+1, q̇ξ+1 � ξ) � “q̇ξ+1(ξ) is a lower bound for j“Kξ” and (rξ+1, q̇ξ+1) � “ for

every v ∈ U ∩B which fills out uξ and every τ < λ we have v � τ ∈ j(Aξ)”.

Case (ii). Otherwise. Again, by the closure of L̇G∗H ∗ j(Ṗχ), let (rξ+1, q̇ξ+1) ≤
(r′ξ, q̇

′
ξ) be such that (rξ+1, q̇ξ+1 � ξ) � “q̇ξ+1(ξ) is a lower bound for j“Kξ” since

Qξ is trivial. �Inductive construction

When the construction is complete use the χ-closure of L̇G∗H ∗ j(Ṗχ) again and
take a lower bound (r∗, q̇∗) for 〈(rξ, q̇ξ) | ξ < χ〉 such that for all q ∈ H we have
r∗ � q̇∗ ≤ j(q). Thus (r∗, q̇∗) forces that j can be lifted to some j : V [G][H] −→
M [j(G)][j(H)] with j(G) = G ∗H ∗ j(G)/(G ∗H).

Claim 6.3. If we generate u = 〈uτ | τ < λ〉 from such a lifting of j to V [G][H] in
the usual inductive way, with u0 = κ and by setting uτ = {D ∈ V [G][H] |u � τ ∈
j(D)} for 0 < τ < λ, then in fact we have u ∈ V [G][H] (and not merely u ∈
V [G][H][j(G)/(G ∗H)][j(H)]) and u ∈ UV [G][H].

Proof. The argument is an inductive repetition of a typical one in the context of
Laver forcing.

By induction on τ < λ suppose that u � τ ∈ V [G][H]. A priori, uτ ∈
V [G][H][j(G)/(G ∗H)][j(H)]. However j(G)/(G ∗H) ∗ j(H) is generic for a highly
closed forcing – it is certainly (2κ)+-closed. So in fact uτ ∈ V [G][H]. As V [G][H]
is closed under sequences of length less than or equal to λ we also have u � τ + 1 ∈
V [G][H]. Similarly, we inductively obtain that u � τ ∈ V [G][H] for limit τ , and at
the end of the induction that u ∈ V [G][H].

We also need that normality and the two coherence conditions from Definition
3.1 hold for uτ .

Suppose f : Uκ −→ Vκ is a function in V [G][H]. Observe that

V V [G][H][j(G)/(G∗H)][j(H)]
κ = V V [G][H]

κ .

Then {w ∈ Uκ | f(w) ∈ Vκw
} ∈ uτ if and only if j(f)(u � τ ) ∈ V

V [G][H]
κ , if and only

if there is some x ∈ V
V [G][H]
κ such that j(f)(u � τ ) = x, if and only if there is some

x ∈ V
V [G][H]
κ such that {w ∈ Uκ | f(w) = x} ∈ uτ . Hence u satisfies normality in

V [G][H].
Similarly, suppose f : Uκ −→ κ. Then {w ∈ Uκ | f(w) < lh(w)} ∈ uτ if and

only if j(f)(u � τ ) < τ , if and only if there is some σ < τ such that j(f)(u � τ ) = σ.
For this σ we then have for X ⊆ Vκ that X ∈ uσ if and only if u � σ ∈ j(X) if and
only if j(X) ∩ Vκ ∈ uj(f)(u�τ) if and only if {w ∈ Uκ |X ∩ Vκw

∈ wf(w)} ∈ uτ .
Finally, if σ < τ and X ∈ uσ, then u � σ ∈ j(X) and so {w ∈ Uκ | ∃σ̄ <

lh(w)X∩Vκw
∈wσ }∈uτ . So u also satisfies the two coherence conditions. �6.3
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Claim 6.4. In V [G][H] there is a stationary set S ⊆ Sχ
κ+ such that:

• For every ξ ∈ S one has lh(uξ) = λ and for every τ < λ that uτ∩V [G][Hξ] =
uξ
τ .

• For every ξ in the closure of S, S ∩ ξ ∈ V [G][Hξ].

• For every ξ ∈ S, uξ ∈ UV [G][Hξ]

κ+ .

• For every ξ ∈ S, {v | ∃ρ < κ v ∈ Aξ
ρ} ∈ F (u).

Proof. We start by outlining the motivation for the first step in the proof. As
Sχ
κ+ is a stationary subset of Sχ

≥κ, Proposition 2.3 tells us that there is a ♦χ(S
χ
κ+)-

sequence in V [G][H] (with the properties given in Proposition 2.3(1) and (2)), which
predicts subsets of χ. The statement of the claim talks about predicting sequences
of measures. So in order to apply Proposition 2.3 we must ‘code’ such sequences of
measures by subsets of κ.

Working in V [G][H], define a set T ⊆ χ ‘coding’ u by enumerating each uτ in
order type χ as 〈yτξ | ξ < χ〉 and setting T ∩ [κτξ, κτ (ξ+1)) = {κτξ+η | η ∈ yτξ }.
Appealing to Proposition 2.3, we may find a stationary set S ⊆ Sχ

κ+ such that S
satisfies the first two clauses of the claim.

For ξ ∈ S and 0 < τ < λ, we have that uξ
τ is a measure on Vκ in V [G][Hξ]. Since

UV [G]
κ = UV [G][H]

κ it is clear that each uξ
τ concentrates on Uκ.

Normality. Suppose f : Uκ −→ V
V [G][Hξ]
κ and {w ∈ Uκ | f(w) ∈ Vκw

} ∈ uξ
τ .

As uξ
τ ⊆ uτ we can apply normality for u to get some x ∈ Vκ such that {w ∈

Uκ | f(w) = x} ∈ uτ . But x, f ∈ V [G][Hξ]; hence {w ∈ Uκ | f(w) = x} ∈
uτ ∩ V

V [G][Hξ]
κ = uξ

τ .
Coherence (i). Suppose f : Uκ −→ κ with f ∈ V [G][Hξ] and {w ∈ Uκ | f(w) <

lh(w)} ∈ uξ
τ . Again as uξ

τ ⊆ uτ we can apply the first coherence condition for u
to get some σ < τ with x ∈ uσ if and only if {w ∈ Uκ | x ∩ Vκw

∈ wf(w) } ∈ uτ .

If x ∈ V [G][Hξ], so that x ∈ uξ
σ, then, recalling that f ∈ V [G][Hξ], we have {w ∈

Uκ | x ∩ Vκw
∈ wf(w) } ∈ V [G][Hξ], and hence {w ∈ Uκ | x ∩ Vκw

∈ wf(w) } ∈ uξ
τ .

Conversely, if {w ∈ Uκ | x ∩ Vκw
∈ wf(w) } ∈ uξ

τ , then, as u
ξ
τ ⊆ uτ , we have x ∈ uσ.

Coherence (ii). If τ ′ < τ and x ∈ uξ
τ ′ , then {w ∈ Uκ | ∃σ < lh(w) x ∩ Vκw

∈
wσ } ∈ uτ and the set is clearly in V [G][Hξ] as x is and hence is an element of uξ

τ .
Finally, at each ξ ∈ S when we did the inductive construction of (rξ+1, q̇ξ+1) we

must have been in ‘Case (i)’ and used Lemma 6.2 because (r∗, q̇∗ � j(ξ)) would be
an appropriate witness. Consequently for all τ < λ we have that u � τ ∈ j(Aξ),
and hence Aξ ∈ F (u). �6.4

Proposition 6.5. Let S ∈ V [G][H] be as given by Claim 6.4. Let ξ be a limit of
elements of the set S of cofinality at least κ+. For each τ < λ let vτ =

⋃
{uε

τ | ε ∈
S ∩ ξ}. Then V [G][Hξ] |= v is an ultrafilter sequence and ∀ε ∈ S ∩ ξ Aε ∈ F (v) .

Proof. By Claim 6.4 we have that S ∩ ξ ∈ V [G][Hξ], thus v ∈ V [G][Hξ]. It is

clear that v is a sequence of measures concentrating on UV [G][Hξ]
κ . In order to see

that the normality and coherence conditions hold it is enough to observe that since
cf(ξ) ≥ κ+ we have that for each z ∈ P (κ) and f : Uκ −→ Vκ if z, f ∈ V [G][Hξ]
there is some ε ∈ S ∩ ξ such that z, f ∈ V [G][Hε]. Again by Claim 6.4 we have
that Aε ∈ F (v). �6.5
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7. Proof that we do get small universal families

Let S ∈ V [G][H] be as given by Claim 6.4. As in Proposition 6.5, we choose ξ

a limit point of S with cf(ξ) = κ++. Let G ∗ Hξ be the L ∗ Ṗξ-generic filter over
V induced by G ∗ H, and define an ultrafilter sequence v ∈ V [G ∗ Hξ] by setting
vτ =

⋃
{uε

τ | ε ∈ S ∩ ξ} for 0 < τ < λ. Let g∗ be Rv-generic over V [G ∗Hξ]. As we
discussed in §3, by forcing below a suitable condition we may arrange that

• the generic object induced by g∗ is a λ-sequence 〈ui | i < λ〉 of ultrafilter
sequences,

• defining κi = κui
for i < λ, the set C = {κi | i < λ} is a club subset of κ,

• min(C) > λ, and so cf(κ) = λ in V [G ∗Hξ ∗ g∗].

Notation 7.1. For ε ∈ S ∩ ξ set Hε to be the induced Pε-generic filter over V [G],

Qε = Q̇G∗Hε
ε , Kε to be the Qε generic filter over V [G][Hε] induced by G ∗ Hξ,

A∗ε = 〈Aρ | ρ < κ & ∃p ∈ Kε (ρ < ρ p & Aρ = Ap
ρ)〉, κε

ρ to be the common value of
κw for w ∈ A∗ε

ρ , and a∗ε = {κε
ρ | ρ < κ}.

As per Observation 3.24, the characterisation of genericity for Radin forcing
implies that for every ε ∈ S ∩ ξ, the sequence 〈ui | i < λ〉 is Ruε-generic over
V [G][Hε]. Let g

ε be the Ruε-generic filter over V [G][Hε] induced by this sequence,
so that easily gε = g∗ ∩ Ruε .

Note that, by the characterisation of Radin-genericity from Theorem 3.22, for
each ε ∈ S ∩ ξ, since Aε ∈ F (v) by Proposition 6.5, we have that uj ∈

⋃
{A∗ε

ρ | ρ <
κ} for all large j < λ. Let iε < λ be the least successor ordinal such that uj ∈⋃
{A∗ε

ρ | ρ < κ} for j ≥ iε, and let ηε = κuiε
. Since ηε is a successor point of the

generic club C, the sequence uiε = 〈ηε 〉.
We note that since uiε = 〈ηε 〉 ∈

⋃
{A∗ε

ρ | ρ < κ}, we may define σε as the unique
ρ such that 〈ηε 〉 ∈ A∗ε

ρ , and by definition we have κuiε
= ηε = κε

σε
. It follows that

for any q ∈ Kε with σε < ρq we have that 〈ηε 〉 ∈ Aq
σε

and ηε ∈ aq.

Definition 7.2. For ε ∈ S ∩ ξ let E ε
α = (Ėε

α)
G∗Hε∗gε

, and, for α < χ−, let
fεα =

⋃
{(fηε

α )q | q ∈ Kε & α ∈ tq,ηε }.

As we proved in Section 4 (see Corollary 4.13), fεα is a function with domain κ+

such that fεα(ζ) ∈ {bα � ζ } × κ for every ζ < κ+.

Definition 7.3. For each ε ∈ S ∩ ξ and α < χ− define E ε
α on rge(fεα) by z E ε

α z′

if and only if ht(π0(z)) E ε
α ht(π0(z

′)). That is, E ε
α = fεα“E

ε
α (for if ζ < κ+ and

fεα(ζ) = z, then ht(π0(z)) = ζ).

We now prove a short technical lemma which will allow us to give an equivalent
characterisation of E ε

α , which in turn facilitates the proof that E ε
α and E ε

β are
coherent for α �= β.

Lemma 7.4. Let ε ∈ S ∩ ξ. Suppose y�(uε, D) ∈ gε and q = (Aq, Bq, tq, fq) ∈ Kε

are such that

• ρq is a successor ordinal,
• ηε, κy ≤ sup(aq),
• Bq ⊆ D.
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Then there is a lower part y′ such that

• y′�(uε, Bq) ≤ y�(uε, D),
• y′�(uε, Bq) ∈ gε,
• y′ is harmonious with Aq past ηε.

Proof. Let j0 < λ be the largest ordinal such that κuj0
≤ max(aq). For all j with

j0 < j < λ we have that uj ∈
⋃

σ<κ A
∗ε
σ and κuj

> max(aq), so that uj ∈ Bq.
Appealing to the second part of Lemma 3.17 and to Lemma 3.26, we may now

extend y�(uε, D) to a condition y�(uε, Bq) ∈ gε by first adding in (as necessary)
the pair (〈ηε 〉, ∅) and a pair with first entry uj0 , then shrinking D to Bq. Note that
κy = max({ηε, κy, κuj0

}) ≤ max(aq).

Appealing to Lemma 3.29, there is y′ directly extending ȳ in Ry such that y′

conforms with gε, and y′ is harmonious with Aq past ηε. �7.4

Proposition 7.5. For each ε ∈ S ∩ ξ, α < χ− and z, z′ ∈ rge(fεα) we have z E ε
α z′

if and only if there exist a condition q ∈ Kε and a lower part y harmonious with Aq

past ηε such that q and y�(uε, Bq) witness that z E ε
α z′, i.e., letting ζ = ht(π0(z))

and ζ ′ = ht(π0(z
′)), such that

• α ∈ tq,ηε , ζ, ζ ′ ∈ dq,ηε
α , fq,ηε

α (ζ) = z and fq,ηε
α (ζ ′) = z′,

• y is harmonious with Aq past ηε,
• y�(uε, Bq) ∈ gε,

• y�(uε, Bq) �V [G][Hε]
Ruε

ζĖε
αζ

′.

Proof. If q and y are as in the equivalent, then y�(uε, Bq) ∈ gε and

y�(uε, Bq) �V [G][Hε]
Ruε

ζĖε
αζ

′,

so that ζ E ε
α ζ ′.

For the converse direction, suppose that ζ E ε
α ζ ′. Choose a condition y�(uε, D)∈

gε such that y�(uε, D) �V [G][Hε]
Ruε

ζĖε
αζ

′ and 〈ηε 〉 appears in y. By the choice of

ηε, the sequence 〈ηε 〉 and all subsequent sequences appearing in y are members of⋃
ρ<κ A

∗ε
ρ .

Choose a condition q ∈ Kε such that ηε, κy ∈ aq, ρq is a successor ordinal, and
Bq ⊆ D. Appealing to Lemma 7.4 we find a condition y′�(uε, Bq) which is exactly
of the kind needed to form a witness (together with q) that z E ε

α z′. �7.5

Next we show that E ε
α and E ε

β cohere for α �= β.

Lemma 7.6. Let ε ∈ S ∩ ξ, α �= β and z and z′ ∈ rge(fεα) ∩ rge(fεβ). Then z E ε
α z′

if and only if z E ε
β z′.

Proof. Choose r ∈ Kε and y a lower part witnessing the equivalent conditions listed
in Proposition 7.5 that z E ε

α z′. Choose p ≤ r such that p ∈ Kε, ρ
p is a successor

ordinal, and p contains enough information to verify that z, z′ ∈ rge(fεβ), that is to

say, that β ∈ tp,ηε , ζ, ζ ′ ∈ dp,ηε

β , fp,ηε

β (ζ) = z and fp,ηε

β (ζ ′) = z′.
We now recall the notion of ρ∗-weakening from Definition 4.19. Let q be the

ρr-weakening of p, and note that by definition Aq = Ap � ρr = Ar and aq = ar. It
follows from Lemma 4.20 and Corollary 4.21 that p ≤ q ≤ r, in particular q ∈ Kε

and Bq ⊆ Br.
We claim that y and Bq will serve as witnesses that z E ε

β z′, that is, that

y�(uε, Bq) ∈ gε and that y�(uε, Bq) � ζĖε
βζ

′.
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By Lemma 3.26, to check that y�(uε, Bq) ∈ gε we must show that y conforms
with gε and u ∈ Bq for all u appearing on the generic sequence with κy < κu. Since
y�(uε, Br) ∈ gε, we see that the lower part y conforms with gε and also that u ∈ Br

for all u appearing on the generic sequence with κy < κu. Fix such a sequence u.
Since r is a condition and u ∈ Br it follows that ssup(aq) = ssup(ar) ≤ κu. By the
choice of ηε and y, we have u ∈

⋃
{A∗ε

ρ | ρ < κ}, and since q ∈ Kε we have that
u ∈ Bq.

Since Bq ⊆ Br, we see that y�(uε, Bq) is a refinement of y�(uε, Br), and in

particular y�(uε, Bq) � ζĖε
αζ

′. Since Aq = Ar and q is a condition, it follows from

clause (5) in Definition 4.5 that y�(uε, Bq) � ζĖε
βζ

′. �7.6

Definition 7.7. Working in the model V [G][Hξ][g
∗], we define for each ε ∈ S ∩ ξ

a relation Eε on the set
⋃
{{bα � ζ | ζ < κ+} × κ | α < χ−} by

z Eε z′ ←→ ∃α < χ− z E ε
α z′.

Proposition 7.8. V [G][Hξ][g
∗] |=Eε is of size κ+ and is universal for {Eε

α |α<χ−}.

Proof. Eε has size κ+ by the choice of {bα | α < χ− }, as for α < χ− and ζ < κ+

we have that bα � ζ ∈ T , where T is the κ+-Kurepa tree added by Q0.
The universality follows from the definitions of Eε

α, Eε
α and Eε, and Lemma

7.6, which ensures that each fεα is an embedding of Eε
α into Eε: for Definition 7.3

ensures that each fεα is an embedding of Eε
α into Eε

α ⊆ Eε, and Lemma 7.6 ensures
the compatibility of these embeddings. �7.8

Proposition 7.9. In V [G][Hξ][g
∗] suppose Ξ (∈ V [G][Hξ][g

∗]) is cofinal in S ∩ ξ

and for all ε ∈ Ξ we have that {Ėε
α | α < χ−} is a list of canonical names for all

graphs on κ+. Then {Eε | ε ∈ Ξ} is a universal family in the collection of graphs
on κ+.

Proof. Let E be a graph on κ+ in V [G][Hξ][g
∗] and let Ė be a canonical L∗ Ṗξ ∗ Ṙv-

name such that E = ĖG∗Hξ∗g∗
. Since Ė is a canonical name it has size at most κ+,

and hence, since cf(ξ) > κ+, there is some ε ∈ Ξ such that Ė is an L ∗ Ṗε ∗ Ṙuε-

name and hence E = ĖG∗Hε∗gε

. By Proposition 7.8 we thus have that E embeds
into Eε. �7.9

Theorem 7.10. Suppose κ is a supercompact cardinal, λ < κ is a regular cardinal
and Θ is a cardinal with cf(Θ) ≥ κ++ and κ+3 ≤ Θ. There is a forcing extension
in which cofinally many cardinals below κ, κ itself and all cardinals greater than κ

are preserved, cf(κ) = λ, 2κ = 2κ
+

= Θ and there is a universal family of graphs
on κ+ of size κ++.

Proof. Let χ = Θ+. As mentioned in the first paragraph of §6, it is standard that
if κ is supercompact there is a forcing extension in which κ remains supercompact
and GCH and ♦χ(S

χ
κ+) hold. Now force with L ∗Pξ ∗Rv and work in V [G][Hξ][g

∗].
Cofinally many cardinals below κ, κ itself and all cardinals above κ are preserved
from V to V [G] and the remaining factors preserve all cardinals. The final factor
Radin forcing makes λ the cofinality of the previously regular (indeed supercom-

pact) cardinal κ. The second factor of the forcing makes 2κ = 2κ
+

= Θ and the
final Radin factor does not increase these values as it has size 2κ. By Proposition
7.9 {Eε | ε ∈ Ξ} is a universal family in the collection of graphs on κ+ and has size

Ξ = κ++. �7.10
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