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 THE JOURNAL OF SYMBOLIC LOGIC

 Volume 49, Number 4, Dec. 1984

 DIAMONDS, UNIFORMIZATION

 SAHARON SHELAH1

 Abstract. Assume G.C.H. We prove that for singular A, F1A implies the diamonds hold for
 many S c A+i (including S c: {: 6 e A,,cfd = cf A}.) We also have complementary consis-
 tency results.

 ?0. Introduction. By Gregory [Gr] and Shelah [Sh3], assuming G.C.H.,

 0 < A +: Cf #cf ,A holds for any i (but is meaningless for O = ). So O, + holds. On
 the other hand, Jensen had proved (before) the consistency of G.C.H. + SH (with

 ZFC); thus >,, may fail (see Devlin and Johnsbraten [DJ]); later the author proved
 that for i regular OK{6<A+:cf(,3 A may fail (see Steinhorn and King [SK].) Woodin
 proved that K0K may fail for the first inaccessible K, but though K is strong limit,
 G.C.H. does not hold below K in his model. He started with a supercompact cardinal
 and used Radin forcing.

 Assuming G.C.H., for simplicity our results are as follows:
 1) For A singular, if ZFC is consistent then it is consistent (with ZFC + G.C.H.)

 that Os (S ' A+) fails for some stationary S c {6 < 2.+:cf 6 = cf .}. However S is
 nonlarge in some sense: F(S) = {6: S n 6 a stationary subset of 6} is not stationary.

 2) The "F(S) is not stationary" in 1) is necessary. For if Li1A holds (and it holds
 if e.g. 0# ? V or there is no inner model with a measurable cardinal) and G.C.H.,
 S ' A+, F(S) stationary, then Os holds; moreover, for some stationary S c
 {6 < 2+:cf6 = cf;.}, F(S) = 0 but Os holds. So e.g. there is a ;i+-Souslin tree
 complete at levels of cofinality # cf ;.

 3) If K is strongly inaccessible and S c K is such that for every closed unbounded
 subset C of K, C n S and C - S contain closed subsets of arbitrary order-type < K,
 then in some forcing extension VP of V, no new sequences of ordinals of length < K
 are added, S preserves its property but Os fails.

 4) In 1) and 3) really stronger results than failure of diamonds (i.e. uniformization
 properties) hold. Also we observe a bound on improving 3): if e.g. 0# ? V then for

 every limit 6 we can find a closed unbounded CQ of 6, and f5: CQ -+ {0, 1}, such that
 for every closed unbounded C c K and f: C -- {O, 1} for some 6, C, ( C, fj = f C.

 The proof of 1) and 3) follows that of [Sh2, ?1]. Note that the proof of [Sh2, ?1] is
 obsolete as we can get the theorem easily by proper forcing (see [Shl, Chapter V]),
 but not so with generalizations.

 Received July 6, 1982.

 This research was partially supported by the NSF and BSF.

 (? 1984, Association for Symbolic Logic
 0022-481 2/84/4904-0002/$02.20
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 DIAMONDS, UNIFORMIZATION 1023

 CONVENTIONS. Dealing with (H(2), E) we assume it has a definable well-ordering

 <* (or we can expand it by one). We shall always take 2 big enough, so that all the

 sets we consider belong to H(2).

 ?1. (E, h)-completeness.

 1.1. CONVENTION. Here K is a fixed regular cardinal. J,<(D) = {B: B ' D,
 IBI < K}. E denotes a set of increasing continuous sequences of limit length from
 some f?<K(D); it satisfies

 (1) E is unbounded, i.e. (VA e SiK (D))(3B)(B e E A A ' BO);
 (2) if <Bi: i < 6> e E, <Bf: i < 6> is an increasing continuous sequence, Bi e

 5?K(D) and Bi ' B'+ 1 ' Bi+ 2, then <B: i < 6> E E;
 (3) E is closed under initial segments, i.e. if B e E and 6 < I(B) is a limit ordinal,

 then (B f' 6) E E, and under end-segments.

 By (1) E determines D, so we write D = Dom E; it is an ordinal a(E) if we do not

 say otherwise. We sometimes define E forgetting (2); then we mean the closure by this
 operation. If K is not clear from the context we write K = K(E). Let h denote a two-

 place function, h(u, i), defined for P < K regular and i < y; also No < h(1, 0),
 h(p, i) < K is increasing in i, and 2i < h(j, i) for i < 6 implies li<bai < h(1, 6). We
 omit h when h([, i) = K for every y and i. Let 2 denote a large enough regular
 cardinal, and SQS(2, E, h, y, 6) = SQS"(2, E, h) denote the set of sequences
 B = <Bi:i < 6 > e E, IBil < h(p, i). Let SQM(2, E, h, 1, 6) = SQM"(2, E, h) denote the
 set of sequences N =<N: i < 6>, N -< (H(2), e), with <Ni n Dom E: i < 6> e
 SQS8(y, E, h), <Nj: i < j > e Nj + , and 11 Ni 11 < h(u, i). We write y instead of h when
 we use h(1, i) = y. We omit 6 when 6 = i. In all that follows "2 large enough" can be
 replaced by "2 ? 2 " for some easily computable ;0.

 1.2. DEFINITION. (1) We call E h-fat if for every regular ,u < K and 2 large enough,
 player I has no winning strategy in the following game:

 For the oth move player I chooses Ai c Dom E with I Ail < h(1, 2i) and Uj< i Bj c
 Ai, and player II chooses Bi c Dom E with IBiI < h(p, 2i + 1) and Ai ' Bi.

 At the end of the game player II wins if < Uj<i Bj: i < y > e E.
 (2) We call E strongly fat if it is h-fat with h(p, i) = y + N1.
 1.3. DEFINITION. (1) We call a forcing notion P weakly (E, h)-complete if for every

 large enough 2, and every regular y < K and 6 < u, if N e SQM,(2, E, h), P e No and
 p-is a generic sequence for (N, P) (see below), then { pi:i < 6} has an upper bound in
 P.

 (2) We say <= Kpi: i < 6> is a generic sequence for (<KNJ: i < 6>, P) if P e N0,
 N e SQM(2, E),p- i e N, +1, and for every i, for every dense open subset I e Ni of P
 for some n, Pi+ n e-

 (3) We call P (E, h)-complete if it is weakly (E, h)-complete and forcing by P does
 not add new sequences of ordinals of length < K.

 REMARK. In 1.3(2) it may be more convenient to interchange the quantification on

 f and n. The only change this entails is in 1.5, where we have to assume that P does

 not add w-sequences of ordinals.
 1.4. REMARK. In 1.3(3) we can demand equivalently that no new sequences of

 ordinals of length ii, 1u < K regular, are added.
 1.5. LEMMA. If E is strongly fat and P is weakly (E, h)-complete then P is (E, h)-

 complete.
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 1024 SAHARON SHELAH

 PROOF. We prove by induction on y(44 < K, y regular) that if p E P, and ,YI(# < i)
 are dense open subsets of P, then there is q, p < q E P, with q E Ax for each /3 < i.
 This clearly suffices.

 For yt = No, we can by Definition 1.3(1) find N, -< <H(X), e>, N, countable, p,
 P e N, A, c No for /3 < 1, and <NK n c(E): n < cl)> E E. As N, is countable there is
 a sequence <p,:n < wC>, po = p, with p, < p, p, c- P () Nn+ and for every dense
 Xr c P. if X E UNn then Pn C f for some n. So <Kn n < w> is a generic sequence
 for <Nn n < w>; hence it has an upper bound q in P, as required.
 Suppose y > NO; then (choosing i large enough) (by Definition 1.3) we can find

 N e SQSI(X, E, 4). Remember <* P P is a well-ordering of the members of P. Now
 we define pi by induction on i < yu as follows:

 1) po=pandpieNj+1;
 2) pi is the <*-first member of P which is above pj for] < i, and is in every open

 dense subset of P which belongs to Uj < iNj.
 Now why is pi well defined? If i is the first failure, then <pj:j < i> is still defined,

 and obviously belongs to Ni+1 (as <Nj: j < i> Ni+1, and <pi:j < i> is easily
 defined from <Nj j < i>, P, p and <*). If i is a limit, < pjKj < i> is a generic sequence
 for <Nj:j < i>; and as <Dom(E) n Nj)j < i> e E, it has an upper bound, and the <*-
 first such upper bound belong to Ni + 1, and satisfies the requirements on pi (note that
 it is automatically in every dense open set which belongs to Nj, j < i, as it is above

 Pji 1).
 So we remain with the case when i is a successor and use the induction hypothesis

 on u (and 11 Ni 11 < )4
 1.6. LEMMA. (1) If E is h-fat and P is (E, h)-complete, then E is still h-fat in VP.
 (2) If N e SQM,(X, E, h), j- is a generic sequence for N, pi < q E P for every i, and

 forcing by P does not add sequences of ordinals of length < K, then

 q lkp;< Ni [G]: i < 6 > E- SQSI(R, E, h)".

 PROOF. Left to the reader.

 1.7. LEMMA. Suppose Q = < Pi, Qj; i < y> is a (< K)-support iteration, and each Qi is

 (E, h)-complete, P, the limit. If E is h-fat (in V) then P. is (E, h)-complete and E is still
 h-fat in VP.

 PROOF. The "weak (E, h)-completeness" is preserved trivially. So we need

 Ip k "(VV)[ >ct C V]". The proof is by induction on y. For y successor the proof is
 totally straightforward. For y limit we first prove that, for every regular [P < K, every

 p E Py, every yi < 6 (i < y), and every dense open subset fi of Py(for i < P), there is a

 q e P, with p < q and q P yi e Xi for i < P [if [1 < cfy, then supi< yi < I, and we use
 the induction hypothesis; if ,1 ? cfy, without loss of generality we can take y = cfy

 and also [1 = cfy (as n= li is dense in Pp) and use (E, h)-completeness for Pt; for
 suitable N, by induction on i < [1 we define <qJ:j < i> E Pi r- N+ 1, increasing in i,
 belonging to every dense subset of Pi_ 1 which belongs to N], and then prove the
 clause about "not adding sequences of length <ii" (Definition 1.3(3)) using (E, h)-
 completeness for 1'.

 1.8. DEFINITION. For an iteration <Pi, Qi: i < y> with (< K)-support, assuming for
 notational simplicity that each Qi is ordered by inclusion, we make the following
 definitions:
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 DIAMONDS, UNIFORMIZATION 1025

 (1) Tr(y) = {8:8 = (7T <,f), (7T <) a well-founded tree, closed under limits,
 f: T a-* , f(rtT) = 0 for the root rtT, and f is increasing and continuous}.

 (2) Let t E 87 mean t Ec T. and for t E 87 let lev(t) be its level (i.e. the order-type of
 {s: s < t}) and t P oc the unique s < t of level oc (for oc < lev(t)). We call the tree leveled
 if f(t) depends on the level of t only. If confusion may arise, we write <a and fly.

 (3) FTr(Q) = { < Kp: t e 9 >: e E Tr(y), and p, Pa = Pt L f(t P oc); p, is a function with
 domain a subset of f(t) of power < K, pj(i) a Pi-name}.

 (4) P' = {p:p a function with domain a subset of i of power < K, p(j) a Pj-name}.
 Forj ? Dom p let p(j) = 0. For p, q E P', we write p < q if q j KWpJ"p(j) c q(j)" for
 every j < i.

 (5) FTro(Q) = {Kp,: t e 87: - E Tr(y), <Kp: t E 9> E FTr(Q) and jp, "Pt(i) E Qj"
 for every t E T and i E Dom pt}

 (6) FTr1 (Q) = { < pa: q E 8 > E FTr(Q): for every nonmaximal t E 87, and q E Pf(t)
 if pt < q (though maybe pt ? Pf (t)), then for some immediate successor s of t (in 7),
 and r E Pf(s), we have ps < r and q < r}.

 1.9. LEMMA. Suppose Q is as in 1.7, < pt:1 q E 8> E FTr,(Q), 87 has < K levels, and
 each Qi is (E, h)-complete. Then, for some maximal t E 87 and q E P,, p, < q.

 PROOF. Like the proof in [Sh2, 1.7].

 1.10. LEMMA. Suppose P, and Q are as in 1.7, y = l(Q), 87 E Tr(y), f(t) = y for
 every maximal t E 87, and I7I < ,u, I7I < h(p, i) for some i < ,u < K, / regular. If
 <pt: t E 87> e FTro(Q), and f is a dense subset of Py, then there is <qt: t E 87> e
 FTr0(Q) such that pt < qt (for t E 87) and qt E Xr for t maximal in 87.

 PROOF. Again as in the proof of [Sh2, 1.7] (and 1.7 of the present paper).
 An inconvenient aspect of Definition 1.3 is that we are interested in sequences of

 submodels of H(e), whereas E is usually a sequence of sets of ordinals.
 1.11. CLAIM. Suppose E0 and E 1 are given, and for some one-to-one function g from

 Do = DomE0 onto D' = DomEl,

 E? = { <Ai: i < 6 >: < g(Ai): i < 6 > e E'}

 (in such case we say that E0 and E' are isomorphic). Then
 a) E0 is h-fat if E' is h-fat, and
 b) any forcing notion P is weakly (E0, h)-complete if it is weakly (El, h)-complete.
 PROOF. Trivial.

 ?2. (E, H)-completeness.

 2.1. NOTATION. E is as in ?1.1, H is a function with domain E, and H(<Bi: i < 6>)
 - Koc: i < i> (usually oci E Bi, 1). We let H(N) = H(<Ni r) a(E): i < l(N)>).

 2.2. DEFINITION. (1) We call (E, H) h-fat if for every regular ,u < K, player I has no
 winning strategy in the following game:

 For the ith move, player I chooses Ai E S<Koc(E)) with JAJ < h(p2i) and Uj~i Bj
 c Ai, and player II chooses oci and Bi E S<K(oc(E)) with IBiI < h(p,2i + 1) and
 A c Bi.

 At the end of the game, player II wins if <Bj:j< ? > e E and <oci: i < >=
 H(<Bj: j < y>).

 (2) We call (E, H) strongly fat if it is h-fat for h([L, i) = ,1 + N1.
 2.3. DEFINITION. We say that P is (E, H, h)-complete if for every regular ,u < K there
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 1026 SAHARON SHELAH

 is a function F, such that if N = <Ni:i <ii> e SQM(X,E, ho,[ ), p e No P and
 a = <Ki:i < a> = H(N), then the following conditions hold:
 (A) If j- = <pj:j < i> is generic for N P i = <Nj:j < i> then FM(p- i, N P i, a P (i + 1))

 is a sequence of length < h(1i, i) of bounds of pf.
 (B) There is a sequence <T= yi: i < s>, yi c Ni+ 1, pi c Ni+ l1, such that any

 sequence <t= pj:j < 6 >(6 < y limit) satisfying the following has an upper bound:
 (a) < pj:j < 'i> is generic for N i 6, and
 (p3) pi appears in FM(p- [i, N [i, O [(i + 1)); in fact its place is

 L(p N iJ oic [(i + 1),y [(i + 1)).

 REMARKS. (1) The requirement ji [E N+ 1 will be omitted if

 (8X < h(p, i))(Xlil < h(p, i)).

 (2) We omit h in Definition 2.3 when h(p, i) = /.
 2.4. LEMMA. If (E, H) is h-fat, P is (E, H, h)-complete, and h (s) < K (h(1i) < nt), then

 (E, H) is still h-fat in VP.
 PROOF. Easy.

 2.5. THEOREM. Suppose

 (a) K is strongly inaccessible,

 (b) E0 is fat, i.e. ho-fat where ho(p, i) = p + Nl,
 (c) (E1, H) is fat,
 (d) Q = <Pi, Qi:i < y> is a (< K)-support iteration with limit Py, and
 (e) each Qi is Eo-complete and (E1, H)-complete.

 Then P, is Eo-complete (and so does not add new sequences of ordinals of lengths
 < K) and (E1, H) is still fat in VPY.

 PROOF. The E0-completeness follows by 1.7. Now (El, H) is still fat by 1.9 and 1.10,
 imitating [Sh2, ?1].

 2.6. DEFINITION. Let h* be a function from ordinals to ordinals [or from sequences

 of ordinals to ordinals] and qa (e E S) a sequence of ordinals. We say that <Kd: E- S>
 has the h*-uniformization property if for every <go: 5 E S>, g. a function with domain
 Rang(^.), g(oc) < h*(oc) [or g(oc) < h*(q6 [ (o[ + 1)], there is a function g with domain
 U es Rang(q6), such that for every 5 E S,

 (3i < 400i) (j)i < j < 40 l.) - - gr6W) = gMAArla~)

 REMARK. On this property see [DS], [Shl], [Sh2], [Sh4] and [SK].
 2.7. DEFINITION. We say <11: c E S> is free if there is a function f Dom f = S.

 f(6) < l(qr), such that the sets {Q(oc):f(i) < oc < l(qr)} are pairwise disjoint (for
 i E S) (clearly, free implies the h*-uniformization property).

 2.8. CONCLUSION. Suppose K is strongly inaccessible, h*: K -* K, S C K, and for every
 closed unbounded C c K there are, in S r- C and in C - S, closed subsets of any order-
 type < K.

 For some forcing notion P:

 (a) VP and V have the same sequences of ordinals of length < K.
 (b) P satisfies the K+-chain condition, and e.g. IP = 2K.
 (c) S satisfies in VP the assumption we have on it (in V).
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 DIAMONDS, UNIFORMIZATION 1027

 (d) There is <Kl: 6 E S>, qla an increasing sequence converging to 6, which has the h*-
 uniformization property.

 (e) P is Eo-complete, where E0 { Bj: i < 6>: Bi and Ui< a Bi are ordinals in K -S
 Bi increasing continuous}.
 PROOF. For given KQi6:6 E S) let

 E{ = K<B:i < 6>: Bi is an ordinal in S, Bi increasing continuous}

 (or replace S by K), and put H(<Bi:i < 6>) = <ocj:i < 6> if the ci "code" the set
 (U i< 6 Rang(qBi) n Bi + ).

 Can we define < q6: 6 E S> so that (E1, H) is h1-fat and {ad: 6 E S, 6 < oc} is free for
 every oc < K? The easiest way to do it is by forcing such <11a: e E S>, a condition being
 an initial segment (alternatively use squares). Now we can define a (< K)-support

 iteration Q = <Pi, Qj:i < 2k> such that
 (A) each Qj has the form Q <g': 6 e S>, where g' is a function with domain

 Rang(q.), g'(i) <h*(i) (<g,:6 eS> VPi of course), and Q<g': 6 S> = {g:g a
 function with domain j < K and for every i E S r (j + 1), for some i* < i,
 (Vs) [d E Rang(qb) A i * < < i g(4) = g'(d)] }; and

 (B) if <g,: 6 ES> E VP, 6 < 2K, then for some i,

 <g': 6S> = <g6:6eS>.

 This is not hard to do. Easily each Qj is Eo-complete and (E1, H)-complete; hence
 by 2.5 P2. is. Now P2,, satisfies the K+-chain condition (see [Shi, Chapter VIII, ?2]).

 2.9. THEOREM. Suppose

 (a) K = X +, where X is a singular strong limit,

 (b) E0 is fat,
 (c) (E1, H) is x-fat (i.e. hl-fat, hl(1, i) = X),Dom El = Dom E0, and (IB e E1)

 [I(B1) < cf K], and BE E1, I(B) < Cf K implies BE E0,

 (d) Q = <Pi, Qj: i < y> is a (< K)-support iteration with limit P1, and
 (e) each Qj is Eo-complete and (E1, H, h1)-complete.

 Then P. is Eo-complete and, in VPY, (E1, H1) is still h1-fat.
 PROOF. As in 2.5, only simpler: we use trees of power < X to get an inverse limit of

 power Xcf x, and then use 1.9.

 2.10. CONCLUSION. Suppose K = z+ = 2x, X a singular strong limit, and S c
 {6 < K: Cf 6 = cfX} is stationary, but no initial segment of it is stationary. Then for
 some forcing motion P:

 (a) VP and V have the same sequences of ordinals of length < K,
 (b) P satisfies the K+-chain condition,
 (c) S is stationary in VP, and

 (d) there is <6:6 cE S>, 'm an increasing sequence converging to 6 of order-type cf X
 and h*: cfX>K -+ K such that <old: e E S> has the h*-uniformization property.

 PROOF. Like 2.8, using 2.9 instead 2.5.
 2.11. THEOREM. Suppose

 (a) K1 = K+, Ko strongly inaccessible,
 (b) E0 is fat, o4E0 ) K0,
 (C) K(E1) = K1 and (E1, H) is K-complete, (i.e. h1-complete h 1(, i) = Ko for
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 1028 SAHARON SHELAH

 < / < K1, and

 (VB E E1)(l(B) < K0), (VB e E1)(l(B) < K0 =- B E EO)

 (d) a- = <Pi, Qj: i < y > is a (< K)-support iteration with limit P,, and
 (e) each Qj is Eo-complete and (E1, H, h1)-complete.

 Then P. is Eo-complete and, in V'Y, (E1, H) is still h1-fat.
 REMARK. We can let E0 be essentially the set of all sequences of the right power

 and length.

 PROOF. As in [Sh 1, ?1].
 2.12. THEOREM. Suppose

 (a) K1 = Ko, 2 K = K1, and OK holds.
 (b) E0 is fat, with oc(Eo) = K1.
 (C) K(E1) = K1, (E1, H) is Ko-complete and

 (VB E E1)(l(B) < KO), (VB e E1)(l(B) < Ko =- B e EO).

 (d) We make a change in Definition 2.3(b) for [1 = KO: there is a stationary subset
 S = F r< N r DomE1:i < I(N)>) of K0, satisfying Os, and we restrict (f/) to i ? S
 (or to i ? S r) C, C a closed unbounded subset of KO; the truth value of a E C depends
 on/3 txaand N).

 (e) Q = <Pi, Qj: i < y> is a (< K)-support iteration with limit Py.
 (f) Each Qj is Eo-complete and (E1, H, Ko)-complete.
 Then P. is Eo-complete and in V'Y(E1, H) is still h1-fat (so (K1 > a)V = (K1 > af).
 PROOF. As in [SK] (we use the diamond to compensate for 1.10 which is not

 applicable).

 ?3. Diamonds and Souslin trees on successors of singular x.
 3.1. THEOREM. Suppose i is singular, X < ii = 2', (VK < Z)(Vpi < X),K < i and

 D A holds. Then we can define for every oc < A + a family H of < ? subsets of oC, such
 that for every A c A+, for some closed unbounded C ( A+, for no e E C do we have

 that No < cf(6) < X and Gu(A) r- 6 is a stationary subset of 6, where Gu(A) =
 {c: A r- oc ' Ha }.

 REMARK. If 2 is a strong limit (which is the important case), then x = i is okay.
 PROOF. We imitate part of the proof of the strong covering lemma [SH1, XIII,

 2.3].

 We have assumed D F, so there is < C,:) < j < i+ limit> such that C. is a closed
 unbounded subset of i, {Ca1 < 2 and if y E C' (the set of limit points of Ca) then
 Cy = C. y.

 Let K = cf 2, R = {0: 0 a regular cardinal, K < 0 < i}. As 2 =A we can find
 f (i < i+) such that

 1) Domf* = R,f *(0) < 0,
 2) f* <* f* for i <j (which means that, for every large enough 0 E R,

 f i*,(0) < f *(0))~
 3) if i E C., 0 E R and 0 > ICjj, then fr(O) < f *(0),
 4) if Domf = R and (VO)[f(0) < 0], then f <*fi for some i, and
 5) if the length of Cj is divisible by wt)2 and 0 > ICj , then f *(0) = sUpiecjf f(0).

 Also, as 2- = A+ there is a list {A,: a < A+ } of all bounded subsets of A.
 Now let the model M2 = M2> be defined as follows: its universe is A+, and it has
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 DIAMONDS, UNIFORMIZATION 1029

 the following functions: F'(/3, -) is a one-to-one mapping from / onto I/SI; Go is
 essentially an inverse of F0, i.e. G'(f, FF(fl, y)) = y for y < /3;
 S: the successor function, S(ac) = oc + 1; CF(ac) is cf (6) if 6 is limit, and oc - 1 if ac is a

 successor ordinal;

 HO: for / limit, <H'(/3, i): i < CF(3) > is an increasing continuous sequence
 converging to /3, while for /3 successor H'(/3, 0) = Ij/3, H'(/3, 1) = I/#I + (cf/3 < x);

 0 and i are individual constants;
 < is the order relation;

 F'(i, 0) = f (O) for O E R and i <

 G2: for limit 6, A < 6 < , <G2(, i):i < G2(, 6)> is an increasing continuous
 sequence, whose set of elements is C6.

 Now we can define the bt's. So for every limit 6 and i < A we define a model Ma,,:
 it is the closure of {i: i < f} u C6 under the functions of M2 (we do not strictly
 distinguish between a submodel and its set of elements). When cf 6 > X let OP6 0;
 otherwise let

 Bit6 = {Uce I A.: for some ,u < i, I is a subset of M6,, of power cf6}.

 So we have to prove only that KY,6:6 < A+> is as required. So let A A+
 and h:X+ - A+ be such that A n ox = Ah(a). Now we define, by induction on 6,

 A < 6 < A+, an elementary submodel N. of M2 such that:
 a) 6 E N., C6 c N6, N. is closed under h, and 1INbII < CI;
 b) the closure (in the order topology) of U{Nj:i iE Q is contained in N6; and
 c) there is i = i, e N6 such that, for every large enough 0 E R,

 sup(U {JN: i Ec n 0) < f(O).

 If 6 = sup C', let N* = U {N,: acE C-}. There is no problem in doing so (for (c) use
 (4) in the conditions on the fr). Let

 C* = {a < A+: a is limit, ac > A, and for every 6 < a, sup(N^) < a}.

 Clearly C* is a closed unbounded subset of Ai+. We shall prove:
 FACT A. If 6 E C* and cfX < cf6 < X, then for a closed unbounded set of y < 6,
 ()[N* M,]
 This is enough, because the case cf 6 < cf A holds by [Sh3], and then we can find an

 unbounded subset D of 6 n N* of power cf 6; hence {h(c): a E D} c N* Ma ai
 wherefore UaeD/h(a) E Yg,) and as Ah(a)= A n a for a cE D clearly A n 6=
 UaED Ah(a) C Yb ,

 PROOF OF FACT A. Let (C6)' = {/3(#): C < Co~}, / = /3(C) increasing continuous, so

 C6n rn /(C) has order-type divisible by w02. Let Ch, be the function with domain RI
 Ch(0) = Sup(0 n U {N#:# c Ce

 By the choice of i Ch; <*f!). On the other hand, as ie E Np(,), for every
 0 E Dom(Ch,), 0 > IC6 , we have f ()(0) < Ch4 + (0) for every X, C < 4 < Co. So
 for some y, < A:

 (a) (VO E R)[0 Yp AO E Dom(Ch,) = Ch(0) < f (0) < Ch + I(0)],

 (acl) MO(4) ? f( </3(d + 1).
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 1030 SAHARON SHELAH

 As cf C0 = cf 6 > cf i, there is 11* such that 1* > Ca and {I < C:u < <1* < A} is
 an unbounded subset of Co and by their definition (see (3) and (oc)):

 (/3) (V; <'4 < 0)(VO E R)[O ? /1* A f(4) -C* fa*)(O) <ft,(O) <f*)(0)]

 and, even more trivially,

 (y) (V; < 4 < (0)(VO E R)[O ?1* A 0 DomCh --Ch(O) < Ch(0)].

 Also, by (5),

 (() For every limit C < Co

 f*4)(O) = sup*4)(0) for 0 ? 1,*.

 Note also

 (e) for every limit C < Co and 0 E Dom Ch, 5

 Ch(0) = sup Ch4(0).
 4<4

 Now choose a closed unbounded E c Co such that (VC E E)(/3(4) E C*) and for
 every C, < C2 in E for some C, C, < C < C2 A of < t*. By (a)-(E) it is easy to see that

 (*)for every C E E and 0 2 It* A 0 E Dom Ch4,

 Ch(0) = do).

 As {I (C): C e E} is a closed unbounded subset of 3, for proving Fact A (and thus
 the theorem), it suffices to prove:

 (**) for C E E', N* is the closure of (N*R) r) 1u*) u Cf(4) (hence is included in
 Mp(4).8*1

 To prove (**) let B be the closure of (INp*)I r) 1u*) u Cf(,4) (closure in M2). So
 clearly B c N*4) (it is easy to check that Cf(,4) c Nf()). Suppose B # N*'(4; then there
 is a minimal ordinal i in Np*(4) -B. As Cfi(4) is unbounded in ,3(C) and Sup N*) = ()

 (as f3(4) E C*), clearly B has a member > i. Let j be the first ordinal in B - i. So
 B is necessarily disjoint to [i, j), and j > i.

 Case A. j is a successor ordinal: then CF(j) = j - 1, so j E B > j - 1 e B; but
 (j - 1) E [ij), contradiction.

 Case B. j is a limit ordinal but not a regular cardinal. Then CF(j) E B, and
 CF(j) = cf(j) < j. Hence CF(j) < i and there is e < CF(j) such that i < F(je) <

 j (as <CF(j, e): e < CF(j)> converge to j); but j, e E B = CF(j, e) E B, contradic-
 tion.

 Case C. j is a regular cardinal. Necessarily j < i, and as j > i, j > jj* so by (*)

 i < Sup(N*) r ) ? < f () = Sup{If *( j)W: G C)e
 = Sup{F1(ej):E e C- (C)} < Sup(B r j) < i,

 contradiction.
 3.2. CONCLUSION. Suppose Z IS, 2` = i, and (Vfu < A)[,icf i < i].
 1) If S c S * = {(3 < X+:cf = cfX}, and F(S) = {( < X:( r) S is a stationary

 subset of 6} is stationary, then Os holds.
 2) There are a stationary S c S*, F(S) = 0, Os, and a square sequence <Cb: i < (

 < A+ > (i.e. C6 is a closed unbounded subset of 3, a E C' => CQ = C. r) a, IC1 <<)
 such that C. r) S = 0.
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 3) There is a +-Souslin tree complete at levels of cofinality # cfX
 4) Suppose T is a complete first order theory, T has a model M in which (PM, <) is a

 Souslin tree, (QM, <) -(01l <), and FM:P pM QM gives the level. Then T has a
 model N, (QN, <)is aX i-like ordering, and (PN, <)is a K + -Souslin tree (except that its
 set of levels is not well-ordered).

 PROOF. (1) By the previous theorem there are Y,,x c ?(ct) (at E S), Idz < A, such that,

 for every A C 2A, {a e S:A r) c e Y,,} is stationary (as its complement in S is not so
 large). By a theorem of Kunen it follows that Os holds.
 (2) It is known that I = {S c A:+ Os does not hold} is a normal ideal (see Devlin

 and Shelah [DS]). Let <C,: A < 5 < A+> be a square sequence. For oc < A let
 S* = {6 e S*:C' has order-type ac}. So UJ<;S* 0 I (by part (1)); hence S*? I
 for some a. Let S = S*; F(S) =0 because C, is a close unbounded subset of 6,
 ICE r) SI < 1. Now define C: :if CO ri S = 0, then C' = C', and if Co r S = {y},
 then CI = C? - (ye + 1). It is easy to check that S and <C,: 6 < A' > are as required.
 (3) Part (2) of the conclusion provides the necessary assumptions for the theorem

 of Jensen [J] on the existence of such a A+ -Souslin tree.
 (4) Keisler and Kunen (see Keisler [K]) prove such a theorem for successor of

 regular. We just have to combine this with the proof of (N ,NO)-- (i, 2A) (the
 theorem is due to Jensen; for a proof by Silver, see [J]).
 Notice that if e.g. O' 0 V and K is strongly inaccessible, the hypothesis of 3.3 will

 hold (e.g. for y a successor of a strong limit cardinal).
 3.3. LEMMA. Suppose K is strongly inaccessible and there is a square sequence

 <CO: 6< K, Cf 6 < Y+>, CA having order-type <6. Let t be regular. Suppose S C y
 and Os holds.

 Then we can choose for every < K, cf 6 < t, a closed unbounded subset B3 and
 f3: B6 -* {0, 1} such that for every closed unbounded C c K and f: C -{ {0, 1}, for
 stationarily many 6 < K we have B3 c C and fa c f

 PROOF. For some y the set S, = {6 < K: cf = , and Cb has order-type y4 is
 stationary (by Fodor's lemma). Let g be an increasing continuous function from t
 into y, Sup(Rang g) = y.

 Let {(C, fr'): i E S} be such that Ci is a closed unbounded subset of i, f, a function
 from i to {0, 1}, and, for every closed unbounded C c, t and f:M -* {0, 1} for
 stationarily many i's, C r) i = C/ and f r i = f[. Now for some 6 < K we shall
 define Bu and ft. If Co has order-type yb, and y6 < y, let ha be a one-to-one mono-
 tonic function from y, onto CO. If yAi is in the range of g, let pa < tt be such that

 g(fb) = y-7. Now

 B6 = {h,(g(e)):8 E C1b}, f3[h6(g(e))] = f,(8).

 The rest should be clear.
 CONCLUDING REMARKS. (1) We can use a weaker variant of the square, e.g. (as

 Jensen [J] suggested):
 0 For every a < A+ we have a family 9' of closed unbounded subsets of a of

 order-type < 2, laI < 2., such that C E /3) cE C' => C r /3 E Ad
 We can weaken this further (where S c Ad is stationary):
 LT' (S): For every a < As we have a family 9', 19YI < 2, of closed unbounded

 subsets of a of order-type < 2, such that Ce Yaw:, / C' , / e S ,B r C E G .
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 1032 SAHARON SHELAH

 ? '{ (S): For every a <,i + we have a family Y0 of closed unbounded subsets of a of
 order-type < i, Ci I? <2., such that C e Sac, / E C/'=> r) C E- g.

 See also [Sh3] on this.

 (2) We can rephrase our results in terms of clubs instead of diamonds, or even in

 the following manner: there are Ya C {A c a:jAj < A}, Yal < 2., such that for every
 unbounded A c A for "many" a's,

 (3B E 9,,)(A rn B is an unbounded subset of ax).

 3.4. THEOREM. Suppose i is strong limit of cofinality K > N0, with 2' = i + Then we
 can find <p,: a < A+ >a h, a family of <?2 subsets of oa, such that Jbr every X c A+

 there are Si cA+(i < K), Oi<KSi = U<{a <i:cfa < K}, such that if 6 0 Sx=
 {6 < A+: cf 6 = K, X r- 6 E YH}, then Si is not stationary below 6 (for every i < K).

 PROOF. Let {Ai; i < iA+ } be a list of all bounded subsets of A + such that Ai c i. For

 each ar let as = UE<K B4, the B" increasing with 4 and IB'I < A<:, where 2. 4<K
 the A<: < 2i increasing continuously. For each 6 < 2+, choose a closed unbounded

 subset CQ of 6 of order type cf 6. Let Ski , be the family of sets which are a union of a
 subfamily of {Ai:i E UJ{B: a E CA}} and < = Clearly Yeg is a family of
 < 2'4 subsets of a (as Ai _ i), and so bit is a family of < 2 subsets of a.

 Let X _ 2+, and Sx = {6 < A+: X r- 6 E Y6, cf 6 = K}, and C = {6 < A+: for
 every a < 6, X r) a E {Ai:i < 6} } (so clearly C is closed unbounded), and define a
 two-place function f on 2 +:

 f(ja,/3) = Min{j < K:X n a E {Ai: i E B}}.

 By the definition of C, f(a, /3) is well defined for a < /3 e C (remember /=

 U4<K BO). Moreover, just (a, /3] r C # 0 is enough.
 For a E C, cf a < K, we define

 C(a) = Min{ < K: for every y < a, there is a /3 with y < /3 < a and f(/3, a) < 4}.

 As cf a < K, clearly 4(a) is well defined.

 FACT. If 6 E C, cf6 = K, 4 < K, and {y E Cr n C: (y) < 4} is unbounded below 6,
 then 6 E Sx.

 This is because for every y < 6, for some 3 < a < 6, y < /3, a E C* r) C, we have

 f(/,Ma) < 4, so

 X n /3e {Ai:ie Bc} c {Ai:ie U{B': e Cw}.

 As we can find arbitrarily large such /3 < 6, clearly X ra 6 cE Y.,, c Y. So the fact is
 proved.

 We can conclude that for every X c 2+ there are a closed unbounded set C c 2+
 and a function 4 from {6 E C:cf 6 < K} into K, such that

 6 < A +, cf 6 = K, 6 0 SX implies for every SO < K,

 {a E C* n C: 4(a) < 40} is bounded below 6.

 REMARK. This shows that, assuming G.C.H., O < cf+: cf = cf A may follow from
 properties of cardinals. < 2.
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 DIAMONDS, UNIFORMIZATION 1033

 There is one missing point: we prove the conclusion restricted to C. What about

 the 6 0 C? First we can assume that the points of C which are not limit points of C
 have cofinality co, and that 0 E C. Now if / < y are successive members of C, we
 define Si r- (f3 ,y) (i < K) such that for no 6 E (13, y), cf 6 = K, is Si n 6 stationary in 6,

 and Uki<KSi r (fNY) = {i E (3,y):cf i < Ki}. Why is this possible? Because there is a
 continuous increasing function from (/3, y) into C.
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