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STRONG COLORINGS YIELD κ-BOUNDED SPACES

WITH DISCRETELY UNTOUCHABLE POINTS

ISTVÁN JUHÁSZ AND SAHARON SHELAH

(Communicated by Mirna Džamonja)

Abstract. It is well known that every non-isolated point in a compact Haus-
dorff space is the accumulation point of a discrete subset. Answering a question
raised by Z. Szentmiklóssy and the first author, we show that this statement
fails for countably compact regular spaces, and even for ω-bounded regular
spaces. In fact, there are κ-bounded counterexamples for every infinite car-
dinal κ. The proof makes essential use of the so-called strong colorings that
were invented by the second author.

1. Introduction

It is part of topology folklore that a topological space is compact iff any dis-
crete subset in it has compact closure. Since compact subsets of Hausdorff spaces
are closed, this implies that every compact Hausdorff space X is weakly discretely
generated, i.e. for any non-closed set A ⊂ X there is a discrete set D ⊂ A such
that D \A �= ∅. It immediately follows from this that every non-isolated point in a
compact Hausdorff space is the accumulation point of a discrete subset, or in other
words, each such point is “discretely touchable”.

Motivated by this fact, Z. Szentmiklóssy and the first author raised the natural
question whether this property of non-isolated points in compact Hausdorff spaces
remains valid after relaxing compactness to a weaker property, like countable com-
pactness or Lindelöfness. The aim of this note is to give a negative answer to this
question and in fact show that no essential relaxation of compactness suffices to
preserve the above statement.

Before turning to the proof of this, we present a few preliminary results concern-
ing discretely touchable points. First of all we note that any accumulation point of
a right separated (or equivalently, scattered) subspace is discretely touchable. In-
deed, this follows from the fact that the set of isolated points of any right separated
space, which is clearly discrete, is dense in that space. This simple observation
yields the following proposition.

Proposition 1.1. If X is a Hausdorff space, κ is an infinite cardinal, and the
point x is the limit of a one-to-one κ-sequence in X, then x is discretely touchable
in X.
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2242 I. JUHÁSZ AND S. SHELAH

Proof. Clearly, we may assume that κ is regular; hence if s = 〈xα : α < κ〉 is
the one-to-one κ-sequence converging to x, then any intersection of fewer than κ
many neighbourhoods of x contains a tail of the sequence s. As X is Hausdorff, the
singleton {x} is the intersection of the closed neighbourhoods of the point x; hence
by a straight-forward transfinite induction we may select a cofinal subsequence
〈xαν

: ν < κ〉 of s such that {xα : α ≥ αν} is closed in {xα : α < κ} for each ν < κ.
But then {xαν

: ν < κ} is clearly a right separated subset of X that accumulates
(even converges) to the point x. �

Corollary 1.2. If we have χ(p,X) = ψ(p,X) ≥ ω for the point p in the Hausdorff
space X, then p is discretely touchable in X.

Proof. It is straight-forward to show that if χ(p,X) = ψ(p,X) = κ ≥ ω, then there
is one-to-one κ-sequence in X converging to p. �

Since χ(p,X) = ψ(p,X) for each point p of a compact Hausdorff space X,
Corollary 1.2 yields an alternative way of showing our starting point which was
the fact that every non-isolated point in a compact Hausdorff space is discretely
touchable.

This also leads us to the following result that perhaps explains why it seems
to be non-trivial to find a discretely untouchable non-isolated point in a regular
countably compact space.

Corollary 1.3. If x is a discretely untouchable non-isolated point in a regular
countably compact space X, then we have

ω < ψ(x,X) < χ(x,X) .

In particular, then χ(x,X) ≥ ω2 .

Proof. Indeed, it is well known that if p ∈ X and ψ(p,X) = ω in a regular countably
compact space X, then we also have χ(p,X) = ω. �

A completely similar argument as above, using the fact that any point x in an
initially κ-compact regular space X with pseudo-character ψ(x,X) ≤ κ satisfies
χ(x,X) = ψ(x,X), yields the following more general result.

Proposition 1.4. If x is a discretely untouchable non-isolated point in a regular
initially κ-compact space X, then we have

κ < ψ(x,X) < χ(x,X) .

In particular, then χ(x,X) ≥ κ++ .

Finally, we recall that a space X is called κ-bounded if every subset of X of
cardinality ≤ κ has compact closure in X. It is obvious that every κ-bounded
space X is initially κ-compact, i.e. every open cover of X of size at most κ has
a finite subcover, or equivalently that every infinite subset of X of cardinality at
most κ has a complete accumulation point.

2. Main results

Our main results make essential use of certain strong colorings that were intro-
duced and established by the second author. Therefore we start with defining these
colorings.
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DISCRETELY UNTOUCHABLE POINTS 2243

Definition 2.1. Let λ and κ be infinite cardinals. We shall denote by Col(λ, κ) the
following statement: There is a coloring c : [λ]2 → 2 such that, given any ordinal
ξ < κ+ and a map h : ξ × ξ → 2, for every family {Aα : α < λ} of λ many pairwise
disjoint subsets of λ of order type ξ there are α < β < λ for which

c(aα,i, aβ,j) = h(i, j)

holds for all pairs 〈i, j〉 ∈ ξ× ξ. Here, of course, aα,i denotes the ith member of Aα

in its increasing ordering (of type ξ).

Thus our relation Col(λ, κ) is identical with the relation Pr0(λ, λ, 2, κ
+) that was

defined by the second author e.g. in [6], Appendix 1, def. 1.1.
We mention that, simply putting together the results given in 4.6C(5) and 4.5(3)

from chapter III of [6] (the first result can be found on page 172 and the second on
page 170), one obtains the following fact.

Proposition 2.2. For every infinite cardinal κ the relation Pr(λ, λ, λ, κ+) (that is
stronger than Pr0(λ, λ, 2, κ

+) ≡ Col(λ, κ)) holds for the cardinal

λ = (2κ)++ + ω4 .

We note that (2κ)++ < ω4 can only occur if κ = ω and the continuum hypothesis
holds; hence in every other case we have Col((2κ)++, κ).

Motivated by the work on this paper, the second author has achieved some
further improvements on this proposition that will appear in [7].

For every coloring c : [λ]2 → 2 one can naturally define a subspace F [c] of the
Cantor cube 2λ as follows: F [c] = {cα : α < λ} , where, for any α < λ, the point
cα ∈ 2λ is defined by the stipulation

cα(β) =

⎧⎨
⎩

c(α, β) if β < α ,
1 if β = α ,
0 if β > α .

Here, and in what follows, we commited the innocent abuse of notation by writing
c(α, β) instead of c({α, β}). The requirement cα(α) = 1 is purely technical, just to
ensure that α �= β implies cα �= cβ.

We shall need the following lemma in the proof of our main result.

Lemma 2.3. If λ is an uncountable regular cardinal and Col(λ, κ) holds, then
there is a coloring d : [λ]2 → 2 establishing Col(λ, κ) with the extra property that
the set F [d] is dense in the Cantor cube 2λ.

Proof. Assume that the coloring c : [λ]2 → 2 witnesses Col(λ, κ). It is obvious that
then for each α < λ the coloring c � [λ \α]2, i.e. c restricted to the pairs from a tail
of λ, when “translated” back to λ is also a witness for Col(λ, κ). This translated
coloring c(α) : [λ]2 → 2 is naturally defined by the formula

c(α)(ξ, ζ) = c(α � ξ, α � ζ).

Here we use � to denote ordinal addition.
Next we show that there is an α < λ for which F [c] is λ-dense in the tail

product 2λ\α. This means that for every finite function ε ∈ Fn(λ \ α, 2) we have
|[ε] ∩ F [c]| = λ, where [ε] = {f ∈ 2λ : ε ⊂ f} is the elementary open set in the
Cantor cube 2λ coded by ε.

Assume, arguing indirectly, that there is no such α < λ. We may then define
a λ-sequence 〈εα : α < λ〉 of members of Fn(λ, 2) as follows. Assume that α < λ
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2244 I. JUHÁSZ AND S. SHELAH

and 〈εβ : β < α〉 have already been defined in such a way that for each β < α
we have |[εβ ] ∩ F [c]| < λ. For β < α we shall write Eβ = {i : ci ∈ [εβ ]}; then
|Eβ| = |[εβ ] ∩ F [c]| < λ.

Since λ is regular, we may then find an ordinal να < λ such that⋃
{dom(εβ) ∪Eβ : β < α} ⊂ να .

We then choose εα ∈ Fn(λ \ να) so that |[εα] ∩ F [c]| < λ. This is possible by our
indirect assumption.

By λ = cf(λ) > ω, after an appropriate thinning out the sequence 〈εα : α < λ〉
may be assumed to be such that for some positive natural number n and function
ε : n → 2 each εα is a “translate” of ε, that is, | dom(εα)| = n and εα(ξα,k) = ε(k)
for each k < n, where, of course, ξα,k denotes the kth element of dom(εα) in its
increasing order.

Now, let h : n× n → 2 be any map with the property that h(0, k) = ε(k) for all
k < n. Since c witnesses Col(λ, κ), we may then find β < α < λ such that for each
k < n we have

cξα,0
(ξβ,k) = c(ξα,0, ξβ,k) = h(0, k) = ε(k) = εβ(ξβ,k) .

In other words, this means that cξα,0
∈ [εβ ], i.e. ξα,0 ∈ Eβ, which is a contradiction

as Eβ ⊂ να, while ξα,0 ∈ dom(εα) ⊂ λ \ να.
So fix α < λ for which F [c] is λ-dense in 2λ\α.We claim that then F [c(α)] is dense,

even λ-dense, in 2λ. To see this, consider any ε ∈ Fn(λ, 2) and define ε̂ ∈ Fn(λ\α)
as the natural translate of ε by α. In other words, dom(ε̂) = {α � ξ : ξ ∈ dom(ε)}
and ε̂(α � ξ) = ε(ξ) for each ξ ∈ dom(ε).

Then |[ε̂] ∩ F [c]| = λ, hence the set

E = {ζ : cα�ζ ∈ [ε̂] and dom(ε̂) ⊂ α � ζ}
is also of cardinality λ. But this means that for every ζ ∈ E and ξ ∈ dom(ε) we
have (

c(α)
)
ζ
(ξ) = cα�ζ(α � ξ) = ε̂(α � ξ) = ε(ξ) ,

hence
(
c(α)

)
ζ
∈ [ε] holds for each ζ ∈ E. But this clearly implies |[ε]∩F [c(α)]| = λ,

showing that d = c(α) satisfies the requirements of the lemma. �

We are now ready to state and prove our main result. Before formulating it,
however, we recall that the κ-closure clκ(A) of a subset A of a topological space X
is defined by

clκ(A) =
⋃

{B : B ∈ [A]≤κ},

where B denotes the closure of B in X. Moreover, for every point x ∈ 2λ its
support supp(x) is defined by

supp(x) = {α < λ : x(α) = 1} .

Theorem 2.4. Assume that κ is an infinite cardinal and λ > κ+ is a regular
cardinal; moreover, the coloring c : [λ]2 → 2 witnesses the relation Col(λ, κ). Let
us denote by Hκ[c] the κ-closure of the set F [c] in the Cantor cube 2λ. Then for
every right separated subset S of Hκ[c] there is an α < λ for which⋃

{supp(x) : x ∈ S} ⊂ α .
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DISCRETELY UNTOUCHABLE POINTS 2245

Proof. Assume that the statement of the theorem fails. Then we clearly may find
a subset S = {xα : α < λ} ⊂ Hκ[c] that is right separated by the well-ordering
given by the indices α; moreover, for each α < λ we have supp(xα) \ α �= ∅. The
first part of this means that for every α < λ there is a finite set aα ∈ [λ]<ω such
that εα = xα � aα codes an elementary open right separating neighbourhood of the
point xα in S, i.e. xβ /∈ [εα] for all β > α. The second part implies that for every

α < λ there is a set Aα ∈ [λ \ α]κ such that xα ∈ {ci : i ∈ Aα}.
A standard delta-system and counting argument allows us to thin out the se-

quence {xα : α < λ} in such a way that the sets aα are pairwise disjoint and of
the same size n. Moreover, similarly as above in the proof of Lemma 2.3, we may
in addition assume that for some ε ∈ 2n we have εα = ε ∗ aα for each α < λ.
Let us now set Bα = aα ∪ Aα for α < λ. After some further thinning out, using
λ = cf(λ) > κ+, we may also assume that all the sets Bα have the same order
type ξ < κ+; moreover, supBβ < minBα whenever β < α < λ. Finally, we may
also assume that there is some fixed set a ∈ [ξ]n so that for each α < λ we have
aα = {ζα,ν : ν ∈ a}, where Bα = {ζα,ν : ν ∈ ξ} is the increasing enumeration of
Bα.

Now let h : ξ × ξ → 2 be any map satisfying h(η, νk) = ε(k) for all η < ξ and
k < n, where νk is the kth member of the set a ∈ [ξ]n in its increasing order. Since
the coloring c witnesses the relation Col(λ, κ), we may then find β < α < λ such
that h(ν, μ) = c(ζα,ν , ζβ,μ) holds for each pair 〈ν, μ〉 ∈ ξ × ξ. But according to
our above arrangements this implies ci ∈ [εβ ] for each i ∈ Bα ⊃ Aα; consequently,

xα ∈ [εβ ] as well because [εβ ] is a closed (in fact clopen) set and xα ∈ {ci : i ∈ Aα}.
This, however, is a contradiction because [εβ ] was assumed to be a right separating
neighbourhood of xβ which thus cannot contain the point xα. This contradiction
then completes the proof of Theorem 2.4. �

In what follows, let us denote by Σλ the subset of the the Cantor cube 2λ that
consists of all points x ∈ 2λ whose support is bounded in λ. (Of course, if λ
is regular, this is equivalent with | supp(x)| < λ.) Using this notation, for every
coloring c : [λ]2 → 2 we have, by definition, F [c] ⊂ Σλ. Moreover, if c witnesses the
relation Col(λ, κ) and λ > κ+ is a regular cardinal, then, by Theorem 2.4, we even
have S ⊂ Σλ whenever S ⊂ Hκ[c] is right separated. Thus we have arrived at the
following result that makes the statement made in the title of our paper precise.

Corollary 2.5. If λ > κ+ is a regular cardinal and Col(λ, κ) holds, then there is a
dense κ-bounded subspace of the the Cantor cube 2λ that has a discretely untouchable
(non-isolated) point.

Proof. By Lemma 2.3 there is a coloring c : [λ]2 → 2 witnessing Col(λ, κ) for which
F [c] is dense in 2λ. Now pick any point x ∈ 2λ \ Σλ, i.e. with | supp(x)| = λ, and
set X = Hκ[c] ∪ {x}. Then Hκ[c] is κ-bounded, being the κ-closure of a subset
of the compact space 2λ; hence so is X. Moreover, x is an accumulation point of
Hκ[c], as already F [c] ⊂ Hκ[c] is dense in 2λ. But by Theorem 2.4 no discrete (or
equivalently, right separated) subset of Hκ[c] has x in its closure. �

For each infinite cardinal κ, according to Proposition 2.2 from the beginning
of this section, λ = (2κ)++ + ω4 satisfies the assumption of Corollary 2.5. In
particular, for κ = ω the smallest value we get for such a λ is ω4, provided that the
continuum is ≤ ω2.
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2246 I. JUHÁSZ AND S. SHELAH

Note that in Corollary 2.5 the character χ(x,X) of the discretely untouchable
point x ∈ X is λ. On the other hand, Proposition 1.4 yields the lower bound κ++

for the character of a discretely untouchable non-isolated point in an initially κ-
compact space. So it is natural to raise the question if the value for the character
of such a point could be lower than (2κ)++ + ω4. The following problem seems to
be the most intriguing.

Problem 1. Is it consistent with (or even provable from) ZFC that there is a
discretely untouchable non-isolated point of character ω2 (or ω3) in some countably
compact (or ω-bounded) regular space?

It is standard to show that the cardinality of the κ-bounded space X given in
Corollary 2.5 is |Hκ[c]| = |clκ

(
F ([c]

)
| = λκ · 22κ . However, if instead of κ-bounded

we only want an initially κ-compact example, then this value may be chosen to
be just λκ. Indeed, this can be achieved by constructing a subspace Y ⊂ X that
includes F [c] ∪ {x} and has the property that every infinite set A ∈ [Y ]≤κ has a
complete accumulation point in Y .

In particular, for κ = ω this yields us a countably compact regular space with a
discretely untouchable non-isolated point of cardinality ω4, provided that the con-
tinuum is ≤ ω2. Again, it is an intriguing problem if the cardinality of such an
example can be, consistently, lowered. Let us note that, since every non-isolated
point in a scattered space is discretely touchable, such an example cannot be scat-
tered and hence must be of cardinality at least continuum.

Problem 2. Is it consistent with ZFC that there is a countably compact (or ω-
bounded) regular space of cardinality ω1 (or ω2, or ω3) with a discretely untouchable
non-isolated point?

3. Countable examples

We have shown in the previous section that for every cardinal κ there is a κ-
bounded, and hence initially κ-compact, regular space with a discretely untouchable
non-isolated point. In the introduction we also promised to exhibit such points in
Lindelöf regular spaces to conclude that basically no weakening of compactness
suffices to preserve the property of compact Hausdorff spaces that was our starting
point.

In fact, we would like to point out that there are even countable, hence hereditar-
ily Lindelöf regular spaces that are crowded, i.e. have no isolated points, in which
all discrete subsets are closed; hence all points are discretely untouchable. Perhaps
the first such example, a countable maximal space that is regular, was constructed
by E. van Douwen; his example was published in the posthumous paper [1]. A very
different such example is the countable submaximal dense subspace of the Cantor
cube 22

ω

that was constructed in theorem 4.1 of [3].
Both of these examples are rather non-trivial, so we decided to include in this

paper the following result which shows that actually every crowded irresolvable
countable regular space contains such an open subspace.

We recall that a space is called irresolvable if it has no two disjoint dense subsets
and that there is a crowded, countable, and regular irresolvable space. The existence
of such a space was first established by E. Hewitt in 1943, in his classical paper [2]
on resolvability.
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DISCRETELY UNTOUCHABLE POINTS 2247

Proposition 3.1. Every crowded irresolvable regular space has an open subspace
in which all countable discrete subsets are closed.

Proof. Let X be a crowded irresolvable regular space. It is well known that every
irresolvable space has an open subspace that is hereditarily irresolvable, so let Y be
such an open subspace of X. It suffices to show that the set Z of all accumulation
points of countable discrete sets cannot be dense in Y because then the interior of
Y \ Z is the required open set.

Assume, on the contrary that Z is dense in Y . Then Y \ Z cannot be dense
in Y because Y is irresolvable. This means that U = Int(Z) �= ∅. But then, by
definition, every point of U is the accumulation point of a countable discrete subset
of U . Now, every countable discrete set in a regular space is strongly discrete, i.e.
its points can be separated by pairwise disjoint open sets. But by theorem 2.1 of
[5] (see also theorem 1.3 of [4]), then U is even ω-resolvable, i.e. it has infinitely
many pairwise disjoint dense subsets, which contradicts the choice of Y . �
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Added in proof

We only noticed after submitting this paper that its main result yields an affir-
mative answer to Problem 5.5 raised in: A. Dow, M.G. Tkachenko, V.V. Tkachuk
and R.G. Wilson, TOPOLOGIES GENERATED BY DISCRETE SUBSPACES,
Glasnik Mat., Vol. 37 (57) (2002), 189-212.
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