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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 59. Number 3. September 1994 

CONSTRUCTING STRONGLY EQUIVALENT NONISOMORPHIC 
MODELS FOR UNSUPERSTABLE THEORIES, PART A 

TAPANI HYTTINEN AND SAHARON SHELAH* 

Abstract. We study how equivalent nonisomorphic models an unsuperstable theory can have. We 

measure the equivalence by Ehrenfeucht-Fraisse games. This paper continues the work started in [HT]. 

§1. Introduction. In [HT] we looked at how equivalent nonisomorphic models 
first-order theories can have, i.e., we tried to strengthen S. Shelah's nonstructure 
theorems. We used Ehrenfeucht-Fraisse games to measure the equivalence (see 
Definition 2.2). If the theory is unstable, or has OTOP, or is superstable with 
DOP, then we were able to prove maximal results by assuming strong cardinal 
assumptions. We showed that if X<A = X, then there is a model J / of the theory 
such that \sf\ — X and for all X+'. 1-trees t there is a model 3S such that \3§\ — X, 
M ^38, and 3 has a winning strategy in the Ehrenfeucht-Fraisse game G}(stf. £$). 

By assuming only that the theory is unsuperstable we were not able to say much 
if we tried to measure the equivalence by the length of Ehrenfeucht-Fraisse games 
in which 3 has a winning strategy. But if instead we measured the equivalence 
by the length of Ehrenfeucht-Fraisse games in which V does not have a winning 
strategy, then we were able to get rather strong results. 

In this paper we look at the unsuperstable case again. We measure the equiva­
lence by the length of Ehrenfeucht-Fraisse games in which 3 has a winning strategy. 
We study X+, K + 1-trees (see Definition 2.1) and give a rather complete answer 
to the question: how equivalent nonisomorphic X+, n + 1-trees can there be? In 
§3 we show that if X = ju+, cf(jx) = ju, K = cf(n) < JU and X<K = X, then there 
are X+, K + 1-trees I0 and h such that |/0| U \I\ j < XK, I0 ^ /,, and 

(see Definition 2.2 and Definition 2.4(iii)). Instead of two trees it is possible to 
get 2A such trees. 

In §4 we show that if in addition X 6 I[X], then the result of §3 is best possible. 
As in [HT]. this implies that essentially the same is true also for the models of 

the canonical example of superstable theories. 
In [HS] we will prove the results of §3 for unsuperstable theories in general. 
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This paper was born during the first author's visit to the second author at 
Rutgers University. The first author wishes to express his gratitude to Rutgers 
University for the hospitality shown to him during the visit. 

§2. Basic definitions. In this section we define the basic concepts we shall use. 
2.1. DEFINITION. Let A be a cardinal, and let a be an ordinal. Let t be a tree 

(i.e., for all x G t, the set {y G t\y < x} is well-ordered by the ordering of /). If 
x. y G t and {z G t\z < x} = {z G t\z < y}, then we denote x ~ y, and the 
equivalence class of x for ~ we denote by [x]. By a A, a-tree t we mean a tree 
which satisfies: 

(i) IMI < ^ f°r every x G t; 
(ii) there are no branches of length > a in t; 
(iii) t has a unique root; 
(iv) if x, y G t, x and y have no immediate predecessors and x ~ y, then x = y. 
If / satisfies only (i), (ii), and (iii) above, we say that / is a wide A, a-tree. 
Note that in a A, a-tree each ascending sequence of a limit length has at most 

one supremum, but in a wide A, a-tree an ascending sequence may have more than 
one supreumum. 

2.2. DEFINITION. Let ( b e a tree, and let K be a cardinal. The Ehrenfeucht-
Fraisse game of length t between models s/ and 38, Gf($f,33), is the following. 
At each move a: 

(i) player V chooses xa e t, na < K, and either at G J / , /? < na or bt G 33, 
P < Ka; we will denote this sequence of elements of stf or 38 by Xa; 

(ii) if V chose from $t, then 3 chooses va €38, ft < na, else 3 chooses <xa G s/, 
P < Ka; we will denote this sequence by Ya. 
V must move so that {x^)p<a form a strictly increasing sequence in t. 3 must move 

so that {(aff,bl)\y < a, ft < K7} is a partial isomorphism from sf to 38. The 
player who first has to break the rules looses. 

We write s>f =? 38 if 3 has a winning strategy for Gf{srf,38). 
2.3. REMARK. Notice that the Ehrenfeucht-Fraisse game G*{s4,38) need not 

be determined, i.e., it may happen that neither 3 nor V has a winning strategy for 
G*{s4.38) (see [MSV]). 

2.4. DEFINITION. Let t and t' be trees. 
(i) If x G /, then pred(x) denotes the sequence {xa)a<p of the predecessors of 

x, excluding x itself, ordered by <. Alternatively, we consider pred(x) as a set. 
The notation succ(x) denotes the set of immediate successors of x. If x, y G / 
and there is z, such that x, y G succ(z), then we say that x and y are brothers. 

(ii) By t<a we mean the set 

{x G t\ the order type of pred(x)is < a } . 

Similarly, we define t-a. 
(iii) If a and /? are ordinals, then by a + /? and a x j S w e mean the ordinal 

sum and product (see [Je]). Notice that ordinals are also trees. 

§3. On nonstructure of trees of fixed height. In this chapter we will assume that 
A = n+, cf{/x) = ju, K = C/(K) < fi, and A<K = A. 
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986 TAPANI HYTTINEN AND SAHARON SHELAH 

Let /+ = {r, G ^ 1 , ( 0 ) =r,}-{{ )} and J " = {rj G <«%(0) = « } - { ( )}, 
« = 0,1. We consider these as trees ordered by initial segment relation. Because 
for all 8 < K, {I+)<s = (/„")<<5 (see Definition 2.4), we denote this set by I<6, 
and similarly, we define I^d = (7„+)-'5 for all 8 < K. 

If n G 70
+ and ^ G 7,+ , then we write ^7?~^ and £,R~n iff 77(7) = £,{j) for all 

0 < j < min{length(^),length(<J)} even. For all ;' < K odd, we define P, to be 
the set of all n G 70~ such that length (n) = i. Let P = \J{Pi\i < K, i odd}. 

3.1. LEMMA. There is a partition {Sn\n G P} of X such that for all n £ P 
(i) {8 G Sn\cf{3) = ju} is stationary; 
(ii) J/<5 G Sn and cf{8) = JU, then 8 = sup(<5 n Sn). 
PROOF. Because \P\ = X, we can find a partition of {a < X\cf(a) = ju} which 

satisfies (i). Let this partition be {S' \y < X}, where {ny\y < X} is an enumeration 
of P. Let {ay\y < X} be an enumeration of {a < X\cf{a) = ju} so that if ay > ay>, 
then y > / . We may assume that if 8 G 5^ , y ^ 0 , then 8 > ay. By induction on 
a < X we define sets S£. Let S°0 = S'm U a0 and for all 7 > 0, S°. = S ; . If a is a 
limit ordinal and cf{a) > fi, then we define S" = \Ja<Q Sff., for all y < X. Assume 
a is a successor or limit ordinal with cf(a) < fi. Let a'a = {Js<avs- Then we 
choose S£ so that (a)-(f) below are satisfied: 

( a ) U < a ^ . C S » ; 
(b) SI n S«, = 0 if y ^ y'; 

(c )a Q CU ) > < ; . ^ ; 
(d) SI -aa = s\, - aa for all y < X; 
(e) if aa G S^., then aa = sup(rra n S"J; 
(f) if 7 < a, then (<ra - a'a) n S£ ^ 0 . 
Then clearly S1 .̂ = S'n , y < X, is a partition of A and (i) is satisfied. We show 

that (ii) is also satisfied: if as G Sn.. and 8 is a successor or limit ordinal with 
cf(8) <fi, then by (e) as = supfe nSn„). Otherwise, we know that aA > ay; i.e., 
8 > y and sup{ap\fi < 8} = as. By (f) this implies that as = sup(«7A n Sn..). • 

3.2. DEFINITION. We define a relation 7? c (70+ - 70
_) x (7,+ - 7f) . Let 77 G 

70
+ - /"„- and £ G /,+ - 7f. Then (n. £) G /? iff 

(i) ?*-£; 
(ii) for every j < n odd, 77 and £ satisfy the following: for all p e P, n(j) G S,, 

iff ^ 0 ) G S, and if n(j) £ SnU, then n(j) = Z(jY 
(iii) the set W"- is bounded in K. where ff*- is defined in the following way: 

Let 8 < K, n G /+ - if, and f G /,+ - J ^ ; then 

^ c = 0' < aU o d d a n d ^ ' ) G SnU and 

c / ( 7 ( y ) ) = J u a n d , * a ) > ' / C / ) } . 

In order to simplify the notation we write nR£ and £,Rn for (n. £,) G i?. Notice 
that by this we do not try to claim that the relation is symmetric—in fact, it is 
antisymmetric; if (77, £) G R, then always 77 G 70

+ - J0
- and £ G 7j+ - 7f. We also 

take liberty to write Wf for Wfj. when it is convenient. 
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Our first goal in this section is to prove the following theorem. We will prove 
it in a sequence of lemmas. 

3.3. THEOREM. If IQ and II are such that 
(i) /„- C/„ C / + , n = 0,1, 

and 
(ii) ifnR£. n £ 70

+, and £ 6 If, then n £ h iff' £, £ h, 
then I0 =^XKI\. 

From now on in this section we assume that I0 and I\ satisfy (i) and (ii) above. 
3.4. DEFINITION. Let a < K. 

(i) Ga is the family of all partial functions / satisfying: 
(a) / is a partial isomorphism from IQ to I\\ 
(b) dom( / ) and rng( / ) are closed under initial segments and for some fi < X 

they are included in {n G 70
+| for all j < K, rj(j) < /?} and {£ G If\ for all j < K, 

£,{j) </?}, respectively; 
(c) i f / f a ) = f, then nR~£\ 
(d) if rj £ h, £ G I\, f(n) = £, and length^) = j + I, j odd, then n and 

£, satisfy the following: for all p G P, n(i) £ Sp iff £(/) e Sp and if n(j) <£ Sn^j, 
then n(j) = Z(j); 

(e) assume n G 70
+ - I^s and {n \ y\y < S} C d o m ( / ) , and let £ = 

Uyoifii \ r)-then wti h a s o r d e r type < «; 
(f) if n G d o m ( / ) , then {7 < A|»7 — (7) G d o m ( / ) } = {7 < A | / ( J / ) — (7) G 

rng( / )} is an ordinal. 
(ii) We define Fa C GQ by replacing (f) by 

( / ' ) if n G d o m ( / ) , then {y < l\n - (7) G d o m ( / ) } = {7 < A|/(»/) -
(7) G rng ( / )} is an ordinal of cofinality <ju. 

3.5. DEFINITION. For f, g £ Ga we write / < g if / C g and if 7 < S < K, 

n G 70+ - 70^, 7 r 7 G d o m ( / ) , 7 r (7 + 1) £ d o m ( / ) , n \ j G dom(g) for all 
7 < 6, and £ = Uy<(5 g(*l \ jl then ^ = W^. 

Notice that / < g is a transitive relation. 
3.6. REMARK. Let f e Ga. 

(i) We define / by 

dom(/ ) = dom( / ) U {n £ Io\n \ y £ dom( / ) for all 7 < length^) 

and length^) is a limit ordinal}, 

and if n £ dom( / ) - dom( / ), then 

/(*)= U fln\y)-
7<lengthf//) 

(ii) If / € Fa, then / £ Fa\ if / G Ga, then J £ Ga. 
3.7. LEMMA. Assume a < K, 5 < /u, /,• G F a /or a// r < d. and f, < fj for all 

i <j < 8. 
( i ) U w / / 6 G 0 . 
(ii) If 6 < fi. then \Ji<s /,- G FQ ano? /,- < (Ji<s f, for all j < 3. 
PROOF. The proof follows immediately from the definitions. • 
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988 TAPANI HYTTINEN AND SAHARON SHELAH 

3.8. LEMMA. If 8 < K, /,• G G, for all i < 8, and f-, C / ;- for all i < j < S, then 

[jfieGs. 

PROOF. The proof follows immediately from the definitions. • 
3.9. LEMMA. If f G Fa and AC.Ia\Jl\, \A\ < A, then there is g G Fa such that 

f < g and A C dom(g) U rng(g). 
PROOF. Let rj G dom( / ), and let 

{/ < k\n - (i) G d o m ( / ) } = {/ < A\f(n) ~ (i) G rng ( / ) } = S, 

cf(8) < JU, and let ft > 8. We show first that there are pP G Fa and y > /? such 
t h a t / ^ > / , cf(y) </i, and 

{/ < An - (0 G d o m ( / ^ ) } = {/ < A|/0/) - (/) G rng(/<')} = y. 

Let length^) = j . If j is even, it is trivial to find pP and y. So we assume 
that j is odd. We choose y > ft so that cf(y) <ju. For any ;' e y — (5 satisfying: 

(i) c/(Z) = ^ 
and 

(ii) i eSn, 
we choose 7'; G i — 8 so that j , G 5, , cf(jj) < JU and if / ^ i', then y, 7̂= j r . 
These 7, exist because sup i n 5 , = / and i ^ 8. 

Then we define /'/>(>/ - (/)) = / f a ) - (7,) and f"P(n ~ (7,)) = f(tj) - (i). 
For all other i G y - 8 we let / ^ ( ^ ^ (0) = /(>/) -"̂  (0- It is easy to see that 
f"p G Fa and pP > / . 

It is easy to see that we can choose 77, G /o and /?, < A, i < //. so that the 
following functions are well defined: 

(i) #0 = / ; 
(ii) gi+l = ( g , H ; 
(iii) gi = (U/</£/')> ^ ' is a n m i t ordinal; 

and A C dom([J, g,) U rng((J;<^ g,). Furthermore we can choose nt and /?, so 
that if / 7̂  /', then 7, 7̂  n,'. Then g = (J,, g, is as wanted. D 

3.10. LEMMA. If f G GQ, ?/je« ?/;ere is g G Fa+\ such that f Q g-
PROOF. The proof is essentially the same as the proof of Lemma 3.9. • 
Theorem 3.3 now follows easily from the lemmas above. 
In the rest of this section we prove that there are trees IQ and I\ which satisfy 

the assumptions of Theorem 3.3 and are not isomorphic. For this we use the 
following Black Box. We define H<K+ (A) to be the smallest set H such that 

( i ) l C i / 
and 

(ii) if x C H and \x\ < K, then x G H. 
3.11. THEOREM ([Sh3, Lemma 6.5]). There is W = {(Ma,na)\a < a(*)} such 

that: 
(i) M = {Mf\i < K) is an increasing continuous elementary chain of models 

belonging to H<K+ (1) and na G KX is increasing. 
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(ii) Mff]K+ is an ordinal, « + l CM/1, Mf G H<K+(na(i)), {Mf\j < i) 6 Mf+l 

andna \i G Mf+X. 
(iii) /« the following game, G (K, X, W), player V does not have a winning strategy: 

The play lasts K moves, in the ith move V chooses a model M, G H<K+ (X) and then 3 
chooses j \ < X. V mm( choose models Mj, i < K, SO that(Mj\i < K) is an increasing 
continuous elementary chain of models, M,- D K + is an ordinal, « + 1 C Mj, and 
{Mj\j < i)eMj+\. In the end 3 wins the play if for some a <a{*).na = (y,\i < K) 
and Mj = Mf for all i < K. 

(iv) na f n'1 for a £ /?. 
Notice that in the game above V can choose the similarity type of models freely 

as long as other requirements are satisfied. 
We define /o and I\ with the help of W. We do this by defining Ja, ~>Ja, Ka, 

and ->Ka by induction on a < a(*) so that/Q n ->Ja — 0 and Ka n -<Ka = 0 and 
then letting I0 = 70

_ U [ja<aM Ja and I\ - I{~ U \Ja<a(*) Ka- We assume that we 
have well-ordered 70

+ - 70
_. 

We say that a < a(*) is active, if there is an n G 70
+ - /0~ such that a and 77 

satisfy (i)-(vii) or (i)-(v), (vi') and (vii') below. 
(i) For all i < K, the similarity type of Mf is {E,IQ ,I{~,g}< where G and g 

are two-ary relation symbols and /0~ and J f are unary relation symbols; 
(ii) for all / < K, 

Mf \ {G , / 0 - , / f } -< (/f<K+(A),G,/0-,/r); 

(iii) for all / < K, 77 \ i G Mf+l; 
(iv) for all / < K, Mf t= "g is an isomorphism from /0~ to /,""": 
(v) for all co < i < K, if / = y + 2k for some y limit and k < co, then 

?7(0 = 77" (y + k), and for all / < co, if / = 2k + 2, then n{i) = na{k); 
let 

I'<K 

where ga is the interpretation of g in M ° , 
(vi) nR~Z: 
(viO * * - £ ; 
(vii) for all / < K odd, ^(/') satisfies: 

(a) cf{n{i)) = p and 7/(0 G 5, r / ; 
(b) Mf N "the set {n \ i - (j)\j < n{i)} U {#(77 \ i) - (y)|y < ?(i)} is 

closed under g and g~'"; 
(vii') there is j n < K such that for all / > j n odd the following holds: 

(a) if / = y + An + 1 for some limit ordinal y and n G co, then £(/) G Sn^; 
(b) if / = y + 4« + 3 for some limit ordinal y and new, then 77(1) G Sn\,-, 

cf{n{i)) = p, and £(/) >n{i). 
If a is active and there exists such 77 that a and 77 satisfy (i)-(vii) above, then 

we define 77Q to be the least such 77 G 70
+ - 70~ in the well-ordering of 70

+ - /0~. 
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990 TAPANI HYTTINEN AND SAHARON SHELAH 

Otherwise, we let na be the least n e 70
+ - I0 in the well-ordering of 70

+ - 70 

such that a and 77 satisfy (i)-(v), (vi') and (vii') above. Let 

£a = [jgairja \ 0 -

where gQ is the interpretation of g in Af". If a is active and na$.~£,a, then let 

Let i? be the transitive and reflexive_closure of R. 
3.12. LEMMA. If y is active, then rjy^y. 
PROOF. Clearly, we may assume that r/yR~4y. For a contradiction, assume that 

there are po,... ,p„ such that po — ny, pn = £,y, for all m < n, pmRpm+\ and for 
all k < m < n, pk 7̂  pm. We choose i < K SO that 

(a) i is odd; 
(/?) for all k < m < n, pk \ i ^ p„, \ i; 
(y) for all m <n, W* ,, C i. 

Because ny(i) G •S,,.,|-/- and cf(ny{i)) = p., p\{i) < p0(i) and >ci(/) G S^r,-. By the 
definition of R, pi{i) G Sn.,^. By (/?) above pi{i) = p\(i) and p3(i) = pi{i)- We 
can continue this and get p„{i) = • • • = p\{i). So 775,(1) > g{n7 \ {i + 1))(0 which 
contradicts with (vii) (b) in the definition of active. • 

3.13. LEMMA. Let a and/? be active, a ^ /?, £,aRE,p, andnaI/L~~£,a, then npR"i,p. 
PROOF. For a contradiction assume npfi~£p. By (vii')(a) in the definition of 

active we can find / < K odd such that £a(i) G Sna\,- and £/;(/) G Sn ^. By Definition 

3.2(H) this implies £,a$-£,p, a contradiction. D 
3.14. LEMMA. Let a and ft be active. 
(i) Ifa^fi, then nafinp. _ 

(ii) IfnaR~^a, then for all active y, na$,£,y-
PROOF, (i) By (vii) (a) and (or) (vii')(b) in the definition of active there is i < K 

odd such that na(i) G S^j,, rjp(i) € S,^/ and na \ i ^ tjp \ i- By Definition 3.2(h) 

this implies na$.rjp. 
(ii) If y = a, the claim follows immediately from Lemma 3.12. So assume y ^a. 

We may also assume naR~^y, because otherwise we have proved the claim. Then 
ny$. - £,y By (vii)(a) and (vii')(a) in the definition of active we can find i < K 
odd such that rja{i) G Sna^, £>,(/) G S,,..^, and na \ i ^ ny \ i. As above this 
implies na$.£,y. D 

3.15. LEMMA. Let a and ft be active. IfnaR^p, then there is lap < K such that 
for all i > lap, i — y + 4k + 3, y limit, and k G co, na{i) > £,p{i). 

PROOF, by Lemma 3.14(h) we may assume np$.~S,a. For a contradiction, as­
sume that there are po,... ,pn such that po = na, pn = S,p, for all m < n, pmRpm+\ 
and for all k < m < n, pk 7̂  pm. We choose lap < K SO that 

(a) Jnc. <Lp\ 
(/?) for all k < m < n, pk \ i 7̂  pm \ i; 
(y) for all m < n, W*iiPm+l C i. 

Let / > lap, i = y + 4k + 3, y limit, and k G co. Because na(i) G Sna\, and 
cf(t]a(i)) =p, PiU) <Po(i) and/?[(/) G S , j ( . By the definition of R, p2(i) G S^t'. 
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By (/?) above pi(i) = p\(i) and pj,{i) = piii). We can continue this and get 
pn{i) = ••• = pi(i). So na(i) > fy(i). a 

3.16. LEMMA. There does not exist a sequence (TO, . . . . T„), n 6 co, n > 3, JMC/J 

(1) /or all m <n there is an active a such that xm — na or xm = £,a; 
(ii) for all m < n either 

(aj xmRxm+\ 
or 

(b) there is active a such that xm = na andxm+l — £,a or xm = £,a andxm+\ = na 

and at least case (b) exists in the sequence; 
(iii) T0 = T„; 

(iv) for all m, m' < n if m ^ m', then xm ^ xmi. 
PROOF. For a contradiction, assume that such a sequence exists. By (ii) (b) we 

may choose the sequence so that for some a, To = £a and x\ = na. Then by (iv) 
and because n > 3, x\Rxi- By Lemma 3.12 na$.£,a, and so, we may drop elements 
from the sequence so that (i)-(iv) remain true, there are still at least four elements 
in the sequence and 

(*) if m < n — 1 and xmRxm+\, then xm+\$.xm+i. 
By induction on m < n we show that if Tm$Tm+i,then xm+\Rtm+2 and if xm = np 

or xm = 4p for some /?, then rip$.~£p. We showed above that naRx2. By Lemma 
3.14(i) T2 = £p for some active /?. By Lemma 3.14(h) na$.~£,a. Then by (*) above 
T3 = rjp. By (iv) and Lemma 3.14(i) T4 = £,y for some active y, y ^ fi, and rjpR£y. 
By Lemma 3.14(h) np$.~i,p. We can continue this and obtain the claim. 

So there are active ao,...,am such that the sequence is of the following form: 

VCQO ' *lao' ^ a \ ' Va i< • • • ? tjam < S a o / • 

We choose i < K so that for all k < m, i > j a i i , for all k < m, i > lakak+1, 
i > la„,a0 and / = y + Ap + 3 for some limit y and p G co. By (vii')(b) 4*0(0 ^ 
na<j{i). By Lemma 3.15 ^Qo(0 > £a,(0- We can continue this and finally we get 
>7a,„(0 > <L0(0- So £ao(0 > 4 0 ( 0 . a contradiction. D 

We define now Ja, -<Ja, Ka, and -<Ka by induction on a < a(*). We say that 
(Ja. ->Ja. Ka, -'Ka) is closed if 

(i) Ja U Ka and ->Ja U -iA â are closed under R; 
(ii) if/? is active, then np e Ja iff £,p € -iATQ and np e - i / a iff ^ € Ka; 
(iii) / a n -i/Q = 0 and A:a n ->Ka = 0. 
We assume that for all /? < a we have defined //;, -<Jp, Kp, and -iÂ g so that 

(Jp, ->Jp, Kp, -iKa) is closed. 
If a is not active or for some /? < a, na e Jp U -u//j, then we let /„ = U«<a -fy' 

^Ja = Up<a ^JP> K* = U/?<a % a n d " ^ = U /?<a ~*KP-

If a is active and for all /? <a,np <£JpU -ijp, then we let (Ja, -<Ja,Ka, -*Ka) be 
such that it is closed and Ja D {na} U U/?<Q

 Jp< ̂ J<* 2 U/?<a ""'•V
 Ka 2 [jp<a KP 

and ^Ka D U«<Q ~ ' ^ - We prove the existence of these sets by defining sets Ja, 
->J^, K'a, and ->Ka by induction on i < |a(*) |+ . 

We let J°a = {rja} U \Jfi<a Jfi, - 4 ° = Up<a ^fi, K = [jp<a Kp, and ^ = 
\Jp<a -'Kp. If / < |a(*) |+ is a limit, we let J'a = |J •</ 7« and similarly for the 
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other sets. If / = j + 1 and is odd, then we let the sets JL -iJL KL and -<K'„ be 

the least sets so that Jl
a 2 JL - ^ 2 ^JL K^, D KL - ^ D ^KJ

a, and fa U K^ 
and -*J'a U -iK'a are closed under R. If / = 7 + 1 and is even, then if there is not 
an active y such that 

(1) tiy G J I and £,, i -.#£, 
or 

(2) rjy G -iJi and £,y £ KJ
a. 

or 
(3) ^ G Ki and tjy $ -JL 

or 
(4) £;, 6 - . ^ and//., $JL 

then we let /^ = /„ and similarly for the other sets. Otherwise, we let y be the 
least such ordinal and define 

Case 1. J'a = JL - 4 = -JL K = KL and ^K'a = -^KL U {£,.}: 
Owe 2. 7^ = Jl, ^J'a = -JL K^Kiu {£,.} and ^ = -.*;£; 

Case 3. JJ,=JL ^Ji = ^J'a U {?>.}, ^ = # j and ^K'a = ^KL\ 
Case 4. J'a =-j£u {ny}, - . 4 = -JL K'a = ^ and -.*£ = -.tfj. 
Finally, we define / a = U,<|Q(*)|+ 4 an(^ similarly for the other sets. If these 

sets are not as required, then for some /=_/ ' + 1 < |a(*) |+ even we have defined 
f.ex. -^K'a = -*Ki U {£/}, while £Y belongs already to KJ

a. If i is the least such 
ordinal, then we can easily find a circle such that it contradicts Lemma 3.16. 

So the sets / „ , ->Ja, Ka, and ->Ka exist. 
We define 70 = /„" U U a < a W Ja and /, = / f U UQ<«W *a-
3.17. LEMMA. I0 ^I{. 

PROOF. For a contradiction assume ^ : To —* 1̂ is an isomorphism. By Theorem 
3.11 (iii) there exists an active a < a(*) such that for all i < n. 

Mr^(//<K+u),€,/0-,/f,#). 
But then na G IQ iff £,a £ I\ and g{tja) = £,a- which contradicts the assumption 

that g is an isomorphism. • 
Conclusion 3.18. Assume A = fi+. cfiji) = ju, K = cf{n) < ju, and A<K = A. 

Then there are A+, K + 1-trees J0 and I\ such that 7o ̂  7) and 

If AK = A, then I0 and Zi are of cardinality A. 
Notice that if we replace Theorem 3.11 with a slightly stronger black box (see 

[Sh3]); we can, instead of two A+, K-trees, get 2'- A+, K-trees such that any two of 
them satisfy Conclusion 3.18. 

§4. On structure of trees of fixed height. In this section we will show that trees 
of fixed height are isomorphic if they are equivalent up to some relatively small 
tree. This implies that essentially the same is true for the models of the canonical 
example of unsuperstable theories (see [HT]). 

4.1. DEFINITION ([Shi]). Let A be a regular cardinal. We define /[A] to be the 
set of A C A such that there exist a cub £ C l and J8 = {Pa\a < A} satisfying 
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(i) Pa is a set of subsets of a and \Pa\ < X; 
(ii) for all limits 8 G A n E such that cf{8) < 8. there exists CCS such that 

(a) the order type of C is < 8 and sup C = 8; 
( b ) c n a e U/?<,5-fy for a11 a <<*• 

Notice that, for example, a>\ e I[co\]: Let £ c c o i b e the set of all limit ordinals 
< cox and let & = {Pa\a < X} be such that Pa = {B C a\ \B\ < co}. Then (i) 
and (ii) above are satisfied. For further properties of I[X] see [Shi]. 

4.2. DEFINITION. Let A be a regular cardinal, and let t be a X+, A-tree of cardi­
nality A. Let {x,-\i < X} be an enumeration of t, and let ?' be a subtree of /. Then 
S[t'] is the set of those limit ordinals 8 < X which satisfy the following condition 

(*): 
(*) {x, e t'\i < 8} contains a branch of length 8. 
From now on we assume that whenever we talk about a tree /, we have fixed 

an enumeration {x,|/ < |/|} for it. We assume that the enumeration is such that 
if x, < XJ, then i < j . 

4.3. DEFINITION. Let X and K be regular cardinals, let K < X, and let t be a X+, 
A-tree of cardinality X. Let {x,|/ < X} be the enumeration of/. We say that / is 2, 
K-large if / satisfies the following condition: There are sets E%, £, < K, such that 

(i) Ei C t and if ^ f <f, then Ei n Es> = 0 ; 
(ii) for S, < 8 and x e E$ there is a unique _y e E% such that _y < x; 
(iii) if ^ < K is a limit ordinal, xc- e £•,.- for all £ < <5, and (xc-)c-<f5 is increasing, 

then there is y e ^ such that x€- < j for all £, < 8; 
(iv) if £, < K, x G E%, then we write 

tx = {y & t\x < y and there is z e E$+\ such that j < z} 

and require that there exists a set 0 of regular cardinals < X such that 
(a) S[tx] U{8 < X\cf{8) < 8, cf{8) e 0 } contains a cub set (in X); 
(b) {,5 < X\cf{8) < 8, cf{8) e § , ^ S[tx]} G I[X]; 
(c) for ^ G 0 there is y e /v such that the order type o f { z | x < r < y } i s ( 5 ; 
(v) if y — /? + 1 < K, (xc-),j<(s is an increasing sequence in t, x0 G £^, and 

for all S, < 8 there is j s - G £;, such that xc- < _ŷ , then there is y G Er such that 
xC" < y for all <J < 8. 

Notice that if X = /u+, X G I[X], and K < X is regular, then /i x K + 1 is a i 
K-large A+, 1-tree. If X is weakly compact, then there is no X, K-large X+, 1-trees. 

The proof of the theorem below is a modification of the proof of a related result 
in [HT]. The most conspicuous difference is the use of elementary submodels of 
H{X*). They are used only to make it easier to define the closures needed in the 
proof. 

4.4. THEOREM. Let X and K be regular cardinals, K < X, and let 1$ and I\ be X+, 
K + l-trees. Assume t is a X, n-large X+, X-tree of cardinality X. Then 

Io=ili^I0 = Ii. 

PROOF. Without loss of generality we may assume that 1$ and I\ are such that 
if x, y G /o (G I\), they have no immediate predecessors, x ~ y, and pred(x) is 
of power < K, then x = y. 
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Let p be a winning strategy of 3 in Gf(Io, Ji). We define by induction on a < K 
the following: 

(i) an isomorphism / „ from J0~
Q onto f-a; 

(ii) for each x G /„-" ulfa we define an initial segment Rx = ((«,-, X,, F,)),<j? 
of a play in G? (J0, 7i), such that x e U/ </j (mg(*i) U rng( F,-)), rng(X,) U rng( F,-) C 
J0-a U J,-Q for all / < /?, 3 has used /? and if x is not a leaf, then for some 8 < K 
there is ax G ̂  such that a, < av for all / < p. Furthermore, we require that if 
x < x', then Rx is an initial segment of Rx> and for each x G J0~

a fa{x) is the 
element 3 has chosen to be the image of x in Rx. 

If we can do this, we have clearly proved the theorem. The cases a = 0 and a 
is a limit ordinal are trivial. So we assume that a = y + 1. 

Let z e /(j-7 — |J(5< J0-
d. Clearly, it is enough to define fa \ succ(z) and Rx for 

all x G succ(z) so that fa \ succ(z) is onto succ(/?(z)). Let y = fy(z), and let 
n: X —> t to be the function that gives the enumeration of t, t = {n(i)\i < X} (see 
the assumption after Definition 4.2). Let R: = ((a^X,-, Yj))j<p. By the inductive 
assumption there is a-_ G Es, 8 < K, such that a, < a : for all / < /?. Let E and 
^ = {Pj\i < X}. be the sets which show that 

{8 < X\cf{8) < 8, cf{8) £ ®,8 <£ S[ta:]} G I[X\. 

Let A* be large enough, say (3\o(X))+. We choose $/,-, i < X, so that 
(a) | J / , | < X and sit -< ( / / ( r ) , € , / 0 , / [ , / , < o , < i , < ) , where <0 denotes the 

ordering of Jo, <i denotes the ordering of I\, and < denotes the ordering of /; 
(b) p, n, (E^ < K), E, (Pj\i < X), R-_, X, 0, a-_ es/0, K + \C j ^ 0 , and i C At; 
(c) si-, -< sfj if i < j and sft = (J -<(. J*) if / limit; 
(d) for all / < p, dom(Z,) G s/0 (see Definition 2.2); 
(e) s/j n 1 is ordinal, sft G M+i and s/,-r\X e stfi+\; 
(f) succ(z)Usucc(y)cU.< Aj / , ; 

(g) if x G ? n sfj, y G ?, and y < x, then y €J>/i. 
Let 

C C 5[/„J U {<5 < A|c/(<5) < 8 and c/(<5) G 0 } 

be cub. We may assume that for all c G C, sfc. n A = c and c € E. 
For all / < A we define by induction c, G C and / „ f (succ(z) n j / f , ) . If / is 

limit, then c, = M-<;
 cj and /<, f (succ(z) n sfCl) is already defined. 

Assume that we have defined c, and / „ \ (succ(z) n stfCj) as wanted and 

rngC/a \ (succ(z) n^f,.)) = succ(y) n sfCi. 

Let us define ci+\ and 
fa r (succ(z) n (J<.,+1 -sfc,)). 

Now either c, G 5[rfl__] or c, e {8 < X\cf{8) < 8 and cf{8) G 0 } . 
(1) Cj G 5[rflJ: Let 5 G s/Ci+i be a branch in 

S[ta:]ns/Cl ={n{f)\j<Ci} 

of length Cj. Let /; G X , be a one-to-one function from (succ(z) U succ(j)) n s£Cj 

to srfc n A. We let the players continue the play R: so that in the next c, moves V 
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chooses the sets {h~l{d)}, 8 < c,, from I0 U/i and from t he chooses elements of 
B. We let 3 follow p. If B' is an initial segment of B, then B' = {y G t\a: < y < x} 
for some x e B. So B' G s#Cl, which implies that every initial segment of the play 
belongs to sfCl. Because s/Cl is closed under p, all the elements 3 chooses are from 
sfCl. It is also easy to see that this play belongs to stf7 for all y > Cj. 

By Definition 4.3(v) we can find a G Es+\ n j / f i + i , such that a is larger than 
any element b G t chosen by V in the play above. Let 

C" C S[ta] U{8< k\cf(8) < 8 and cf{8) G 0 } 

be cub. Let cl+\ G C n C be such that c,+i > c,. Then a G ̂ f,+1- Now either 
ci+\ e S[ta] or c/+i € {S < k\cf{8) < 8 and cf(S) e &}. In the first case we 
let V play the elements (succ(z) U succ(j)) C\s/Ci+l as above. So let us assume that 
Ci+i $ S[ta] and c,+, G {S < k\cf{5) < 8 and cf{8) G 0 } . Especially then 

(*) ci+i €EH{8< X\cf{8) < 8, cf{8) €®,3<jt S[ta]}. 

Let h' G sf(-l+l be a one-to-one function from (succ(z) U succ(y)) n sfCl+i to 
c,-+i = J/,,+1 n A. Let 

D' C c,-+i 

be a set such that for all £, < c,+1, £, n D' G Uy<f.+1 ^
>/> supD' = c,+i, and the 

order type of D' is c / (c , + i ) . The existence of this set follows from (*) above. Let 
D = {dj\j < cf{ci+i)} be the closure of D' in ci+\. Because cf(ci+\) G sfCi+i, it 
is easy to see that in ta C\srfCj+l there is a branch B of length cf{ci+\). We let the 
players continue the play above so that in the next cf{ci+\) moves V chooses the 
sets {h'~x{k)\k < dj} from /o U/i, j < cf{ci+\), and from t he chooses elements 
of B. We let 3 follow p. 

Because U,« ?< - •fi -̂/+i • everY initial segment of this play is in sfCl+l and so 
all elements chosen by 3 from To U/i are from s/Ci+l. Then by using the moves of 
3 we can define 

fa t (succ(2) n « . + 1 - < ) ) . 

For each x G succ(z) n (^/ + 1 - .s^,), i?.v will be the play defined above. 
(2) CJ £ S[ta.]\ Now we first let V play the elements of (succ(z) U succ(jO) nsfCl 

as in the second half of the case (1) and then continue as above. Notice that in 
this case (also) we have to define the first cf{cj) moves so that the play belongs 
to sfi-i+r We can guarantee this by choosing D' C a so that D' G s/ei+\. • 

4.5. REMARK. Let k = fi+, and let K < k be regular. Let IQ and I\ be k+, 
K + 1-trees. Assume k G I[k]. Above we proved that if a = ju x K + I, then 

(*) I0=ih^I0 = h. 

In §3 we showed that if p. is regular, then this is best possible. But if p. is not 
regular, then we can get better results. 

If K < cf{fi) < p, then (*) is true if a = p; if K = cf{p) < p, then (*) is true 
if a — p + 1. This can be proved in the same way as in the proof of Theorem 4.4. 
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