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We investigate the monadic logic of trees with w+1 levels, the monadic topology of the
product space “A and a strengthening of monadic logic for trees with o levels.

0. Introduction

This work continues two lines of research, The first is of the analysis of the
complexity of the monadic theory of linear orders, the monadic theory of trees
and the monadic topology (see Shelah [8, §7], Gurevich [4], Gurevich and Shelah
[5, 6, 7], and Gurevich [3]).

Here we use similar methods and prove analogous results for more cases
(first-countable topological spaces like the product topology on “A and the tree
“ZX with a quantification that is slightly stronger than the monadic one). We shall
explain this in the introduction to each section. Now we shall deal with the second
line. In Baldwin-Shelah [1] we analyzed the complexity of the L(Q)-theory of the
class of models of T, where Q is a first-order definable second-order quantifier
and T is first-order. The classification showed the naturality of monadic logic, and
in particular naturality of the monadic theories of linear orders and trees. It was
almost proved there that those are the only interesting cases, i.e. any essentially
different case is either too complicated (i.e., we can interpret in the L(Q)-theory
of T second-order logic in a model-theoretic way) or the model theory of the
L(Q)-theory of T is trivial. However, there were few gaps in this picture. One of
them was about unstable theories is dealt with in [9].

We deal here with the two other gaps. First for some theory T, in some
monadic expansion we can interpret the tree “ZA; but T is stable not superstable
hence by [1] we cannot interpret general trees. So the monadic theory of the class
of models of T is approximately as complicated as that of the monadic theory of
{*A:) is a cardinal}. In the second section we show that this class has a
complicated monadic theory: if V = L it is as complicated as second-order logic.

*The author thanks the BSF and the NSF for partially supporting this research.
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So the Lowenheim number of the monadic theory of T is large, but not the
Hanf number. Second, for some superstable T in the monadic theory of models of
T we can interpret fragments of the L, ,(Mon)-theory of the tree “~A. We prove
in Section 1 that under V =L we can interpret there the second-order theory of
A. In fact, instead of dealing with infinitary languages we deal with the following
quantifier on trees (QP'f) meaning “there is a function f, f(x) <x such that ...”.
As in our trees f is determined by (P{:1 <), where P{={x:f(x) is in the Ith level},
for infinitary languages there is no difference between monadic logic and the logic
with the new quantifiers (for suitable trees). Again we can deduce some results on
the Lowenheim numbers.

1. Boolean interpretation in the tree “”\

The standard way to prove that a theory T} is at least as complicated as T (i.e.,
the Turing degrees of T, is = the Turing degree of T,) is to find a first-order
interpretation of the models of T, in models of Tj.

In [8] we have proved that the monadic theory of the real order is complicated
but our interpretation was not standard. (We used there CH but this was
eliminated in Gurevich and Shelah [5].) Gurevich [4] saw that really only the
topology was used. In Gurevich and Shelah [6] the meaning of our interpretation
was clarified. We interpreted not a usual model, but a Boolean-valued model
where the Boolean algebra was the completion of the Boolean algebra of regular
open subsets of the real line. In particular it is possible to interpret in the monadic
theory of the real line the second-order theory of X, in the world resulting from
Cohen forcing.

It is known that the monadic theory of the tree “”A is decidable (see a
generalization of Rabin’s theorem due to Shelah and Stup, see [8, Theorems 0.4,
0.5, 0.6]). However we consider here a stronger quantifier (Q™f) ranging over
one-place functions f satisfying f(x) =< x. We generalize easily the results of [6] for
the new quantifier. Here the Boolean algebra involved is that of the standard
collapse of A. Now if V=L is the universe, then after the collapse we can
reconstruct easily the old universe. In this case in the L(QP%-theory of “”A we
can interpret the second-order theory of A.

1.1. Definition. (1) Let K., be the class of trees T = (T, <), i.e., partial order, so
that for each x € T, {y : y <x} is linearly well ordered, with order-type being called
the level of x, lev(x). Let

T,={xeT:lev(x)=a}, K‘:‘,={T:T= U TB}.
B<a

(2) We look at #~a as a tree, by the natural ordering: being an initial segment.
(3) We call T endless if (Vxe T)dyeT)[x<yl



Sh:205

Monadic logic and Léwenheim numbers 205

1.2. Definition. For trees T, the quantifier (Q™'f) ranges over partial functions f
such that f(x)=x for x € Dom f. We call such f a p.d. function.

Note that by their domain they give monadic quantification. Let W, X| Y, Z be
monadic variables.

1.3. Notation. (1) A basic open subset of T is T, ={y:y=x} for xeT.

(2) An open set is a union of basic open sets (so the topology is not Hausdorf).

(3) A subset of T is dense if it is not disjoint to any basic open set.

(4) A subset A of T is a full subtree if A#®, A is downward closed
(y<xArxeA —yeA), for every x € A, |Sucr(x) NA|=1 or Sucr(x) S A, (where
Suc(x) is the set of immediate successors of x) and for every x€ A for some vy,
x<yeA, Sucr(y) S A.

1.3A. Convention. A model in this section is an endless (T, <) e K{ expanded by
some p.d. functions (hence monadic predicates).

1.4. Claim. The L(Q")-theories of K2 and {®” A : A} are recursive one in the other.

1.5. Lemma. There is a formula ¢(X, f)e L, such that if T=(T, <)e K,,, and P,
(i <a) are pairwise disjoint dense subsets of T, then for some p.d. function f, and for
every X< T,

TEOX f] iff U{T=r:Qi<a)(To,NX=T.,NP)} is dense and open.

Proof. Define f: if xe P, then f(x) is the minimal y=<x such that yeP; if
x¢ Ui <o P,y f(x) is not defined.
¢(X,f) says: for every x there is y>x, such that for every z=y,

[f(z)=f(y)o zeX].

1.6. Lemma. For k <w there is a formula ¢(Xo, . . ., Xic_1, f) € L(Q®) (or even in
L(Mon)) such that: for every Te K& and {P': i <a} where WxeT) (|T.,|=|al),
Pi =(Pi:1<k), Pi a subset of T, there is f' (a sequence of p.d. functions for T of the
length of f) such that: for any Ao,...,Ax1ST, TEY[A,,..., A, f] iff
U{T-.. : for some i <a for each | <k, A;NT.,=PiNTs.,} is dense.

Proof. We can find functions gi:T—T (for i<a I<k) such that
(Vx e T)(gi(x)>x), each gi is one-to-one, gi(x)=<gi.(x) for |<m <k and their
ranges are pairwise disjoint. [Let A'={xeT: (Vy)lx=yeT—|T<|=|T<,l},
A"={xeA":(Vy<x)(y¢ A"}, now define the g} on each T.., (x € A") separately
so that infinitely many pairwise comparable elements of T.., are in the range of
no gi.]

We now define a partial p.d. function h;,, h™ (for I <k, m <k): h™(g\, . .(x) =
gl (x) and h(gi(x)) = x (as the ranges of the g! (i <) are pairwise disjoint, h, and
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h™ are well-defined functions). Let Qi={gi(x):xePi}. Let h=(h, h':l1<k),
and let g be such that for every XcT: TEe[X g] Iiff
UA{T, :@i<a)XT., N X =T., NQH}is dense and open. (The formula ¢ is from
1.5, and g; exists by 1.5.)

Let ¢(Xo, ..., Xi—1, hoyovoshi—1, 80s--v» 8a1s KO, ..., K" %) say: there are
Yo -5 Yiq s.t. A (Y}, &) and
A (V2)(zeYi=h(x)e XI)AK{\ ) (Vz)(ze Y1 =h'(2)eY)

1<k

AN (V2)@z)(ze Y, = z,€ Y ARl (zy) = 2).

l<k-—1

1.7. Notation. (1) u will vary on basic open sets (for a relevant T).

2) Valr0(u, X4, ..o, fro o )=U{u:TEO(u, X, ..., f1,...)}; we omit the sub-
script T when its identity is clear.

(3) We say X=Y if (X-Y)U(Y—-X) is a nowhere dense set (this is an
equivalence relation).

1.8. Lemma. There are 8(u, X, T), 0.(u, X, Y, Z, f), 8.(u, X, Y, Z, ) such that for
any T and pairwise disjoint dense P, =T (n<w) there is an f such that:
(a) For X<T

vala(u, X, f) EVal(\/ [P,Nu=XMN u]).

) ForX, Y, Z<T
vala,(u, X, Y, Z, f)

-=—val< \V4 [Pnﬂu=Xﬂu/\Pmﬂu=Yr‘\u/\Pkﬂu=Zﬂu]>.
n+m=k

() For X, Y, Z<T
valo,(u, X, Y, Z, f)
Eval(V [P"ﬂu=Xﬂu/\Pmﬂu=Yﬂu/\Pkﬁu=Zﬂu)).

nm=k

1.8A Remark. In (a), (b), (c) inside the right-side formulas we can replace = by=.

Proof. By 1.6 (as T is endless).

1.9 Lemma. There is a formula 8*(f) € L(Q®®) such that: T ¥ 8*(f) iff for some P,
(n <w) the conclusion of 1.8 is satisfied.

Proof. Straightforward. Let 8% tell the obvious properties and then say {X/=:
\_I_al a(u, X, f)= T} is minimal among {{X/= :val 8(u, X, g) = T}: TE8%(g), for g and
f we have the same “one”, “zero” and successor operations when defined}.
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1.10. Definition. Lct P, (n<w), f be as in 1.8. We can consider T as a forcing
notion.
(1) If A is a T-name of a set of natural numbers, let

R[A]={xe T: for some y<x and n, y lbr“ncA” and x€ P,}.

(2) If X< T let N(X) be the following T-name of a set of natural numbers:
for xeT,

xk“neNX)” iff (T-,)-val(P, Nu< X) is nowhere dense.

1.11. Fact. In the context of 1.10:

D) +“A=N(R[A)”, and if F+“A;=A,” then R(A,)) = R(A,).

(2) R[A]=R[N(R[A])], and if X=X, (X;,X,ST) then I“N(X,)=
N(Xz)”.

1.12. Lemma. For every formula (X, ..., X0, Y1,--.,¥m) in second-order
number theory we can recursively compute a formula

¢+(u’ X17 <o 7Xn5 Yl: cevy Ym)

such that the following holds: (for P,(n<w), f as in 1.8)
(*) For any T-names A,,...,A, of sets of natural numbers, and natural
numbers kq, ..., ky.:

U{Torix F<“d(A4, ..., AL ky, ..., k)7}
=val ¢+(u, R[Al], ceey R[A"], Pk1’ vaey Pkm)'

Proof. By straightforward induction on ¢.

From 1.12 and 1.8, 1.9 we get:

1.13. Condusion. For every sentence 9 in second-order logic we can compute a
sentence 8* in L., (Q") (tree’s language) such that:

TN QI* ff eogon (e, <) E O for some o <A'.”

1.14. Condusion. (V = L). Second-order logic and L(Q")-theory of K} are bi-
interpretable and have the same Lowenheim number.

1.15. Conclusion. If T has finite language, T is stable but not superstable, then
K(©, Q°)=(T, mon) (hence the conclusions on Lowenheim numbers).

Proof. See [1, VII 2.1, 2.2].

1.16. Claim. There is a superstable T with finite language, (T., 2nd) % (T, mon), T
has nice decomposition but (K2, Q") =< (T, mon).
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Proof. Let
|M| ={(n, k): for some m <w, ne™\, and 3!) k<< m}.
G™ a one-place partial function, G((n, k)) = (n. k + 1).
FM a one-place partial function,
(n, k) if I(n)=0,
F((m, k)= (n M (m—1),k) if l(n)=m, k<m, 3l (k=1?),
(M m=1),k-1) ifim)=m, k=m, 3l (k=1?).
T will be Th(M).

1.17. Claim. If A =X, p =X, then every formula in L, .(Q™) is equivalent to
some formula in L, ,,(Mon) (if we restrict ourselves to e.g. endless trees in K&). So
the Lowenheim number of those logics are equal.

2. Boolean interpretation in the trees or topologies “A

We know that the class of linear orders has a very complicated monadic theory:
by Gurevich and Shelah [7] under a weak set theoretic hypothesis (there are
arbitrarily large cardinals A with A =A="), the monadic theory of linear orders
and second-order logic are bi-interpretable (hence have the same Turing degree).
We also know, by similar methods, that this holds for the class of trees and for the
class of topologies (see below), (see [7]). As the results for topologies imply easily
the rest, we shall concentrate on the monadic topology for a topological space X
in the following first-order structure My. The universe is the family of all subsets
of X, and the relations are the inclusion, and a unary relation for being a closed
set. We shall write XF¢ instead M, k¢. Let K denote a class of topological
spaces.

Now in [7], the topological spaces, that played the central role in the proof,
were those of a quite saturated linear orders. However, many interesting classes
of topological spaces consist of first-countable spaces only, hence the proof of [7]
is not applicable. We shall interpret second-order logic for certain classes of that
sort, but at some price, e.g., assuming V = L. Note that set-theoretic hypothesis
occur twice. First, as in Section 1, we interpret in monadic theory of “A
second-order logic of ¥, of the universe after the standard collapse of A. Secondly
we need the continuum hypothesis to carry the combinatorial argument. In our
proof the central role, fulfilled by saturated linear orders in [7], is fulfilled here by
the product topology on “A.

A reader may ask why we should concentrate on the case “A and not on *A for,
say, k = ;. Our only reason is that this case has applications whereas for other
cases there are no obvious applications. If we want to deal with the case of “A
(and (Pr.), (Pr2), see 2.5) we should consider «-distributively as in [7].

For history of the subject (Boolean interpretations, modesty etc.) see [3]. We
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could use other topologies, e.g., the space “A, where the basic open sets are
A¥={n !} a:k<a=<o}. Our methods apply with minor changes to these to-
pologies.

2.1. Definition. (1) We consider A as the discrete topological space with A =
{oa rae <A} as set of points.

(2) Thoco A ={n: 1) = @, {n)<A,} is considered as the product topological
space (the basic open sets are B, ={n €[l.<, A, : v <n} for ve®71). Note “A =
[1.<. A; similarly for “A.

(3) K is the class of topological spaces, with no isolated points satisfying: if
a<A and for I=1, 2,{D}:i<a)is a sequence of pairwise disjoint dense subsets
of X, then for some autohomomorphism G of X, for every i, G(@HND? is a
dense subset of X.

(4) For a topological space X let Q[X] be the following forcing notion: the
open subsets of X ordered by inverse inclusion.

(5) A set @< X is p-modest in X, if for any Z,,...,Z, =P s.t. each Z, is
dense in | JP_, Z, there is a perfect subset Pof X, PN@ <l . Z, and PNZ, is
densein Pform=1,...,p.

(6) We let u vary on open sets, and define (as in 1.7) valx 6(x, Y, Y, .. )=
WHu:XE0u, Yy, .. 0}

Y=Z iff (Y-ZYU(Z-Y) isnowhere dense.

(7) We call P < “X perfect if
(a) P is not empty.
(b) For every neP and a <k, thereis veP, v#¥n, v la=nl a
(c) For every limit § <k, and ve’r if (Vi<d){ImeP)r | i=n }i), then
(FneP)v=mn138).

Note that for k = e, (c) says nothing and then this is the usual notion of perfect;
but even for k >N, our “perfect” is definable (in My, X ="A) if we expand the
model by the lexicographic order on *A; for this it suffices to replace X by its
completion Y (as a linear order) and expand My by a predicate for X.

2.2. Remark. We shall show that for some suitable X’s, we can interpret what we
want. However, this is enough to prove undecidability of the monadic topological
theory of K, but not the stronger results we want. So we shall need to show that
the subclass of suitable X’s is definable, or restrict ourselves to this class.

Note that in the first section, this point is trivial: We can easily define the class
of endless trees with <w levels, but such problem was dealt with in [7] (and was a
major obstacle).

2.3. Fact. (1) For any closed C =“\ satisfying:

(*) [ve“”A ACNB,#$ — CNB, has density character .},

C is homeomorphism to “p.
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(2) For any closed C <A, | J{u:u an open subset of C, C Nu is homeomorphic
to some “u} is a dense subset of C.

(3) “AeK¥, and “A e KH,

(4) {me*“A:n is eventually constant} is p-modest in “\ (forp <w).

Proof. Easy.

2.4, Definition. Let the formula ¢(u, Y, &, W) say:

(a) @ Nu is a dense subset of u which contains no perfect set and is 1-modest
in X; and YS @.

(b) If P is perfect, PN% dense in P, P-% < W, then there is an open u'cu,
u'NP#@ and wNPcY or u’NPNY=6.

2.5. Definition. (1) We say X has (Pr})) if: for every @, a <X, & a dense 1-modest
subset of X containing no perfect subset of X and dense pairwise disjoint &, € @
for i <« for some W, for every YE X

vall(u, ¥, @, Wh=val V [YNu=2,nul).
(2) We say X has (Pr?) if for every @, &, as above, &; = 9] U D7, each P! dense,
BIND?=0 there are dense Eic D! and W s.t., for every Y X

val{¢(u, Y, B, W')Eval( VIYNnu=(E}UE)N u]).

i<or

Remark. For some of the uses of (Pr?) we can weaken it (by not using the E): in
2.7 we need the stronger version, but not in the new use in 2.4: eliminating
non-standard integers.

2.6. Fact. (1) If X has (Pr}), then it has (Pr3).
(2) If Xe K2, then in the definition of (Pr?) we can replace ““for every &, a <A,
D, (i<a)’ by “for every a <\ for some D, B, B}, D (i<a)’.

Proof. Immediate.
2.77. Fact. Suppose X has (Pri), @, =X (i<A) are dense and pairwise disjoint

We X, Uia @, =9, & contains no perfect subset of X and is 1-modest and for
every YT I

val{¢p{u, Y, @, W))Eval( VIiYNu=3nNn u]).

<X



Sh:205

Monadic logic and Lowenheim numbers 211

Then for every n-place relation R on A for some Wy € X, forevery Y,,..., Y, X
(*) val(d]n(u’ Yls e mey Yn’ @’ W’ WR))
=val V [Ylﬂu=@ilﬁu/\---/\Ynﬂu=@inﬂu])

iq,-.00YER

(the ¢, depend on n only).

Proof. Easy. We can code any relation using equivalence relations. Let
{8, ..., 5):6<A} be wlo.g., an enumeration of R such that: f,...,i5#¢
mod(n+1). Let @' =1J {@,:£=1 mod(n+ 1)} for I <n, and E!, be the equival-
ence relation on A defined by: « El vy iff for some £=I1mod(n+1), {a, y}=
{¢& i), or a=1.

We can apply Definition 2.5(2) to the family {@, .,y :a, vy<A, {a, v} is an
E!.-equivalence class} where @, .= @, UD, [standing instead {P;:i<A}] and
with D}, .y, Dty being B,, D, when a <vy (quite arbitrary otherwise); we get
WL.By W., @' (I<n+1, m<m+1) we can get that (*) holds. (The phrasing of
Y, is left as an exercise to the reader.)

2.8. Lemma. For every sentence 6 from second-order logic, we can compute 6% s.t.,
for any X which have (Pr?)

XEO* iff oA } 67
Proof. As in 1.12, 1.13 (on Q[x]-see Definition 2.1(4)).

The previous discussion is somewhat empty; as, concerning our main aim, does
“A have (Pr%)? So now comes the main point.

2.9. The Main Lemma. Suppose A >k are regular cardinals and {(a)v (b)) A(c)
where

(a) GCH and A=u"; cf u#«,

(b) Og holds where S ={8 <\ :cf 8=k},

(©) (1) k =k~ or (2) for every n € D, n(i) =sup{n(y): vy <«} for arbitrarily large
i<k.

Suppose:

() p*=so.

(ii) D <=*A contains no perfect subset of X.

(tii) For i<\, @, 9D is a dense subset of X.

(iv) For p<p*, @D is p-modest.

Then there is a set W< *“A —9D such that:

(a) If i<A, p<p*, uopen and Y,,...,Y, are dense subsets of D; Nu (hence
of “A), then for some perfect Pcu, P-@D<W, and Y,NP is dense in P for
I=1,...,P.

(B) If P< "\ is perfect, PN D is dense in P, and P— % = W, then for some i <A
and u, uUNPNP <D, and uNP+G.



Sh:205

212 S. Shelah

Remarks. By Gregory [2] and Shelah [10], we know that if GCH holds, A = ™,
of w#k, then Og holds (in fact it suffices that A=2* and p“=pv
[>k A(¥xy<wpw)x*=u). Hence we shall use (b) only.

Proof. As &g holds, there are a natural number p;, a basic open set u; and
subsets Y3,..., Y5 of {J;cs(“i)Nu such that for every basic open u, natural
number p<p™* and subsets Yi,..., Y, of u for stationarily many 8 €S, us = 1,
ps=p and Y=Y, N(U;<s i) for [=1,..., ps. (We assume for simplicity |i| <A
for i <<A.)

We shall define for some 8 € S, a perfect subset P; of “A (for the others P = (3).

Case A. For each I=1,...,p;, Y{ is a dense subset of |J;—s{i)MNus.
Moreover, for a closed unbounded subset C of 8, for every ieC, [=1,...,ps
YN« %j is dense in UJ;—; ())Nu and for some i(8)<A:\UJP_; Y? < Dy, and
ps <p*. We now choose a perfect Py =8 N, such that:

(1) PsNY?%is dense in P, foreach [=1,...,p;.

(2) Ps N (Ui<s i) is included in P, Y2

(3) PsND € Dy, N {(Ui<s “0)-

Let i(y)(y<k) be increasing continuous, 38=[J, i(y), such that
YN (Uj<ien i) is dense in U<y (5j). We define by induction on y <k, a set
A,<=*%(i(y)) as follows: for y=0, choose nie Y7 N(U<io /), and let Ay=

{rr;? R Rk 1=1 n, ‘, For y<x limit, let A he !mr: r(«z\ for every

I S el Zy e ey Ea e 31 11 L Py Lw) B, jieie

B<l(n); mt(B+le U,3<Y Ag}. For vy successer choose for every ve
A, 1—Ups<v-nApl(¥)<x and I=1,...,ps; a sequence n,;€ Y7, s.t. v=n7},
(VB)iw)=B—=n)(B)>i(y— 1] and n);€Ui<q, (j). By the p-modesty
of @ in X applied to Y?N(U, -, A,) we get P; as required, because

(#) if n€*A—D is in the closure of L, A, N*A, then supin(v):v<k}is & (in

fact, for each i <8 for a closed unbounded set of vy <k, n(y)>i(y)).

(nce B, Note Cace A 1ot —Q

Case B. Note Case A. Let P;

Now let W={J{P;~2:8cS}. Let us check (a) and (B8). As for {a)—this is
directly guaranteed by the choice of the Y}’s and that of W. So we shall work on
{B). So suppose Pc*x is perfect, PN dense in P and P-@ c W.

Clearly P— % is dense in P {(as & does not contain a perfect set). So there is a
minimal i such that | KPsNP—@:8€ S, 8<i} is somewhere dense in P. Now {
cannot be limit of cofinality <« (as for any perfect P<=*A, the union of <«
nowhere dense subsets is nowhere dense).

If i is a successor, necessarily (i—1)€ 8, P._; #0 and P._, N P— S is somewhere
dense in P, so as both are closed for some i, P,_;Nu=PNu#@ as required.

Let i be limit, cfi=«. Now if neP;—9, Sup{n(y):v<«}=38, hence if ne
P—9 is in the closure of J{PsNP—-%:8<i, 88}, but not in the closure of
WP NP—-9:8<j, §e8S} for j<i, then &, =supp{n(y):vy<«} satisfies by the

firet. £ <<i and hv the second, n isnotin ! i_.P. henceis in | ... hence
first, &, =1, and Dy the secon not Us<; P, hence is in ls=: Ps, henc e

&, =i; so £, =i, hence n belongs to P. But for some u, PNu#0, and
U{PsNPNu—%:8<i, 58} is dense in PNy, and the set of nePNu—"F, is
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< Us<:i(Ps N P), hence the union of k nowhere dense sets in P, and by (i) P— %
cannot be included in such a union, hence (PNu—%)NP, is dense in PNy,
hence P Nu = Ps;Nu, and we finish as before.

We are left with the case cf i > k. Let us assume (c)(2). Clearly w.l.o.g. P—% <
{Us<i Ps. Choose ne(P—%)Nu, so nePsq for some 8(0)<i. For each je
S—(6(0)+ 1) for some a =; <k, {ve*i:v ta=nta}NP =9 We now define
by induction on £<«k, (n&:a <k), B, <i and {y5:a <) such that:

(@) nieP Mo =1

(b) yi<yi<k for <& and y2=a and for limit & v5=U Y5

(¢) Be=sup{ni()+1:{<§& a <k, j<k} which is <i.
(A & P vl=mé Al for I<E

G} Tla | Ya=™ Tla | Yo 101

(¢) For each a @)[y5i<j <v§“/\n§”(f)> Bel

There is no problem to do this, and then define it for a < «; let 1% be the umque
member of “A such that (VE<«)[n= | vé=n% 1 v4). By (© (2), n* ¢ 9, but n¥
is in the closure of P, hence is P—@. As sup{n*(j):j<«} is B(*) € User Bo

n*(<B(x), P—9% < W, necessarily n¥ e P;,. But n% contradicts the choice

@ BUx) Vog

of aa(. above.

If (¢) (1) occurs, the proof is similar, choosing many m’s as in the definition of the

Ps’s

2.10. Definition. For ultrafilters E,, E, on a regular cardinal «, we say E; is
orthogonal to E, if in the following play, player I has no winning strategy.
The play lasts k moves, in the ith move player I chooses an ordinal a,;,
SUD;<z; o; <0ty <k, and then player II chooses an ordinal a1, oy <o <k
Player I wins in the play if U;-[ou;, @4ir1) belongs to E;, and Ui
[a4i42, @4i43) belongs to E,.

Remark. For « =X, the case we shall be interested in, this relation is symmetric.

2.11. Lemma. Suppose E,, E, are non-principal orthogonal ultrafilters on . Let
D, ={n €“A: for every large enough n, n(n) =i},
W, ={ne“rx:{n:n(n)=ile E;NE,}.
2=U 9, W= W.

<o i<

Then

(@) D is dense (in “A) and p-modest (for every p).

(b) If i<A, p<w, u open and Y, ..., Y, are dense subsets of %; Nu, then for
some perfect P<u; P—-2<W, and Y,NP is dense in P forl=1,...,p.

TL ™ o T~ T ‘»

{c) If P<“A is perfect, PN % dense in P and P— % = W, then for some i <A, and
u, uNPNPD <P, (and uNP+P).

D - (1) U £ Anrirea gat giio iltg Fre e ~ p—y
Remark. (1) We can of course get such results for t

9,’s, and for « >R0.
(2) See [5] for a closely related proof.
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Proof. (a) This is easy.

(b) Let i <A, p<w, open u and dense subsets Y5, ..., Y, of &; Nu. We define
by induction on n, a k, <w and a finite subset s, of Y;U---UY, such that:

(1) [s,|=n+1,

(2) s, St

(3) k. <kpi1,

(4) for every nes,, [k, <m<w=>n(m)=i],

(5) for every n#ves, n | k.#v | k,,

(6) for some m,€s, and m,e{l,...,p}, oS ={w}, €Y, v M kn=
M | ko v (k) #,

(M if n=@+1), then {(n,m):(p+1)'=q<@+1)'*"}={(nm):nes,
m=1,...,p}L
There is no problem to do this. Now P, the closure of |, s, is perfect,
P—-U, . s, is disjoint to @ (as v,(k,)#i), and PNY, is dense in P. s P— % <
W? It is easy to prove that if v»,, v,eP-%, v, n#wv, | n then
{m:m=n, vi(m)#i} and {m:m =i, v,(m)#i} are disjoint.

Hence {ve P—9:{m :v(m)# i} E} has at most one member; hence for all
ve P—9 except possibly two, {m :v(m)=i}e E,NE,. So for some u, P—u is as
required.

(c) We suppose P is a counterexample, and we shall construct from this a
winning strategy for player I in the game from Definition 2.10. If possible choose
u and y(*) such that PNu#0, PNW,_ . ,Nu is dense in PNu.

Player 1, in the ith move, chooses also 1; € PN %Y such that the following holds:

(1) ¥ u, y(*) are defined, then n; € u.

(2) If y(*) is defined, for even i, then n; € W, for odd i, n,¢ W, .

(3) ¥ y(*) is not defined, let m;€ W, (y(i) is uniquely determined) and
y(@) ¢{v():j<ik

4 m t (Ui<2i aj) =N | (Ui<2i aj)-

(5) (m;(m):a; =m<w) is constant (y(i), in fact).

There is no problem for player I to carry the strategy. If player II wins a play in
which player I uses this strategy; then €U | (Uj<2: ;)]s in P— < but not in
any W,, contradiction.

2.12. Claim. (1) Any closed subset of “A (or I1,.., A,) is a completely metrizable
space.
(2) Suppose X is a completely metrizable space, 9; (i <«) are dense subsets of X.
Then | J{u: for some pu there is a homeomorphism from “u onto a co-meagre
(dense) subset of X } u; and for i <Min{u, k} {n€“A :q(n)=i for every large
enough n} is mapped into 9;} is a dense subset of X.

Proof. (1) Let d(n, v)=Inf2™:n | n=v | n}.
(2) Let A be the number of open subsets of X. We shall define by induction on
n<w, L, x,, u,, (mel,) s.t.:
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(i) Lc™, I,={)}, and ne I, =Fa)(nXa)el,.,) and {a:n(a)€ I .} is an
initial segment of the ordinals or the union of an initial segment and a singleton.
(i) u;,=X, u, an open subset of u.
(i) If nel,,,, then u, <u,,,, and even the closures of u, is < U, -
av) Udu, Am'nA(a)eInH} is a dense subset of u, for nel,.

AAAAAA 4 PR
\V} u.n lldb UldlllCLUl <2 () WllCll l'#{)

i) x,eu,: if nlm-1)=a<k, then x,€9, and if n(f(n)—1)=
n((n)—2)=aq, then x, =X, 1 am-)-

(vii) {a:m™a)el, }| is the maximal number of pairwise disjoint open non-
empty subsets of u, (the supremum is obtained for metrizable spaces).

... _ oy .
There are no problems to carry the definition. Let I ={nc“A:q t nel, for

every n <w}. By (v) above, for every m € I,; ( lx<w Uy, | « 1S nOn-empty, and choose
Xy € k<w Uy 1 1> and if (n(n):n <w) is eventually constant, x,, =X, ,, for n large
enough. Let C={x, :m el }, itis a dense subset of X: if u is any open subset of X,
we shall choose by induction on n, v, €I, s.t.,, uNu, #@ and v, =v,,, | n; for
n =0 no problem, for n+1: as | {u, 10, € L1} is a dense subset of u, , v,
exists, so the diameter of u, which is 27'*?<27"; as this holds for every n,
d(x,, u)=0; this proves that C is a dense subset of X, because X is a regular
space.

It is also clear that the mapping x, — 7 is a one-to-one homeomorphism from
X} Conto“x I,

We still have one minor problem: we have I, rather than “u for some w. As we
want the homeomorphism locally, the following suffices. Let I =J,,., I, and for
vel let A, :l|{"l‘,€17:ii<"l‘|}'| and let A :{Vcl for cvery p, 1, if vsp=snel
then A, <A, (but always A, =A,)}. Clearly it suffices to prove that for v €A,
B, N C is homeomorphism to “(A,), but this follows by 2.3.

2.13. Concdlusion. Suppose there are orthogonal non-principal ultrafilters on .
Then

(1) Every completely metrizable space has (Prg,).

(2) In the monadic topological theory of a class K of completely metrizable spaces

noNn

we can lmerpret iU & a second-order senience and ]'Of every Xe 1& "—Q[X] ‘wiro I

2.14. Fact. If CH (i.e., 2" =R,), then there are orthogonal (non-principal) ultrafil-
ters on .

2.14A Remark. We think that CH is not necessary. Note that this is equivalent
to: E,, E, being non-principal ultrafilters on w, and for every increasing {(n, :i <<
o), E,/[E+# E,/E where E is the equivalence relation on w defined by

def

e=Wilk=nm=Il=n])

N
sk
th
l-
]
4
3
3
3
&
n
(&)
8|
3
“:n

a filter on «

(i) All co-finite sets belong E.
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~

{ii) P(w)/E (as a Boolean algebra) has no 2™ pairwise disjoint elements.

(iii) In the following variant of the game from Definition 2.10 player 1 has no
winning strategy: the only change is that player 11 wins the play iff U; [y, oy, ),
and J; [ey,,,, ) are #@ mod E.

Then: (1) Lemma 2.11 holds when we redefine

W, ={ne“A:{n:n(n)=i}lc E}.
(2) The conclusion of 2.13 holds.

Proof. As before.
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