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We investigate the monadic logic of trees with o + 1 levels, the monadic topology of the 

product space “A and a strengthening of monadic logic for trees with o levels. 

0. Introduction 

This work continues two lines of research. The first is of the analysis of the 
complexity of the monadic theory of linear orders, the monadic theory of trees 
and the monadic topology (see Shelah [8,§7], Gurevich [4], Gurevich and Shelah 
[5,6,7], and Gurevich [3]). 

Here we use similar methods and prove analogous results for more cases 
(first-countable topological spaces like the product topology on “A and the tree 
“‘A with a quantification that is slightly stronger than the monadic one). We shall 
explain this in the introduction to each section. Now we shall deal with the second 
line. In Baldwin-Shelah [l] we analyzed the complexity of the L(Q)-theory of the 
class of models of T, where Q is a first-order definable second-order quantifier 
and T is first-order. The classification showed the naturality of monadic logic, and 
in particular naturality of the monadic theories of linear orders and trees. It was 
almost proved there that those are the only interesting cases, i.e. any essentially 
different case is either too complicated (i.e., we can interpret in the L(Q)-theory 
of T second-order logic in a model-theoretic way) or the model theory of the 
L(Q)-theory of T is trivial. However, there were few gaps in this picture. One of 
them was about unstable theories is dealt with in [9]. 

We deal here with the two other gaps. First for some theory T, in some 
monadic expansion we can interpret the tree “=A ; but T is stable not superstable 
hence by [l] we cannot interpret general trees. So the monadic theory of the class 
of models of T is approximately as complicated as that of the monadic theory of 
{,%A : h is a cardinal). In the second section we show that this class has a 
complicated monadic theory: if V = I_. it is as complicated as second-order logic. 

* The author thanks the BSF and the NSF for partially supporting this research. 
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204 s. Shelah 

So the Lijwenheim number of the monadic theory of T is large, but not the 
Hanf number. Second, for some superstable T in the monadic theory of models of 
T we can interpret fragments of the L,JMon)-theory of the tree “‘A. We prove 
in Section 1 that under V = L we can interpret there the second-order theory of 

h. In fact, instead of dealing with infinitary languages we deal with the following 
quantifier on trees (QP”f) meaning “there is a function f, f(x) <x such that . . .“. 

As in our trees f is determined by (Pi: 1 -c>, where Pf = {x : f(x) is in the Ith level}, 
for infinitary languages there is no difference between monadic logic and the logic 
with the new quantifiers (for suitable trees). Again we can deduce some results on 
the Liiwenheim numbers. 

1. Boolean interpretation in the tree “‘X 

The standard way to prove that a theory T, is at least as complicated as T2 (i.e., 
the Turing degrees of T1 is a the Turing degree of T,) is to find a first-order 
interpretation of the models of T2 in models of Tl. 

In [8] we have proved that the monadic theory of the real order is complicated 
but our interpretation was not standard. (We used there CH but this was 
eliminated in Gurevich and Shelah [5].) Gurevich [4] saw that really only the 
topology was used. In Gurevich and Shelah [6] the meaning of our interpretation 
was clarified. We interpreted not a usual model, but a Boolean-valued model 
where the Boolean algebra was the completion of the Boolean algebra of regular 
open subsets of the real line. In particular it is possible to interpret in the monadic 
theory of the real line the second-order theory of K, in the world resulting from 
Cohen forcing. 

It is known that the monadic theory of the tree “‘h is decidable (see a 
generalization of Rabin’s theorem due to Shelah and Stup, see [8, Theorems 0.4, 
0.5, 0.61). However we consider here a stronger quantifier (Q&f) ranging over 
one-place functions f satisfying f(x) < x. We generalize easily the results of [6] for 
the new quantifier. Here the Boolean algebra involved is that of the standard 
collapse of A. Now if V = L is the universe, then after the collapse we can 
reconstruct easily the old universe. In this case in the L(Qpd)-theory of ““h we 
can interpret the second-order theory of A. 

1.1. De%Xon. (1) Let K, be the class of trees T = (T, <), i.e., partial order, so 
that for each x E T, {y : y < x} is linearly well ordered, with order-type being called 
the level of x, lev(x). Let 

T, = {x E T: lev(x) = a}, Kg= T:T= u Ta . 
p<a I 

(2) We look at @‘CY as a tree, by the natural ordering: being an initial segment. 
(3) We call T endless if (Vx E T)(3y E T)[x < y]. 
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1.2. Deihition. For trees T, the quantifier (Q”“f) ranges over partial functions f 
such that f(x) G x for x E Dom f. We call such f a p.d. function. 

Note that by their domain they give monadic quantification. Let W, X, Y, Z be 
monadic variables. 

1.3. Notation. (1) A basic open subset of T is T,, = {y : y 2 x} for x E T. 

(2) An open set is a union of basic open sets (so the topology is not Hausdorff). 
(3) A subset of T is dense if it is not disjoint to any basic open set. 
(4) A subset A of T is a full subtree if A# 8, A is downward closed 

(y<xr\x~A-+y~A), for every XEA, ISuc,(x)nA(=l or Suc,(x)~A, (where 
Sue,(x) is the set of immediate successors of x) and for every x E A for some y, 
x < y E A, Sue,(y) G A. 

1.3A. Convention. A model in this section is an endless (T, s) E Kg expanded by 
some p.d. functions (hence monadic predicates). 

1.4. Claim. The L(Qpd)-theories of K;” and {“‘X : A} are recursive one in the other. 

1.5. Lemma. There is a formula 4(X, f) E L,,, such that if T = (T, s) E K,,, and Pi 
(i <a) are pairwise disjoint dense subsets of T, then for some pd. function f, and for 

every X G T, 

Tk+[x, f] ifi U{T,,:@i<a)((T,, nX= T,, nPi>) is dense and open. 

Proof. Define f: if x E Pi, then f(x) is the minimal y <x such that y E Pi ; if 
X$ Ui<, Pi, f(x) is not defined. 

4(X, f) says: for every x there is y >x, such that for every z ay, 

iIf(z) = f(Y) e 2 EXI. 

1.6. Lemma. For k <o there is a formula $(X0, . . . , Xk_-l, 7) E L(Q@) (or even in 

L(Mon)) such that: for every TE K’;: and {P’: i <a} where (Vx E T) (IT,,) 3 IaI>, 
Pi = (PI;: I < k), Pi a subset of T, there is p (a sequence of p.d. functions for T of the 
length of f) such that: for any AO, . . . , Ak-l~ T, Tk4[A,, . . . , Ak-l, j’] iff 

lJ{T,, : for some i <a for each 1 < k, Al rl T,, = Pi rl T,,} is dense. 

proof. We can find functions gi: T + T (for i < CY, 1 <k) such that 

(Vx E T)(gf(x) > x), each gf is one-to-one, g;(x) s gk(x) for 1 < m =C k and their 
ranges are pairwise disjoint. [Let A’ = {x E T: (Vy)(x 5 y E T -+ ITsxI = ITsy I}, 
A” = (x E A’ : (Vy < x)(y$ A’)}, now define the gj on each T,, (x E A”) separately 
so that infinitely many pairwise comparable elements of T,, are in the range of 
no gt.1 

We now define a partial p.d. function hl, h” (for 1 <k, m < k): h”(gL+,(x)) = 
g&(x) and hl(gf(x)) = x (as the ranges of the gf (i <a) are pairwise disjoint, hL and 
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h” are well-defined functions). Let C# = {g!(x) : x E Pf}. Let fi = (h,, h’ : 1< k), 
and let g, be SUCh that for every XGT: Tbq[X, gll iff 
U {T,, : (3i < a)(T,, 17 X = T,, n Qi)) is dense and open. (The formula cp is from 
1.5, and g, exists by 1.5.) 

Let $(X0,. . . ,Xk-l, ho,. . . , hkdl, g,, . . . , gk+l, ho,. . . , hk-*) say: there are 

Yo, . . ., yk-1 Lt. hk(P(YL? !a) and 

,c, (Vz)(z E Y = h,(x) E X,) A ,<fi_, (Vz)(z E Y,,, = h’(z) E Yl) 

A /j (Vz)(3z1)(z E Yl + Z~E Y,+rA h’(z,) = z). 
I<k-1 

1.7. Notation. (1) 1.4 will vary on basic open sets (for a relevant T). 
(2) Val,B(u, X1,. . . , fi, . . .) = U {u : T b O(u, X,, . . . , fl,. . .)}; we omit the sub- 

script T when its identity is clear. 
(3) We say X= Y if (X- Y) U (Y-X) is a nowhere dense set (this is an 

equivalence relation). 

1.8. Lemma. There are a(u, X, f), a+(u, X, Y, Z, f), &(u, X, Y, Z, f) such that for 
any T and pairwise disjoint dense P, c T (n <CO) there is an 7 such that: 

(a) ForXcT 

val$u,X,f)=val 
( 
v[P,ntt=xnt41 . 
n ) 

(b) For X, Y, ZGT 

val a+(u, X, Y, Z F) 

= val v 
n+m=k 

(c) ForX, Y, ZGT 

val &(u, X, Y, Z, 71 

1.8A Remark. In (a), (b), (c) inside the right-side formulas we can replace = by=. 

Proof. By 1.6 (as T is endless). 

1.9 Lemma. There is a formula a*(f) E L(Qp”) such that: T C a*(f) iff for some P, 
(n c o) the conclusion of 1.8 is satisfied. 

Proof. Straightforward. Let 87 tell the obvious properties and then say {X/ = : 

val a(u, X, f)- T} is minimal among {{X/E :val e(u, X, g) = T}: Tl=@@), for g and 
f we have the same “one”, “zero” and successor operations when defined}. 
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1.10. Definition. Let P,, (n <w), 7 be as in 1.8. We can consider T as a forcing 

notion. 

(1) If A is a T-name of a set of natural numbers, let 

R[A] = {x E T: for some y s x and rr, y II-T “n E A” and x E P,}. 

(2) If XG T let N(X) be the following T-name of a set of natural numbers: 

for x E T, 

1.11. 

(1) 

(2) 

x IF “n EN(X)” iff (T,,)-val(P, tl u c_ X) is nowhere dense. 

Fact. In the context of 1.10: 

Ik“A = N(R[A])“, and if It, “A1 = A*” then R(A,) = R(A,). 

R[A] = R[N(R[A])], and if X1 -X2 (X,, X2 G T) then IlT “N(X,) = 
\” WG . 

l.l2. Lemma. For every formula 4(X,, . . . ,X,,, yl,. . . , y,) in second-order 
number theory we can recursively compute a formula 

4’(u,X1,...,Xn,Y1,...,Y,) 

such that the following holds: (for P,,(n <CO), 7 as in 1.8) 
(*> For any T-names AI,. . . , A,, of sets of natural numbers, and natural 

numbers kI, . . . , k,: 

U Pa, : x It “4(A1, . . . , A,,, kl, . . . , k,)“} 

Eva1 4’(u, R[A,], . . . , R[A,], Pk,, . . . , Pk,). 

Proof. By straightforward induction on 4. 

From 1.12 and 1.8, 1.9 we get: 

1.13. Conclusion. For every sentence a in second-order logic we can compute a 
sentence 8” in L,,,(Qti) (tree’s language) such that: 

(““A, <) Ik a* $7 ~~co~~XO,h~“(~, <) I= a for some a! <A+.” 

1.14. Conclusion. (V= L). Second-order logic and L(QPd)-theory of KE are bi- 
interpretable and have the same Liiwenheim number. 

1.15. Conchsion. If T has finite language, T is stable but not superstable, then 
K(& Qp”) s (T, mon) (hence the conclusions on Liiwenheim numbers). 

Proof. See [l, VII 2.1, 2.21. 

1.16. Claim. There is a superstable T with finite language, (T,, 2nd) S (T, mod, T 
has nice decomposition but (ICE, Qp”) =Z (T, man). 
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Proof. Let 

IM( ={(q, k): for some m CO, r) E “A, and (31) k < l*c m}. 

GM a one-place partial function, G((q, k )I = (v. k + 1). 

FM a one-place partial function, 

(rl, k) if 1(~)=0, 

F((rl, k)) = (71 1 (m - 11, k) if l(n) = m, k cm, 31 (k = l*), 

(r) l(m-l),k-1) if l(v)=m,k=m,3l(k=Z*). 

T will be Th(A4). 

1.17. claim. If A SK,, /_L 2x0, then every formula in L,,,(Q@) is equivalent to 
some formula in L,,(Mon) (if we restrict ourselves to e.g. endless trees in K,“,). So 
the Lijwenheim number of those logics are equal. 

2. Boolean interpretation in the trees or topologies “X 

We know that the class of linear orders has a very complicated monadic theory: 
by Gurevich and Shelah [7] under a weak set theoretic hypothesis (there are 
arbitrarily large cardinals A with A = A<*), the monadic theory of linear orders 
and second-order logic are bi-interpretable (hence have the same Turing degree). 
We also know, by similar methods, that this holds for the class of trees and for the 
class of topologies (see below), (see [7]). As the results for topologies imply easily 
the rest, we shall concentrate on the monadic topology for a topological space X 
in the following first-order structure ME The universe is the family of all subsets 
of X, and the relations are the inclusion, and a unary relation for being a closed 
set. We shall write X b~$ instead M, b4. Let K denote a class of topological 
spaces. 

Now in [7], the topological spaces, that played the central role in the proof, 
were those of a quite saturated linear orders. However, many interesting classes 
of topological spaces consist of first-countable spaces only, hence the proof of [7] 
is not applicable. We shall interpret second-order logic for certain classes of that 
sort, but at some price, e.g., assuming V= L. Note that set-theoretic hypothesis 
occur twice. First, as in Section 1, we interpret in monadic theory of “A 
second-order logic of X0 of the universe after the standard collapse of A. Secondly 
we need the continuum hypothesis to carry the combinatorial argument. In our 
proof the central role, fulfilled by saturated linear orders in [7], is fulfilled here by 
the product topology on “A. 

A reader may ask why we should concentrate on the case “A and not on “A for, 
Say, K = 01. Our only reason is that this case has applications whereas for other 
cases there are no obvious applications. If we want to deal with the case of “A 
(and (Pri), (P<), see 2.5) we should consider K-distributively as in [7]. 

For history of the subject (Boolean interpretations, modesty etc.) see [3]. We 
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could use other topologies, e.g., the space ,=h, where the basic open sets are 

A:='& fa:k<a SO}. Our methods apply with minor changes to these to- 
pologies. 

2.1. IMinitior~. (1) We consider X as the discrete topological space with h = 
{a : cy <A} as set of points. 

(2) rI,<, X,, = {q : 1(q) = w, T(E) < X,} is considered as the product topological 
space (the basic open sets are 3, = (3 E fl,<* h, : Y <q} for v E “‘h). Note “h = 
nrrCw h ; similarly for “A. 

(3) rCF is the class of topological spaces, with no isolated points satisfying: if 
Q! <h, and for E = 1, 2, (5%: : i <a> is a sequence of pairwise disjoint dense subsets 
of X, then for some autohomomo~hism G of X, for every i, G(Bt) nS?&? is a 
dense subset of X. 

(4) For a topological space X let Q[a be the following forcing notion: the 
open subsets of X ordered by inverse inclusion. 

(5) A set 9 zX is p-modest in X, if for any Z,, . . . , Z, c 53 s.t. each Z, is 
dense in UP= 1 Z,, there is a perfect subset P of X, P fl9 c Up= 1 Zr and P n Z,,, is 
dense in P for m = 1, _ _ . , p. 

(6) We let u vary on open sets, and define (as in 1.7) val, 8(y Yt, Y2, . . .) = 
ucz.4 :x!= 6[u, Y,, . . .I}, 

Y = Z iff (Y - Z) U (Z - Y) is nowhere dense. 

(7) We call PC “X perfect if 
(a) P is not empty. 
(b) For every REP and a<~, there is VEP, vfn, TJ ] a=r) f a. 
(c) For every limit 6 <K, and v E ‘h if @fi <S)(Elq E P)(v 1 i = q E i), then 

(3rl E P)(v = rf I 6). 
Note that for K = w, (c) says nothing and then this is the usual notion of perfect; 

but even for K > tc,, our “perfect” is definable (in M,, X = “X) if we expand the 
model by the lexicographic order on “A ; for this it suffices to replace X by its 
completion Y (as a linear order) and expand MY by a predicate for X. 

2.2. Remark. We shall show that for some suitable X’s, we can interpret what we 
want. However, this is enough to prove undecidability of the monadic topological 
theory of K, but not the stronger results we want. So we shall need to show that 
the subclass of suitable X’s is definable, or restrict ourselves to this class. 

Note that in the first section, this point is trivial: We can easily define the class 
of endless trees with SW levels, but such problem was dealt with in [7] (and was a 
major obstacle). 

2.3. Fact. (1) For any closed C s “A satisfying: 

(*I [Y E “‘A A C n B, # $3 --, C n B, has density character ,u 1, 

C is homeomorphism to “‘p. 

Sh:205



210 S. Shelah 

(2) For any closed C G “A, IJ {u : u an open subset of C, C n u is homeomorphic 

to some OF} is a dense subset of C. 

(3) “A E KF, and “A E Kp. 

(4) {q E “A : q is eventually constant} is p-modest in “A (forp <CO). 

Proof. Easy. 

2.4. D&&ion. Let the formula 4(u, Y, 9, W) say: 
(a) 9 n u is a dense subset of u which contains no perfect set and is l-modest 

in X; and Ys~. 
(b) If P is perfect, P n9 dense in P, P-9 c W, then there is an open U’S u, 

u’nP#@ and u’nP&Y or u’nPnY=@ 

2.5. DeStion. (1) We say X has (Pri) if: for every 9, cy oh, 9 a dense l-modest 
subset of X containing no perfect subset of X and dense pair-wise disjoint CSi E 9 
for i < Ly for some W, for every Y c X 

val(<b(u, Y,9, W))=val V [Yntd=qnu] 
c 

. 

i-G2 ) 

(2) We say X has (M) if for every 3, LBi as above, pi = 3; U 9f, each 5%: dense, 
5%: n $3: = pI there are dense ERG 9: and W s.t., for every Y G X 

vaI($(y Y,C& W)=val V [Ynu=(EjUEP)nuJ 
( 

. 

i<a ) 

Remark. For some of the uses of (P<) we can weaken it (by not using the Ef): in 
2.7 we need the stronger version, but not in the new use in 2.4: eliminating 
non-standard integers. 

2.6. Fact. (1) If X has (Prt), then it has (I’$. 

(2) If XE K?, then in the definition of (P<) we can replace “for every 9, c~ oh, 

G& (i <a)” by “for every cy G h for some 9, ST&, 9~~~ 9: (i (cY)“. 

Proof. Immediate. 

2.7. Fact. Suppose X has (Prz), Si E X (i ==c X) are dense and pair&se disjoint 

WGX, Uicx pi = 9, 9~ contains no perfect subset of X and is l-modest and for 

every Yz9 

val(~(u,Y,~, W))=val 
c 

V[Ynu=9isiU] . 
i<A ) 

Sh:205



Monadic logic and tiwenheim numbers 211 

Then for every n-place relation R on h for some W, c X, for every Y,, . . . , Y,, c X 

(*) vaUA(u, Y1, . . . , Y,, % W, WA) 

Eva1 
c 

v [Y,nu=~ilnur\...AY,nu=9,nU] 
il.....inkR 

(the +,, depend on n only). 

Proof. Easy. We can code any relation using equivalence relations. Let 

M,. . . , L:) : 5 <A} be w.l.o.g., an enumeration of R such that: ~5,. . . , ii# .$ 

mod(n + 1). Let ad’ = U (91~ : 5 = 1 mod(n + 1)) for 1 s n, and EL be the equival- 
ence relation on A defined by: a! E!,,y iff for some 5 = 1 mod(n + l), {a, y}= 
{&iQ, or a=y. 

We can apply Definition 2.5(2) to the family {9dk,y1: OL, y <A, {a, r} is an 
E k-equivalence class} where 91a,v) = ad, U ‘?& [standing instead (9~~ : i < A}] and 

with a&,+ @*,,r being %, 9, when a < y (quite arbitrary otherwise); we get 
Wk. By W!,,, 9’ (I < n + 1, m < m + 1) we can get that (*) holds. (The phrasing of 
+,, is left as an exercise to the reader.) 

2.8. Lemma. For every sentence 8 from second-order logic, we can compute 19” s.t., 

for any X which have (Prf) 

Xi=8* ifl II-,~,I”h 1 C-I”. 

Proof. As in 1.12, 1.13 (on Q[x]-see Definition 2.1(4)). 

The previous discussion is somewhat empty; as, concerning our main aim, does 

“h have (P&J? So now comes the main point. 

2.9. The Main Lemma. Suppose h > K are regular cardinals and ((a) v(b)) A (c) 
where 

(a) GCH and h = p+; cf p# K, 

(b) 0, holds where S = (6 <A : cf 6 = K}, 
(C) (1) K = KcK or (2) for every q E 53, q(i) = sup(q(y) : y < K} for arbitrarily large 

i<K. 
Suppose : 

(i) p*<w. 
(ii) 5~3 E “A contains no perfect subset of X. 

(iii) For i <A, 9$ E 9 is a dense subset of X. 
(iv) For p <p*, 9 is p-modest. 

Then there is a set WC “A - 9 such that: 
(a) If i-CA, p<p*, u open and YI ,..., Y, are dense subsets of 9i n u (hence 

of “A), then for some perfect P E u, P- 9 G W, and Y* n P is dense in P for 
l=l,...,P. 

(/3) If P G “A is perfect, P n 9 is dense in P, and P - a! G W, then for some i <A 
and u, unPn9s9Ji and unP#$i. 
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Remarks. By Gregory [2] and Shelah [lo], we know that if GCH holds, h = F+, 
cf p # K, then 0, holds (in fact it suffices that h = 2” and pK = p v 

[p>KA(vX<@)XKG p]. Hence we shall use (b) only. 

Proof. As 0, holds, there are a natural number ps, a basic open set U, and 
subsets UT,. . . , Y& of Uixs (‘7) (7 u such that for every basic open U, natural 
number p <p* and subsets YI. . . . , Y, of u for stationarily many 6 ES, u, = 2.4, 

ps=p and Yf=YrfI(IJi<s”i)for Izl,..., ps. (We assume for simplicity Ii]” <A 
for i <A.) 

We shall define for some 6 E S, a perfect subset Pa of “A (for the others P, = pI). 

Case A. For each I = 1,. . . , ps, YF is a dense subset of Ui<a (“i)fl u,. 
Moreover, for a closed unbounded subset C of 6, for every i E C, I = 1, . . . , ps, 
Yf n Ui<i *j is dense in lJici (“j) n u and for some i(S) <A: IJF=r Yf c 9&), and 
ps < p*. We now choose a perfect Ps c “6 n u,, such that: 

(1) Pa n Yf is dense in P, for each 1 = 1,. . . , ps. 

(2) P8 n(Ui<s “i) is included in UE1 Yp. 

(3) Ps n9 C %8j n (Ui<s “8. 
Let i(y) (y <K) be increasing continuous, 8 = UT<=, i(y), such that 

Yyn(Ui<i(T) “j) is dense in Ui<i(v) f”j). We define by induction on y < K, a set 
b~““(i(y)) as follows: for r=O, choose rj:~ Y~n(Ui,i(o,Kj), and let A,,= 
{?J; 1 p:psK, l=l,... , q,). For -y<~ limit, let A, be (q ~~=i(y): for every 

P<E(q); rl t (P+0EU13<T Ap}. For y successer choose for every VE 

4-l - UP4-1) A,,l(v)<~ and I=1 ,..., ps a sequence -r&~Yf, s.t. vsq$, 

(V)II(u) = P -+ a;&)> f(Y - 111 and q;,rrz Uj<+,) (“j). By the p-modesty 
of 9 in X applied to Y? n (U,,, 4) we get Pa as required, because 

(*) if 3 E “h - 9 is in the closure of lJ,<, A, n “h, then sup(n(y) : y < K) is 6 (in 
fact, for each i (6 for a closed unbounded set of y < K, q(y) > i(y)). 

Case B. Note Case A. Let Ps = @. 
Now let W = U (P8 - 9 : 6 ES). Let us check (cy) and (0). As for (a) -this is 

directly guaranteed by the choice of the Yf’s and that of W. So we shall work on 
(6). So suppose P c “A is perfect, P n9 dense in P and P-9 E W. 

Clearly P - 6 is dense in P (as 6% does not contain a perfect set). So there is a 
minimal i such that (J(Ps fl P- 53 : S E S, 6 < i} is somewhere dense in P. Now i 

cannot be limit of cofinality -=CK (as for any perfect PG “A, the union of <K 

nowhere dense subsets is nowhere dense). 
If i is a successor, necessarily (i - 1) E S, .Pi_1 # 0 and Pi_l rl P - 9 is somewhere 

dense in P, so as both are closed for some i, Pi_l n u = P n u # $3 as required. 
Let i be limit, cfi=K. Now if q~P,-9, Sup(q(y):y<~)=& hence if rig 

P - 9 is in the closure of lJ(P, n P - 9 : 6 < i, 6 E S}, but not in the closure of 
U(Ps n P- 9 : 6 <j, 6 E S} for j < i, then X, = sup~~~~) : y < K} satisfies by the 
first, &, sf, and by the second, q is not in UGcri P,, hence is in Us~iPs, hence 
i$“i; so .$_ = i, hence n belongs to Pi, But for some u, P fl uf 0, and 
u (P,nPnu-9:8<i, 6~s) is dense in Pnu, and the set of qePnu-Pi is 
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E l_laci (Ps fl P), hence the union of K nowhere dense sets in P, and by (ii) P - 9 

cannot be included in such a union, hence (P n u - 9) nPi is dense in P tl U, 
hence P n u = P8 nu, and we finish as before. 

We are left with the case cf i > K. Let us assume (c)(2). Clearly w.1.o.g. P-9 E 
IJsCi P8. Choose n E (P-9) n u, so q E PsCOj for some 6(O)< i. For each Jo 
S-(6(0)+1) for some a=aj<K, {v~~h:v la=q ]o}nPj=p). We now define 
by induction on 5 < K, (vz : a < K), PC < i and (~5, : a < K) such that: 

(a) 17iEP,rlZ=rl. 
(b) rt< ri< K for f; < 5 and 72 = (Y and for limit 5, ri = lJr,<& 
(c) PE=sup{rl~(j)+I:5~5,a<K,j<K} which is <i. 

(4 rli 1 r&=rli r ri for 5<6. 
(e) For each a! (Zlj)[ri < j < y&+’ A s$“(j) > &] 
There is no problem to do this, and then define it for a! < K ; let qz be the unique 

member of “A such that (V[< K)[q*, r ~5 = 77: I yt]. By (c) (2), TIE 6 9, but qz 
is in the closure of P, hence is P- $3. As sup{qz(j): j < K} is p(*) %f l_lEcK &, 

q:(j)< @(*), P-9 E W, necessarily TIN E PpC*,. But T&,,, contradicts the choice 
of I+(*) above. 

If (c) (1) occurs, the proof is similar, choosing many n’s as in the definition of the 
P,‘s. 

2.10. DelInition. For ultrafilters El, E2 on a regular cardinal K, we say E, is 

orthogonal to E2 if in the following play, player I has no winning strategy. 
The play lasts K moves, in the ith move player I chooses an ordinal (Yzi, 

SUP~<~~ cxi < azi < K, and then player II chooses an ordinal azi-i, azi <azi+, <K. 
Player II wins in the play if lJI<K [(yqi, au+l) belongs to El, and lJi<K 

Cadi+ aqii3) belongs to Ez. 

Remark. For K = X0, the case we shall be interested in, this relation is symmetric. 

2.11. Lemma. Suppose El, E2 are non-principal orthogonal ultrafilters on w. Let 

Di ={q E-A: for every large enough n, s(n) = i}, 

Wi={r)~Wh:{n:q(n)=i}EEInEJ. 

9 = IJ Cz&, w= u wi. 
i<a i<a 

Then 
(a) 6% is dense (in “A) and p-modest (for every p). 
(b) If ich, p<o, u open and Y1 ,..., Y, are dense subsets of ai n u, then for 

someperfectPcu;P-9bW,and Y,nPisdenseinPforl=l,...,p. 
(c) If P c “A is perfect, P n 9 dense in P and P - 9 E W, then for some i < A, and 

u, unPn9dc9i (and unP#@). 

Remark. (1) We can of course get such results for more complicated families of 
?&‘s, and for K >K,. 

(2) See [5] for a closely related proof. 
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Proof. (a) This is easy. 
(b) Let i <A, p <o, open u and dense subsets Yr, . . . , Y, of 9Ji tl u. We define 

by induction on n, a k,, <o and a finite subset s,, of Y1 U - - * U Y, such that: 

(1) Is,l=n+l, 
(2) s, s Sn+l, 
(3) k<kI+,, 
(4) for every r)Es,, [S,<m<o*n(m)=i], 

(5) for every r)#v~s,, rl r k#v 1 k, 
(6) for some Q,ES, and m,~{l,..., p>, s,,+~-s,,={v,,}, v,eY_, v,, 1 k,,,= 

77, 1 k v”(k) # i, 
(7) if n = (p + l)‘, then {(Q, m,) : (P + 1)’ 54 <(P + lY+lI = Hrl, m> : rl E S”, 

m=l **, PI. 
There’ is no problem to do this. Now P, the closure of lJn+,, s,, is perfect, 

P-U “cm s,, is disjoint to 9 (as v, (k,,) # i), and P n Yt is dense in P. Is P - 9 E 
W? It is easy to prove that if vr, v2 E P-9, v1 r n # vz r n. then 
{m : m > n, q(m) # i} and {m : m 3 i, vz(m) # i} are disjoint. 

Hence {v E P- 9: {m : v(m) # i} E P$} has at most one member; hence for all 
v E P - 9 except possibly two, {m : v(m) = i} E E, fl E2. So for some u, P - u is as 
required. 

(c) We suppose P is a counterexample, and we shall construct from this a 
winning strategy for player I in the game from Definition 2.10. If possible choose 
u and y(*) such that PnufO, Prl W,,,,nu is dense in Pnu. 

Player I, in the ith move, chooses also ni E P n 9 such that the following holds: 
(1) If u, y( *) are defined, then rli E u. 
(2) If y( *) is defined, for even i, then ni E WvC+ for odd i, rli~ W,+). 
(3) If y( *) is not defined, let vi E W+) (y(i) is uniquely determined) and 

y(i) $ {rO’> : i < iI. 
C4) 7)i r (Uj<Zi aj> = qi-1 1 (Uj<%i aj>* 
(5) (Vi(m) : a2i Grn Co) is constant (y(i), in fact). 

There is no problem for player I to carry the strategy. If player II wins a play in 
which player I uses this strategy; then rtdAf lJi[ ni 1 (lJiczi ai)] is in P - 9 but not in 
any W,, contradiction. 

2.12. Claim. (1) Any closed subset of “‘A (or II,,,, A,,) is a completely metrizable 
space. 

(2) Suppose X is a completely metizable space, SJi (i < K) are dense subsets of X. 

Then U{u: for some p there is a homeomorphism from we onto a co-meagre 
(dense) subset of X r u; and for i <Min{p, K} {q E-A : q(n) = i for every large 
enough n} is mapped into 9&i) is a dense subset of X. 

Proof. (1) Let d(q, v) =Inf{2-” :n 1 q = v 1 n}. 
(2) Let A be the number of open subsets of X. We shall define by induction on 

n <w, I,, q, u,, (q E I,) s.t.: 
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(i) I,, c”h, I,, = {( )}, and q E I,, = (%)(q”(a)~ I,,+J and {a : ~“(a)~ 1,,+1} is an 
initial segment of the ordinals or the union of an initial segment and a singleton. 

(ii) u. = X, u, an open subset of u. 
(iii) If q E ln+l, then ~4,, c u,, , n, and even the closures of u, is c u,, b ,,,. 
64 U{u,-(,) : s%> E k+J is a dense subset of u,, for q E I,,. 
(v) y7 has diameter <2-l’“’ when q# ( >. 

(vi) x,,~s: if q(l(q)-l)=a<~, then x,~5?&, and if s(f(q)-1)= 

VU(T) - 2) = a, then x, = x, 1 (K,,-~). 
(vii) I{a : ~“(cY)E~,,+~}~ is th e maximal number of pairwise disjoint open non- 

empty subsets of url (the supremum is obtained for metrizable spaces). 
There are no problems to carry the definition. Let I, = {q E “A : q 1 n E I;, for 

every n < w}. By (v) above, for every q E I, ; f-j k<w u, b k is non-empty, and choose 

X,Ef-lk +,, u,, , k, and if (q(n) : n <co) is eventually constant, x, = X~ b ,, for n large 
enough. Let C = {x, : q E I,}, it is a dense subset of X: if u is any open subset of X, 

we shall choose by induction on n, v,, E I,, s.t., u n yh # fl and V, = v,,+~ r n; for 
n = 0 no problem, for n + 1: as U{U,,_~(,) : ZI,-(,) E 1,,+1} is a dense subset of u,, v,,+~ 
exists, so the diameter of u,” which is 2-““J < 2-“ ; as this holds for every n, 
d(x,,, u) = 0; this proves that C is a dense subset of X, because X is a regular 
space. 

It is also clear that the mapping x,, + q is a one-to-one homeomorphism from 
X 1 C onto “A r I,. 

We still have one minor problem: we have I,,, rather than ok for some CL. As we 
want the homeomorphism locally, the following suffices. Let I= U,<, I,, and for 
VEI let A,=I{~EI:v<~)}), and let A={vEI: for every p, q, if v<p<q~I 
then A, <A, (but always A,, 2 A,)}. Clearly it s&ices to prove that for v EA, 

B, fl C is homeomorphism to “(A,), but this follows by 2.3. 

2.13. Conclusion. Suppose there are orthogonal non-principal ultrafilters on w. 
Then 

(1) Every completely metrizable space has (PI&). 
(2) In the monadic topological theory of a class K of completely metizable spaces 

we can interpret (f3: 8 a second -order sentence and for every X E K, lkaLx~“w It- 0”). 

2.14. Fact. If CH (i.e., 2”o = K,), then there are orthogonal (non-principal) ultrajil- 
ters on w. 

2.14A Remark. We think that CH is not necessary. Note that this is equivalent 
to: El, E2 being non-principal ultrafilters on w, and for every increasing (q : i < 
o), EJEf E,/E where E is the equivalence relation on w defined by 

kEe~f((Vi)[k~n,=l~ni]. 

2.15 Lemma. Suppose E is a jilter on o such that: 
(i) All co-finite sets belong to E. 
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(ii) 9(w)/E (as a Boolean algebra) has no 2’0 pairwise disjoint elements. 
(iii) In the following variant of the game from Definition 2.10 player I has no 

winning strategy: the only change is that player II wins the play iff IJi [cxY,, a,,,,), 

and Ui [ayitZ, my,+,) are #PI mod E. 
Then: (1) Lemma 2.11 holds when we redefine 

Wi={qEOh:{n:rl(n)=i}EE}. 

(2) The conclusion of 2.13 holds. 

Proof. As before. 
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