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Existence of rigid-like families
of abelian p - groups

S. Shelah

Dedicated to the memory of A. Robinson

ABSTRACT : We prove that for arbitrarily large ), there are
large families of abelian groups, with only the necessary

Homomorphisms between them.

INTRODUCTION: Here a group means an abelian group. Improving
results of Fuchs (see [Fu2], [Fu4]), Shelah [Sh]

proved the existence of 21 rigid groups of cardinality } ;
i.e, for every cardinal A, there are groups Gi{i < ZA)

each of cardinality A, such that if h is a non-zero

homomorphism from Gi inte G then i =3, and h(x) =n x

j!

for some integer n.

We try to generalize this theorem to separable

P ~ groups.
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We cannot have rigid systems of separable p-groups because any
basic subgroup of a separable p-group G, is the image of an
endomorphism of G. Alsco the multiplication by a p-adic integer is
an endomorphism. Weakening accordingly the notion of rigid systems,
we prove existence theorems in §1, §2 (for possible extensions, see a
remark at the end of gection 2 ).

Pierce [P] asked, and this is repeated in [Fu.2], p.55,
problem 55, whether there are essentially indecomposable p-groups
of arbitrarily large cardinalities (G is essentially indecomposable
if G=6G, 8 G

1 2 2

result implies a positive answer (because each member of a rigid-

implies that Gl, or G is bounded). Our
like family is essentially indecomposable).

Fuchs [Fu.2], p.55, problem 53 asked to construct large systems
of p-groups such that all homomoxphisms between different members
are small. As a zero-like homomorphism is the same thing as a small
homomorphism (as defined in [Fu.l] 46.3 p.195) theorem 5.1

answers this question. The construction in theorem 1.2 gives for

"o G . M u
no= X =2 »2 , 4a family of 2 separable p-groups of power

¥ so that any homomorphism between different members has range
of power <A,
We assume knowledge of naive set theory, and of separsble
p-groups as in [Fu. 1],VI;J¥u.2], XI.
Notation: Let XA, u,  denote infinite cardinals,
a, By, v, 8, i, j ordipnals, &6 a 1limit ordinal, %k, £, m,n, M, N
natural numbers or integers, w the first infinite ordinal. We
let n, T, v be sequences of ordinals. Let &(n) be the length
of n, n(i) dits ith element. Let cf[a] be the cofinality of a.
G, H and sometimes K, I, R are groups, h, g are

homomorphisms, p, q are prime natural numbers, Tt a rational
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or sometimes a p-adic integer. Here a group means a reduced separable p-group.

When notations become complex, ai(j) is written as a[j,1il], a;
as ali].

1 Rigid-like Systems of p-groups
DEFINITION 1.1:

(1) A homomorphism h:G = H is called zero-like if there are mo m < w
and a € G for n < w such that a has exponent n+m and h(an) has exponent
> nt+l. We call h semi-zero-like if there are nom < uw , ai € ¢ for m <,
kR (2N0)+, such that ai has exponent ntm, h(ai) has order > nt+l, and
Pnh(ai) = p“h(ai) for 4 # J.

(2) Let G be asubgroup of H, h:G - H a homomorphism, Thenh is called
8imple if h = hl + h2, 2

integer. Similarly h is semi-simple when hl is semi-zero-like.

hl is zero-like, h, is a multiplication by a P-a¢ic

(3) A family {G,:

1 i % iO} (of separable p-groups) is called rigid-like

if whenever h: Gi * Gj is a non-zero-like homomorphism then i = j and h is
simple. Similarly a semi-rigid-like family is defined.
DEFINITION 1.2: G is essentially indecomposable if G = Gl & Gz implies

Gl or G2 is bounded.
CLATM 1.1:
(1) Suppose @ <x'> is a basic subgroup of G, 7 of exponent
%(E(n) 1 i
n+tl, h: G »H a homomorphism. Then h 1is zero-like iff f(n) = mini{n =
"the exponent of h{xi)"} goes to infinity.
(2) Suppose I 1is a basic subgroup of G, and 1me[ > X
for m < w. Then for any group H of cardinality < X there is
a zero-like homomorphism from G onto H.

(3) If G belongs to a rigid-like family then G is

essentially indecomposable.
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(4) If G belongs to a semi-rigid-like family and
N

G=Gl QGZ then for some m < w, L"-‘-‘1c:i':2,|1>‘]19£|i20'
PROOF: Immediate (Part (2) is similar to a theorem in [Fu. y b
THEOREM 1.2: Assume p = ) =32 > 2

(A) There 1§ a semi—rigié—like family of 2H groups of
cardinality y , with basic subgroups of cardinality < X

(B) Moreover if G, H are members of the family, I a
pure subgroup of G, closed in it, and me has power > A
for each m, and h: I ®H is a non-semi-zero-like homomorphism
then G =H, and h is semi-simple.
REMARK : In (A) we can demand the basic subgroups have

cardinality 2.

PROOF
%o
NOTATION: W.l.o.g. x < A dimplies ¥ <y, hence A has
N
cofinality w and ¥ < X implies vy g < A, 5o let
N N
- 0 ) %=,

A n<mAn’ PR < AO < Al<\...,each . regular , kn hn Let
| G be the group generated by x?, i< l: 0 <n<uw, pn+1x2 = 0.
|

Let H be the torsion-completion of G, so each a € H is of the
n
form Zk: XE’ where { 1: ki # 0} 1is finite for each n, and for
some m pmki x? = 0, for every n, i. Let
ST R T o : + _or.m, n_n
d(@) = {x;: kyx; # 0, n <w, i<A} andd (a) = {x]:p"K;x] # 0,
+
k.x, =0, n<y, 1< An}.

If d(a) dis infinite dgla) is dm(a) for the maximal m

for which dm(a) is infinite. We attribute properties to a

instead of d(a), sometimes. Let dl, d, be almost dizjoint if

2
d1 n dz is finite; let dl be almost included in a, if
d) - d, dis finite.
L m +
= Xm . {xi: i< Am} . If AcH, let PC(A) be the smallest

Subgroup I of H such that A

In
H

, and T pk?x? € I, where
i,n i
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k?x? #0 = pk?x? # 0, implies Zk?x? € I. Clearly I is a
pure subgroup of H. Note that if I 4is any pure subgroup of H
then any homomorphism h: I - H has an extension to a
homomorphism h: H - H. If I is dense (in the p-adic
topology) the extension is unique. Also each closed pure subgroup
I of H is determined by any basic subgroup of it (so its
cardinality is either u or <i).

Hence, H has 21 = 1 pure closed subgroups, and there
are p homomorphisms from H into H. Let { (hi, Ii) T i.E UF
be a list of all pairs of homomotrphisms h: H- H and
pure closed subgroups I of H, each pair appearing p times.

We now define by induction on 1 < y, a;, bg € H which
will satisfy the following induction assumptions, and then
for Ccyp let G(C) = PCI[G U {afie: i €cl ]; our family will
be c {G(C): C cu}.

The induction assumptions are

(1) d*(az) is not almost included in a finite union of
d(ap), 4P, (< a)

(2) a: has exponent mt+l when d*(a;) = dm(ag).

(3) If for every m ]meu1 > X and ha1 Iu is not
semi-gimple then h (ag) = b* and bg Z PC[G U {af: 1 < altl

(4) If for every m |pm1a| > A and ha[ Ia is semi-
simple but not zero-like then h (a%*) = b%, b* £ PC[C u {ag: 1 < a}]

Notice that (1), (2) dimplies {a; + G o < plis an

independent family. We first prove:

CLAIM 1.3: Suppose u, are regular cardinals, u £Pn+1’ and

n
o
Y <un - | < pn.

(1) If K is a subgroup of H, and |p'K| >Z

for an
n "o 9 Y

m, then we can find yg EK (n<uw, i < un) which are pairwise
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disjoint, and y? has exponent > nt+l. Hence we can assume the
d(yg)'s are disjoint to some prescribed set of cardinality < un.

(2) Suppose v < K, and zl - z2 E Yn implies *
pnzl # pnzz, and |Yn]=un. Then we can find yz which is

Z, = Z for some z

1 %2 1 %
these y?'s satisfy the conclusion of (1).

€ Yn; for m ey 1% un, such that

PROOQF :

| (1) As 1me| & %pn’ we can find Y© < K such that

| Zys Z, & W —»pmzl # szz, hence it suffices to prove (2).
n

(2) By Erd8s and Rado [ER], (as |Y | = W, W regular,
| M
l s <un &+ K 0 < Kn and as d(z) is countable for =z € Y“) there

n n
= d

| are Yn_s . |Yn| n and a set d suchxthat for 2, # ZZE Yn,
‘ d(zl) n d(zz} = d". As necessarily H > 2 7, we can assume that

n(0) n,2 n

m
if xj €d s 2122, € Yn(O)’ zy = i ki ) then

i
| k?’l = k?’z. Now motice that if =z, L =1,:..5%, are distinct
n b
members of Yn, then p (zl - zz) #p (23 - ZA)'
Define by induction on a < % u and on m < w, the

' vy (a < ). If ve have defined yg for 8 <a ,8 < u_then for

Bo= <uﬁ, n <m we define yz as follows:
| Clearly the number of z € Ym such that d(z) N d(yg)_ﬁ d®  for
some n, B as above, is < |u| G o NG < M hence choose Z1r 2y € Ym
which do not satisfy it, and let yz =2y - Zg.

* * & * %

Suppose we have defined a?, b; for j < o, and we shall
define them for o .
CASE I: hal IOl is semi-zero-like or pnIa has power < A for some u,

If for every m, pmla has power > XA let K HIG,

otherwise let K = H. Then by Claim 1.3 we can find in
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K elements yg, s S );-, 5 R, y’i of expoment ntl,
Thy oy " +
the d(yi) s pairwise disjoint. For any n €ugm7\n let
_ n n . -
YT\ ngwp yn{n) € K, so0 we can find a; i<y such that pa, 0
and d*{ai_) = d(ai}, and no d(ai) is almost included in a finite

union of d(aj) j# 1, § < y. Hence for any set A c H, of power

<ys Some d(ai) is not almost included in a finite union of

d(a), a € A. (Otherwise for each a; there is a corresponding finite

#*
set AiEA; so for some A {i <p : Ai = A*} has power > ZRO,

s0 a countable set has > ZNO distinct subsets, contradiction).

So we can define a%* € {a;:f < p} to satisfy (1), (2), and

b* so that d*(b*) is not almost included in a finite union of

d(at),d(b’j*) (i <oy § < o). Clearly (3), (4) are satisfied.

CASE II: Not Case 1, but pm{( has power > X for every m, where
o

K is the kernel of h 1 T,

o al o

Let the image of ha| I be R and as not case 1,

o o

hul Ia is not semi-zero-like; hence there are m <@,
N
+ "
z? € ¥ of exponent ntm for 1 <(2 0) , such that pnyg # pmyz,i1

X0, +

for 1 # j where y!il = hu (zl;). Letting Y© = {y‘i: i< (27}
we can, by Claim 1.3 and renaming assume the y? are pairwise

disjoint. Let yn=yn; as R is reduced, hu():knzg) =anyn.

Q

So Eknyn exists and belongs to Ro‘ whenever for some
% n
) = ! b3 € y
P knyn 0 for every n. Hence, knp 7, R for every kn

and pnyn # 0. Now for any sequence k= <...,kn,...> s P < kn < Py

let b= =Xk p"y only when d(k) ={n: k_# 0} 1is infinite.
k e ' n

= U _
Notice that d(bi;_) néd ® d(Yn)-
b & Pcic U ﬁ:: i < a}]. Suppose there is no such k; then
k
there are m = m(k), and « > i(0,k) > i(1,k)> ...> i(m,k) and

We shall find 2 k such that

integers ME. = M(i,,i) such that:

(* b +G=Ma Lot Mma* —.+ G (where Mia + 0).

*  — 4, * —
= 0°1(0,k) i(m,k) 1(8,k)
Notice that by condition (1), this expression is determined uniquely.
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Suppose d(k) = dff) but 1i(0,k) > i(0,%) Then:

(A) d*(ai(o,ijg?d(bi) u O<U5m(E) d(ai(n’i))[as pby = Oz
d(Moai(o,E)) = d*(ai(o’z)) by conditions (1), (2)]. Qé*— almost
included).

(B) d(bf) c d(b_) (by the expression for d(b ).

2 k

@ e Of_Him[?)d(aE(n,E))

= G o .
Combining we get d*(ai(o,k)) is almost included in a finite union
of dLakyad s i(0,k), contradicting condition (1). Hence d (k) = da()
| - o
implies 1(0,k) < 1(0,%).

So choose k with minimal i(0,k); as d(k) is infinite, there

are B, ¥ ocuch that d4@® = 4@ U 4@, a&H n a@) = 0,
a1 1 -2 2
and n € d(k) = kn = kn, n€dk™) = kn = kn.

By the previous statement and the choice of E,
i(0,k) = i(O,Ei) = i(o;Ez). By condition (1) necessarily

-1 = =2 . —* —1
M(0,k ) = M(0,k) = M(0,k"). Define k so that n € d(k™) = k: =k ,

n
n€d®) »n=-k., n¢d® -»kt=0. Then by, =b_, - b ,, hence
n n k* §1 =
the expression for b_, in (%) can be obtained by subtracting those
k
of bﬂl’ biz. Then a;(o,k) vanishes, and we get a contradiection to

the choice of k.

Hence for some Kk, bE ¢ Pc[G U {ai: i < a}], and we define

As hu is inteo a reduced group, Ku is closed in H's
topology (but is not necessarily a pure subgroup), hence K, is
closed in its (p-adic) topology hence it is torsion-complete. Remember
meu has power > A for every m. Let a € Ia be such that
h,(a) = b:, and let its exponent be m. So by claim 1.3, as in Case
I, we can find a' € K such that d*(a‘) = dm(a‘) is not almost
contained in a finite uni0n of d(a;), d(b?), d(a) (i <o, j<a) and

let a* = a' + a.
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N
Case III: Neither case I, nor case II, but leKu| > 2 0 for every m
So meu has cardinality > ) for every m, and for some m(¥*)

pm(*).

Ka has cardinality <X , and as mentioned before it is torsion

complete; hence Ka = Kl & Kz, Kl bounded, K2 torsion-complete,

unbounded and of power < %, but > ZNO. The situation is dual to
that of Case II, the kernel and image interchanging roles. Using
claim 1.3 twice we get a € Ia (1 < u) such that a; has
exponent mtl, h&ai) has exponent 1, and no d*(ai) - dm(ai) is
almost included in a finite union of d(aj) j # i; and similarly
for the d(ha(ai}} = d*(hu(ai)) and d(ai}’d(hu{ai)) are disjoint
to d(b), b € K2. Hence there is a € {ai:i < p} so that
d, (a), d*(ha(a)) are not almost included in a finite union of
d(a;), d(bi) (i < a). We let b: = ha(a). Suppose we let ag = a; the
only thing that can go wrong is that b; € PC[G U {ai: i <all,

hence, as in Case II (*%) bg + G = M_a%

*
RA()) I kau + G

where a > i(0)> ...
Multiplying by p. pb§_= 0, hence pka: € G hence
%) = i % % =
[as d*(aa) dm(au) m+l is the exponent of aa] pkau 0, but

kax # 0. So k= p'k,, k., not divisible by bp.

1
As in the definition of the yu's in Case II, we can find
LS € K2 of order n+l ,d(wn) pairwise disjoint; ku,n < w; and
n 5
% .
J < w {0,...,m} so that ® Jk“p W £ PC[G U {ai 1 i <al]l and let
n-m "
= #) = h k%
a§ a +n€J PV Then hu(aa) ba’ and suppose we get (**) again,
with Mk,i'(o),...,k'. Then as d(a), d(h(a)) are disjoint to
ag nET pn_mwn), k = k'. Subtracting the equations we get a
contradiction to the definition of the Wn‘s. So in any case we can
i %
define ak.

Case IV: Not cases I, II, III, but ha1 Iu is not semi-simple.

Let G* be the smallest subgroup of H such that PC(G¥) = G¥,
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n
* ¥ * o £ . & s z
G c G*, a¥, bi € G (1 < o) ay € G*, d(b) c 1Y d(ai) implies

b € G¥ and for some m meer(ha1 Iu) € G* (as not case III,

N
meer(hal Iu) 2 0 for some m) and a € G* ==> Q}a) € G*

for a € G* + Ia. Clearly the power of G is A + ]a1. Let

*

I =G*x + Ia; for every a € I* - G* there are no ai € G* such

n
that d(a) < fil d(ai). We can find a' € a+G* so that a + G¥%,

n
a' heve the same order. Hemce d.(a') ¢ 1Y d(ai) for any a, € G*,

Notice that Q}a) + G* = Q}a') + G*, If for some such a we let

ag =a', b; = ha{a'), the only thing that can go wrong is that

hu{a') € Pc[c* 1) {a'}], hence for some rational r =71 _, ha(a')—ra € G*

a
hence ha(&) - ra € G*; and for a € G* we let T = 0; and r is

a p-adic integer as the order of ha(a‘) + G* is < the order of

a' + 6. TFor the same reason if r, r' are suitable ra's then

r - r' 4is divisible by pm where m 1is the exponent of h(a') + G*

(divisibility among the p-adic integers). So if we choose the minimal integer

r , T is defined uniquely.
a’® "a

-2

If b= pga, T =T, is divisible by pm Also

b

if b = ra r,an integer, (r,p) = 1 then T, = Ty

has exponent mtl, b € I*, then h(a-b) - (raa —rbb) + G%¥ = 0 and
= o - xi= - * = - *
h(a-b) ra_b(a b) + G 0 hence (ra ra_b)a + G (rb ra_b)b + G*,

1f we choose b so that d(a), d(b) are almost disjoint

: m . ;
this implies that p  divides Ty and T b hence

it divides 1, -Ty, hence T, = T. As for every such a, b, thereis ¢ € I#

such that h(c) + G* has exponent m, and d(c) is almost disjoint

from d(a) and d(b), then L B B

Combining we get a p-adic integer T such that

hu(a) — ra € Gk for a € I* so if h*(x) = rx then h = (hu - h*)1 Ia

has range of power < p . By assumption h 1is not semi-zero-like

hence as in case II, for some b = h(a), a€ Ia’

If also h(b)+G*

393
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b ¢ PCIG U {a}: i< a}], pb = 0. Also there is x€ I 1 ker(h),
d, (x) = d, (xta), and x is not almost included in a finite union
of d(a?), d(bg) (i <) and d(x) is disjoint to d(a), d(b).
* * #*
Then let a* = atx, b* = h (atx) = h (a) + h (x) =(h+h (4)+h (x) = btra
o o oL o o oL
The only thing that can go wrong is b; € pcl[G U {a*, i< all {a&}] i.e.
pibx 4 G = Mak +..4M
o o

a*(

1) +...+ G (2(j) <a) where

i
d(pﬁbg). d(bg} are equal up to a finite set. Using d, (x) we see
that necessarily pﬂrx = Mx; hence we get a contradiction to the
definition of b, and x.
Case V Not any of the previous cases.
. . 1 2 .1
So h | I is semi-simple; let h | T =h 41", h
o o o o
semi-zero-like, hz(x) = rx, T a p-adic integer. Let T = pmtl,
r, a p-adic unit. As in Case I, by claim 1.3, we can find {ai: i<up}c I,
such that d*(a_) =d (a.) is not almost included in a
1 m i
finite union of &(aj) (j # 1) ,d(a?}, d(bg), (j < a). The image

of hl is of cardinality <i, soO w.l.0.8. hl(ai) does not

depend on i. So a* =a, - a

b* = h (a*) will satisfy our demands.
o 3 o oo

&

* * * * & *

We have defined, for J c u, G(J) = PC[G U {a?:i €.J}].
It is easy to check that bi ¢ G(J) when hal Ia is not semi-
simple; and a; € G(I) iff j € J. Suppose J* c Ji, Jl
where J*% = {a: not case V} and h:G{JO) - G(Jl) is a
homomorphism, so, for some a Ia =H, hai G(JO) =h and so
h(ag) # b:. As in cases 1II, ITI, IV equality holds, ha is
sero-like (case I), or simple (case V.) 1In the second case it is

easy to check this implies J0 < Jl. So if {Ji: i< ZU} is a

family of subsets J of u , J* = J, no one included in the other,

then {G(J,) & 1 < 2"} is the required family in (1.2) (A).
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g0 1< 2"} so that if IcH

For 1.2(8) it suffices to choose {J
is a closed pure subgroup, me has power > A for everym, h: T —+H is
a simple homomorphism, 1 # i < 2", then for some o I =1,

= * = i
h ha! Iu’ o € Ji’ o & Jj’ [so by h(aa) we get the non-existence
of the homomorphism h from I N G(Ji} into G{Jj)]. This can be

easily done as in the list {(Ia, ha)= o < u} each pair appears yu times.

Y _a..%
Conclusion 1.4: For u = X =2 =2 there is a family of ig groups

each of cardinality u, such that any homomorphism from one member to
another has range of cardinality < X.
A complement to 1.1(3) is:

N N

Claim 1.5: Suppose 1pmG| = ) for every m, but A 0 > a2 2 0. Then

N
G = Gl & G2 where for every m < w, & = 1,2 |pmGR| e > . (Se G

g By
are unbounded, hence G is essentially decomposable).
n n
Proof: Let ig@én) <xy> be a basic subgroup of G, where Xy has
exponent n + 1. Let 10 = min m; |B(n)[, so by the assumption
% . n m*n
AO i A 0. Define for a € G, d(a) as in the proof of 1.2. We can
N
easily find Yj c {xg: n<w, i<B@m} for j < Xo O such that
mo . ; 3 "
m%n mgp [Yj n {xi 1 i< B(m)}[ is AD’ and o« # B implies Ya n YB

is a subset of {x?: i < 8(m), m < n} for some n. As for each
N
a € G, the number of a's such that Yu n d(a) 1is infinite, is <2 9

(by the "almost—-disjointness'" of the Y, s), clearly

Y %o
I [fa: d@ Ny, is infinite}| < |e] + 2 7 <&
I

As the number of @'S is 2 G, for some o forno a € G is
d(a) n Yu infinite. So let G; be the closure in G of the subgroup

generated by Ya, and G2 be the closure in G of the subgroup

generated by {x.: i < g(n), n < w, x: [ Ya}. Clearly G = G

1 . GZ’

1
m
|P G11 i >‘0°

2. Large rigid-like systems

A group means an (abelian) reduced separable p-group.
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Theorem 2.1: Suppose y 1is a strong limit cardinal of cofinality > No.
Then there is a rigid-like system of 2" groups each of cardinality y.
Remark: Here we elaborate less than §1.
Proof: Let G be 0<x?’, i<y, n<yw, where x? has exponent n + 1,
and H the torsion completion of G. We use the notation of Th. 1.2, and
in addition Ga = %gﬁ <x?>, Hu the torsion completion of Ga, and
H; =0(L<Jﬁ Hu’ X(:l = {x;_l: i<a}, ¥ = ngw )(?l
We define a;, hﬁ € H for X <y a strong limit cardinal of
cofinality "b, o < ZA, so that
W &, e B - H
(2) b @ PCI6 U (3 (,8) < ()}l where (c,B) < ()
Means g < A OF g = A, B < g .
(3) The intersection of d*(ai) with any d(a;),d(bg),
(cs8) < Osa) is included in some X, v <,
(4) d*(a;) is not almost included in any XY, Y < X
We define them by induction on A s SO suppose a:, b  were
defined for < 3. Let {(1;, h;): o < 2} be a list of all pairs of
closed pure subgroups I of HR’ and a homomorphism h : I o HR’
each appearing 2} times. Now we define by induction on o, as follows.
If there are a* € IR, and bt = hl(ai) which satisfy conditions
o o o o a
1), (2), (3), (4) and b; ¢ PCl[e y {ag: (cs8) < (1;a)}] we choose
them in this way. If not but there are a* [ bl = hl(a ) which
o o o oo
2atisfy conditions (1) - (4) we choose them in this way. Otherwise
we choose a;, h; so that a;, bi are almost disjoint, and almost
disjoint with any ag, b; (csg) < (h,a) and (1) - (4) are satisfied.
So we have three possibilities which we denote respectively by A, B, C.
Let Jg = {(h>a): possibility A or B holds} and J* = {(},a):
possibility A holdsj}.

*
Let G(J) = PC[G y {a": (,u) € J}]. Suppose J* = S (R
2 4




Sh:45

S. Shelah

and » Bt G(Jl) -rG(JZ) a non-zero-like homomorphism. Let h° be the

unique extemsion of h to a homomorphism n®: H 2H. We shall show that
h is simple and that for arbitrarily large X <y there is a,

=1

| I; and for (1 ,u) possibility B holds, hence
@, ) = (@, 1), 0,8 €5 = (L) €3
From this it will be easy to draw our conclusiom, as in 1.2.
Notice that by conditions (1) - (4), bz‘t 3 G(JJL)’ only if (i,0)
satisfies possibility B and (1,a) € J. Also ai €6(@,) iff
(A,a) € I, (for 2 =1,2).

But first we prove:

Claim 2.2: Assume I' S H is a closed subgroup, h': I' ™ H a non-zero-like

homomorphism. Then for some a € 1',h'(a) E Pc(c U {a’;: (c,8) < wad)})
and h'(a) has exponent 1.

Proof: As h' is not zero-like, there are m < @ and znE I' such
that z, has order n + m, and Y= h‘(zn) has order n + 1. Let
r(n) = min{z: d(pnyn) = XC}; as the r(n) are ordinals there are

By < 0y <ess such that ;(ng)_;; (nl) IR g(no) = ;(nl) = i

As we can replace r 2 by p & Yy e can assume 1, =%. Let
% %

§ = sup g(n). As d(pnyn) is countable each r(n), hence & has

cofinality u or is a successor. Define Gn so that if cf &=uw

then 50<5 ey Sam Y Gn and 6£<c(g); and if § is a

i; n<w

successor §, =8y T ...} §=6.+1; and clearly then r{n) =86,

hence 8§, < g(n). We now define inductively n(2),
tE g d[Pn(R) YII(EL)] such that n(L) < n(a+l), and when £ < m,
8§
t € n (m) L = ;
4 d(p Yn(m)) and tg’Q x *. Let n(0) = 0, and suitable t, exists
as §. <t (n). 1If we have defined for &, let n(z+l) be greater than the

n(+1)

orders of ¢t it g dip

+1

0""’t2.’ and than n(%); hence
n(e+1l)

Bt yn(2.+1))’

and we can choose t € d(p

241 as

£
Yn(;¢+1})’ to éx
5“_1 < r(n(a+l)). By renaming assume n() =& . As we can replace T

397
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o-n n . .
by ¥4 +-m>£§p+1 kgp yg, we can assume tm € d(p yn) iff n = m. TFor

Jg w let bJ = nEJ pnyn; then d(bJ) E-H d(pnyn) hence

db) c X°, and t_e d(b;) iff ne J. Also by € Range h'

[bj = h'(Epnzn)] . We shall show that for some J bJ 4 PC[QH u {a:: Gk »y)
<(,u)¥]. If & is a successor every infinite J suffices, by the
induction assumptions. If § has cofinality 4y, and J =, 1is not
sufficient, necessarily § 1s a strong limit cardinal of cofinality u ;
and for some w g {af':y < 25}, d =d.(w)n {tn: n< ul

is infinite, and then any J such that d p {tn:n e

dn {t:n ¢ J} are infinite will suffiee, As we mentioned

bI € Range h' , so for some ag I', h'(a) = bT' So we have proved the

claim; and we continue with h: G(Jl) - G(JZ).

Observationi: If h*1is a gero-like homomorphism, h#*: H - H, then

for every m meange(hC - h*) has cardinality u
For suppose m = m(*) 1is a counter example, let

hl =1

- h*. By the claim 2.2 there is an a such that
n¥a) ¢ PCG U {af: k< w5 B < 2D)
hc(a) has exponent 1, a has exponent n(¥*).

We define by induction, strong limit cardinals of

cofinality N A< A < agh N 3| e Range hl[‘ and
¥y J\O’ n 41 Us lg, 0 P g 3
sets Yn g_anil, Yn n d(a) = @ such that hl is constant on
N
m(*) - 0.+ 1
P Yn’ and ]Yn I= (An ), and for v e Yn, h(v) € HA P

n+l
(This is easy to dos) We can also assume, as in 1.3, that for
4 & — h*
distinet YR € Yn, h (yl) h*(y

A £
and < X 1l and disjoint to X e

Ys h*(Y3) - h*(yﬁ) are disjoint,

Let A =3\, so ) too is a strong limit cardinal of

cofinality X Let I' be the torsion completion of

0,
PC(fa} U YY) in H and h' = h'| 1'. Clearly h: I'? H, and

A l)

for some ol (I', B ) = (Iﬂ, ha . We can find n(0)< w
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n(0) > n(*) + m(*) such that h*(pn—n(*)y) =0 for =n > n(0),

n-nf#*) (yi _ Zi)_

DU
¥y E Yn and for 1< 2%, y = T TR N L

i i
y; # z_ € Yn, and the yi's are pairwise almost disjoint. Clearly

hl(yl) = 0, and except for < 21 Tlg yi is almost disjoint from
K LK

b
B B
Ba + y') = h&a) + h(yh) = hc(ﬂ)olt is now easy to check that

a for (¢,8) < (A,a) and to a, hc(a). Notice
c i K i
h™(a+y) ¢ PC[GA u {aﬁ: (<:8) < (A,a)} U {a + y }] hence for (h,a)
possibility A occurs,hence we get a contradiction to
h: G(Jl) > G(JZ).
Observation II: Suppose h 1is not simple but h0 is simple,
h' =h - ho; and yg € PC(Xn) for 1 < p are pairwise disjoint
and # 0; and the exponent of y? is n + 1. Then there are & = %

0

and gy such that for every n > o,

set {p"* h‘(y?): i € S} has cardinality y.

S c u of cardinality u ; the

Otherwise we can find n(2) 2 < w and 5,C u, |S£] =y

n(t)-t

such that n(f) < n(g+l) and |{p h'(y;); ie S£}| < u. Let

h0 = h1 + hz, h2 zero-like, hl(x) =rX, r a p-adic integer.
The rest is like the proof of observation I noticing that

for every c¢ € HA hC(e) € PC[GA U{ag: (,B) < O,e)} U {e}] 4iff

" - hy) (e) € Pcle, u {a;: (,8) < (A,e)} U {c}].

Observation III: We can find an increasing continuous sequence of

strong limit cardinals lu <u o <cfy, (say RO = 0) and

y; € G for i <y such that:

n g n n
@ yi 19 X1y T,
(ii) the y" are pairwise disjoint
i

A
(i) 1f A< i <A, then dGD) € X *2, but is disjoint

te X o+l
(iv) the h(y;) are pairwise disjoint.
The proof is by induction, using a theorem of Erdos-Rado [ER].

* * * * *
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For each y? choose a maximal ¢ =% (n,i) and a rational p-adic
integer rg such that pn_k(h(yg) - r: yg) = 0. ( % may be -1, so

it is always defined). As the aumber of possible 1L's is ND’

we can assume &(n,i) = 2(n); similarly ey

cfp > ¥ i o

01
Observation IV: TFor every L there is a kQ such that

n, m> k£ SE £ is divisible by pR. So for some p-adic integer

r, r - r is divisible by pg for n> k Also 1lim {(n) = =.
n - nr®

e
Let & be given. Let A = Am and I be the torsion

completion of PC({yz: R lm, n<w}l) and a < ZA be such that

(Ii, hi) = (I, hc] I). Clearly we can find 4(n) < A such that

ym =F pn-iyz(n) satisfies the following: if (c,B) < (A,a) then for

i<n
some m, for every mn > m, pn_myg(n), pn_gh(yz(n)) are disjoint to ag.

As (h,z) is mot in possibility A, hc(yi) € PC[GAU {ag: (k,B) < () U{YE}]
hence there is an m such that d(hc(yg)) = d(pmhc(yg)) and

e, by ok (0) k(D k(n) _k(n)
th v My  + ME(G) ai(O) +...t Mi(n) ai(n) +c

c €EG ((0), 1(0%,..., are < (A,a). Then clearly M' = M!pm is

A’

an integer, and for some k N for every k > kg

k-4 k oy kR k o k-t k -
h(p yi(k)) =M p Y5 (1) hence &(k) > & and M P Y1 (k)
k-2 k i )
P T Y4 (k) hence (M rk) is divisible by p . Clearly we have

proved the observation.

# * *

So for every & for every n big enough
pn-k(h(yz) -r y?) = 0, so the only way not to contradict II 1is to
assume
Observation V: h is simple.

# * %*

So let h = hl + h2’ hl(x) = rX, h2 is zero-like. Let

Y = pkr', r' a p-adic unit. Hence for some mn, < w for every

n > g hz(yg) has order < n-k. The only thing left to be proved is
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that if AO < u there are A, AD <3 <yu and o < ZA such that
h; = hc| I; and (h,e) satisfies possibility B . Choose
A= Ai > AO, § a limit ordinal and a such that
Ii = PC({y?: i <A, n<uw}l hi = hcl I;. By the assumption on h,

the pair (,z) does not satisfy possibility A . Now we can find

n-k n

= noéﬁ P Yi(n) which is almost disjoint to ag (k,B) < (A,0).

y
Clearly hz(y) =0, d(hl(y) = d(y), so it proves (X,a) satisfies
possibility B.

So we have finished the proof of 2.1.

Conclusion 2.3: There are arbritrarily large essentially indecomposable

groups . (This answers a question of Pierce [P], which is [Fu. 2], Pr.55,

p. 55.)
Remark: We can prove 2.1 also for p = Ru+n where Na is a strong
1imit cardinal of cofinality > Ny and 0 €n<uw oOr
"o _ A
K. =3 =2, 0<n<uw.

o

Moreover, if G, H are members of the family, I a closed subgroup

of G, |ka] Z-Nu for every k, h: I - H a homomorphism

+n
then G =H, and h is simple. (The purity of I is not needed).
0

Question: Can we prova 2.1 when u =X = 2}? (assuming G.C.H

N
this is the only open case). Can we prove 1.2 when u = 2 0?
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