# PRESERVING OLD $\left([\omega]^{\aleph_{0}}, \supseteq^{*}\right)$ IS PROPER 

## SAHARON SHELAH


#### Abstract

We give some sufficient and necessary conditions on a forcing notion $\mathbb{Q}$ for preserving the forcing notion $\left([\omega]^{\aleph_{0}}, \supseteq^{*}\right)$ being proper. They cover many reasonable forcing notions.


## 1. Introduction

We investigate the question " $\operatorname{Pr}_{1}^{+}(\mathbb{Q}, \mathbb{R})$ ", which means that the proper forcing $\mathbb{Q}$ preserves that the (old) $\mathbb{R}$ is proper for various $\mathbb{R}$ 's. In what follows, $B \subseteq^{*} A$ means $|B \backslash A|<\aleph_{0}$, and $A \supseteq^{*} B$ means the same.

Recall:

## Definition 1.1. properness:

(a) Assume that $N \prec(\mathscr{H}(\chi), \in), \mathbb{P} \in N$ is a forcing notion and $q \in \mathbb{P}$. We say that $q$ is $(N, \mathbb{P})$-generic iff, for every dense $D \subseteq \mathbb{P}$, if $D \in N$ then $D \cap N$ is pre-dense above $q$.
(b) A forcing notion $\mathbb{P}$ is proper iff, for every sufficiently large regular $\chi$ and every countable $N \prec(\mathscr{H}(\chi), \in)$, if $p, \mathbb{P} \in N$ then there is a condition $q \in \mathbb{P}, q \geq p$ such that $q$ is $(N, \mathbb{P})$-generic.

Gitman proved that $\operatorname{Pr}_{1}^{+}\left(\mathbb{Q}, \mathbb{P}_{\mathscr{P}(\omega)[\mathbf{V}]}\right)$ (see definition below, where, $\mathbb{P}_{\mathscr{P}(\omega)}{ }^{[\mathbf{V}]}$ is the forcing notion $\left(\left\{A \in \mathbf{V}: A \subseteq \omega,|A|=\aleph_{0}\right\}, \supseteq^{*}\right)$, when, $\mathbb{Q}$ is adding Cohen reals (or just Cohen subsets even $>2^{\aleph_{0}}$ many). But no other examples were known even Sacks forcing. Also for e.g. $\mathbf{V} \models " V=L "$, we did not know a forcing making it not proper.

[^0]We thank Victoria Gitman for asking us the question and Otmar Spinas and Haim Horowitz for comments and Shimoni Garti for many more.

Let us state the problem and relatives. We are interested mainly in the case $\mathbb{Q}$ is proper.

Definition 1.2. 1) Let $\operatorname{Pr}_{1}(\mathbb{Q}, \mathbb{P})$ means: $\mathbb{Q}, \mathbb{P}$ are forcing notions and $\vdash_{\mathbb{Q}}$ " $\mathbb{P}$, i.e. $\mathbb{P}^{\mathbf{V}}$ is a proper forcing".
$1 \mathrm{~A})$ Let $\operatorname{Pr}_{1}^{+}(\mathbb{Q}, \mathbb{P})$ be defined similarly but adding " $\mathbb{Q}$ is proper".
2) For $\mathscr{A} \subseteq \mathscr{P}(\omega)$ let $\mathbb{P}_{\mathscr{A}}$ be $\mathscr{A} \backslash[\omega]^{<\aleph_{0}}$ ordered by $\supseteq^{*}$, inverse almost inclusion.
3) Let $\mathscr{A}_{*}=\mathscr{A}_{*}[\mathbf{V}]=\left([\omega]^{\aleph_{0}}\right)^{\mathbf{V}}$.

Observation 1.3. A necessary condition for $\operatorname{Pr}_{1}(\mathbb{Q}, \mathbb{P})$ is:
$(*)_{1}$ if $\chi$ is regular and large enough, $N \prec(\mathscr{H}(\chi), \in)$ is countable, $\mathbb{Q}, \mathbb{P} \in$ $N, q_{1} \in \mathbb{Q}$ is $(N, \mathbb{Q})$-generic and $r_{1} \in N \cap \mathbb{P}$ then, we can find $\left(q_{2}, r_{2}\right)$ such that:
$\odot \quad(\mathrm{a}) q_{1} \leq_{\mathbb{Q}} q_{2}$
(b) $r_{1} \leq_{\mathbb{P}} r_{2}$
(c) $q_{2} \Vdash$ " $r_{2}$ is $\left(N\left[G_{\mathbb{Q}}\right], \mathbb{P}\right)$-generic".

Definition 1.4. 1) We define $\operatorname{Pr}^{-}(\mathbb{Q}, \mathbb{P})=\operatorname{Pr}_{2}(\mathbb{Q}, \mathbb{P})$ as the necessary condition from 1.3.
2) Let $\operatorname{Pr}_{3}(\mathbb{Q}, \mathbb{P})$ mean that $\mathbb{Q}, \mathbb{P}$ are forcing notions and for some $\lambda$ and stationary $S \subseteq[\lambda]^{\aleph_{0}}$ from $\mathbf{V}$ we have $\Vdash_{\mathbb{Q}}$ " $\mathbb{P}$ is $S$-proper", and note that $S$ remains stationary of course.
3) $\operatorname{Pr}_{4}(\mathbb{Q}, \mathbb{P})$ is defined similarly but $S \in \mathbf{V}^{\mathbb{Q}}$, still $S \subseteq\left([\lambda]^{\aleph_{0}}\right)^{\mathbf{V}}$, so $S$ is actually $S$, a $\mathbb{Q}$-name.
4) $\operatorname{Pr}_{5}(\mathbb{Q}, \mathbb{P})$ is the statement $(\mathrm{A})$ of $1.5(4)$ below.
5) Let $\operatorname{Pr}_{\ell}^{+}(\mathbb{Q}, \mathbb{P})$ means $\operatorname{Pr}_{\ell}(\mathbb{Q}, \mathbb{P})$ and $\mathbb{Q}$ is a proper forcing, for $\ell=2,3,4,5$.

Claim 1.5. 1) $\operatorname{Pr}_{2}(\mathbb{Q}, \mathbb{P})$ means that for $\lambda$ large enough, letting $S=\left([\lambda]^{\kappa_{0}}\right)^{\mathbf{V}}$, we have $\vdash_{\mathbb{Q}}$ " $\mathbb{P}$ is $S$-proper".
2) $\operatorname{Pr}_{1}(\mathbb{Q}, \mathbb{P}) \Rightarrow \operatorname{Pr}_{2}(\mathbb{Q}, \mathbb{P}) \Rightarrow \operatorname{Pr}_{3}(\mathbb{Q}, \mathbb{P})$; similarly for $\operatorname{Pr}^{+}$.
3) Also $\operatorname{Pr}_{3}(\mathbb{Q}, \mathbb{P}) \Rightarrow \operatorname{Pr}_{4}(\mathbb{Q}, \mathbb{P}) \Rightarrow \operatorname{Pr}_{5}(\mathbb{Q}, \mathbb{P})$; similarly for $\operatorname{Pr}^{+}$.
4) If $\mathbb{Q}, \mathbb{P}$ are forcing notions, $\chi$ large enough and regular, then, $(A) \Leftrightarrow(B)$ where
(A) for some countable $N \prec(\mathscr{H}(\chi), \in)$ and for some $q \in \mathbb{Q}, p \in \mathbb{P}$ we have
(a) q is $(N, \mathbb{Q})$-generic
(b) $q \Vdash_{\mathbb{Q}}$ " $p$ is $\left(N\left[G_{\mathbb{Q}}\right], \mathbb{P}\right)$-generic"
(B) for some $q_{*} \in \mathbb{Q}, p_{*} \in \mathbb{P}$ we have $\operatorname{Pr}_{4}\left(\mathbb{Q}_{\geq q_{*}}, \mathbb{P}_{\geq p_{*}}\right)$.

Proof. Easy.
Notation 1.6. $<_{\chi}^{*}$ denotes a well ordering of $\mathscr{H}(\chi)$.
Recall (Balcar-Pelant-Simon [2], or see, e.g. Blass [1])
Definition 1.7. $\mathfrak{h}$ is the following cardinal invariant, it is the minimal cardinality $\chi$ (necessarily regular) such that forcing with $\mathbb{P}_{\mathscr{A}_{*}}$ adds a new sequence of ordinals of length $\chi$.

Notation 1.8. If $\mathscr{T}$ is a tree, then $\operatorname{suc}_{\mathscr{T}}(p)$ is the set of immediate successors of $p \in \mathscr{T}$ in the tree order.

## 2. Properness of $\mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ and CH

Claim 2.1. Assume $\mathbf{V}_{0}=\mathrm{CH}, \mathbf{V}_{1} \supseteq \mathbf{V}_{0}$, e.g. $\mathbf{V}_{1}=\mathbf{V}_{0}^{\mathbb{Q}}$ and let $\mathscr{A}=\mathscr{A}_{*}\left[\mathbf{V}_{0}\right]$.
(a) If $\aleph_{1}^{\mathbf{V}_{0}}$ is a countable ordinal in $\mathbf{V}_{1}$, then $\mathbf{V}_{1} \models$ " $\mathbb{P}_{\mathscr{A}}$ is proper".
(b) If $\aleph_{1}^{\mathbf{V}_{0}}=\aleph_{1}^{\mathbf{V}_{1}}$ and $\mathbf{V}_{1} \models "\left({ }^{\omega} 2\right)^{\mathbf{V}_{0}}$ is non-meagre", then $\mathbf{V}_{1} \models$ " $\mathbb{P}_{\mathscr{A}}$ is proper".

In both cases, if $\mathbf{V}_{1}$ is a generic extension of $\mathbf{V}_{0}$ by the forcing notion $\mathbb{Q}$ then it means that $\operatorname{Pr}_{1}\left(\mathbb{Q}, \mathbb{P}_{\mathscr{A}}\right)$ holds.

Proof. Assume that $\mathbf{V}_{1} \supseteq \mathbf{V}_{0}$.
If $\mathbf{V}_{1} \models "{ }_{1}^{\mathbf{V}_{0}}$ is countable" then recalling $\mathbf{V}_{0} \models \mathrm{CH}$ clearly $\mathbf{V}_{1} \models$ " $\mathscr{A}$ is countable" so we know that $\mathbb{P}_{\mathscr{A}}$ is proper in $\mathbf{V}_{1}$, thus proving clause (a). So from now on we assume $\aleph_{1}^{V_{0}}$ is not collapsed.

In $\mathbf{V}_{0}$ let $\mathscr{T}={ }^{\omega_{1}>}\left(\omega_{1}\right)$ and choose a subset $\mathscr{A}^{\prime} \subseteq \mathscr{A}$ such that $\mathscr{A}^{\prime}$ is $\subseteq^{*}$-dense in $\mathscr{A}$ and $\left(\mathscr{A}^{\prime}, \supseteq^{*}\right)$ is tree-isomorphic to $\mathscr{T}$. Let $\pi$ be the isomorphism between these trees ${ }^{1}$. Notice that all this is done in $\mathbf{V}_{0}$ (recalling that $\mathbf{V}_{0} \models \mathrm{CH}$ ). In $\mathbf{V}_{0}$ there is a sequence $\overline{\mathscr{T}}=\left\langle\mathscr{T}_{\alpha}: \alpha<\omega_{1}\right\rangle$ which is $\subseteq$-increasing continuous with union $\mathscr{T}$ and each $\mathscr{T}_{\alpha}$ countable. Also there is $\bar{C}=\left\langle C_{\delta}: \delta<\omega_{1}, \delta\right.$ is a limit ordinal $\rangle \in \mathbf{V}_{0}$ such that $C_{\delta} \subseteq \delta=\sup \left(C_{\delta}\right), \operatorname{otp}\left(C_{\delta}\right)=\omega$. Let $\mathscr{T}_{\delta}^{\prime}=\mathscr{T}_{\delta} \mid\left\{\eta \in \mathscr{T}_{\delta}: \ell g(\eta) \in C_{\delta}\right\}$.

[^1]In $\mathbf{V}_{1}$ choose a sufficiently large regular cardinal $\chi$, and let $N \prec(\mathscr{H}(\chi), \in)$ be countable such that $\mathscr{A}, \pi, \overline{\mathscr{T}} \in N$ and let $\delta=\omega_{1} \cap N$, clearly $\mathscr{T} \cap N=\mathscr{T} \delta$. We have to prove the statement:
$(*)_{0}$ "for every $p \in \mathbb{P}_{\mathscr{A}} \cap N$ there is $q \in \mathbb{P}_{\mathscr{A}}$ above $p$ which is $\left(N, \mathbb{P}_{\mathscr{A}}\right)$-generic".
As $\mathbf{V}_{0}=\mathrm{CH}$ and the density of $\mathscr{A}^{\prime}$ in $\mathscr{A}$ and $\left(\mathscr{A}^{\prime}, \supseteq^{*}\right)$ being isomorphic in $\mathbf{V}_{0}$ by $\pi$ to $\mathscr{T}$ this is equivalent (in $\mathbf{V}_{1}$, of course) to:
$(*)_{1}$ for every $\nu \in \mathscr{T} \cap N=\mathscr{T}_{\delta}$ there is $\eta \in \mathscr{T}$ which is $(N, \mathscr{T})$-generic and $\nu \leq \mathscr{T} \eta$.

In $\mathbf{V}_{0}$ we let $\bar{S}=\left\langle S_{\delta}: \delta<\omega_{1}\right.$ a limit ordinal $\rangle$ where $S_{\delta}=\left\{\bar{\nu}: \bar{\nu}=\left\langle\nu_{n}: n<\omega\right\rangle\right.$ is $<\mathscr{T}^{-i n c r e a s i n g, ~} \nu_{n} \in \mathscr{T}_{\delta}^{\prime}$, moreover $\ell g\left(\nu_{n}\right)$ is the $n$-th member of $\left.C_{\delta}\right\}$.

As $\left(\forall \nu \in \mathscr{T}_{\delta}\right)(\exists \rho)\left(\nu<_{\mathscr{T}} \rho \in \mathscr{T}_{\delta}^{\prime}\right)$, and $\left[\bar{\nu} \in S_{\delta} \Rightarrow\right.$ there is a $<\mathscr{T}$-upper bound $\rho \in \mathscr{T}$ of $\bar{\nu}$, in $\mathbf{V}_{0}$, of course] recalling $\mathscr{T}_{\delta}, S_{\delta} \in \mathbf{V}_{0}$ clearly $(*)_{1}$ is equivalent (in $\mathbf{V}_{1}$, of course) to
$(*)_{2}$ for every $\nu \in \mathscr{T}_{\delta}^{\prime}$ there is $\bar{\nu} \in S_{\delta}$ such that $\nu \in \operatorname{Rang}(\bar{\nu})$ and $\bar{\nu}$ induce a subset of $\mathscr{T}_{\delta}$ generic over $N$ (i.e. $(\forall A)[A \in N$ is a dense open subset of $\mathscr{T} \Rightarrow$ $\left.A \cap\left\{\nu_{n}: n<\omega\right\} \neq \emptyset\right]$.

Now a sufficient condition for $(*)_{2}$ is
$(*)_{3} S_{\delta}$, as a set of $\omega$-branches of the tree $\mathscr{T}_{\delta}^{\prime}$, is non-meagre.
But in $\mathbf{V}_{0}, \mathscr{T}_{\delta}^{\prime}$ and ${ }^{\omega>} \omega$ are isomorphic and $S_{\delta}$ is the set of all $\omega$-branches of $\mathscr{T}_{\delta}^{\prime}$, so by an assumption from part (b), $(*)_{3}$ holds so we are done.

Discussion 2.2. However, there can be $\mathscr{A} \subseteq \mathscr{P}(\omega)$ such that $\left(\mathscr{A}, \subseteq^{*}\right)$ is a variation of Souslin tree.

Claim 2.3. 1) We have $\operatorname{Pr}_{1}\left(\mathbb{Q}, \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}\right)$ when,:
(a) $\aleph_{1}^{\mathrm{V}[\mathbb{Q}]}=\aleph_{1}$
(b) $\vdash_{\mathbb{Q}} "|\lambda|=\aleph_{1}$ where $\lambda=\left(2^{\aleph_{0}}\right) \mathbf{V}$ "
(c) moreover letting $\left\langle{\underset{\sim}{u}}_{i}: i<\aleph_{1}\right\rangle$ be a $\mathbb{Q}$-name of $a \subseteq$-increasing continuous sequence of countable subsets of $\lambda$ with union $\lambda$, the $\mathbb{Q}$-name $\underset{\sim}{S}=\left\{i: u_{i} \in\right.$ $\mathbf{V}\}$ is forced to contain a club (of $\aleph_{1}$ )
(d) forcing with $\mathbb{Q}$ preserves " $\left(\omega_{2}\right)^{\mathbf{V}}$ is non-meagre".
2) Assume the forcing notion $\mathbb{Q}$ satisfies $(a)+(d), \operatorname{Pr}_{4}\left(\mathbb{Q}, \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}\right)$ as witnessed by $S$ and $\mathbb{Q}$ is proper and $\underset{\sim}{S}$ is forced to be stationary.

Then, the forcing notion $\mathbb{Q} * \operatorname{Levy}\left(\aleph_{1},\left(|\mathbb{Q}|^{\aleph_{0}}\right)^{\mathbf{V}}\right) * \mathbb{Q}_{S}$ preserves " $\mathbb{P}_{\mathscr{A}_{*}}[\mathbf{V}]$ is proper" where $\mathbb{Q}_{S}$ is the (well known) shooting of a club through the stationary subsets of $\omega_{1}$ (to make clause (c) hold).

Proof. Like 2.1.
In what follows we prove that many forcing notions destroy properness. We need a preliminary concept.

Definition 2.4. For $\lambda>\kappa$ we say that a forcing notion $\mathbb{Q}$ is $(\lambda, \kappa)$-newly proper (omitting $\kappa$ means $\kappa=\aleph_{0}$ and we define $(\lambda,<\chi)$-newly proper similarly) when: if $\bar{N}=\left\langle\left(N_{\eta}, \nu_{\eta}\right): \eta \in^{\omega>} \lambda\right\rangle$ satisfies $\circledast$ below and $\mathbb{Q} \in N_{<>}$and $p \in \mathbb{Q} \cap N_{<>}$then, we can find $q, \eta$ such that $\boxtimes$ below holds where:
$\circledast$ for some cardinal $\chi>\lambda$
(a) $N_{\eta} \prec\left(\mathscr{H}(\chi), \in,<_{\chi}^{*}\right)$ is countable
(b) if $\nu \triangleleft \eta$ then $N_{\nu} \prec N_{\eta}$
(c) $N_{\eta_{1}} \cap N_{\eta_{2}}=N_{\eta_{1} \cap \eta_{2}}$ if $\kappa=\aleph_{0}$ and $N_{\eta_{1}}^{\kappa} \cap N_{\eta_{2}}^{\kappa}=N_{\eta_{1} \cap \eta_{2}}^{\kappa}$ generally where $N_{\eta}^{\kappa}:=\cup\left\{v \in N_{\eta}:|v| \leq \kappa\right\}$
(d) $\nu_{\eta} \in N_{\eta} \backslash \cup\left\{N_{\eta \upharpoonright m}^{\kappa}: m<\ell g(\eta)\right\}$ hence $\nu_{\eta} \notin \cup\left\{N_{\nu}: \neg(\eta \unlhd \nu)\right.$ and $\left.\nu \in{ }^{\omega>} \lambda\right\}$
(e) $\nu_{\eta} \in^{\ell g(\eta)} \lambda$ and $\ell<\ell g(\eta) \Rightarrow \nu_{\eta} \upharpoonright \ell \unlhd \nu_{\eta}$
$\boxtimes$ (a) $p \leq_{\mathbb{Q}} q$

(c) $q \Vdash_{\mathbb{Q}} " \underset{\sim}{\eta} \in{ }^{\omega} \lambda$ is new, i.e. $\underset{\sim}{\eta} \notin\left({ }^{\omega} \lambda\right)^{\mathbf{V}}$ "
(c) ${ }^{+}$moreover if $\kappa>\aleph_{0}$ and $\mathscr{T} \in \mathbf{V}$ is a sub-tree of ${ }^{\omega>} \lambda$ of cardinality $\leq \kappa$ then $\underset{\sim}{\eta} \notin \lim (\mathscr{T})$, i.e. $\{\underset{\sim}{\eta} \upharpoonright n: n<\omega\} \notin \mathscr{T}$.

Observation 2.5. If $\left\langle N_{\eta}: \eta \in^{\omega\rangle} \lambda\right\rangle$ satisfies clauses (a), (b), (c) of $\circledast$ of Definition 2.4, then, the following conditions are equivalent:
$\bullet_{1}$ there is $\left\langle\nu_{\eta}: \eta \in^{\omega>} \lambda\right\rangle$ such that clauses (d), (e) of $\circledast$ of Definition 2.4
$\bullet_{2}$ if $\eta \in^{\omega>} \lambda$, then $N_{\eta} \cap \lambda \nsubseteq \cup\left\{N_{\eta \upharpoonright \ell}: \ell<\ell g(\eta)\right\}$.
For a proper forcing notion adding a new real it is quite easy to be $\aleph_{1}$-newly proper; e.g.

Claim 2.6. Assuming $2^{\aleph_{0}} \geq \lambda=\operatorname{cf}(\lambda)>\aleph_{1}$, sufficient conditions for " $\mathbb{Q}$ is $\lambda$ newly proper" are:
(a) $\mathbb{Q}$ is c.c.c. and adds a new real
(b) $\mathbb{Q}$ is Sacks forcing
(c) $\mathbb{Q}$ is a tree-like creature forcing in the sense of Roslanowski-Shelah [7].

Proof. Easy; for clause (a) we use $q=p$ for $\boxplus$ of the definition noting that: if $\eta \in{ }^{\omega>} \lambda$ then $p$ is $\left(N_{\eta}, \mathbb{Q}\right)$-generic. For clauses (b),(c) we use fusion but in the $n$-th step use members of $N_{\eta} \cap \mathbb{Q}$ for $\eta \in{ }^{n} \lambda$, we get as many distinct $\eta$ 's as we can.

Theorem 2.7. We have $\vdash_{\mathbb{Q}}$ " $\mathbb{P}_{\mathscr{A}_{*}}[\mathbf{V}]$ is not proper" when:
(a) $\mathbf{V} \models 2^{\aleph_{0}} \geq \aleph_{2}$
(b) $\lambda$ is regular, $\aleph_{2} \leq \lambda \leq 2^{\aleph_{0}}$ and $d^{2} \alpha<\lambda \Rightarrow \operatorname{cf}\left([\alpha]^{\aleph_{0}}, \subseteq\right)<\lambda$ hence (by [6]) there is a stationary $\mathscr{U}_{\alpha} \subseteq[\alpha]^{\aleph_{0}}$ of cardinality $<\lambda$
(c) $\mathfrak{h}<\lambda$
(d) the forcing notion $\mathbb{Q}$ adds at least one real and is $\lambda$-newly proper.

Proof. Let $\chi$ be large enough and for transparency, $x \in \mathscr{H}(\chi)$.
By Rubin-Shelah [5], see more [3, Ch. XI] in $\mathbf{V}$ there is a sequence $\left\langle N_{\eta}: \eta \in^{\omega\rangle} \lambda\right\rangle$ such that:
$\nabla_{1} \quad$ (a) $N_{\eta} \prec(\mathscr{H}(\chi), \in)$
(b) $\mathbb{Q}, x \in N_{\eta}$
(c) $N_{\eta}$ is countable
(d) $N_{\eta_{1}} \cap N_{\eta_{2}}=N_{\eta_{1} \cap \eta_{2}}$.

Now for each $\eta \in{ }^{\omega} \lambda$ let $N_{\eta}=\cup\left\{N_{\eta \upharpoonright k}: k<\omega\right\}$; we can easily add:
(e) there is $\mathscr{W}$ such that:
$(\alpha) \mathscr{W}$ is a subtree of ${ }^{\omega>} \lambda$
$(\beta)\rangle \in \mathscr{W}$
$(\gamma)$ if $\eta \in \mathscr{W}$ then $\left(\exists^{\lambda} \alpha\right)\left(\eta^{\wedge}\langle\alpha\rangle \in \mathscr{W}\right)$
( $\delta$ ) if $\eta \in \lim (W)$ then $\eta \in{ }^{\omega} \lambda$ is increasing, and $\sup \left(N_{\eta} \cap \lambda\right)=\sup (\operatorname{Rang}(\eta))$
( $\varepsilon$ ) we can choose $\nu_{\eta} \in N_{\eta}$ for $\nu \in \mathscr{W}$ as in clauses (d),(e) of $\circledast$ of 2.4.

[^2]By Balcar-Pelant-Simon [2] there is $\mathscr{T} \subseteq[\omega]^{\aleph_{0}}$ such that
$\square_{2}(\alpha)\left(\mathscr{T}, \supseteq^{*}\right)$ is a tree with $\mathfrak{h}$ levels $(\mathfrak{h}$ is the cardinal invariant from 1.7, a regular cardinal $\in\left[\aleph_{1}, 2^{\aleph_{0}}\right]$ ), the tree $\mathscr{T}$ has a root and each node has $2^{\aleph_{0}}$ many immediate successors, i.e. $\mathscr{T}$ has splitting to $2^{\aleph_{0}}$ )
$(\beta) \mathscr{T}$ is dense in $\left([\omega]^{\aleph_{0}}, \supseteq^{*}\right)$, i.e. in $\mathbb{P}_{\mathscr{P}(\omega)^{[\mathbf{V}]}}=\mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ recalling 1.2(2).
Choose $\bar{h}$ such that
$\sqcup_{3} \bar{h}=\left\langle h_{p}: p \in \mathscr{T}\right\rangle$ satisfies: $h_{p}$ is a one-to-one function from $\operatorname{suc}_{\mathscr{T}}(p)$ onto $2^{\aleph_{0}} \backslash\left\{h_{p_{0}}\left(p_{1}\right): p_{0}<\mathscr{T} p_{1}<\mathscr{T} p\right.$ and $\left.p_{1} \in \operatorname{suc} \mathscr{T}\left(p_{0}\right)\right\}$.

So without loss of generality

$$
\square_{4} \mathscr{T} \in N_{<>}, \mathfrak{h} \in N_{<>} \text {and } \bar{h} \in N_{<>}
$$

As $\mathbb{Q}$ is $\lambda$-newly proper there are $\eta, q$ as in $\boxtimes$ of Definition 2.4. Let $\mathbf{G} \subseteq \mathbb{Q}$ be generic over $\mathbf{V}$ such that $q \in \mathbf{G}$, let $\eta=\underset{\sim}{\eta}[G]$ and $M_{2}:=N_{\eta_{[G]}}:=\cup\left\{N_{\eta \upharpoonright n}[\mathbf{G}]: n<\omega\right\}$, so $M_{2} \prec\left(\mathscr{H}(\chi)^{\mathbf{V}[\mathbf{G}]}, \mathscr{H}(\chi)^{\mathbf{V}}, \in\right)$ is countable, pedantically $\left(\left|M_{2}\right|, \mathscr{H}(\chi)^{\mathbf{V}} \cap\left|M_{2}\right|, \in\right.$ $\left|\left|M_{2}\right|\right) \prec\left(\mathscr{H}(\chi)^{\mathbf{V}[\mathbf{G}]}, \mathscr{H}(\chi)^{\mathbf{V}}, \in\left\lceil\mathscr{H}(\chi)^{\mathbf{V}[\mathbf{G}]}\right)\right.$.

By $\boxtimes$ of 2.4, i.e. the choice of $\underset{\sim}{ } \eta, q$ as $q \in \mathbf{G}$ we have $M_{1}=M_{2} \cap \mathscr{H}(\chi)^{\mathbf{V}}$ is $\cup\left\{N_{\eta \upharpoonright n}: n<\omega\right\}$, and of course $M_{1} \prec(\mathscr{H}(\chi), \in)$. Toward contradiction assume $\mathbf{V}[\mathbf{G}] \models$ " $\mathscr{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ is proper", hence some $p_{*} \in \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ is $\left(M_{2}, \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}\right)$-generic. But $\mathscr{T}$ is dense in $\mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ so without loss of generality $p_{*} \in \mathscr{T}$ and $p_{*}$ is $\left(M_{2}, \mathscr{T}\right)$-generic.

Since $\mathfrak{h} \in N_{<>}$and $\mathfrak{h}<\lambda$, without loss of generality $\eta \in{ }^{\omega>} \lambda \Rightarrow N_{\eta} \cap \mathfrak{h}=$ $N_{<>} \cap \mathfrak{h}$. For any $\alpha<\lambda$ let

$$
\mathscr{I}_{\alpha}=\left\{p \in \mathscr{T}: \text { for some } p_{0} \in \mathscr{T} \text { we have } p \in \operatorname{suc}_{\mathscr{T}}\left(p_{0}\right) \text { and } h_{p_{0}}(p)=\alpha\right\}
$$

and letting $\mathscr{T}_{\alpha}$ be the $\alpha$-th level of $\mathscr{T}$ and let

$$
\mathscr{I}_{\alpha}^{+}=\left\{p \in \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}: p \text { is above some member of } \mathscr{T}_{\alpha}\right\}
$$

Now clearly (in $\mathbf{V}$ and in $\mathbf{V}[\mathbf{G}]$ ):
$(*)_{1}(a) \quad \mathscr{I}_{\alpha}$ is a pre-dense subset of $\mathscr{T}$ (and of $\left.\mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}\right)$
(b) $\mathscr{I}_{\alpha}^{+}$is dense open decreasing with $\alpha$
(c) if $p \in \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ then, for every large enough $\alpha<\lambda, p \notin \mathscr{I}_{\alpha}^{+}$
(d) if $p \in \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ and $\alpha<\lambda$ then, there is $q \in \mathscr{I}_{\alpha}$ such that $\mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}=" p \leq q "$.

Also clearly the sequence $\left\langle\mathscr{I}_{\alpha}: \alpha<\lambda\right\rangle$ belongs to $N_{\langle \rangle}$hence if $\alpha \in \lambda \cap N_{\eta[\mathbf{G}]}$ then $\mathscr{I}_{\alpha} \in N_{\eta[\mathbf{G}]}$ and the set $\left\{p \in \mathscr{T} \cap N_{\eta[\mathbf{G}]}: p \leq \mathscr{T} p_{*}\right.$ and $\left.p \in \mathscr{T}_{\alpha}\right\}$ is not empty.

Now
$(*)_{2}$ in $\mathbf{V}[\mathbf{G}]$ the following functions $h_{\bullet}, h_{*}$ are well defined
(a) $\operatorname{Dom}\left(p_{\bullet}\right)=\operatorname{Dom}\left(h_{*}\right)=N_{<>} \cap \mathfrak{h}$
(b) $h_{\bullet}(\gamma)$ is the unique $p \in N_{\eta[\mathbf{G}]} \cap \mathscr{T}$ of level $\gamma$ which is $\leq \mathscr{T} p_{*}$
(c) if $\gamma<\mathfrak{h}$ then $h_{*}(\gamma)=h_{\gamma+1}\left(h_{\bullet}(\gamma+1)\right)$
$(*)_{3}$ if $\alpha \in \mathfrak{h} \cap N_{\eta[\mathbf{G}]}$ then $h_{*}(\alpha) \in N_{\eta[\mathbf{G}]} \cap \mathfrak{h}=N_{<>} \cap \mathfrak{h}$
also by the choice of $\bar{h}$ (and genericity) clearly
$(*)_{4} \operatorname{Rang}\left(h_{*}\right)$ is equal to $u:=\left(2^{\aleph_{0}}\right) \cap N_{\eta}[\mathbf{G}]$.
Lastly,
$(*)_{5} h_{*} \in \mathbf{V}$.
[Why? As its domain, $N_{<>} \cap \mathfrak{h}$ belongs to $\mathbf{V}$ and $h_{*}(\gamma)$ is defined from $\left\langle\mathscr{T}, \bar{h}, \gamma, p_{*}\right\rangle \in$ $\mathbf{V}$ and $\mathscr{T}$ is a tree.]
$(*)_{6}(a) \quad$ from $u:=\lambda \cap N_{\eta}[\mathbf{G}]$ we can define $\underset{\sim}{\eta}[\mathbf{G}]$
(b) $u=\cup\left\{N_{\eta\lceil n[\mathbf{G}]} \cap \lambda: n<\omega\right\}$.
[Why? By the choice of $\bar{N}$.]
Together we get that $\eta[\mathbf{G}] \in \mathbf{V}$, contradiction.
Claim 2.8. We have $\neg \operatorname{Pr}_{1}\left(\mathbb{Q}, \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}\right)$ when,
(a) $2^{\aleph_{0}} \geq \lambda=\operatorname{cf}(\lambda)>\kappa=\mathfrak{h}$
(b) $\alpha<\lambda \Rightarrow \operatorname{cf}\left([\alpha]^{\leq \kappa}, \subseteq\right)<\lambda$
(c) $\mathbb{Q}$ is $(\lambda, \kappa)$-newly proper.

Proof. Similar to 2.7.
Conclusion 2.9. If $\mathfrak{h}<2^{\aleph_{0}}$ and $\mathbb{Q}$ is a $\left(\mathfrak{h}^{+}, \mathfrak{h}\right)$-newly proper then, $\neg \operatorname{Pr}_{1}\left(\mathbb{Q}, \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}\right)$.

## 3. General sufficient conditions

Claim 3.1. Assume $\mathbf{V} \models \mathrm{CH}$.
If $\mathbb{Q}$ is c.c.c. then, $\operatorname{Pr}_{2}\left(\mathbb{Q}, \mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}\right)$.
Remark 3.2.1) This works replacing $\mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ by any $\aleph_{1}$-complete $\mathbb{P}$ and strengthening the conclusions to $\mathrm{Pr}_{1}$, see 3.3.
2) See Definition 1.4(1).

Proof. Let $\mathbb{P}=\mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$. Clearly it suffices to prove:
$(*)$ if $r \in \mathbb{P}$ and $\Vdash_{\mathbb{Q}}$ " $\mathscr{I}$ is a dense open subset of $\mathbb{P}^{\prime \prime}$ then, there is $r^{\prime}$ such that:
(a) $r \leq_{\mathbb{P}} r^{\prime}$
(b) $\vdash_{\mathbb{Q}}$ " $r$ $\in \mathscr{I} \subseteq \mathbb{P}$ ".

Why (*) holds? We try (all in $\mathbf{V}$ ) to choose ( $r_{\alpha}, q_{\alpha}$ ) by induction on $\alpha<\omega_{1}$ but choosing $q_{\alpha}$ together with $r_{\alpha+1}$ such that:
$\circledast(a) \quad r_{0}=r$
(b) $r_{\alpha} \in \mathbb{P}$ is $\leq_{\mathbb{P}}$-increasing
(c) $q_{\alpha} \in \mathbb{Q}$
(d) $q_{\alpha}, q_{\beta}$ are incompatible in $\mathbb{Q}$ for $\beta<\alpha$
(e) $q_{\alpha} \Vdash_{\mathbb{Q}} " r_{\alpha+1} \in \mathscr{Z}$ ".

We cannot succeed in carrying the induction $\omega_{1}$ many steps because $\mathbb{Q} \models$ c.c.c.
For $\alpha=0$ no problem as only clause (a) is relevant.
For $\alpha$ limit - easy as $\mathbb{P}$ is $\aleph_{1}$-complete (and the only relevant clause is (b)).
For $\alpha=\beta+1$, we first ask:
Question: Is $\left\langle q_{\gamma}: \gamma<\beta\right\rangle$ a maximal antichain of $\mathbb{Q}$ ?
If yes, then $r_{\beta}$ is as required in (*) on $r^{\prime}$; why? if $\mathbf{G}_{\mathbb{Q}} \subseteq \mathbb{Q}$ is generic over $\mathbf{V}$ to which $r_{\beta}$ belongs, then for some $\gamma<\beta, q_{\gamma} \in \mathbf{G}_{\mathbb{Q}}$ hence $r_{\gamma+1} \in \mathscr{I}\left[\mathbf{G}_{Q}\right]$ but $\mathscr{I}\left[\mathbf{G}_{\mathbb{Q}}\right]$ is a dense subset of $\mathbb{P}$ and is open and $r_{\gamma+1} \leq_{\mathbb{P}} r_{\beta}$ so $r_{\beta} \in \mathscr{I}\left[\mathbf{G}_{\mathbb{Q}}\right]$.
If no, let $q^{\beta} \in \mathbb{Q}$ be incompatible with $q_{\gamma}$ for every $\gamma<\beta$. Recalling $\Vdash_{\mathbb{Q}}$ " $\mathscr{Z}$ is dense and open" the set $X_{\beta}=\left\{r \in \mathbb{P}\right.$ : for some $q, q^{\beta} \leq_{\mathbb{Q}} q$ and $q \Vdash$ " $r \in \mathscr{L}$ " $\}$ is a dense subset of $\mathbb{P}$ hence there is a member of $X_{\beta}$ above $r_{\beta}$, let $r_{\alpha}$ be such member.

By $r_{\alpha} \in X_{\beta}$, there is $q, q^{\beta} \leq q$ such that $q \Vdash$ " $r_{\alpha} \in \mathscr{I}_{\sim}$ ". So we choose $q_{\beta}$ as such $q$, so we can carry the induction step.

As said above we cannot carry the induction for all $\alpha<\omega_{1}$ because then $\left\{q_{\alpha}\right.$ : $\left.\alpha<\omega_{1}\right\}$ contradicts " $\mathbb{Q}$ satisfies the c.c.c." So for some $\alpha$ we cannot continue, $\alpha$ is neither 0 nor limit hence for some $\beta, \alpha=\beta+1$. So the answer to the question is yes, hence we get the desired conclusion of $(*)$.

We can weaken the demand on the second forcing (above, it is $\mathbb{P}_{\mathscr{A}_{*}}[\mathbf{V}]$ ).
Claim 3.3. If ( $A$ ) then ( $B$ ) where:
(A) (a) $\mathbb{P}, \mathbb{Q}$ are forcing notions
(b) $\mathbb{Q}$ is c.c.c. moreover $\Vdash_{\mathbb{P}}$ " $\mathbb{Q}$ is c.c.c."
(c) forcing with $\mathbb{P}$ adds no new $\omega$-sequences, ${ }^{3}$ from $\lambda$
(d) $\mathbb{Q}$ has cardinality $\leq \lambda$
(B) (a) if $\mathbb{P}$ is proper in $\mathbf{V}$ then, $\operatorname{Pr}_{2}(\mathbb{Q}, \mathbb{P})$
(b) for every $\mathbb{Q}$-name $\mathscr{I}$ of a dense open subset of $\mathbb{P}$, the set $\mathscr{J}$ is dense and open in $\mathbb{P}$ where:
$(*) \mathscr{J}=\mathscr{J}_{\mathscr{I}}$ is the set of $r \in \mathbb{P}$ such that some $\bar{q}$ witnesses it, i.e. witness it belongs to $\mathscr{J}$ which means:

- $\bar{q}=\left\langle q_{\alpha}: \alpha<\alpha_{*}\right\rangle$ is a maximal antichain of $\mathbb{Q}$
- for each $\alpha<\alpha_{*}$, the set $\left\{r^{\prime} \in \mathbb{P}: q_{\alpha} \Vdash\right.$ " $r^{\prime} \in \mathscr{\mathscr { L }}$ " $\}$ is an open subset of $\mathbb{P}$ dense above $r$.

Proof. First, we prove clause (b); so fix $\mathscr{\sim}$ and $\mathscr{J}$ as there. Let $\left\langle q_{\varepsilon}: \varepsilon<\kappa:=\right| \mathbb{Q}\rangle$ list $\mathbb{Q}$.

For every $r \in \mathbb{P}$ we define a sequence $\eta_{r}$ of ordinals $<\kappa \leq \lambda$ as follows:
$\circledast_{1} \eta_{r}(\alpha)$ is the minimal ordinal $\varepsilon<\kappa$ such that (so $\ell g\left(\eta_{r}\right)=\alpha$ when there is no such $\varepsilon$ ):
(a) $q_{\varepsilon} \Vdash " r \in \mathscr{I} "$
(b) if $\beta<\alpha$ then $q_{\varepsilon}, q_{\eta_{r}(\beta)}$ are incompatible in $\mathbb{Q}$.

Now
$\circledast_{2} \quad(a) \quad \eta_{r}$ is well defined
(b) $\ell g\left(\eta_{r}\right)<\omega_{1}$.

[^3][Why? Obviously $\eta_{r}$ is a well defined sequence of ordinals, i.e. clause (a) and clause
(b) holds because $\mathbb{Q} \models$ c.c.c.]

Note
$\circledast_{3}$ if $r_{1} \leq_{\mathbb{P}} r_{2}$ then either $\eta_{r_{1}} \unlhd \eta_{r_{2}}$ or for some $\alpha<\ell g\left(\eta_{r_{1}}\right)$ we have

$$
\begin{gathered}
\eta_{r_{1}} \upharpoonright \alpha=\eta_{r_{2}} \upharpoonright \alpha \\
\eta_{r_{1}}(\alpha)>\eta_{r_{2}}(\alpha)
\end{gathered}
$$

[Why? Think about the definition.]
For $s \in \mathbb{P}$ let $\eta_{s}^{\prime}$ be $\cap\left\{\eta_{s_{1}}: s \leq_{\mathbb{P}} s_{1}\right\}$, i.e. the longest common initial segment of $\left\{\eta_{s_{1}}: s \leq_{\mathbb{P}} s_{1}\right\}$; clearly $s_{1} \leq_{\mathbb{P}} s_{2} \Rightarrow \eta_{s_{1}}^{\prime} \unlhd \eta_{s_{2}}^{\prime}$. So
$\circledast_{4}{\underset{\sim}{\eta}}^{*}=\cup\left\{\eta_{s}^{\prime}: s \in \mathbf{G}_{\mathbb{P}}\right\}$ is a $\mathbb{P}$-name of a sequence of ordinals $<\kappa$ such that $\left\langle q_{\eta^{*}(i)}: i<\ell g\left(\eta_{\sim}^{*}\right)\right\rangle$ is a sequence of pairwise incompatible members of $\mathbb{Q}$.

But by clause (A)(b) of the claim, forcing with $\mathbb{P}$ preserve " $\mathbb{Q} \vDash$ c.c.c.", so $\ell g\left(\eta_{\sim}^{*}\right)$ is countable in $\mathbf{V}\left[\mathbf{G}_{\mathbb{P}}\right]$. By clause $(\mathrm{A})(\mathrm{c})$ of the claim, forcing by $\mathbb{P}$ adds no new $\omega$-sequences to $\kappa=|\mathbb{Q}|$ (and $\mathbb{Q}$ is infinite) and $\mathbf{V}\left[\mathbf{G}_{\mathbb{P}}\right]$ has the same $\aleph_{1}$ as $\mathbf{V}$, so
$\circledast_{5}{\underset{\sim}{~}}^{*}$ is a sequence of countable length of ordinals $<\kappa$ so is old.
Hence
$\circledast_{6}$ the following set is dense open in $\mathbb{P}$

$$
\mathscr{J}=\left\{r \in \mathbb{P}: r \text { forces in } \mathbb{P} \text { that } \eta_{\sim}^{*}=\eta_{r}^{*} \text { for some } \eta_{r}^{*} \in \mathbf{V}\right\}
$$

As for clause (a), let $\chi, N, q_{1}, r_{1}$ be as in the assumption of $(*)_{1}$ of 1.3 , so $\mathbb{P}, \mathbb{Q} \in N$. We have to find $q_{2}, r_{2}$ as there.

Let $q_{2}=q_{1}$ and let $r_{2} \in \mathbb{P}$ be $(N, \mathbb{P})$-generic and above $r_{1}$, exists as $\mathbb{P}$ is a proper forcing in $\mathbf{V}$.

We shall show that $\left(r_{2}, q_{2}\right)$ is as required, i.e. $q_{2} \Vdash_{\mathbb{Q}}$ " $r_{2}$ is $\left(N\left[\mathbf{G}_{\mathbb{Q}}\right], \mathbb{P}\right)$-generic". Let $\mathbf{G}_{\mathbb{Q}} \subseteq \mathbb{Q}$ be generic over $\mathbf{V}$ such that $q_{2} \in \mathbf{G}_{\mathbb{Q}}$ and we should prove that $\mathbf{V}\left[\mathbf{G}_{\mathbb{Q}}\right] \models$ " $r_{2}$ is $\left(N\left[\mathbf{G}_{\mathbb{Q}}\right], \mathbb{P}\right)$-generic". So let $\mathscr{I} \in N\left[\mathbf{G}_{\mathbb{Q}}\right]$ be a dense open subset of $\mathbb{P}$, and we should prove that $\mathbf{V}\left[\mathbf{G}_{\mathbb{Q}}\right] \models " \mathscr{I} \cap N\left[\mathbf{G}_{\mathbb{Q}}\right]$ is pre-dense above $r_{2}$ ".

It suffices to prove:
$(*)$ if $r_{2} \leq_{\mathbb{P}} r_{3}$ then $r_{3}$ is compatible (in $\mathbb{P}$ ) with some $r \in \mathscr{J} \cap N$.

So fix $r_{3} \in \mathbb{P}$; by the definition of $N\left[\mathbf{G}_{\mathbb{Q}}\right]$ there is a $\mathbb{Q}$-name $\mathscr{I}$ such that $\mathscr{I}=$ $\mathscr{I}\left[\mathbf{G}_{\mathbb{Q}}\right]$, for some $\mathscr{I} \in N$; without loss of generality $\Vdash_{\mathbb{Q}}$ " $\mathscr{I}$ is a dense open subset of $\mathbb{P}^{\prime \prime}$. Let $\mathscr{J}=\mathscr{J} \mathscr{\mathscr { L }}=\left\{r \in \mathbb{P}: r\right.$ has an $\mathscr{I}$-witness $\left.\bar{q}_{*}=\left\langle q_{\alpha}^{*}: \alpha<\alpha_{*}\right\rangle\right\}$, see clause (B)(b) of the claim. Clearly $\mathscr{J} \in N$ hence $\mathscr{J} \cap N$ is pre-dense in $\mathbb{P}$ over $r_{2}$ hence also over $r_{3}$ hence there are $r_{4}, r_{5} \in \mathbb{P}$ such that $r_{3} \leq_{\mathbb{P}} r_{5}, r_{4} \leq_{\mathbb{P}} r_{5}$ and $r_{4} \in N \cap \mathscr{J}$. By the definition of $\mathscr{J}$ there is an $\mathscr{I}$-witness $\bar{q}_{*}=\left\langle q_{\alpha}^{*}: \alpha\left\langle\alpha_{*}\right\rangle\right.$ for $r_{4} \in \mathscr{J}$.

But $\mathscr{I}, r_{4} \in N$ hence without loss of generality $\bar{q}_{*} \in N$ and $\bar{q}_{*}$ has countable length, so $\left\{q_{\alpha}^{*}: \alpha<\alpha_{*}\right\} \subseteq N$. As $\bar{q}_{*}$ is a witness, necesarily it is a maximal antichain of $\mathbb{Q}$ hence for some $\alpha<\alpha_{*}$ we have $q_{\alpha}^{*} \in \mathbf{G}_{\mathbb{Q}}$, as $\bar{q}_{*}$ is a witness for $r_{4} \in \mathscr{J}_{\mathscr{I}}$, necessarily $\mathscr{I}_{1}=\left\{r \in \mathbb{P}: q_{\alpha}^{*} \Vdash_{\mathbb{Q}}\right.$ " $r \in \mathscr{I}_{\sim}$ " $\}$ is an open subset of $\mathbb{P}$ dense above $r_{4}$.

Clearly $\mathscr{I}_{1} \in N$ is an open subset of $\mathbb{P}$, dense above $r_{4}$ and $r_{4} \leq_{\mathbb{P}} r_{5}$ hence $\mathscr{I}_{1} \cap N$ is pre-dense above $r_{5}$ hence there are $r_{6} \leq_{\mathbb{P}} r_{7}$ from $\mathbb{P}$ such that $r_{6} \in \mathscr{I}_{1} \cap N$ and $r_{5} \leq_{\mathbb{P}} r_{7}$.

Clearly $r_{6} \in \mathscr{I}\left[\mathbf{G}_{\mathbb{Q}}\right] \cap N$ and $r_{6}$ is compatible with $r_{3}$ in $\mathbb{P}$, so we are done proving $r_{2}$ is $\left(N\left[\mathbf{G}_{\mathbb{Q}}\right], \mathbb{P}\right)$-generic.

So we are done.
Remark 3.4. In 3.1, 3.3 we can replace "c.c.c." by "strongly proper".
But such $\mathbb{Q}$ preserves " $\left({ }^{\omega} 2\right)^{\mathrm{V}}$-non-meagre".
Claim 3.5. 1) There is a proper forcing $\mathbb{Q}$ which forces " $\mathbb{P}_{\mathscr{A}_{*}}[\mathbf{V}]$ as a forcing notion is not proper", (i.e. $\neg \operatorname{Pr}_{1}(\mathbb{Q}, \mathbb{P})$ ).
2) Even (A) of $1.5(3)$ fails, i.e. $\neg \operatorname{Pr}_{5}\left(\mathbb{Q}, \mathbb{P}_{\mathscr{A}_{*}}[\mathbf{V}]\right)$.

Proof. We use the proof of [3, Ch.17,Sec.2] and see references there. We repeat in short.

We use a finite iteration so let $\mathbb{P}_{0}$ be the trivial forcing notion, $\mathbb{P}_{k+1}=\mathbb{P}_{k} * \mathbb{Q}_{k}$ for $k \leq 3$ and the $\mathbb{P}_{k}$-name $\mathbb{Q}_{k}$ is defined below.

Step A: $\mathbb{Q}_{0}=\operatorname{Levy}\left(\aleph_{1}, 2^{\aleph_{0}}\right)$ so $\Vdash_{\mathbb{Q}_{0}} " \mathrm{CH} "$.

Step B: $\mathbb{Q}_{1}$ is Cohen forcing.
Step C: In $\mathbf{V}^{\mathbb{P}_{2}}, \mathbb{Q}_{2}$ in the Levy collapse of $2^{2^{\aleph_{0}}}$ to $\aleph_{1}$, i.e. $\mathbb{Q}_{2}=\operatorname{Levy}\left(\aleph_{1}, \beth_{2}\right)^{\mathbf{V}\left[\mathbb{P}_{2}\right]}$.

Step D: Let $\mathscr{T}=\left({ }^{\left(\omega_{1}>\right)} \omega_{1}\right)^{\mathbf{V}\left[\mathbb{P}_{1}\right]}=\left({ }^{\left(\omega_{1}>\right)} \omega_{1}\right)^{\mathbf{V}\left[\mathbb{P}_{0}\right]}$ be a tree, so we know that $\lim _{\omega_{1}}(\mathscr{T})^{\mathbf{V}\left[\mathbb{P}_{1}\right]}=\lim _{\omega_{1}}(\mathscr{T})^{\mathbf{V}\left[\mathbb{P}_{2}\right]}=\lim _{\omega_{1}}(\mathscr{T})^{\mathbf{V}\left[\mathbb{P}_{3}\right]}$ hence has cardinality $\aleph_{1}$ in $\mathbf{V}^{\mathbb{P}_{3}}$ and
$(*)_{1}$ in $\mathbf{V}^{\mathbb{P}_{1}}, \mathscr{T}$ is isomorphic to a dense subset of $\mathbb{P}_{\mathscr{A}_{*}\left[\mathbb{P}_{1}\right]}=\mathbb{P}_{\mathscr{A}_{*}\left[\mathbb{P}_{0}\right]}$.
So in $\mathbf{V}^{\mathbb{P}_{3}}$ there is a list $\left\langle\eta_{\varepsilon}^{*}: \varepsilon<\omega_{1}\right\rangle$ of $\lim _{\omega_{1}}(\mathscr{T})^{\mathbf{V}\left[\mathbb{P}_{1}\right]}$ and let $\left\langle\eta_{\varepsilon}^{*} \upharpoonright\left[\gamma_{\varepsilon}, \omega_{1}\right): \varepsilon<\omega_{1}\right\rangle$ be pairwise disjoint end segments so $\gamma_{\varepsilon}<\omega_{1},\left\langle\gamma_{\varepsilon}: \varepsilon<\omega_{1}\right\rangle \in \mathbf{V}^{\mathbb{P}_{3}}$ and $\varepsilon_{1}<\varepsilon_{2}<$ $\omega_{1} \wedge \beta_{1} \in\left[\gamma_{\varepsilon_{1}}, \omega_{1}\right) \wedge \beta_{2} \in\left[\gamma_{\varepsilon_{2}}, \omega_{1}\right) \Rightarrow \eta_{\varepsilon_{1}}^{*} \upharpoonright \gamma_{1} \neq \eta_{\varepsilon_{2}}^{*} \upharpoonright \gamma_{2}$.

Step E: In $\mathbf{V}^{\mathbb{P}_{3}}$ there is $\mathbb{Q}_{3}$, a c.c.c. forcing notion specializing $\mathscr{T}$ in the sense of [4], i.e. there is $h_{*} \in \mathbf{V}^{\mathbb{P}_{4}}$ such that $h_{*}: \mathscr{T} \rightarrow \omega, h_{*}$ is increasing in $\mathscr{T}$ except being constant on each end segment $\eta_{\varepsilon}^{*} \upharpoonright\left[\gamma_{\varepsilon}, \omega_{1}\right)$ for $\varepsilon<\omega_{1}$, i.e. $\rho<\mathscr{T} \nu \wedge h_{*}(\rho)=h_{*}(\nu) \Rightarrow$ $(\exists \varepsilon)\left[\rho, \nu \in\left\{\eta_{\varepsilon}^{*} \upharpoonright \gamma: \gamma \in\left[\gamma_{\varepsilon}, \omega_{1}\right)\right\}\right.$.

Now
$\boxtimes$ after forcing with $\mathbb{P}_{4}=\mathbb{Q}_{0} * \mathbb{Q}_{1} * \mathbb{Q}_{2} * \mathbb{Q}_{3}$, i.e. in $\mathbf{V}^{\mathbb{P}_{4}}$ the forcing notion $\mathbb{P}_{\mathscr{A}_{*}[\mathbf{V}]}$ is not proper, in fact it collapses $\aleph_{1}$.

Why? Recall $(*)_{1}$ and note
$(*)_{2} \mathscr{I}_{n}:=\left\{\rho \in \mathscr{T}:(\forall \nu)\left(\rho \leq \mathscr{T} \nu \rightarrow h_{*}(\nu) \neq n\right\}\right.$ is dense open in $\mathscr{T}$
and trivially
$(*)_{3} \bigcap_{n} \mathscr{I}_{n}=\emptyset$; in fact if $\mathbf{G} \subseteq \mathscr{T}$ is generic, then,:
$(A) \mathbf{G}$ is a branch of $\mathscr{T}$ of order type $\omega_{1}^{\mathbf{V}}$ let its name be $\left\langle{\underset{\sim}{\rho}}_{\gamma}: \gamma<\omega_{1}\right\rangle$
(B) letting ${\underset{\sim}{\gamma}}_{n}=\operatorname{Min}\left\{\gamma<\omega_{1}: \underset{\sim}{\rho}{\underset{\gamma}{ }} \in \mathscr{I}_{n}\right\}$ we have $\Vdash_{\mathscr{T}}$ " $\left\{{\underset{\sim}{\gamma}}_{n}: n<\omega\right\}$ is unbounded in $\omega_{1}$ ".

Acknowledgments Research supported by the United States-Israel Binational Science Foundation (Grants No. 2002323 and 2006108) and the NSF. Publication 960. The author thanks Alice Leonhardt for the beautiful typing. First typed Dec. 19, 2007.

## References

[1] Andreas Blass, Combinatorial Cardinal Characteristics of the Continuum, Handbook of Set Theory (Matthew Foreman and Akihiro Kanamori, eds.), vol. 1, Springer, pp. 395-490.
[2] Bohuslav Balcar, Jan Pelant, and Petr Simon, The space of ultrafilters on $N$ covered by nowhere dense sets, Fundamenta Mathematicae CX (1980), 11-24.
[3] Saharon Shelah, Proper and improper forcing, Perspectives in Mathematical Logic, Springer, 1998.
[4] Saharon Shelah, Appendix to: "Models with second-order properties. II. Trees with no undefined branches", Annals of Mathematical Logic 14 (1978), no. 1, 73-87, Annals of Mathematical Logic 14 (1978), 223-226.
[5] Matatyahu Rubin and Saharon Shelah, Combinatorial problems on trees: partitions, $\Delta$ systems and large free subtrees, Annals of Pure and Applied Logic 33 (1987), 43-81.
[6] Saharon Shelah, Advances in Cardinal Arithmetic, Finite and Infinite Combinatorics in Sets and Logic, Kluwer Academic Publishers, 1993, N.W. Sauer et al (eds.). arxiv:0708.1979, pp. 355-383.
[7] Andrzej Roslanowski and Saharon Shelah, Norms on possibilities I: forcing with trees and creatures, Memoirs of the American Mathematical Society 141 (1999), no. 671, xii +167 , arxiv:math.LO/9807172.
(Received: September 28, 2016)
(Revised: June 07, 2017)

Einstein Institute of Mathematics Edmond J. Safra Campus, Givat Ram The Hebrew University of Jerusalem Jerusalem 91904
Israel
and
Department of Mathematics
Hill Center - Busch Campus, Rutgers
The State University of New Jersey
110 Frelinghuysen Road
Piscataway, NJ 08854-8019
USA
shelah@math.huji.ac.il
http://shelah.logic.at


[^0]:    2010 Mathematics Subject Classification. Primary 03E35; Secondary: 03E50.
    Key words and phrases. set theory, forcing, proper forcing, preservation.
    Copyright (c) 2017 by ANUBIH.

[^1]:    ${ }^{1}$ this is trivial as $\mathbf{V}_{0} \models \mathrm{CH}$, however always there is a dense tree with $\mathfrak{h}$ levels by the celebrated theorem of Balcar-Pelant-Simon

[^2]:    ${ }^{2}$ If $\lambda=\aleph_{2}$ the rest of clause (b) follows.

[^3]:    $3_{\text {if }}$ you assume $\mathbb{P}$ is proper, $\lambda=\aleph_{0}$ the proof may be easier to read

