Diamonds, Uniformization

Author(s): Saharon Shelah

Source: The Tournal of Symbolic Logic, Vol. 49, No. 4 (Dec., 1984), pp. 1022-1033
Published by: Association for Symbolic Logic
Stable URL: https://www.jstor.org/stable/2274258
Accessed: 09-01-2019 10:43 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at https://about.jstor.org/terms

Association for Symbolic Logic is collaborating with JSTOR to digitize, preserve and extend access to The Tournal of Symbolic Logic

DIAMONDS, UNIFORMIZATION

SAHARON SHELAH ${ }^{1}$

Abstract

Assume G.C.H. We prove that for singular $\lambda, \square_{\lambda}$ implies the diamonds hold for many $S \subseteq \lambda^{+}$(including $S \subseteq\left\{\delta: \delta \in \lambda^{+}, \operatorname{cf} \delta=\operatorname{cf} \lambda\right\}$.) We also have complementary consistency results.

§0. Introduction. By Gregory [Gr] and Shelah [Sh3], assuming G.C.H., $\diamond_{\left\{\delta<\lambda^{+} \text {: cf } \delta \neq \text { cf } \lambda\right\}}^{*}$ holds for any λ (but is meaningless for $\lambda=\aleph_{0}$). So $\diamond_{\lambda^{+}}$holds. On the other hand, Jensen had proved (before) the consistency of G.C.H. + SH (with ZFC); thus $\diamond_{N_{1}}$ may fail (see Devlin and Johnsbraten [DJ]); later the author proved that for λ regular $\diamond_{\left\{\delta<\lambda^{+} \text {:cf } \delta=\lambda\right\}}$ may fail (see Steinhorn and King [SK].) Woodin proved that \diamond_{κ} may fail for the first inaccessible κ, but though κ is strong limit, G.C.H. does not hold below κ in his model. He started with a supercompact cardinal and used Radin forcing.

Assuming G.C.H., for simplicity our results are as follows:

1) For λ singular, if ZFC is consistent then it is consistent (with ZFC + G.C.H.) that $\diamond_{S}\left(S \subseteq \lambda^{+}\right)$fails for some stationary $S \subseteq\left\{\delta<\lambda^{+}: \operatorname{cf} \delta=\operatorname{cf} \lambda\right\}$. However S is nonlarge in some sense: $F(S)=\{\delta: S \cap \delta$ a stationary subset of $\delta\}$ is not stationary.
2) The " $F(S)$ is not stationary" in 1) is necessary. For if \square_{λ} holds (and it holds if e.g. $0^{\#} \notin V$ or there is no inner model with a measurable cardinal) and G.C.H., $S \subseteq \lambda^{+}, F(S)$ stationary, then \diamond_{S} holds; moreover, for some stationary $S \subseteq$ $\left\{\delta<\lambda^{+}: \operatorname{cf} \delta=\operatorname{cf} \lambda\right\}, F(S)=\varnothing$ but \diamond_{S} holds. So e.g. there is a λ^{+}-Souslin tree complete at levels of cofinality $\neq \operatorname{cf} \lambda$.
3) If κ is strongly inaccessible and $S \subseteq \kappa$ is such that for every closed unbounded subset C of $\kappa, C \cap S$ and $C-S$ contain closed subsets of arbitrary order-type $<\kappa$, then in some forcing extension V^{P} of V, no new sequences of ordinals of length $<\kappa$ are added, S preserves its property but \diamond_{S} fails.
4) In 1) and 3) really stronger results than failure of diamonds (i.e. uniformization properties) hold. Also we observe a bound on improving 3): if e.g. $0^{\#} \notin V$ then for every limit δ we can find a closed unbounded C_{δ} of δ, and $f_{\delta}: C_{\delta} \rightarrow\{0,1\}$, such that for every closed unbounded $C \subseteq \kappa$ and $f: C \rightarrow\{0,1\}$ for some $\delta, C_{\delta} \subseteq C, f_{\delta}=f \upharpoonright C$.

The proof of 1) and 3) follows that of [Sh2, §1]. Note that the proof of [Sh2, §1] is obsolete as we can get the theorem easily by proper forcing (see [Sh1, Chapter V]), but not so with generalizations.

[^0]Conventions. Dealing with $(H(\lambda), \epsilon)$ we assume it has a definable well-ordering $<^{*}$ (or we can expand it by one). We shall always take λ big enough, so that all the sets we consider belong to $H(\lambda)$.
§1. (E, h)-completeness.
1.1. Convention. Here κ is a fixed regular cardinal. $\mathscr{S}_{<\kappa}(D)=\{B: B \subseteq D$, $|B|<\kappa\}$. E denotes a set of increasing continuous sequences of limit length from some $\mathscr{S}_{<k}(D)$; it satisfies
(1) E is unbounded, i.e. $\left(\forall A \in \mathscr{S}_{<\kappa}(D)\right)(\exists \bar{B})\left(\bar{B} \in E \wedge A \subseteq B_{0}\right)$;
(2) if $\left\langle B_{i}: i<\delta\right\rangle \in E,\left\langle B_{i}^{\prime}: i\langle\delta\rangle\right.$ is an increasing continuous sequence, $B_{i} \in$ $\mathscr{S}_{<\kappa}(D)$ and $B_{i} \subseteq B_{i+1}^{\prime} \subseteq B_{i+2}$, then $\left\langle B_{i}^{\prime}: i<\delta\right\rangle \in E$;
(3) E is closed under initial segments, i.e. if $\bar{B} \in E$ and $\delta<l(\bar{B})$ is a limit ordinal, then $(\bar{B} \upharpoonright \delta) \in E$, and under end-segments.

By (1) E determines D, so we write $D=\operatorname{Dom} E$; it is an ordinal $\alpha(E)$ if we do not say otherwise. We sometimes define E forgetting (2); then we mean the closure by this operation. If κ is not clear from the context we write $\kappa=\kappa(E)$. Let h denote a twoplace function, $h(\mu, i)$, defined for $\mu<\kappa$ regular and $i<\mu$; also $\aleph_{0}<h(\mu, 0)$, $h(\mu, i) \leq \kappa$ is increasing in i, and $\lambda_{i}<h(\mu, i)$ for $i<\delta$ implies $\sum_{i<\delta} \lambda_{i}<h(\mu, \delta)$. We omit h when $h(\mu, i)=\kappa$ for every μ and i. Let λ denote a large enough regular cardinal, and $\operatorname{SQS}(\lambda, E, h, \mu, \delta)=\operatorname{SQS}_{\delta}^{\mu}(\lambda, E, h)$ denote the set of sequences $\bar{B}=\left\langle B_{i}: i<\delta\right\rangle \in E,\left|B_{i}\right|<h(\mu, i)$. Let $\operatorname{SQM}(\lambda, E, h, \mu, \delta)=\operatorname{SQM}_{\delta}^{\mu}(\lambda, E, h)$ denote the set of sequences $\bar{N}=\left\langle N_{i}: i<\delta\right\rangle, N_{i} \prec(H(\lambda), \in)$, with $\left\langle N_{i} \cap\right.$ Dom $\left.E: i<\delta\right\rangle \in$ $\operatorname{SQS}_{i}^{\mu}(\mu, E, h),\left\langle N_{i}: i \leq j\right\rangle \in N_{j+1}$ and $\left\|N_{i}\right\|<h(\mu, i)$. We write μ instead of h when we use $h(\mu, i)=\mu$. We omit δ when $\delta=\mu$. In all that follows " λ large enough" can be replaced by " $\lambda \geq \lambda_{0}$ " for some easily computable λ_{0}.
1.2. Definition. (1) We call $E h$-fat if for every regular $\mu<\kappa$ and λ large enough, player I has no winning strategy in the following game:

For the α th move player I chooses $A_{i} \subseteq \operatorname{Dom} E$ with $\left|A_{i}\right|<h(\mu, 2 i)$ and $\bigcup_{j<i} B_{j} \subseteq$ A_{i}, and player II chooses $B_{i} \subseteq \operatorname{Dom} E$ with $\left|B_{i}\right|<h(\mu, 2 i+1)$ and $A_{i} \subseteq B_{i}$.

At the end of the game player II wins if $\left\langle\bigcup_{j<i} B_{j}: i<\mu\right\rangle \in E$.
(2) We call E strongly fat if it is h-fat with $h(\mu, i)=\mu+\aleph_{1}$.
1.3. Definition. (1) We call a forcing notion P weakly (E, h)-complete if for every large enough λ, and every regular $\mu<\kappa$ and $\delta \leq \mu$, if $\bar{N} \in \operatorname{SQM}_{\delta}^{\mu}(\lambda, E, h), P \in N_{0}$ and \bar{p} is a generic sequence for (\bar{N}, \bar{P}) (see below), then $\left\{p_{i}: i<\delta\right\}$ has an upper bound in P.
(2) We say $\bar{p}=\left\langle p_{i}: i\langle\delta\rangle\right.$ is a generic sequence for $\left(\left\langle N_{i}: i\langle\delta\rangle, P\right)\right.$ if $P \in N_{0}$, $\bar{N} \in \operatorname{SQM}(\lambda, E), \bar{p} \upharpoonright i \in N_{i+1}$, and for every i, for every dense open subset $\mathscr{I} \in N_{i}$ of P for some $n, p_{i+n} \in \mathscr{I}$.
(3) We call $P(E, h)$-complete if it is weakly (E, h)-complete and forcing by P does not add new sequences of ordinals of length $<\kappa$.

REMARK. In 1.3(2) it may be more convenient to interchange the quantification on \mathscr{I} and n. The only change this entails is in 1.5 , where we have to assume that P does not add ω-sequences of ordinals.
1.4. Remark. In 1.3(3) we can demand equivalently that no new sequences of ordinals of length $\mu, \mu<\kappa$ regular, are added.
1.5. Lemma. If E is strongly fat and P is weakly (E, h)-complete then P is (E, h) complete.

Proof. We prove by induction on $\mu\left(\mu<\kappa, \mu\right.$ regular) that if $p \in P$, and $\mathscr{I}_{\beta}(\beta<\mu)$ are dense open subsets of P, then there is $q, p \leq q \in P$, with $q \in \mathscr{I}_{\beta}$ for each $\beta<\mu$. This clearly suffices.

For $\mu=\aleph_{0}$, we can by Definition 1.3(1) find $N_{n} \prec\langle H(\lambda), \epsilon\rangle, N_{n}$ countable, p, $P \in N, \mathscr{I}_{\beta} \in N_{0}$ for $\beta<\mu$, and $\left\langle N_{n} \cap \alpha(E): n\langle\omega\rangle \in E\right.$. As N_{n} is countable there is a sequence $\left\langle p_{n}: n<\omega\right\rangle$, $p_{0}=p$, with $p_{n} \leq p_{n+1}, p_{n} \in P \cap N_{n+1}$, and for every dense $\mathscr{I} \subseteq P$, if $\mathscr{I} \in \bigcup N_{n}$ then $p_{n} \in \mathscr{I}$ for some n. So $\left\langle p_{n}: n\langle\omega\rangle\right.$ is a generic sequence for $\left\langle N_{n}: n\langle\omega\rangle\right.$; hence it has an upper bound q in P, as required.

Suppose $\mu>\aleph_{0}$; then (choosing λ large enough) (by Definition 1.3) we can find $\bar{N} \in \operatorname{SQS}_{\mu}^{\mu}(\lambda, E, \mu)$. Remember $<^{*} \upharpoonright P$ is a well-ordering of the members of P. Now we define p_{i} by induction on $i \leq \mu$, as follows:

1) $p_{0}=p$ and $p_{i} \in N_{i+1}$;
2) p_{i} is the $<^{*}$-first member of P which is above p_{j} for $j<i$, and is in every open dense subset of P which belongs to $\bigcup_{j<i} N_{j}$.

Now why is p_{i} well defined? If i is the first failure, then $\left\langle p_{j}: j\langle i\rangle\right.$ is still defined, and obviously belongs to N_{i+1} (as $\left\langle N_{j}: j \leq i\right\rangle \in N_{i+1}$, and $\left\langle p_{i}: j\langle i\rangle\right.$ is easily defined from $\left\langle N_{j}: j \leq i\right\rangle, P, p$ and $<^{*}$). If i is a limit, $\left\langle p_{j}: j\langle i\rangle\right.$ is a generic sequence for $\left\langle N_{j}: j\langle i\rangle\right.$; and as $\left\langle\operatorname{Dom}(E) \cap N_{j}: j<i\right\rangle \in E$, it has an upper bound, and the $<^{*}$ first such upper bound belong to N_{i+1}, and satisfies the requirements on p_{i} (note that it is automatically in every dense open set which belongs to $N_{j}, j<i$, as it is above p_{j+1}).

So we remain with the case when i is a successor and use the induction hypothesis on μ (and $\left.\left\|N_{i}\right\|<\mu\right)$.
1.6. Lemma. (1) If E is h-fat and P is (E, h)-complete, then E is still h-fat in V^{P}.
(2) If $\bar{N} \in \operatorname{SQM}_{\delta}^{\mu}(\lambda, E, h), \bar{p}$ is a generic sequence for $\bar{N}, p_{i} \leq q \in P$ for every i, and forcing by P does not add sequences of ordinals of length $<\kappa$, then

$$
q \Vdash_{P} "\left\langle N_{i}[G]: i<\delta\right\rangle \in \operatorname{SQS}_{\delta}^{\mu}(\lambda, E, h) " .
$$

Proof. Left to the reader.
1.7. Lemma. Suppose $\bar{Q}=\left\langle P_{i}, \mathbf{Q}_{i} ; i<\gamma\right\rangle$ is $a(<\kappa)$-support iteration, and each Q_{i} is (E, h)-complete, P_{γ} the limit. If E is h-fat (in V) then P_{γ} is (E, h)-complete and E is still h-fat in V^{P}.

Proof. The "weak (E, h)-completeness" is preserved trivially. So we need \vdash_{P} " $(\forall \alpha)\left[{ }^{\kappa>} \alpha \subseteq V\right]$ ". The proof is by induction on γ. For γ successor the proof is totally straightforward. For γ limit we first prove that, for every regular $\mu<\kappa$, every $p \in P_{\gamma}$, every $\gamma_{i}<\delta(i<\mu)$, and every dense open subset \mathscr{I}_{i} of $P_{\gamma_{i}}$ (for $\left.i<\mu\right)$, there is a $q \in P_{\gamma}$ with $p \leq q$ and $q \upharpoonright \gamma_{i} \in \mathscr{I}_{i}$ for $i<\mu$ [if $\mu<\mathrm{cf} \gamma$, then $\sup _{i<\delta} \gamma_{i}<\delta$, and we use the induction hypothesis; if $\mu \geq \mathrm{cf} \gamma$, without loss of generality we can take $\gamma=\operatorname{cf} \gamma$ and also $\mu=\operatorname{cf} \gamma\left(\right.$ as $\bigcap_{\gamma_{i}=\beta} \mathscr{I}_{i}$ is dense in P_{β}) and use (E, h)-completeness for μ; for suitable \bar{N}, by induction on $i<\mu$ we define $\left\langle q_{j}^{i}: j<i\right\rangle \in P_{i} \cap N_{i+1}$, increasing in i, belonging to every dense subset of P_{i-1} which belongs to N_{i}], and then prove the clause about "not adding sequences of length $<\mu$ " (Definition 1.3(3)) using (E, h)completeness for μ.
1.8. Definition. For an iteration $\left\langle P_{i}, \mathbf{Q}_{i}: i<\gamma\right\rangle$ with $(\langle\kappa)$-support, assuming for notational simplicity that each Q_{i} is ordered by inclusion, we make the following definitions:
(1) $\operatorname{Tr}(\gamma)=\{\mathscr{T}: \mathscr{T}=(T,<, f),(T,<)$ a well-founded tree, closed under limits, $f: T \rightarrow \gamma, f\left(\mathrm{rt}_{T}\right)=0$ for the root rt_{T}, and f is increasing and continuous $\}$.
(2) Let $t \in \mathscr{T}$ mean $t \in T$, and for $t \in \mathscr{T}$ let $\operatorname{lev}(t)$ be its level (i.e. the order-type of $\{s: s<t\})$ and $t \upharpoonright \alpha$ the unique $s \leq t$ of level $\alpha($ for $\alpha \leq \operatorname{lev}(t))$. We call the tree leveled if $f(t)$ depends on the level of t only. If confusion may arise, we write $<^{\mathscr{T}}$ and $f^{\mathscr{T}}$.
(3) $F \operatorname{Tr}(\bar{Q})=\left\{\left\langle p_{t}: t \in \mathscr{T}\right\rangle: \mathscr{T} \in \operatorname{Tr}(\gamma)\right.$, and $p_{t i \alpha}=p_{t} \upharpoonright f(t \upharpoonright \alpha) ; p_{t}$ is a function with domain a subset of $f(t)$ of power $<\kappa, p_{t}(i)$ a P_{i}-name $\}$.
(4) $P_{i}^{\prime}=\left\{p: p\right.$ a function with domain a subset of i of power $<\kappa, p(j)$ a P_{j}-name $\}$. For $j \notin \operatorname{Dom} p$ let $p(j)=\varnothing$. For $p, q \in P_{i}^{\prime}$, we write $p \leq q$ if $q \upharpoonright j \Vdash_{P_{J}} " p(j) \subseteq q(j) "$ for every $j<i$.
(5) $F \operatorname{Tr}_{0}(\bar{Q})=\left\{\left\langle p_{t}: t \in \mathscr{T}: \mathscr{T} \in \operatorname{Tr}(\gamma),\left\langle p_{t}: t \in \mathscr{T}\right\rangle \in F \operatorname{Tr}(\bar{Q})\right.\right.$ and $\Vdash_{p_{i}} " p_{t}(i) \in \mathbf{Q}_{i}$ " for every $t \in T$ and $\left.i \in \operatorname{Dom} p_{t}\right\}$.
(6) $F \operatorname{Tr}_{1}(\bar{Q})=\left\{\left\langle p_{\eta}: \eta \in \mathscr{T}\right\rangle \in F \operatorname{Tr}(\bar{Q})\right.$: for every nonmaximal $t \in \mathscr{T}$, and $q \in P_{f(t)}$ if $p_{t} \leq q$ (though maybe $p_{t} \notin P_{f(t)}$), then for some immediate successor s of t (in \mathscr{T}), and $r \in P_{f(s)}$, we have $p_{s} \leq r$ and $\left.q \leq r\right\}$.
1.9. Lemma. Suppose Q is as in $1.7,\left\langle p_{\eta}: \eta \in \mathscr{T}\right\rangle \in F \operatorname{Tr}_{1}(\bar{Q}), \mathscr{T}$ has $<\kappa$ levels, and each Q_{i} is (E, h)-complete. Then, for some maximal $t \in \mathscr{T}$ and $q \in P_{\gamma}, p_{\eta} \leq q$.

Proof. Like the proof in [Sh2, 1.7].
1.10. Lemma. Suppose P_{γ} and \bar{Q} are as in $1.7, \gamma=l(\bar{Q}), \mathscr{T} \in \operatorname{Tr}(\gamma), f(t)=\gamma$ for every maximal $t \in \mathscr{T}$, and $|\mathscr{T}| \leq \mu,|\mathscr{T}|<h(\mu, i)$ for some $i<\mu<\kappa, \mu$ regular. If $\left\langle p_{t}: t \in \mathscr{T}\right\rangle \in F \operatorname{Tr}_{0}(\bar{Q})$, and \mathscr{I} is a dense subset of P_{γ}, then there is $\left\langle q_{t}: t \in \mathscr{T}\right\rangle \in$ $F \operatorname{Tr}_{0}(\bar{Q})$ such that $p_{t} \leq q_{t}($ for $t \in \mathscr{T})$ and $q_{t} \in \mathscr{I}$ for t maximal in \mathscr{T}.

Proof. Again as in the proof of [Sh2, 1.7] (and 1.7 of the present paper).
An inconvenient aspect of Definition 1.3 is that we are interested in sequences of submodels of $H(\lambda)$, whereas E is usually a sequence of sets of ordinals.
1.11. Claim. Suppose E^{0} and E^{1} are given, and for some one-to-one functiong from $D^{0}=\operatorname{Dom} E^{0}$ onto $D^{1}=\operatorname{Dom} E^{1}$,

$$
E^{0}=\left\{\left\langleA_{i}: i\langle\delta\rangle:\left\langle g\left(A_{i}\right): i\langle\delta\rangle \in E^{1}\right\}\right.\right.
$$

(in such case we say that E^{0} and E^{1} are isomorphic). Then
a) E^{0} is h-fat iff E^{1} is h-fat, and
b) any forcing notion P is weakly $\left(E^{0}, h\right)$-complete iff it is weakly $\left(E^{1}, h\right)$-complete.

Proof. Trivial.

§2. (E, H)-completeness.

2.1. Notation. E is as in $\S 1.1, H$ is a function with domain E, and $H\left(\left\langle B_{i}: i<\delta\right\rangle\right)$ $=\left\langle\alpha_{i}: i<\delta\right\rangle$ (usually $\left.\alpha_{i} \in B_{i+1}\right)$. We let $H(\bar{N})=H\left(\left\langle N_{i} \cap \alpha(E): i<l(\bar{N})\right\rangle\right)$.
2.2. Definition. (1) We call $(E, H) h$-fat if for every regular $\mu<\kappa$, player I has no winning strategy in the following game:

For the i th move, player I chooses $A_{i} \in S_{<\kappa}(\alpha(E))$ with $\left|A_{i}\right|<h(\mu 2 i)$ and $\bigcup_{j<i} B_{j}$ $\subseteq A_{i}$, and player II chooses α_{i} and $B_{i} \in S_{<\kappa}(\alpha(E))$ with $\left|B_{i}\right|<h(\mu, 2 i+1)$ and $A_{i} \subseteq B_{i}$.

At the end of the game, player II wins if $\left\langle B_{j}: j \leq \mu\right\rangle \in E$ and $\left\langle\alpha_{i}: i<\delta\right\rangle=$ $H\left(\left\langle B_{j}: j \leq \mu\right\rangle\right)$.
(2) We call (E, H) strongly fat if it is h-fat for $h(\mu, i)=\mu+\aleph_{1}$.
2.3. Definition. We say that P is (E, H, h)-complete if for every regular $\mu<\kappa$ there
is a function F_{μ} such that if $\bar{N}=\left\langle N_{i}: i<\mu\right\rangle \in \operatorname{SQM}(\lambda, E, h, \mu, \mu), p \in N_{0} \cap P$ and $\bar{\alpha}=\left\langle\alpha_{i}: i\langle\mu\rangle=H(\bar{N})\right.$, then the following conditions hold:
(A) If $\bar{p}=\left\langle p_{j}: j<i\right\rangle$ is generic for $\bar{N} \upharpoonright i=\left\langle N_{j}: j<i\right\rangle$ then $F_{\mu}(\bar{p} \upharpoonright i, \bar{N} \upharpoonright i, \bar{\alpha} \upharpoonright(i+1))$ is a sequence of length $<h(\mu, i)$ of bounds of \bar{p}.
(B) There is a sequence $\bar{\gamma}=\left\langle\gamma_{i}: i<\mu\right\rangle, \gamma_{i} \in N_{i+1}, \bar{\gamma} \upharpoonright i \in N_{i+1}$, such that any sequence $\bar{p}=\left\langle p_{j}: j<\delta\right\rangle(\delta \leq \mu$ limit $)$ satisfying the following has an upper bound:
$(\alpha)\left\langle p_{j}: j\langle\delta\rangle\right.$ is generic for $\bar{N} \upharpoonright \delta$, and
(β) p_{i} appears in $F_{\mu}(\bar{p} \upharpoonright i, \bar{N} \upharpoonright i, \bar{\alpha} \upharpoonright(i+1))$; in fact its place is

$$
\widetilde{\digamma}_{\mu}(\bar{p} \upharpoonright i, \bar{N} \upharpoonright i, \bar{\alpha} \upharpoonright(i+1), \gamma \upharpoonright(i+1)) .
$$

Remarks. (1) The requirement $\bar{\gamma} \upharpoonright i \in N_{i+1}$ will be omitted if

$$
(\forall \chi<h(\mu, i))\left(\chi^{|i|}<h(\mu, i)\right) .
$$

(2) We omit h in Definition 2.3 when $h(\mu, i)=\mu$.
2.4. Lemma. If (E, H) is h-fat, P is (E, H, h)-complete, and $h(\mu) \leq \kappa(h(\mu) \leq \mu)$, then (E, H) is still h-fat in V^{P}.

Proof. Easy.

2.5. Theorem. Suppose

(a) κ is strongly inaccessible,
(b) E_{0} is fat, i.e. $h_{0}-$ fat where $h_{0}(\mu, i)=\mu+\aleph_{1}$,
(c) $\left(E_{1}, H\right)$ is fat,
(d) $\bar{Q}=\left\langle P_{i}, \mathbf{Q}_{i}: i<\gamma\right\rangle$ is $a(<\kappa)$-support iteration with limit P_{γ}, and
(e) each Q_{i} is E_{0}-complete and $\left(E_{1}, H\right)$-complete.

Then P_{γ} is E_{0}-complete (and so does not add new sequences of ordinals of lengths $<\kappa$) and $\left(E_{1}, H\right)$ is still fat in $V^{P_{\gamma}}$.

Proof. The E_{0}-completeness follows by 1.7. Now $\left(E_{1}, H\right)$ is still fat by 1.9 and 1.10, imitating [Sh2, §1].
2.6. Definition. Let h^{*} be a function from ordinals to ordinals [or from sequences of ordinals to ordinals] and $\eta_{\delta}(\delta \in S)$ a sequence of ordinals. We say that $\left\langle\eta_{\delta}: \delta \in S\right\rangle$ has the h^{*}-uniformization property if for every $\left\langle g_{\delta}: \delta \in S\right\rangle, g_{\delta}$ a function with domain $\operatorname{Rang}\left(\eta_{\delta}\right), g_{\delta}(\alpha)<h^{*}(\alpha)\left[\operatorname{or} g_{\delta}(\alpha)<h^{*}\left(\eta_{\delta} \upharpoonright(\alpha+1)\right]\right.$, there is a function g with domain $\bigcup_{\delta \in S} \operatorname{Rang}\left(\eta_{\delta}\right)$, such that for every $\delta \in S$,

$$
\left(\exists i<l\left(\eta_{\delta}\right)\right)(\forall j)\left[i<j<l\left(\eta_{\delta}\right) \Rightarrow g\left(\eta_{\delta}(j)\right)=g_{\delta}\left(\eta_{\delta}(j)\right)\right] .
$$

Remark. On this property see [DS], [Sh1], [Sh2], [Sh4] and [SK].
2.7. Definition. We say $\left\langle\eta_{\delta}: \delta \in S\right\rangle$ is free if there is a function f, $\operatorname{Dom} f=S$, $f(\delta)<l\left(\eta_{\delta}\right)$, such that the sets $\left\{\eta_{\delta}(\alpha): f(\delta)<\alpha<l\left(\eta_{\delta}\right)\right\}$ are pairwise disjoint (for $\delta \in S$) (clearly, free implies the h^{*}-uniformization property).
2.8. Conclusion. Suppose κ is strongly inaccessible, $h^{*}: \kappa \rightarrow \kappa, S \subseteq \kappa$, and for every closed unbounded $C \subseteq \kappa$ there are, in $S \cap C$ and in $C-S$, closed subsets of any ordertype $<\kappa$.

For some forcing notion P :
(a) V^{P} and V have the same sequences of ordinals of length $<\kappa$.
(b) P satisfies the κ^{+}-chain condition, and e.g. $|P|=2^{\kappa}$.
(c) S satisfies in V^{P} the assumption we have on it (in V).
(d) There is $\left\langle\eta_{\delta}: \delta \in S\right\rangle, \eta_{\delta}$ an increasing sequence converging to δ, which has the h^{*} uniformization property.
(e) P is E_{0}-complete, where $E_{0}=\left\{\left\langle B_{i}: i<\delta\right\rangle: B_{i}\right.$ and $\bigcup_{i<\delta} B_{i}$ are ordinals in $\kappa-S$, B_{i} increasing continuous $\}$.

Proof. For given $\left\langle\eta_{\delta}: \delta \in S\right.$) let

$$
E_{1}=\left\{\left\langle B_{i}: i<\delta\right\rangle: B_{i} \text { is an ordinal in } S, B_{i} \text { increasing continuous }\right\}
$$

(or replace S by κ), and put $H\left(\left\langle B_{i}: i<\delta\right\rangle\right)=\left\langle\alpha_{i}: i<\delta\right\rangle$ if the α_{i} "code" the set $\left(\bigcup_{i<\delta} \operatorname{Rang}\left(\eta_{B_{i}}\right) \cap B_{i+1}\right)$.

Can we define $\left\langle\eta_{\delta}: \delta \in S\right\rangle$ so that $\left(E_{1}, H\right)$ is h_{1}-fat and $\left\{\eta_{\delta}: \delta \in S, \delta<\alpha\right\}$ is free for every $\alpha<\kappa$? The easiest way to do it is by forcing such $\left\langle\eta_{\delta}: \delta \in S\right\rangle$, a condition being an initial segment (alternatively use squares). Now we can define a $(<\kappa)$-support iteration $\bar{Q}=\left\langle P_{i}, \mathbf{Q}_{i}: i<2^{k}\right\rangle$ such that
(A) each \mathbf{Q}_{i} has the form $Q\left\langle g_{\delta}^{i}: \delta \in S\right\rangle$, where g_{δ}^{i} is a function with domain $\operatorname{Rang}\left(\eta_{\delta}\right), g_{\delta}^{i}(i)<h^{*}(i)\left(\left\langle g_{\delta}^{i}: \delta \in S\right\rangle \in V^{P_{i}}\right.$ of course), and $Q\left\langle g_{\delta}^{i}: \delta \in S\right\rangle=\{g: g$ a function with domain $j<\kappa$ and for every $i \in S \cap(j+1)$, for some $i^{*}<i$, $\left.(\forall \xi)\left[\xi \in \operatorname{Rang}\left(\eta_{\delta}\right) \wedge i^{*}<\xi<i \rightarrow g(\xi)=g_{\delta}^{i}(\xi)\right]\right\}$; and
(B) if $\left\langle g_{\delta}: \delta \in S\right\rangle \in V^{P}, \delta<2^{\kappa}$, then for some i,

$$
\left\langle g_{\delta}^{i}: \delta \in S\right\rangle=\left\langle g_{\delta}: \delta \in S\right\rangle .
$$

This is not hard to do. Easily each Q_{i} is E_{0}-complete and (E_{1}, H)-complete; hence by $2.5 P_{2^{\kappa}}$ is. Now $P_{2^{\kappa}}$ satisfies the κ^{+}-chain condition (see [Sh1, Chapter VIII, §2]).
2.9. Theorem. Suppose
(a) $\kappa=\chi^{+}$, where χ is a singular strong limit,
(b) E_{0} is fat,
(c) $\left(E_{1}, H\right)$ is χ-fat (i.e. h_{1}-fat, $\left.h_{1}(\mu, i)=\chi\right)$, $\operatorname{Dom} E_{1}=\operatorname{Dom} E_{0}$, and $\left(\exists \bar{B} \in E_{1}\right)$ $\left[l\left(\bar{B}_{1}\right) \leq \mathrm{cf} \kappa\right]$, and $\bar{B} \in E_{1}, l(\bar{B})<\mathrm{cf} \kappa$ implies $\bar{B} \in E_{0}$,
(d) $Q=\left\langle P_{i}, \mathbf{Q}_{i}: i\langle\gamma\rangle\right.$ is $a\left(\langle\kappa)\right.$-support iteration with limit P_{γ}, and
(e) each Q_{i} is E_{0}-complete and $\left(E_{1}, H, h_{1}\right)$-complete.

Then P_{γ} is E_{0}-complete and, in $V^{P_{\gamma}},\left(E_{1}, H_{1}\right)$ is still h_{1}-fat.
Proof. As in 2.5 , only simpler: we use trees of power $<\chi$ to get an inverse limit of power $\chi^{\text {cf } ~} x$, and then use 1.9.
2.10. Conclusion. Suppose $\kappa=\chi^{+}=2^{\chi}, \chi$ a singular strong limit, and $S \subseteq$ $\{\delta<\kappa: \operatorname{cf} \delta=\operatorname{cf} \chi\}$ is stationary, but no initial segment of it is stationary. Then for some forcing motion P :
(a) V^{P} and V have the same sequences of ordinals of length $<\kappa$,
(b) P satisfies the κ^{+}-chain condition,
(c) S is stationary in V^{P}, and
(d) there is $\left\langle\eta_{\delta}: \delta \in S\right\rangle, \eta_{\delta}$ an increasing sequence converging to δ of order-type cf χ and h^{*} : $\left.{ }^{\text {ef } ~} \chi\right\rangle \kappa \rightarrow \kappa$ such that $\left\langle\eta_{\delta}: \delta \in S\right\rangle$ has the h^{*}-uniformization property.

Proof. Like 2.8, using 2.9 instead 2.5.
2.11. Theorem. Suppose
(a) $\kappa_{1}=\kappa_{0}^{+}, \kappa_{0}$ strongly inaccessible,
(b) E_{0} is fat, $\alpha\left(E_{0}\right)=\kappa_{0}$,
(c) $\kappa\left(E_{1}\right)=\kappa_{1}$ and $\left(E_{1}, H\right)$ is κ-complete, (i.e. h_{1}-complete $h_{1}(\mu, i)=\kappa_{0}$ for
$i<\mu<\kappa_{1}$, and

$$
\left(\forall \bar{B} \in E_{1}\right)\left(l(\bar{B}) \leq \kappa_{0}\right), \quad\left(\forall \bar{B} \in E_{1}\right)\left(l(\bar{B})<\kappa_{0} \Rightarrow \bar{B} \in E_{0}\right),
$$

(d) $\bar{a}=\left\langle P_{i}, Q_{i}: i\langle\gamma\rangle\right.$ is $a\left(\langle\kappa)\right.$-support iteration with limit P_{γ}, and
(e) each Q_{i} is E_{0}-complete and $\left(E_{1}, H, h_{1}\right)$-complete.

Then P_{γ} is E_{0}-complete and, in $V^{P_{\gamma}},\left(E_{1}, H\right)$ is still h_{1}-fat.
Remark. We can let E_{0} be essentially the set of all sequences of the right power and length.

Proof. As in [Sh1, §1].
2.12. Theorem. Suppose
(a) $\kappa_{1}=\kappa_{0}^{+}, 2^{\kappa_{0}}=\kappa_{1}$, and $\diamond_{\kappa_{0}}$ holds.
(b) E_{0} is fat, with $\alpha\left(E_{0}\right)=\kappa_{1}$.
(c) $\kappa\left(E_{1}\right)=\kappa_{1},\left(E_{1}, H\right)$ is κ_{0}-complete and

$$
\left(\forall \bar{B} \in E_{1}\right)\left(l(\bar{B}) \leq \kappa_{0}\right), \quad\left(\forall \bar{B} \in E_{1}\right)\left(l(\bar{B})<\kappa_{0} \Rightarrow \bar{B} \in E_{0}\right) .
$$

(d) We make a change in Definition 2.3(b) for $\mu=\kappa_{0}$: there is a stationary subset $S=F_{\mu}\left(\left\langle N_{i} \cap \operatorname{Dom} E_{1}: i<l(\bar{N})\right\rangle\right)$ of κ_{0}, satisfying \diamond_{S}, and we restrict (β) to $i \notin S$ (or to $i \notin S \cap C, C$ a closed unbounded subset of κ_{0}; the truth value of $\alpha \in C$ depends on $\beta \upharpoonright \alpha$ and $N)$.
(e) $\bar{Q}=\left\langle P_{i}, Q_{i}: i\langle\gamma\rangle\right.$ is $a\left(\langle\kappa)\right.$-support iteration with limit P_{γ}.
(f) Each Q_{i} is E_{0}-complete and $\left(E_{1}, H, \kappa_{0}\right)$-complete.

Then P_{γ} is E_{0}-complete and in $V^{P_{\gamma}}\left(E_{1}, H\right)$ is still $h_{1}-$ fat $\left(s o\left(\kappa_{1}>\alpha\right)^{V^{P}}=\left(\kappa_{1}>\alpha\right)^{V}\right)$.
Proof. As in [SK] (we use the diamond to compensate for 1.10 which is not applicable).

§3. Diamonds and Souslin trees on successors of singular λ.

3.1. Theorem. Suppose λ is singular, $\chi \leq \lambda, \lambda^{+}=2^{\lambda}$, $(\forall \kappa<\chi)(\forall \mu<\lambda) \mu^{\kappa}<\lambda$ and λ_{λ} holds. Then we can define for every $\alpha<\lambda^{+}$a family \mathscr{P}_{α} of $\leq \lambda$ subsets of α, such that for every $A \subseteq \lambda^{+}$, for some closed unbounded $C \subseteq \lambda^{+}$, for no $\delta \in C$ do we have that $\aleph_{0}<\operatorname{cf}(\delta)<\chi$ and $G u(A) \cap \delta$ is a stationary subset of δ, where $G u(A)=$ $\left\{\alpha: A \cap \alpha \notin \mathscr{P}_{\alpha}\right\}$.

Remark. If λ is a strong limit (which is the important case), then $\chi=\lambda$ is okay.
Proof. We imitate part of the proof of the strong covering lemma [SH1, XIII, 2.3].

We have assumed \square_{λ}, so there is $\left\langle C_{\delta}: \lambda<\delta<\lambda^{+}, \delta\right.$ limit \rangle such that C_{δ} is a closed unbounded subset of $\lambda,\left|C_{\delta}\right|<\lambda$ and if $\gamma \in C_{\delta}^{\prime}$ (the set of limit points of C_{δ}) then $C_{\gamma}=C_{\delta} \cap \gamma$.

Let $\kappa=\operatorname{cf} \lambda, R=\{\theta: \theta$ a regular cardinal, $\kappa<\theta<\lambda\}$. As $2^{\lambda}=\lambda^{+}$we can find $f_{i}^{*}\left(i<\lambda^{+}\right)$such that

1) $\operatorname{Dom} f_{i}^{*}=R, f_{i}^{*}(\theta)<\theta$,
2) $f_{i}^{*}<^{*} f_{j}^{*}$ for $i<j$ (which means that, for every large enough $\theta \in R$, $\left.f_{i}^{*}(\theta)<f_{j}^{*}(\theta)\right)$,
3) if $i \in C_{j}, \theta \in R$ and $\theta>\left|C_{j}\right|$, then $f_{i}^{*}(\theta)<f_{j}^{*}(\theta)$,
4) if $\operatorname{Dom} f=R$ and $(\forall \theta)[f(\theta)<\theta]$, then $f<^{*} f_{i}^{*}$ for some i, and
5) if the length of C_{j} is divisible by ω^{2} and $\theta>\left|C_{j}\right|$, then $f_{j}^{*}(\theta)=\sup _{i \in C j} f_{i}^{*}(\theta)$. Also, as $2^{\lambda}=\lambda^{+}$there is a list $\left\{A_{\alpha}: \alpha<\lambda^{+}\right\}$of all bounded subsets of λ^{+}.

Now let the model $M^{2}=M_{\lambda^{+}}^{2}$ be defined as follows: its universe is λ^{+}, and it has
the following functions: $F^{0}(\beta,-)$ is a one-to-one mapping from β onto $|\beta| ; G^{0}$ is essentially an inverse of F^{0}, i.e. $G^{0}\left(\beta, F^{0}(\beta, \gamma)\right)=\gamma$ for $\gamma<\beta$;
S : the successor function, $S(\alpha)=\alpha+1 ; \mathrm{CF}(\alpha)$ is $\operatorname{cf}(\delta)$ if δ is limit, and $\alpha-1$ if α is a successor ordinal;
H^{0} : for β limit, $\left\langle H^{0}(\beta, i): i<\mathrm{CF}(\beta)\right\rangle$ is an increasing continuous sequence converging to β, while for β successor $H^{0}(\beta, 0)=|\beta|, H^{0}(\beta, 1)=|\beta|^{+}(\operatorname{cf} \beta<\lambda)$;

0 and λ are individual constants;
$<$ is the order relation;

$$
F^{1}(i, \theta)=f_{i}^{*}(\theta) \quad \text { for } \theta \in R \text { and } i<\lambda^{+} ;
$$

G^{2} : for limit $\delta, \lambda<\delta<\lambda^{+},\left\langle G^{2}(\delta, i): i<G^{2}(\delta, \delta)\right\rangle$ is an increasing continuous sequence, whose set of elements is C_{δ}.

Now we can define the \mathscr{P}_{α} 's. So for every limit δ and $\mu<\lambda$ we define a model $M_{\delta, \mu}$: it is the closure of $\{i: i<\mu\} \cup C_{\delta}$ under the functions of M^{2} (we do not strictly distinguish between a submodel and its set of elements). When cf $\delta \geq \chi$ let $\mathscr{P}_{\delta}=\varnothing$; otherwise let

$$
\mathscr{P}_{\delta}=\left\{\bigcup_{\alpha \in I} A_{\alpha}: \text { for some } \mu<\lambda, I \text { is a subset of } M_{\delta, \mu} \text { of power cf } \delta\right\} .
$$

So we have to prove only that $\left\langle\mathscr{P}_{\delta}: \delta<\lambda^{+}\right\rangle$is as required. So let $A \subseteq \lambda^{+}$ and $h: \lambda^{+} \rightarrow \lambda^{+}$be such that $A \cap \alpha=A_{h(\alpha)}$. Now we define, by induction on δ, $\lambda<\delta<\lambda^{+}$, an elementary submodel N_{δ} of M^{2} such that:
a) $\delta \in N_{\delta}, C_{\delta} \subseteq N_{\delta}, N_{\delta}$ is closed under h, and $\left\|N_{\delta}\right\| \leq\left|C_{\delta}\right|$;
b) the closure (in the order topology) of $\bigcup\left\{N_{i}: i \in C_{\delta}^{\prime}\right\}$ is contained in N_{δ}; and
c) there is $i=i_{\delta} \in N_{\delta}$ such that, for every large enough $\theta \in R$,

$$
\sup \left(\bigcup\left\{N_{i}: i \in C_{\delta}\right\} \cap \theta\right)<f_{i}^{*}(\theta)
$$

If $\delta=\sup C_{\delta}^{\prime}$, let $N_{\delta}^{*}=\bigcup\left\{N_{\alpha}: \alpha \in C_{\delta}^{\prime}\right\}$. There is no problem in doing so (for (c) use (4) in the conditions on the f_{i}^{*}). Let

$$
C^{*}=\left\{\alpha<\lambda^{+}: \alpha \text { is limit, } \alpha>\lambda, \text { and for every } \delta<\alpha, \sup \left(N_{\delta}\right)<\alpha\right\}
$$

Clearly C^{*} is a closed unbounded subset of λ^{+}. We shall prove:
FACt A. If $\delta \in C^{*}$ and $\operatorname{cf} \lambda<\operatorname{cf} \delta \leq \chi$, then for a closed unbounded set of $\gamma<\delta$, $(\exists \mu)\left[N_{\gamma}^{*} \subseteq M_{\gamma, \mu}\right]$.

This is enough, because the case $\mathrm{cf} \delta \leq \mathrm{cf} \lambda$ holds by [Sh3], and then we can find an unbounded subset D of $\delta \cap N_{\delta}^{*}$ of power cf δ; hence $\{h(\alpha)$: $\alpha \in D\} \subseteq N_{\delta}^{*} \subseteq M_{\delta, \mu}$, wherefore $\bigcup_{\alpha \in D} A_{h(\alpha)} \in \mathscr{P}_{\delta}$, and as $A_{h(\alpha)}=A \cap \alpha$ for $\alpha \in D$ clearly $A \cap \delta=$ $\bigcup_{\alpha \in D} A_{h(\alpha)} \in \mathscr{P}_{\delta}$.

PROOF OF FACT A. Let $\left(C_{\delta}\right)^{\prime}=\left\{\beta(\zeta): \zeta<\zeta_{0}\right\}, \beta_{\zeta}=\beta(\zeta)$ increasing continuous, so $C_{\delta} \cap \beta(\zeta)$ has order-type divisible by ω^{2}. Let Ch_{ζ} be the function with domain R, $\operatorname{Ch}_{\zeta}(\theta)=\operatorname{Sup}\left(\theta \cap \bigcup\left\{N_{\beta}: \beta \in C_{\beta(\zeta)}^{\prime}\right\}\right)$.

By the choice of $i_{\beta(\zeta)}, \mathrm{Ch}_{\zeta}<^{*} f_{i_{\beta(5)}}^{*}$. On the other hand, as $i_{\beta(\zeta)} \in N_{\beta(\zeta)}$, for every $\theta \in \operatorname{Dom}\left(\mathrm{Ch}_{\zeta}\right), \theta>\left|C_{\delta}\right|$, we have $f_{i_{\beta(\zeta)}}^{*}(\theta)<\mathrm{Ch}_{\zeta+1}(\theta)$ for every $\xi, \zeta<\xi<\zeta_{0}$. So for some $\mu_{\zeta}<\lambda$:
(α) $\quad(\forall \theta \in R)\left[\theta \geq \mu_{\zeta} \wedge \theta \in \operatorname{Dom}\left(\mathrm{Ch}_{\zeta}\right) \Rightarrow \mathrm{Ch}_{\zeta}(\theta)<f_{i_{\beta(\zeta)}}^{*}(\theta)<\mathrm{Ch}_{\zeta+1}(\theta)\right]$,

$$
\begin{equation*}
\beta(\xi) \leq i_{\beta(\xi)}<\beta(\xi+1) \tag{1}
\end{equation*}
$$

As cf $\zeta_{0}=\operatorname{cf} \delta>\operatorname{cf} \lambda$, there is μ^{*} such that $\mu^{*}>\left|C_{\delta}\right|$ and $\left\{\zeta<\zeta_{0}: \mu_{\zeta}<\mu^{*}<\lambda\right\}$ is an unbounded subset of ζ_{0} and by their definition (see (3) and (α_{1})):
(β) $\quad\left(\forall \zeta<\zeta<\zeta_{0}\right)(\forall \theta \in R)\left[\theta \geq \mu^{*} \wedge \beta(\xi) \in C^{*} \rightarrow f_{\beta(\zeta)}^{*}(\theta)<f_{i_{\beta(\zeta)}}^{*}(\theta)<f_{\beta(\xi)}^{*}(\theta)\right]$ and, even more trivially,
(γ) $\quad\left(\forall \zeta<\xi<\zeta_{0}\right)(\forall \theta \in R)\left[\theta \geq \mu^{*} \wedge \theta \in \operatorname{Dom~}_{\zeta} \mathrm{Ch}_{\zeta} \Rightarrow \mathrm{Ch}_{\zeta}(\theta)<\mathrm{Ch}_{\zeta}(\theta)\right]$.
Also, by (5),
(δ) For every limit $\zeta<\zeta_{0}$

$$
f_{\beta(\zeta)}^{*}(\theta)=\sup _{\xi<\zeta} f_{\beta(\xi)}^{*}(\theta) \quad \text { for } \theta \geq \mu^{*}
$$

Note also
(ε) for every limit $\zeta<\zeta_{0}$ and $\theta \in \operatorname{Dom} \mathrm{Ch}_{\zeta}$,

$$
\mathrm{Ch}_{\zeta}(\theta)=\sup _{\xi<\zeta} \mathrm{Ch}_{\xi}(\theta) .
$$

Now choose a closed unbounded $E \subseteq \zeta_{0}$ such that $(\forall \zeta \in E)\left(\beta(\xi) \in C^{*}\right)$ and for every $\zeta_{1}<\zeta_{2}$ in E for some $\zeta, \zeta_{1}<\zeta<\zeta_{2} \wedge \mu_{\zeta}<\mu^{*}$. By $(\alpha)-(\varepsilon)$ it is easy to see that
(*) for every $\zeta \in E$ and $\theta \geq \mu^{*} \wedge \theta \in \operatorname{Dom} \mathrm{Ch}_{\zeta}$,

$$
\mathrm{Ch}_{\zeta}(\theta)=f_{\beta(\zeta)}^{*}(\theta)
$$

As $\{\beta(\zeta): \zeta \in E\}$ is a closed unbounded subset of δ, for proving Fact A (and thus the theorem), it suffices to prove:
$(* *)$ for $\zeta \in E^{\prime}, N_{\beta(\zeta)}^{*}$ is the closure of $\left(N_{\beta(\zeta)}^{*} \cap \mu^{*}\right) \cup C_{\beta(\zeta)}$ (hence is included in $M_{\left.\beta(\zeta), \mu^{*}\right)}$.

To prove $\left({ }^{* *)}\right.$ let B be the closure of $\left(\left|N_{\beta(5)}^{*}\right| \cap \mu^{*}\right) \cup C_{\beta(5)}$ (closure in M^{2}). So clearly $B \subseteq N_{\beta(\zeta)}^{*}$ (it is easy to check that $C_{\beta(\zeta)} \subseteq N_{\beta(\zeta)}$). Suppose $B \neq N_{\beta(\zeta)}^{*}$; then there is a minimal ordinal i in $N_{\beta(\zeta)}^{*}-B$. As $C_{\beta(\zeta)}$ is unbounded in $\beta(\zeta)$ and $\operatorname{Sup} N_{\beta(\zeta)}^{*}=\beta(\zeta)$ (as $\beta(\xi) \in C^{*}$), clearly B has a member $>i$. Let j be the first ordinal in $B-i$. So B is necessarily disjoint to $[i, j)$, and $j>i$.

Case A. j is a successor ordinal: then $\mathrm{CF}(j)=j-1$, so $j \in B \Rightarrow j-1 \in B$; but $(j-1) \in[i, j)$, contradiction.

Case B. j is a limit ordinal but not a regular cardinal. Then $\mathrm{CF}(j) \in B$, and $\mathrm{CF}(j)=\operatorname{cf}(j)<j$. Hence $\mathrm{CF}(j)<i$ and there is $\varepsilon<\mathrm{CF}(j)$ such that $i \leq F(j, \varepsilon)<$ j (as $\langle\mathrm{CF}(j, \varepsilon): \varepsilon<\mathrm{CF}(j)\rangle$ converge to j); but $j, \varepsilon \in B \Rightarrow \mathrm{CF}(j, \varepsilon) \in B$, contradiction.

Case C. j is a regular cardinal. Necessarily $j<\lambda$, and as $j>i, j \geq \mu^{*}$ so by (*)

$$
\begin{aligned}
i & \leq \operatorname{Sup}\left(N_{\beta(\zeta)}^{*} \cap j\right) \leq f_{\beta(5)}^{*}(j)=\operatorname{Sup}\left\{f_{\varepsilon}^{*}(j): \varepsilon \in C_{\beta(\zeta)}\right\} \\
& =\operatorname{Sup}\left\{F^{1}(\varepsilon, j): \varepsilon \in C_{\beta(5)}\right\} \leq \operatorname{Sup}(B \cap j)<i,
\end{aligned}
$$

contradiction.
3.2. Conclusion. Suppose $\square_{\lambda}, 2^{\lambda}=\lambda^{+}$, and $(\forall \mu<\lambda)\left[\mu^{\text {cf } \lambda}<\lambda\right]$.

1) If $S \subseteq S^{*}=\left\{\delta<\lambda^{+}: \operatorname{cf} \delta=\operatorname{cf} \lambda\right\}$, and $F(S)=\left\{\delta<\lambda^{+}: \delta \cap S\right.$ is a stationary subset of $\delta\}$ is stationary, then \diamond_{S} holds.
2) There are a stationary $S \subseteq S^{*}, F(S)=\varnothing, \diamond_{S}$, and a square sequence $\left\langle C_{\delta}: \lambda<\delta\right.$ $\left.<\lambda^{+}\right\rangle$(i.e. C_{δ} is a closed unbounded subset of $\delta, \alpha \in C_{\delta}^{\prime} \Rightarrow C_{\alpha}=C_{\delta} \cap \alpha,\left|C_{\delta}\right|<\lambda$) such that $C_{\delta} \cap S=\varnothing$.
3) There is $a \lambda^{+}$-Souslin tree complete at levels of cofinality $\neq \operatorname{cf} \lambda$.
4) Suppose T is a complete first order theory, T has a model M in which $\left(P^{M},<\right)$ is a Souslin tree, $\left(Q^{M},<\right) \cong\left(\omega_{1},<\right)$, and $F^{M}: P^{M} \rightarrow Q^{M}$ gives the level. Then T has a model $N,\left(Q^{N},<\right)$ is a λ^{+}-like ordering, and $\left(P^{N},<\right)$ is $a \kappa^{+}$-Souslin tree (except that its set of levels is not well-ordered).

Proof. (1) By the previous theorem there are $\mathscr{P}_{\alpha} \subseteq \mathscr{P}(\alpha)(\alpha \in S),\left|\mathscr{P}_{\alpha}\right| \leq \lambda$, such that, for every $A \subseteq \lambda,\left\{\alpha \in S: A \cap \alpha \in \mathscr{P}_{\alpha}\right\}$ is stationary (as its complement in S is not so large). By a theorem of Kunen it follows that \diamond_{S} holds.
(2) It is known that $I=\left\{S \subseteq \lambda^{+}: \diamond_{S}\right.$ does not hold $\}$ is a normal ideal (see Devlin and Shelah [DS]). Let $\left\langle C_{\delta}^{0}: \lambda<\delta<\lambda^{+}\right\rangle$be a square sequence. For $\alpha<\lambda$ let $S_{\alpha}^{*}=\left\{\delta \in S^{*}: C_{\alpha}^{0}\right.$ has order-type $\left.\alpha\right\}$. So $\bigcup_{\alpha<\lambda} S_{\alpha}^{*} \notin I$ (by part (1)); hence $S_{\alpha}^{*} \notin I$ for some α. Let $S=S_{\alpha}^{*} ; F(S)=\varnothing$ because C_{δ}^{0} is a close unbounded subset of δ, $\left|C_{\delta}^{0} \cap S\right| \leq 1$. Now define C_{δ}^{1} : if $C_{\delta}^{0} \cap S=\varnothing$, then $C_{\delta}^{1}=C_{\delta}^{0}$, and if $C_{\alpha}^{0} \cap S=\left\{\gamma_{\alpha}\right\}$, then $C_{\alpha}^{1}=C_{\alpha}^{0}-\left(\gamma_{\alpha}+1\right)$. It is easy to check that S and $\left\langle C_{\delta}^{1}: \delta<\lambda^{+}\right\rangle$are as required.
(3) Part (2) of the conclusion provides the necessary assumptions for the theorem of Jensen [J] on the existence of such a λ^{+}-Souslin tree.
(4) Keisler and Kunen (see Keisler [K]) prove such a theorem for successor of regular. We just have to combine this with the proof of $\left(\aleph_{1}, \aleph_{0}\right) \rightarrow\left(\lambda^{+}, \lambda\right)$ (the theorem is due to Jensen; for a proof by Silver, see [J]).

Notice that if e.g. $0^{\#} \notin V$ and κ is strongly inaccessible, the hypothesis of 3.3 will hold (e.g. for μ a successor of a strong limit cardinal).
3.3. Lemma. Suppose κ is strongly inaccessible and there is a square sequence $\left\langle C_{\delta}^{0}: \delta<\kappa\right.$, cf $\left.\delta<\mu^{+}\right\rangle, C_{\delta}$ having order-type $<\delta$. Let μ be regular. Suppose $S \subseteq \mu$ and \diamond_{S} holds.

Then we can choose for every $\delta<\kappa$, $\operatorname{cf} \delta<\mu$, a closed unbounded subset B_{δ} and $f_{\delta}: B_{\delta} \rightarrow\{0,1\}$ such that for every closed unbounded $C \subseteq \kappa$ and $f: C \rightarrow\{0,1\}$, for stationarily many $\delta<\kappa$ we have $B_{\delta} \subseteq C$ and $f_{\delta} \subseteq f$.

Proof. For some γ the set $S_{1}=\left\{\delta<\kappa\right.$: cf $\delta=\mu$ and C_{δ} has order-type $\left.\gamma\right\}$ is stationary (by Fodor's lemma). Let g be an increasing continuous function from μ into $\gamma, \operatorname{Sup}(\operatorname{Rang} g)=\gamma$.

Let $\left\{\left(C_{i}^{1}, f_{i}^{1}\right): i \in S\right\}$ be such that C_{i} is a closed unbounded subset of i, f_{i} a function from i to $\{0,1\}$, and, for every closed unbounded $C \subset \mu$ and $f: \mu \rightarrow\{0,1\}$ for stationarily many i 's, $C \cap i=C_{i}^{1}$ and $f \upharpoonright i=f_{i}^{1}$. Now for some $\delta<\kappa$ we shall define B_{δ} and f_{δ}. If C_{δ}^{0} has order-type γ_{δ}, and $\gamma_{\delta}<\gamma$, let h_{δ} be a one-to-one monotonic function from γ_{δ} onto C_{δ}^{0}. If γ_{δ} is in the range of g, let $\beta_{\delta}<\mu$ be such that $g\left(\beta_{\delta}\right)=\gamma_{\delta}$. Now

$$
\boldsymbol{B}_{\delta}=\left\{h_{\delta}(g(\varepsilon)): \varepsilon \in C_{\beta_{\delta}}^{1}\right\}, \quad f_{\delta}\left[h_{\delta}(g(\varepsilon))\right]=f_{\beta_{\delta}}^{1}(\varepsilon) .
$$

The rest should be clear.
Concluding Remarks. (1) We can use a weaker variant of the square, e.g. (as Jensen [J] suggested):
$\square_{\lambda}^{\prime}$: For every $\alpha<\lambda^{+}$we have a family \mathscr{P}_{α}^{c} of closed unbounded subsets of α of order-type $<\lambda,\left|\mathscr{P}_{\alpha}^{c}\right| \leq \lambda$, such that $C \in \mathscr{P}_{\alpha}^{c}, \beta \in C^{\prime} \Rightarrow C \cap \beta \in \mathscr{P}_{\beta}^{c}$.

We can weaken this further (where $S \subseteq \lambda^{+}$is stationary):
$\square_{\lambda}^{\prime}(S)$: For every $\alpha<\lambda^{+}$we have a family $\mathscr{P}_{\alpha}^{c},\left|\mathscr{P}_{a}^{c}\right| \leq \lambda$, of closed unbounded subsets of α of order-type $<\lambda$, such that $C \in \mathscr{P}_{\alpha}^{c}, \beta \in C^{\prime}, \beta \in S \Rightarrow \beta \cap C \in \mathscr{P}_{\beta}^{c}$.
$\square_{\lambda}^{\prime \prime}(S)$: For every $\alpha<\lambda^{+}$we have a family \mathscr{P}_{α}^{c} of closed unbounded subsets of α of order-type $<\lambda,\left|\mathscr{P}_{\delta}^{c}\right| \leq \lambda$, such that $C \in \mathscr{P}_{\alpha}^{c}, \beta \in C^{\prime} \Rightarrow \beta \cap C \in \mathscr{P}_{\beta}^{c}$.

See also [Sh3] on this.
(2) We can rephrase our results in terms of clubs instead of diamonds, or even in the following manner: there are $\mathscr{P}_{\alpha} \subseteq\{A \subseteq \alpha:|A|<\lambda\},\left|\mathscr{P}_{\alpha}\right| \leq \lambda$, such that for every unbounded $A \subseteq \lambda^{+}$for "many" α 's,

$$
\left(\exists B \in \mathscr{P}_{\alpha}\right)(A \cap B \text { is an unbounded subset of } \alpha) .
$$

3.4. THEOREM. Suppose λ is strong limit of cofinality $\kappa>\aleph_{0}$, with $2^{\lambda}=\lambda^{+}$. Then we can find $\left\langle\mathscr{P}_{\alpha}: \alpha<\lambda^{+}\right\rangle, \mathscr{P}_{\alpha}$ a family of $\leq \lambda$ subsets of α, such that for every $X \subseteq \lambda^{+}$ there are $S_{i} \subseteq \lambda^{+}(i<\kappa)$, $\bigcup_{i<\kappa} S_{i}=\left\{\alpha<\lambda^{+}: \operatorname{cf} \alpha<\kappa\right\}$, such that if $\delta \notin S_{X}^{*}=$ $\left\{\delta<\lambda^{+}: \operatorname{cf} \delta=\kappa, X \cap \delta \in \mathscr{P}_{\delta}\right\}$, then S_{i} is not stationary below $\delta($ for every $i<\kappa$).

Proof. Let $\left\{A_{i}: i<\lambda^{+}\right\}$be a list of all bounded subsets of λ^{+}such that $A_{i} \subseteq i$. For each α let $\alpha=\bigcup_{\xi<\kappa} B_{\xi}^{\alpha}$, the B_{ξ}^{α} increasing with ξ and $\left|B_{\xi}^{\alpha}\right| \leq \lambda_{\xi}$, where $\lambda=\sum_{\xi<\kappa} \lambda_{\xi}$, the $\lambda_{\xi}<\lambda$ increasing continuously. For each $\delta<\lambda^{+}$, choose a closed unbounded subset C_{δ}^{*} of δ of order type cf δ. Let $\mathscr{P}_{\delta, \xi}$ be the family of sets which are a union of a subfamily of $\left\{A_{i}: i \in \bigcup\left\{B_{\xi}^{\alpha}: \alpha \in C_{\delta}^{*}\right\}\right\}$ and $\mathscr{P}_{\alpha}=\bigcup_{\xi<\kappa} \mathscr{P}_{\alpha, \xi}$. Clearly $\mathscr{P}_{\alpha, \xi}$ is a family of $\leq 2^{\lambda_{\xi}}$ subsets of α (as $A_{i} \subseteq i$), and so \mathscr{P}_{α} is a family of $\leq \lambda$ subsets of α.

Let $X \subseteq \lambda^{+}$, and $S_{X}=\left\{\delta<\lambda^{+}: X \cap \delta \in \mathscr{P}_{\delta}\right.$, cf $\left.\delta=\kappa\right\}$, and $C=\left\{\delta<\lambda^{+}\right.$: for every $\left.\alpha<\delta, X \cap \alpha \in\left\{A_{i}: i<\delta\right\}\right\}$ (so clearly C is closed unbounded), and define a two-place function f on λ^{+}:

$$
f(\alpha, \beta)=\operatorname{Min}\left\{\xi<\kappa: X \cap \alpha \in\left\{A_{i}: i \in B_{\xi}^{\beta}\right\}\right\} .
$$

By the definition of $C, f(\alpha, \beta)$ is well defined for $\alpha<\beta, \beta \in C$ (remember $\beta=$ $\bigcup_{\xi<\kappa} B_{\xi}^{\beta}$). Moreover, just $(\alpha, \beta] \cap C \neq \varnothing$ is enough.

For $\alpha \in C, \operatorname{cf} \alpha<\kappa$, we define
$\xi(\alpha)=\operatorname{Min}\{\xi<\kappa$: for every $\gamma<\alpha$, there is a β with $\gamma \leq \beta<\alpha$ and $f(\beta, \alpha)<\xi\}$.
As cf $\alpha<\kappa$, clearly $\xi(\alpha)$ is well defined.
FACT. If $\delta \in C, \operatorname{cf} \delta=\kappa, \xi<\kappa$, and $\left\{\gamma \in C_{\delta}^{*} \cap C: \xi(\gamma) \leq \xi\right\}$ is unbounded below δ, then $\delta \in S_{X}$.

This is because for every $\gamma<\delta$, for some $\beta<\alpha<\delta, \gamma<\beta, \alpha \in C_{\delta}^{*} \cap C$, we have $f(\beta, \alpha) \leq \xi$, so

$$
X \cap \beta \in\left\{A_{i}: i \in B_{\xi}^{\alpha}\right\} \subseteq\left\{A_{i}: i \in \bigcup\left\{B_{\xi}^{\varepsilon}: \varepsilon \in C_{\delta}^{*}\right\} .\right.
$$

As we can find arbitrarily large such $\beta<\delta$, clearly $X \cap \delta \in \mathscr{P}_{\delta, \xi} \subseteq \mathscr{P}_{\delta}$. So the fact is proved.

We can conclude that for every $X \subseteq \lambda^{+}$, there are a closed unbounded set $C \subseteq \lambda^{+}$ and a function ξ from $\{\delta \in C: \operatorname{cf} \delta<\kappa\}$ into κ, such that

$$
\begin{gathered}
\delta<\lambda^{+}, \operatorname{cf} \delta=\kappa, \delta \notin S_{X} \text { implies for every } \xi_{0}<\kappa, \\
\left\{\alpha \in C_{\delta}^{*} \cap C: \xi(\alpha) \leq \xi_{0}\right\} \text { is bounded below } \delta .
\end{gathered}
$$

Remark. This shows that, assuming G.C.H., $\diamond_{\left\{\delta<\lambda^{+}: \text {cf } \delta=\text { cf } \lambda\right\}}$ may follow from properties of cardinals $<\lambda$.

There is one missing point: we prove the conclusion restricted to C. What about the $\delta \notin C$? First we can assume that the points of C which are not limit points of C have cofinality ω, and that $0 \in C$. Now if $\beta<\gamma$ are successive members of C, we define $S_{i} \cap(\beta, \gamma)(i<\kappa)$ such that for no $\delta \in(\beta, \gamma)$, cf $\delta=\kappa$, is $S_{i} \cap \delta$ stationary in δ, and $\bigcup_{i<\kappa} S_{i} \cap(\beta, \gamma)=\{i \in(\beta, \gamma): \mathrm{cf} i<\kappa\}$. Why is this possible? Because there is a continuous increasing function from (β, γ) into C.

REFERENCES

[DS] K. Devlin and S. Shelah, A weak form of the diamond which follows from $2^{\mathrm{N}_{0}}<2^{\mathrm{N}_{1}}$, Israel Journal of Mathematics, vol. 29 (1978), pp. 239-247.
[DJ] K. Devlin and H. Johnsbråten, The Souslin problem, Lecture Notes in Mathematics, vol. 405, Springer-Verlag, Berlin, 1974.
[Gr] J. Gregory, Higher Souslin trees, this Journal, vol. 41 (1976), pp. 663-671.
[J] R. B. Jensen, The fine structure of the constructible universe. Annals of Mathematical Logic, vol. 4 (1972), pp. 229-308.
[K] H. J. Keisler, Models with tree structures, Proceedings of the Tarski Symposium (Berkeley, 1971; L. Henkin, editor), Proceedings of Symposia in Pure Mathematics, vol. 25, American Mathematical Society, Providence, R.I., 1974, pp. 331-348.
[Sh1] S. Shelah, Proper forcing, Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin, 1982.
[Sh2] , Whitehead groups may not be free even assuming CH. I, Israel Journal of Mathematics, vol. 28 (1977), pp. 193-203.
[Sh3] -, On successors of singular cardinals, Logic Colloquium '78 (M. Boffa, D. van Dalen and K. McAloon, editors), Studies in Logic and the Foundations of Mathematics, vol. 97, North-Holland, Amsterdam. 1979, pp. 357-380.
[Sh4] -Whitehead groups may not be free even assuming CH. II, Israel Journal of Mathematics, vol. 35 (1980), pp. 257-285.
[SK] C. J. Steinhorn and J. H. King, The uniformization property for \aleph_{2}, Israel Journal of Mathematics, vol. 36 (1980), pp. 248-256.

```
THE HEBREW UNIVERSITY
    JERUSALEM, ISRAEL
UNIVERSITY OF CALIFORNIA
    BERKELEY, CALIFORNIA 94720
```


[^0]: Received July 6, 1982.
 ${ }^{1}$ This research was partially supported by the NSF and BSF.

