SIZE DIRECTION GAMES OVER THE REAL LINE. III

BY
GADI MORAN AND SAHARON SHELAH

Abstract

We prove, using the continuum hypothesis, that D (the direction player) has a winning strategy in $\tilde{\Gamma}_{Q}^{s}(X)$ for some uncountable X, and that there is an uncountable X which intersects each perfect nowhere-dense set of reals in a countable set such that D does not win in ${ }_{a} \Gamma_{Q}^{S}(X)$ for every a. We also give another proof to the fact that $\Gamma^{S}(X)$ is a win for D if X is countable.

0 Introduction

This paper continues Ehrenfeucht and Moran [1] and Moran [3]. We use the notations of [3]. In addition to the results mentioned in the abstract, we prove a technical lemma. This lemma is a theorem of ZF (even AC is not needed).

In [3, Th. 5.8] it is proved that if $\Gamma_{Q}^{S}(X)$ is a win for D then X is at most denumerable. Here in Theorem 2.1, we prove assuming CH that there is an uncountable X such that $\tilde{\Gamma}_{Q}^{S}(X)$ is a win for D. By [3, Th. 5.5], this is a theorem of ZF for ${ }_{a} \Gamma_{Q}^{S}(X)$. Yet, for $\Gamma^{S}(X)$ and even ${ }_{a} \Gamma^{S}(X)$, this is still an open question.

By [1, Th. 2], if X is countable then $\Gamma^{S}(X)$ (hence also $\tilde{\Gamma}_{Q}^{S}(X)$) is a win for D. We give here another proof to this effect, which has the flavor of the priority method (Theorem 3.1). In Theorem 2.2 we prove, assuming CH, that this does not generalize to uncountable X intersecting each perfect nowhere-dense set by a countable set, for the game $\tilde{\Gamma}_{Q}^{S}(X)$.

By Solovay [4], Theorem 2.1 cannot be proved using ZF only. It is an open question whether we can prove it in ZFC or even in ZFC+MA (on Martin's axiom MA, see Martin and Solovay [2].)

Theorem 2.2 generalizes to the case $2^{N_{0}}>\aleph_{1}$, if the union of $<2^{N_{0}}$ sets of first category is a set of the first category (this is a conclusion of MA; see [2]) as

Received November 15, 1972
follows: There is a set X whose intersection with every perfect nowhere-dense set is of power $<2^{x_{0}}$, but D has no winning strategy in ${ }_{a} \Gamma_{Q}^{S}(X)$. It is an open question whether Theorem 2.2 as stated can be proved in ZFC or even ZFC + MA.

Notation. We use the notation of [3]. We remind the reader that a bis is a function J defined on 2* such that $J(\xi)$ is a nonempty closed interval for $\xi \in 2^{*}$, $J\left(\xi \cdot\langle 0\rangle, J(\xi \cdot\langle 1\rangle) \subseteq J(\xi)\right.$ and $J(\xi \cdot\langle 0\rangle)<J(\xi \cdot\langle 1\rangle)$. For $\xi \in 2^{*}, J_{\xi}$ is the bis defined by $J_{\xi}(\eta)=J(\xi \cdot \eta), \eta \in 2^{*}$. $K J$ denotes the perfect set ${ }_{n} \bigcap_{<\omega} \bigcup_{l \xi=n} J(\xi)$. $\phi: 2^{*} \rightarrow 2^{*}$ is an embedding if for every $\xi, \xi^{\prime} \in 2^{*}, \xi \prec \xi^{\prime}$ iff $\phi(\xi) \prec \phi\left(\xi^{\prime}\right)$. A bis J^{\prime} refines a bis J if there is an embedding $\phi: 2^{*} \rightarrow 2^{*}$ such that $J^{\prime}(\xi) \subseteq J(\phi(\xi))$. It is clear that if J^{\prime} refines J then $K J^{\prime} \subseteq K J$. A con is a nonincreasing sequence of positive numbers that converges to zero. A sequence $\left\langle s_{n}\right.$: $\left.n<\right\rangle$ of real numbers obeys a con $\left\langle a_{n}: n<\omega\right\rangle$ if for $m, m^{\prime} \geqq n,\left|s_{m}-s_{m^{\prime}}\right|<a_{n}$.

1. How D escapes a countable number of threats

Theorem 1.1. Let $a=\left\langle a_{n}: n\langle\omega\rangle\right.$ be a con, and let J_{n} be a bis, z_{n} a real number, $n \in \omega$. Then for every $n \in \omega$, there is a bis J_{n}^{\prime} so that J_{n}^{\prime} refines J_{n}, and if

$$
X=\left\{z_{n}: n<\omega\right\} \bigcup \bigcup_{n<\omega} K J_{n}^{\prime}
$$

then ${ }_{a} \Gamma_{Q}^{S}(X)$ is a win for D.
Proof. We shall first define by simultaneous induction J_{n}^{\prime} for $n \in \omega$, and then describe a winning strategy for D in ${ }_{a} \Gamma_{Q}^{S}(X)$.
I. Let $Q=\left\{q_{n}: n<\omega\right\}$ be any enumeration of Q. Following the proof of [3, Th. 5.5], we define by induction on $n \phi_{i}(\xi), J_{i}^{\prime}(\xi)$ and $k_{n} \in \omega$, for ξ, i satisfying $\max \{l \xi, i\}=n$ so that the following requirements will hold.

Let $F_{n}=\bigcup_{0 \leqq i \leqq n} \bigcup_{\xi \in 2^{n}} J_{i}^{\prime}(\xi)$.
0) $a_{k_{n}}<m g$ for every component g of $R-F_{n}$.

1) $q_{n} \notin T^{k_{n}} F_{n}$, (see [3, Definition 3.0]).
2) $J_{i}^{\prime}(\xi)=J_{i}\left(\phi_{i}(\xi)\right)$.

Let $\xi_{0} \in 2^{*}$ satisfy: $q_{0} \notin J_{0}\left(\xi_{0}\right)$. Define: $k_{0}=0, \phi_{0}(\varnothing)=\xi_{0}, J_{0}^{\prime}(\varnothing)=J_{0}\left(\xi_{0}\right)$.
Assume that $n>0$ and that $\phi_{i}, J_{i}(\xi)$ are defined for $\xi \in \bigcup_{m<n} 2^{m}, i<n$. Let $\phi_{n}(\xi)=\xi, J_{n}^{\prime}(\xi)=J_{n}(\xi)$ for $\xi \in \bigcup_{m<n} 2^{m}$, and let $\xi_{0}, \cdots, \xi_{2^{n-1}-1}$ be the enumeration of 2^{n-1} in the lexicographical ordering. We have for $0 \leqq j<j^{\prime}<2^{n-1}$:

$$
J_{i}\left(\xi_{j}\right)<J_{i}^{\prime}\left(\xi_{j^{\prime}}\right) .
$$

Recall that $H(X)$ denotes the set of all $s \in R$ such that for every $\varepsilon>0$ $(s-\varepsilon, s) \cap X \neq \varnothing$ and $(s, s+\varepsilon) \cap X \neq \varnothing$ [3, Definition 4.1]; see also Lemma 4.2 (ii)). Let $S_{n}=\left\{s_{i j}: 0 \leqq i \leqq n, 0 \leqq j<2^{n}\right\}$ satisfy:
3) $s_{l, j} \in K J_{i}, 0 \leqq j<2^{n}$
4) $s_{i, j}<s_{i, j^{\prime}}, 0 \leqq i \leqq n, 0 \leqq j<j^{\prime}<2^{n}$
5) $s_{i, 2 j^{j}} s_{i, 2 j+1} \in J_{i}^{\prime}\left(\xi_{j}\right), 0 \leqq i \leqq n, 0 \leqq j<2^{n-1}$
6) S_{n} is linearly independent over Q.

From (6) it follows [3, Proposition 3.4] that $T^{\omega} S_{n} \cap Q=\varnothing$. Define $d_{n}>0$ by:
7) $3 d_{n}=\min \left\{\left|s^{\prime}-s^{\prime \prime}\right|: s^{\prime}, s^{\prime \prime} \in S_{n}, s^{\prime} \neq s^{\prime \prime}\right\}$.

Let $k_{n} \in \omega$ be the least k such that $a_{k}<d_{n}$. Define $\delta>0$ by:
8) $2 \delta=\min \left\{d_{n}, \min \left\{\left|q_{n}-s\right|: s \in T^{k_{n}} S_{n}\right\}\right\}$.

Thus, $q_{n} \notin \bigcup_{s \in T_{k n} s_{n}}[s-\delta, s+\delta]$. Hence [3, Lemma 3.5]
9) $q_{n} \notin T^{k_{n}}\left(\bigcup_{s \in S_{n}}[s-\delta, s+\delta]\right)$.

Let $0 \leqq j<2^{n-1}, 0 \leqq i \leqq n$ be given. Then $s_{l, 2 j} s_{i, 2 j+1} \in H\left(K J_{i}\right) \cap J_{i}\left(\phi_{i}\left(\xi_{j}\right)\right)$; hence, it is possible to find ξ_{j}^{0}, ξ_{i}^{1} so that $\xi_{j}<\xi_{j}^{e}$ for $\varepsilon \in 2, J_{i}\left(\xi_{j}^{0}\right)<J_{i}\left(\xi_{j}^{1}\right)$, $s_{i, 2 j+\varepsilon} \in J_{i}\left(\xi_{j}^{\ell}\right), \varepsilon \in 2$, and also $m J_{i}\left(\xi_{j}^{2}\right) \leqq \delta$. It follows that
10) $J_{i}\left(\xi_{j}^{\ell}\right) \subset\left[s_{i, 2_{j+\varepsilon}}-\delta, s_{i, 2_{j+\varepsilon}}+\delta\right]$.

We define at last:

$$
\phi_{i}\left(\xi_{j} \cdot\langle\varepsilon\rangle\right)=\xi_{j}^{\varepsilon}, J_{i}^{\prime}\left(\xi_{j}\langle\varepsilon\rangle\right)=J_{i}\left(\xi_{j}^{\varepsilon}\right), \quad \varepsilon \in 2 ;
$$

thus, (2) is already satisfied. By (9), (10) we see that (1) is also satisfied. From (7), (8) it follows that (0) is satisfied. This completes the construction of J_{n}^{\prime} for all $n<\omega$.
II. We shall now describe a winning strategy for D in ${ }_{a} \Gamma_{Q}^{S}(X)$ (compare [3, Lemma 5.3, Lemma 5.1]).
Step 0. (i) $)_{0}$ Assume that S started with $s_{0}=q_{n_{0}}$. By (1) and [3, Th. 3.2], $G\left(F_{n_{0}} ; q_{n_{0}} ; k_{n_{0}}\right)$ is a win for $D . D$ follows his winning strategy $k_{n_{0}}$ moves. This ensures that $s_{k_{n_{0}}} \notin F_{n_{0}} ;$ hence, $\mathrm{d}\left(s_{k_{n_{0}}}, F_{n_{0}}\right)>0$.
(ii) $)_{0} D$ picks $r_{0}>k_{n_{0}}$ so that $a_{r_{0}} \leqq \mathrm{~d}\left(s_{k_{n_{0}}}, F_{n_{0}}\right)$ and makes sure by recoiling from $F_{n_{0}}$, that if \boldsymbol{a} is not violated, then $g_{0}=\left(s_{r_{0}}-a_{r_{0}}, s_{r_{0}}+a_{r_{0}}\right) \cap\left(s_{k_{n_{0}}}-a_{k_{n_{0}}}\right.$, $\left.s_{k_{n_{0}}}+a_{k_{n_{0}}}\right)$ has a positive distance from $F_{n_{0}}$. This is possible by (0). Note that if a is not to be violated, s_{m} should belong to g_{0} for $m \geqq r_{0}$, and hence the outcome cannot belong to $F_{n_{0}}$.
(iii) D makes (if necessary) the distance δ_{0} from $s_{r_{0}}+1$ to z_{0} positive, and picks $t_{0}>r_{0}$ so that $a_{t_{0}}<\delta_{0}$. Then he recoils from z_{0} until $s_{t_{0}}$ is constructed. Thus it ensures that if \boldsymbol{a} will not be violated, the outcome will be different from z_{0}.
The j 'th step is essentially the same as the first. The play, where \boldsymbol{a} is not yet violated, reached $s_{t_{j-1}}=q_{n_{j}} \in Q$. As in step 0:
(i) $j_{j} D$ makes sure that $s_{k_{j}} \notin F_{n_{j}}$, where $k_{n_{j}} \leqq k_{j}^{\prime}$ (use (1)).
(ii) $)_{j} D$ makes sure that $s_{r_{j}}$ belongs to an open interval g_{j} where the rest of the play, if \boldsymbol{a} is not to be violated, should fall, and such that g_{j} has a positive distance from $F_{n_{j}}$ (use (0)). The outcome cannot lie in $F_{n_{j}}$ unless \boldsymbol{a} is violated.
(iii) $_{j} D$ makes sure that $s_{t_{j}}$ is in an interval of positive distance from z_{j}, where all the next elements of the play should fall, unless a is violated.

We show now that this is a winning strategy. Indeed, if s is a play where D follows this strategy, then by (iii) $)_{j}$, the outcome s is not equal to z_{j} for any $j<\omega$. Also, by (ii) ${ }_{j}$, the outcome s does not belong to infinitely many F_{n} 's. It follows that if $i \in \omega$, then $s \notin K J_{i}^{\prime}$. This is clear, since:

2.

$$
K J_{i} \subset \bigcap_{i \leqq n} F_{n}
$$

D rides CH and escapes an uncountable number of points

Theorem 2.1 (CH) In every perfect set there is an uncountable set X s.t. $\tilde{\Gamma}_{Q}^{s}(X)$ is a win for D.

Proof. Let $\left\langle a^{\alpha}: \alpha<\omega_{1}\right\rangle$ be a list of all the cons, i.e., nonincreasing sequences of positive numbers that converge to zero. Let P be a perfect set, and let J^{*} be any bis such that $K J^{*} \subseteq P$, (see [3, Lemma 4.2]). We now define by induction on α :

1) a countable family \mathscr{J}^{α} of refinements of J^{*}. We put $A_{\alpha}=\cup_{J \in \mathcal{J}_{\alpha}} K J$.
2) for each ordinal α, a real x_{α} so that
A) if $\beta<\alpha, J \in \mathscr{J}^{\beta}, \xi \in 2^{*}$, then there is a $J^{\prime} \in \mathscr{J}$ such that J^{\prime} refines J_{ξ}.
B) $x_{\alpha} \in A_{\alpha}-\left\{x_{\beta}: \beta<\alpha\right\}$.
C) $a^{\alpha} \Gamma_{Q}^{S}\left(A_{\alpha+1} \cup\left\{x_{\beta}: \beta \leqq \alpha\right\}\right)$ is a win for D.
D) $A_{\alpha} \subsetneq A_{\beta}$ for $\beta<\alpha$.

It is clear that if the induction can be carried out, we are done. We put $X=\left\{x_{\alpha}: \alpha<\omega_{1}\right\}$. Then X is uncountable, and D has a winning strategy in $\tilde{\Gamma}_{S}^{Q}(X)$. Denote by τ_{α} the winning strategy ensured by (C) in the $\alpha+1$ 'th step of the induction. If S chooses a^{α} as a con, D uses τ_{α} and wins, put $\mathscr{F}^{0}=\left\{J^{*}\right\}$, $A_{0}=K J^{*}$.

Assume that $\mathscr{J}^{\beta}, A_{\beta}, x_{\beta}$ are defined for $\beta<\alpha$ so that (A)-(D) hold.
Case I. α is a successor.
Assume that $\alpha=\gamma+1$. The set $\left\{J_{\xi}^{\prime}: J^{\prime} \in \mathscr{J}^{\gamma}, \xi \in 2^{*}\right\}$ is denumerable, and so is $\left\{x_{\beta}: \beta \leqq \gamma\right\}$; use Theorem 1.1, to obtain a countable family \mathscr{J}^{α} so that for each $\xi \in 2^{*}, J^{\prime} \in \mathscr{J}^{\gamma}$, there is a $J \in \mathscr{J}^{\alpha}$ so that J refines J_{ξ}^{\prime}, and ${ }_{a^{\alpha}} \Gamma_{Q}\left(A_{\alpha}^{S} \cup\left\{x_{\beta}: \beta<\alpha\right\}\right)$
is a win for D (where A_{α} is defined in (1)). Pick $x_{\alpha} \in A_{\alpha}$ so that $x_{\alpha} \neq x_{\beta}$ for $\beta<\alpha$ (A_{α} has the power of the continuum). It is clear that by the induction hypothesis, (A)-(D) are carried over.

Case II. α is a limit ordinal.
Assume that $\beta<\alpha, \xi \in 2^{*}, J^{\prime} \in \mathscr{J}^{\beta}$.
Let $\left\langle\beta_{n}: n\langle\omega\rangle\right.$ be an increasing sequence of ordinals whose limit is $\alpha, \beta_{0}=\beta$. We shall define a refinement J of J^{\prime}, and a bis J^{ζ} for $\zeta \in 2^{*}$ by induction on $l \zeta$ so that:
a) if $l \zeta=n$ then $J^{\zeta} \in \mathcal{J}^{\beta_{n}}$
b) if $\zeta<\zeta^{\prime}$ then $J^{\prime \prime}$ refines J^{ζ}
c) $J(\zeta)=J^{\zeta}(\zeta)$.

Put:

$$
J(\varnothing)=J_{\xi}^{\prime}(\varnothing), J^{\alpha}=J_{\xi}^{\prime}
$$

Assume that $J(\zeta), J^{\zeta}$ are defined for $\zeta \in 2^{n}$ so that (a)-(c) hold. Use the induction hypothesis (A) to pick $J^{\zeta\langle \rangle} \in \mathcal{J}^{\beta_{n+1}}$ so that $J^{\zeta \ell\rangle}$ refines $J_{\langle\varepsilon,}^{\zeta}, \varepsilon \in 2$, and define $J(\zeta \cdot\langle\varepsilon\rangle)$ by (c).
It is clear that for every $\alpha \in 2^{\omega}, \bigcap_{n \leqq \omega} J(\bar{\alpha}(n))=\bigcap_{n<\omega} J^{\bar{\alpha}(n)}(\bar{\alpha}(n)) \in K J^{\bar{\alpha}(m)}$ for all $m<\omega$ by (b); hence, $K J \subseteq \bigcap_{\beta<\alpha} A_{\beta}$. Thus, also $A_{\alpha} \subseteq A_{\beta}$ for $\beta<\alpha$. So (D) holds.
Now choose $x_{\alpha} \in A_{\alpha}-\left\{x_{\beta}: \beta<\alpha\right\}$.
It is clear that (A) holds. Both (B) and (C) hold vacuously, and (D) is easy.
Theorem 2.2. (CH) There is a set X of points such that
(i) X is uncountable, but for each perfect nowhere-dense set $P|P \cap X| \leqq \aleph_{0}$,
(ii) for no a, D has a winning strategy in the game ${ }_{a} \Gamma_{Q}^{S}(X)$.

Proof. Let $\left\langle P_{\alpha}: \alpha<\omega_{1}\right\rangle$ be an enumeration of all perfect nowhere-dense sets, and let $\left\{\left\langle\boldsymbol{a}^{\alpha}, \tau^{\alpha}\right\rangle: \alpha<\omega_{1}\right\}$ be an enumerativn of all pairs (a, τ) where \boldsymbol{a} is a con, τ a strategy of D in the game ${ }_{a} \Gamma_{Q}^{S}$.
We define by induction on $\alpha<\omega_{1} x^{\alpha} \in R$ such that

1) $x^{\alpha} \notin \bigcup_{\beta \leqq \alpha} P_{\beta}$
2) there is a play of ${ }_{a} \alpha \Gamma_{Q}^{S}$ in which D uses the strategy τ^{α} and the outcome is x^{*}.

In order to carry the induction we need to show only that in ${ }_{a^{2}} \Gamma_{Q}^{S}\left(R-\bigcup_{\beta \leqq \alpha} P_{\beta}\right)$ D has no winning strategy. Because τ^{α} cannot be a winning strategy of D in ${ }_{a}=\Gamma_{Q}^{S}\left(R-\bigcup_{\beta \leq \alpha} P_{\beta}\right)$ for some play in which D uses τ^{α}, S wins, and its outcome
will be chosen as x^{α}. It follows from [3, Th. 5.10] that D has no winning strategy in $a_{a^{\alpha}} \Gamma_{Q}^{S}\left(R-\cup_{\beta \leqq \alpha} P_{\beta}\right)$, but we shall present here a direct proof.

Let A be any set of the first category, and assume that $A=\bigcup_{n<\omega} F_{n}$, where F_{n} is nowhere dense. Let $\tau: Q^{*} \rightarrow\{-1,1\}$ be any strategy for D, and a any con. We shall construct a play $s=\left\langle s_{n}: n<\omega\right\rangle \in Q^{\omega}$ and a nested sequence $\left\langle g_{n}: n<\omega\right\rangle$ of open intervals such that
(i) s obeys \boldsymbol{a}.
(ii) $g_{n} \cap F_{n}=\varnothing$
(iii) $s=\lim s_{n} \in \bigcap g_{n}$.

Pick an open interval g_{0} of measure a_{0} such that $g_{0} \cap F_{0}=\varnothing$ and let s_{0} be any rational member of g_{0}. Assume by induction that s_{i}, g_{i} are already defined for $0<i<n$ so that $s_{i} \in g_{i} \subset g_{i-1}$ and that $s_{n-1} \in g=g_{a}\left(\left\langle s_{0}, \cdots, s_{n-1}\right\rangle\right)$ (see [3, Definition 5.0]). Let d be the distance from s_{n-1} to $R-g$ and let g_{n}^{1} be a subinterval of ($\left.s_{n-1}, s_{n-1}+d\right)$ such that $g_{n}^{1} \bigcap F_{n}=\varnothing$.

Now consider $g^{\prime}=\left\{s_{n-1}-x: s_{n-1}+x \in g_{n}^{1}\right\}$. This is an open subinterval of g. Let g_{n}^{-1} be a subinterval of g^{\prime} such that $g^{-1} \cap F_{n}=\varnothing$. Let $s_{n}^{-1} \in g_{n}^{-1} \cap Q$. Finally, put $x_{n}=s-s_{n}^{-1}, \varepsilon_{n}=\tau\left(\left\langle s_{0}, \ldots, s_{n-1}\right\rangle, x_{n}\right)$ and $s_{n}=s_{n-1}+\varepsilon_{n} x, g_{n}=g^{\varepsilon_{n}}$.

It is clear that (i)-(iii) hold.
Now let $X=\left\{x^{\alpha}: \alpha<\omega_{1}\right\}$. For each perfect nowhere-dense set $P, P=P_{\alpha}$ for some $\alpha<\omega_{1}$, hence by (1)

$$
X \cap P=X \cap P_{\alpha}=\left\{x^{\beta}: \beta<\omega_{1}\right\} \cap P \subseteq\left\{x^{\beta}: \beta<\alpha\right\}
$$

So $X \cap P$ is countable. On the other hand, if for some con $a_{a} \Gamma_{Q}^{S}(X)$ is a win for D, let his winning strategy be τ. So for some $\alpha<\omega_{1}(a, \tau)=\left(a^{\alpha}, \tau^{\alpha}\right)$. But then S can play against this strategy so that the outcome is x^{α}, and the play obeys a; as $x^{\alpha} \in X$, he wins in this play of ${ }_{a} \Gamma_{Q}^{S}(X)$, a contradiction. So X satisfies both conditions.

3. No countable set can resist D

We shall give now an alternative proof of [1, Th. 2] which states:
Theorem 3.1. If X is denumerable then $\Gamma^{S}(X)$ is a win for D.
Proof. Let $\left\{z_{n}: n<\omega\right\}$ be an enumeration of X, so that $z_{n} \neq z_{m}$ for $n \neq m$. We shall describe now a strategy for D which tells him how to move, consulting a certain finite function f_{n} that he changes and extends during the game. f_{n} will be a function defined for $i<n$, whose values are positive numbers that will satisfy:

$$
\begin{equation*}
f_{n+1}(i)=f_{n}(i) \text { or else } f_{n+1}(i)<\frac{1}{2} f_{n}(i), \quad i<n \tag{}
\end{equation*}
$$

(**) for every $m<\omega, z_{i}-f_{n}(i) \neq z_{m}$ and $z_{i}+f_{n}(i) \neq z_{m}$.
τ is defined by induction as follows. Put $f_{0}=\varnothing$. Suppose that $s_{0}, \cdots, s_{n}, x_{n}$ are already played, and also f_{n} is already defined. D has now to choose $\varepsilon_{n} \in\{-1,1\}$ and thereby he determines $s_{n+1}=s_{n}+\varepsilon_{n} x_{n}$.
a) If an $\varepsilon \in\{-1,1\}$ exists so that for all $i<n, s_{n}+\varepsilon x_{n} \notin\left(z_{i}-f_{n}(i), z_{i}+f_{n}(i)\right)$, make ε_{n} equal such an ε.
b) Otherwise, put $i_{z}^{n}=\min \left\{i: s_{n}+\varepsilon x_{n} \in\left(z_{i}-f_{n}(i), z_{i}+f_{n}(i)\right\}\right.$ and pick ε_{n} so that $i_{\varepsilon_{n}}^{n} \geqq i_{-\varepsilon_{n}}^{n}$.
D turns now to define f_{n+1} ensuring:
$0) \quad z_{i}-f_{n+1}(i), z_{i}+f_{n+1}(i) \notin X, 0 \leqq i \leqq n$.

1) If $\left|s_{n+1}-z_{i}\right| \geqq f_{n}(i)$ then $f_{n+1}(i)=f_{n}(i), 0 \leqq i<n$.
2) If $0<\left|s_{n+1}-z_{i}\right| \leqq f_{n}(i)$ then $f_{n+1}(i) \leqq \frac{1}{2}\left|s_{n+1}-z_{i}\right|, 0 \leqq i \leqq n$.
3) If $s_{n+1}=z_{i}, i<n$, then $f_{n+1}(i) \leqq \frac{1}{2} f_{n}(i)$. If $s_{n+1}=z_{n}, f_{n+1}(n)=1$.

It is seen that for $0 \leqq i \leqq n,\left|s_{n+1}-z_{i}\right| \geqq f_{n+1}(i)$, unless it happens that $s_{n+1}=z_{i}$.

Let $s=\left\langle s_{n}: n\langle\omega\rangle\right.$ be a play where D followed this strategy. Let $\left\langle f_{n}: n<\omega\right\rangle$ be its accompanied sequence of finite functions. Assume that s is a convergent sequence, and that $\lim s_{n}=z_{m} \in X$. We shall derive a contradiction.

The following is easy to verify, using (*), (1), (2). z_{i} is an accumulation point of a play s where τ is used $\Leftrightarrow f_{n}(i)$ changes its value infinitely often $\Leftrightarrow \inf _{n} f_{n}(i)=0$.

Hence, if s is convergent to z_{m}, then for all $i<m, f_{n}(i)$ is eventually constant. Thus, pick n_{1} so that for $n \geqq n_{1} \geqq m, f_{n}(i)=f_{n_{1}}(i)=a_{i}>0$ for all $i<m$.

It follows by (1), (2) that for $n \geqq n_{1},\left|s_{n+1}-z_{i}\right| \geqq a_{i}>0,0 \leqq i<m$, hence also $\left|z_{m}-z_{i}\right| \geqq a_{i}$. By $\left(^{(*)}, z_{m}\right.$ is not an endpoint of any of the intervals $\left(z_{i}-a_{i}, z_{i}+a_{i}\right), 0 \leqq i<m$. Hence, there is a positive number d such that $\left(z_{m}-d, z_{m}+d\right) \bigcap\left(z_{i}-a_{i}, z_{i}+a_{i}\right)=\varnothing$ for $0 \leqq i<m$. Since $z_{m}=\lim s_{n}$, there is an $n_{2} \geqq n_{1}$ such that $\left|z_{m}-s_{n}\right|<\frac{1}{3} d$ for $n \geqq n_{2}$. We may assume that $\left|z_{m}-s_{n_{2}}\right|=\delta>0$ (otherwise take $n_{2}+1$). Now, for $n \geqq n_{2}, x_{n}<\frac{2}{3} d$ and $s_{n} \in\left(z_{m}-\frac{1}{3} d, z_{m}+\frac{1}{3} d\right)$; hence, $s_{n}+\varepsilon x_{n} \notin \bigcup_{i<m}\left(z_{i}-a_{i}, z_{i}+a_{i}\right)$ for any $\varepsilon \in\{-1,1\}$. It follows that $i_{\varepsilon}^{n} \geqq m$ for such an n, ε. So ε_{n} is so chosen by τ to keep $s_{n+1}=s_{n}+\varepsilon_{n} x_{n}$ away from $\left(z_{n}-f_{n}(m), z_{m}+f_{n}(m)\right.$. But this means that $\left|s_{n}-z_{m}\right| \geqq \delta>0$ for $n \geqq n_{2}$.

References

1. A. Ehrenfeucht and G. Moran, Size direction games over the real line. I, Israel J. Math. 14 (1973), 163-168.
2. D. A. Martin, and R. M. Solovay, Internal Cohen extensions, Ann. Math. Logic 2 (1970), 143-178.
3. G. Moran, Size direction games over the real line. II, Israel J. Math. 14 (1973), 418-441.
4. R. M. Solovay, A model of set theory in which every set of reals is Lebesgue measurable, Ann. of Math. 92 (1970), 1-56.

The Hebrew University of Jerusalem
Jerusalem, Israel.

