STABLE THEORIES

BY

S. SHELAH*

Abstract

We study $K_{T}(\lambda)=\sup \{|S(A)|:|A| \leqq \lambda\}$ and extend some results for totally transcendental theroies to the case of stable theories. We then investigate categoricity of elementary and pseudo-elementary classes.

0 . Introduction In this article we shall generalize Morley's theorems in [2] to more general languages.

In Section 1 we define our notations.
In Theorems 2.1, 2.2. we in essence prove the following theorem: every firstorder theory T of arbitrary infinite cardinality satisfies one of the possibilities:

1) for all $\chi,|A|=\chi \Rightarrow|S(A)| \leqq \chi+2^{|T|}$, (where $S(A)$ is the set of complete consistent types over a subset A of a model of T).
2) for all $\chi,|A|=\chi \Rightarrow|S(A)| \leqq \chi^{|T|}$, and there exists A such that $|A|=\chi$, $|S(A)| \geqq \chi^{K_{0}}$.
3) for all χ there exists A, such that $|A|=\chi,|S(A)|>|A|$.

Theories which satisfy 1 or 2 are called stable and are similar in some respects to totally transcendental theories. In the rest of Section 2 we define a generalization of Morley's rank of transcendence, and prove some theorems about it. Theorems whose proofs are similar to the proofs of the analogous theorems in Morley [2], are not proven here, and instead the number of the analogous theorem in Morley [2] is mentioned.

In Section 3, theorems about the existence of sets of indiscernibles and prime models on sets are proved.

[^0]In Section 4, a two-cardinal Skolem-Löwenhiem theorem is given without proof, and is followed by some theorems about categorical elementary and pseudoelementary classes.

Among them appear:
Theorem. If T is categorical in $\lambda, \lambda>|T|+\aleph_{0}, \lambda \neq \inf \left\{\mu: \mu^{\aleph_{0}}>\mu+|T|\right\}$ then T is categorical in every cardinal $\geqq \lambda$, and in some cardinal $<\mu(|T|)$ $<\beth\left(\left(2^{|T|}\right)^{+}\right)$.

THEOREM. If the class of reducts of models of T to the language L is categorical in $\lambda, \lambda>|T|, \beth_{\gamma}>|T|$ and the ordinal γ is divided by $\left(2^{/ T \mid}\right)^{+}$, then the class of reducts of models of T to the language L is categorical in \beth_{γ}.

Some of the results of this article appear in my notices [8], [7].
After proving the theorems in this article, an unpublished article of J. P. Ressayre [5] came to my attention. It deals with categorical theories and includes results previously obtained by F. Rowbottom. Among the results in Ressayre's article are a weaker version of Theorems 2.1 and 2.2, a partial version of 3.5 , and a somewhat weaker version of 4.6.

1. Notations. M will denote a model, $|M|$ is the set of its elements, $|A|$ is the cardinality of A, and $\|M\|$ is the cardinality of the model M. We shall write $a \in M$ instead $a \in|M| . \alpha, \beta, \gamma, i, j, k, l$, will denote ordinale, δ a limit ordinal and n, m natural numbers.
λ, χ, μ will denote infinite cardinals. λ^{+}is the first cardinal greater than λ. $\beth(\chi, \alpha)$ is defined by induction: $\beth(\chi, 0)=\chi, \beth(\chi, \alpha+1)=2^{\beth(\chi, \alpha)}$, and $\beth(\chi, \delta)$ $=\bigcup_{\alpha<\delta \beth}(\chi, \alpha) ; \beth(\alpha)=\beth_{\alpha}=\beth\left(\aleph_{0}, \alpha\right)$. If $\chi=\aleph_{\alpha}$ then $\aleph(\chi, \beta)=\alpha_{\alpha+\beta}$, where $\aleph_{\alpha}=\omega_{\alpha}$ is the α^{\prime} th infinite cardinal.
T will denote a fixed first-order theory with equality. If $\psi(x)$ is a formula in the language of T with one variable., $\psi(M)$ is the set of elements satisfying $\psi . M \vDash \psi[a]$ if $\psi[a]$ is satisfied in M. Without loss of generality we assume that for every formula $\psi\left(x_{1}, \cdots, x_{h}\right)$ there is a predicate $R\left(x_{1}, \cdots, x_{n}\right)$ such that $(\forall \bar{x})\left(\psi\left(x_{1}, \cdots, x_{n}\right)\right.$ $\left.\equiv R\left(x_{1}, \cdots, x_{n}\right)\right) \in T$ and that there are no function symbols in the language. Morley [2] explains why there is no loss of generality here. The language of T will be denoted by $L(T)$. The predicates in $L(T)$ will be $\left\{R_{i}: i<|T|\right\} . T$ is complete unless stated otherwise. Usually x, y, z will be individual variables, $\bar{x}, \vec{y}, \bar{z}$ - finite sequences of variables, a, b, c will denote elements of models, and $\bar{a}, \bar{b}, \bar{c}$ will de-
note finite sequences of elements of models. It is implicitly assumed that different sequences of variables contain no common variables. \rangle will be the empty sequence. \bar{a}_{i} or $\bar{a}(i)$ will be the i 'th element of the sequence \bar{a}. Instead of writing $(\forall n<\omega)\left(\bar{a}_{n} \in A\right)$ we shall write $\bar{a}_{n} \in A$ or $\bar{a} \in A . A, B, C$ will denote substructures of T-models, and when we speak about a set A, or define A, we speak about its relations as well. That is we do not distinguish between the substructure A and the set A. By $A \subset M$ we mean that $A \subset|M|$, and the relations on A are the relations on M restricted to $A . T(A)$ is the theory T together with all the true sentences $R[\bar{a}]$, $\bar{a} \in A$, and $T(A)$ is a complete theory. When writing $R[\bar{a}]$ we assure implicitly that the length of the sequence \vec{a} is equal to the number of places in the predicate R.

We define p to be a type on A iff p is a set whose elements are of the form $\psi(\bar{x}, \bar{a})$, where $\bar{a} \in A$, and ψ is an arbitrary formula in $L . q, r$ will also denote types. If for every $\psi, \tilde{a} \in A \longrightarrow \psi(\bar{x}, \bar{a}) \in p$ or $\psi(\bar{a}, \bar{a}) \in p, p$ is called a complete type on A. If A is not mentioned, then it is assumed A is the empty set. When we speak about a type we implicitly assume that $T(A) \cup p$ is a consistent set. We define $p \mid A$ $=\{\psi(\bar{x}, \bar{a}) \in p: \bar{a} \in A\}$. If not otherwise assumed $\bar{x}=x$ in p.
$S^{T}(A)$ is the set of complete types on A. As T is fixed we write $S(A)$. If I is a set of predicates then $p \mid I=\{\psi \in p: \psi=R(x, \bar{a})$ or $\psi=\rightharpoondown R(x,, \bar{a})$ and $R \in I\}$, $S_{I}(A)=\{p \mid I: p \in S(A)\}, p|R=p|\{R\}$, and $S_{R}(A)=S_{\{R\}}(A)$. By our notations we can distinguish easily between $p \mid I$ and $p \mid A$. On $S(A)\left(S_{I}(A)\right)$ a compact topology is defined by the sub-base which has the following sets as elements: for every $\phi=\psi(x, \bar{a}), V_{\phi}=\{p: \psi(x, \bar{a}) \in p\}$. M realizes a type p on $|M|$, if there is an element b of M such that for every $\psi(x, \bar{a}) \in p M \vDash \psi[b, \bar{a}]$ (that is : $\psi(b, \vec{a})$ is satisfied in M). M omits p if does not realize $p . M$ is called λ-saturated if every type on A with $A \subset M,|p|<\lambda$, is realized in M. If M is $\|M\|$-saturated it is called saturated.
$\mu(\chi)$ is the smallest cardinal such that if T with $|T|=\chi$, has a model omitting a type p in every cardinal smaller than $\mu(\chi)$ and not smaller than $|T|$, then it has such a model in every cardinal $\geqq|T|$. In Vaught [9] the following results are mentioned:

$$
\mu(\chi)<\beth_{\gamma} \text { where } \gamma=\left(2^{\chi}\right)^{+} ; \mu\left(\aleph_{0}\right)=\beth_{\omega_{1}} ; \mu\left(\beth_{\delta}\right)=\beth\left(\beth_{\delta+1}\right) \text { when }
$$

$$
\operatorname{cf} \delta=\omega
$$

T is categorical in λ if all models of T of cardinality λ are isomorphic. $p c\left(T_{1}, T\right)$ is the class of reducts of models of T_{1} to $L(T)$. (We assume implicitly that
$\left.T=T_{1} \cap L(T).\right) p c\left(T_{1}, T\right)$ is categorical in λ if all models in $p c\left(T_{1}, T\right)$ of cardinality λ are isomorphic.

2. On possible cardinalities of $S(A)$

DEFINITION 2.1: $K_{T}(\lambda)=\sup \{|S(A)|:|A| \leqq \lambda\}=\inf \{\mu:|A| \leqq \lambda \Rightarrow|S(A)|<\mu\}$.
Notations: η, τ will denote ordinal sequences of zeroes and ones. For $0 \leqq i<l(\eta)$ η_{i} is the i th element of the sequence, where $l(\eta)$ is the length of the sequence. $\psi^{\eta(i)}$ will denote ψ if $\eta(i)=0$, and $\longrightarrow \psi$ if $\eta(i)=1 . \eta \mid \alpha$ is the sequence of the first α elements of η.

Theorem 2.1. 1) If there exists $A,|A|^{|T|}=|A|,|S(A)|>|A|$. Then for every $\lambda, K_{T}(\lambda) \geqq \inf \left\{\left(2^{x}\right)^{+}: 2^{x}>\lambda\right\}$.
2) There exists A as mentioned in 1 , iff there exists a predicate R such that: $\Gamma_{R}=\left\{(\exists x)\left(\Lambda_{0 \leqq i<l(\eta)} R\left(x, \bar{y}^{\eta l i}\right)^{\eta(i)}\right): l(\eta)<\omega\right\} \cup T$ is consistent.

Remarks. The same argument will show that if there exists an A such that $|A|^{|T|}<|S(A)|$, then Γ_{R} is consistent.

Proof. Let us assume that A satisfies $|A|^{|T|}=|A|,|S(A)|>|A|$. Then we shall show that there exists a consistent Γ_{R} as mtntioned in 2 , and that the consistency of Γ_{R} implies the conclusion of 1 . This will prove the theorem.

Now for every R, we define $p_{1} \sim p_{2}(\bmod R)$ iff $p_{1}\left|R=p_{2}\right| R$. This is an equivalence relation on $S(A)$, which divides it into $\left|S_{R}(A)\right|$ equivalence classes. Since, for every $p_{1}, p_{2} \in S(A), p_{1} \neq p_{2}$, there is an R such that $P_{1} \sim p_{2}(\bmod R)$, $|S(A)| \leqq\left|\prod_{R} S_{R}(A)\right|=\prod_{R}\left|S_{R}(A)\right|$. If for every $R,\left|S_{R}(A)\right| \leqq|A|$, then $|S(A)| \leqq|A|^{|T|}=|A|$, a contradiction. Hence, there esxits an R such that $\left|S_{R}(A)\right|>|A| \geqq \aleph_{0}$. We shall prove that Γ_{R} is consistent.

For every \bar{a} such that $\bar{a} \in A, R(x, \bar{a})$ divides $S_{R}(A)$ into two sets: the types p such that $R(x, \bar{a}) \in p$, and the types p such that $\longrightarrow R(x, \bar{a}) \in p$. If in every such division one of the sets is of cardinality $\leqq|A|$, for example the set $\left\{p \in S_{R}(A): R\left(x, \bar{a}^{\tau(\bar{a}}\right) \in p\right\}$ then,

$$
\begin{aligned}
& \left|S_{R}(A)\right|=\mid \bigcup_{\vec{a}}\left\{p \in S_{R}(A): R(x, \tilde{a})^{\tau(\bar{a})} \in p\right\} \cup\left\{p \in S_{R}(A): \text { for all } \bar{a}\right. \\
& \left.R(x, \bar{a})^{\tau(\bar{a})} \notin p\right\}\left|\leqq \sum_{\bar{a}}\right|\left\{p \in S_{R}(A): R(x, \bar{a})^{\tau(\bar{a})} \in p\right\}|+1=|A|, \quad \text { a contradiction. }
\end{aligned}
$$

So there exists $\bar{a}=\bar{a}^{\text {® }}$ such that $R\left(x, \bar{a}^{\text {® }}\right)$ divides $S_{R}(A)$ into two sets of cardinality $>|A|$. For every one of them we can repeat the above discussion and
find. $\bar{a}^{\langle 0\rangle}, \tilde{a}^{\langle 1\rangle}$ such that there exists $>|A|$ types p with either $R\left(x, \bar{a}^{\langle \rangle}\right)$, $R\left(x, \bar{a}^{\langle 0\rangle}\right) \in p ; \quad R\left(x, \bar{a}^{\langle \rangle}\right), \longrightarrow R\left(x, \bar{a}^{\langle 0\rangle}\right) \in p ; \quad \rightharpoondown R\left(x, \bar{a}^{\langle \rangle}\right), \quad R\left(x, \bar{a}^{\langle 1\rangle}\right) \in^{\prime} p ; \quad$ or $\rightarrow R\left(x, \bar{a}^{\langle \rangle}\right), \rightharpoondown R\left(x, \bar{a}^{\langle 1\rangle}\right) \in p$. We can continue defining \tilde{a}^{η}, and proving by it the consistency of Γ_{R}. And so we have shown one direction.

Let $\chi=\inf \left\{\mu: 2^{\mu}>\lambda\right\}$. We define

$$
\Gamma=\left\{R\left(\chi_{\eta} \eta^{\eta l \gamma}\right)^{\eta(\gamma)}: l(\eta)=\chi, \gamma<\chi\right\} \cup T .
$$

It is easy to see that if Γ is not consistent then Γ_{R} is not consistent. Let M be a model of Γ, and A_{1} the set of elements which realize the variables $\left\{\left(\bar{y}^{\eta \mid \gamma}\right)_{n}: l(\eta)=\chi\right.$, $\left.\gamma<\chi, \eta<l\left(\bar{y}^{\eta \mid \gamma}\right)\right\}$. The cardinality of A_{1} is $\leqq \Sigma_{\gamma<\chi} 2^{|\gamma|} \leqq \lambda$, and in $M 2^{\chi}$ different complete types on A_{1} are realized. (The types realized by elements which realizes the variables $\chi_{\eta}, l(\eta)=\chi$). So $\left|A_{1}\right| \leqq \lambda$. $\left|S\left(A_{1}\right)\right| \geqq 2^{x}>\lambda$, and so $K_{T}(\lambda) \geqq\left(2^{x}\right)^{+}>\lambda^{+}$.

Definition 2.2. If in T there is no predicate R such that Γ_{R} is consistent, T is called stable.

Definition 2.3. If for every $\lambda, K_{T}(\lambda) \leqq \lambda^{+}+\left(2^{|T|}\right)^{+}$then T is called super stable.

Theorem 2.2. 1) If T is stable and there exists $A,|A| \geqq 2^{|T|}$ such that $S(A)\left|>|A|\right.$, then for every $\lambda, K_{T}(\lambda)>\lambda^{x_{0}}$. So there exists arbitrarily large powers for which $K_{T}(\lambda)>\lambda^{+}+\left(2^{|T|}\right)^{+}$.
2) There exists A as mentioned in 1 iff there exists a sequence of ω predicates $\left\langle R^{n}: n<\omega\right\rangle$ such that

$$
\begin{aligned}
& \Gamma\left\langle R^{n}: n \omega<\right\rangle=\left\{R^{m}\left(x^{f}, \bar{y}^{g, h}\right) \equiv \rightarrow R^{m}\left(x^{f^{\prime}}, \bar{y}^{8, h}\right):\right. \text { for all } \\
& \qquad \begin{array}{l}
f=\left\langle i_{0}, \cdots, i_{m-1}, i_{m}, \cdots, i_{l} \cdots: l<\omega\right\rangle, f^{\prime}=\left\langle i_{0}, \cdots, i_{m-1}, i_{m}, \cdots, i_{l}, \cdots{ }^{\prime}: l<\omega\right\rangle, \\
\quad i_{m}^{\prime} \neq i_{m}, g=\left\langle i_{0}, \cdots, i_{m-1}\right\rangle, h=\left\{i_{m}, i_{m}^{\prime}\right\} \text { and } \\
\left.\quad i_{l}, i_{l}^{\prime}<\omega \text { for all } l<\omega\right\}
\end{array}
\end{aligned}
$$

is consistent.
3) If T is super stable and there exists A with $|S(A)|>|A|,|T|$ and if $\lambda>|A|+|T|, \lambda \leqq S(A)$ is regular then there exists $B \subset A,|B|=|T|$ such that $\left||S(B)| \geqq \lambda\right.$. We can conclude that, for super stable T, if $K_{T}(\lambda)>\lambda^{+}>|T|$ then $K_{T}(|T|)>|T|^{+}$.

Proof. The way we prove 1 and 2 will be similar to that of Theorem 2.1. First,
we shall prove from the assumption of 1 that there exists $\left\langle R^{n}: n\langle\omega\rangle\right.$ such that $\Gamma\left\langle R^{n}: n\langle\omega\rangle\right.$ is consistent, and then that if $\Gamma\left\langle R^{n}: n\langle\omega\rangle\right.$ is consistent then for every λ there exists A, such that $|A|=\lambda,|S(A)| \geqq \lambda^{N_{0}}$. Then choosing such an A for $\lambda=\aleph\left(2^{|T|}, \omega\right)$, we close the circle.

Let A be as in the assumption of 1 .
Lemma 2.3. There exists R^{0}, a predicate of $L(T)$, such that the partition of $S(A)$ by the equivalence relation ($\bmod R^{0}$) contains at least $|T|^{+}$classes of cardinality $>|A|$.
Proof of the lemma. If not $-|S(A)| \leqq \Sigma_{R}\left|S_{R}(A)\right|+|T|^{|T|}=|A|$, a contradiction.
For every one of the $|T|^{+}$classes there exists R_{i} that divides it in a similar manner. But there are only $|T|$ predicates. So there exists R^{1} such that there are $|T|^{+}$classes $\left(\bmod R^{0}\right)$ such that in each of their partitions by R^{1} there are $|T|^{+}$ classes of cardinality $>|A|$. It is easy to see that we can continue to define R_{n} for $n<\omega$.

Now $\left\langle R^{n}: n\langle\omega\rangle\right.$ is defined. By the construction just mentioned there exists for every $n\left\{p\left(j ; i_{0}, \cdots, i_{m-1}\right): j<|T|^{+}, i_{l}<|T|^{+}, m<n\right\}$ such that the following three conditions are satisfied:
$p\left(j ; \boldsymbol{i}_{0}, \cdots, i_{m-1}\right) \in S_{R} m(A) ;$ if $j \neq j^{\prime}$ then $p\left(j: i_{0}, \cdots, i_{m-1}\right)$ and $p\left(j^{\prime} ; i_{0}, \cdots, i_{m-1}\right)$ are contradictory; and $p\left(i_{1}\right) \cup P\left(i_{2} ; i_{1}\right) \cup p\left(i_{3}, i_{1}, i_{2}\right) \cup \cdots \cup p\left(i_{m} ; i_{0}, \cdots, i_{m-1}\right)$ is consistent.

From this it can be easily seen that $\Gamma\left\langle R^{n}: n\langle\omega\rangle\right.$ is consistent. Now we shall prove that if $\Gamma\left\langle R^{n}: n\langle\omega\rangle\right.$ is consistent, then for every λ there exists an A such that $|A|=\lambda,|S(A)| \geqq \lambda^{\aleph_{0}}$. Let $\Gamma=T \cup\left\{R^{m}\left(x^{f}, \bar{y}^{s, h}\right) \equiv R^{m}\left(x^{f^{\prime}}, \bar{y}^{g, h}\right)\right.$ for, all $m<\omega, f=\left\langle i_{0}, \cdots, i_{m-1}, i_{m}, \cdots, i_{l}, \cdots: l<\omega\right\rangle, g=\left\langle i_{0}, \cdots, i_{m}\right\rangle, h=\left\{i_{m}^{\prime}, i_{m}\right\}$, and $f^{\prime}=\left\langle i_{0}, \cdots, i_{m-1}, i_{m}^{\prime}, \cdots, i_{l}^{\prime} \cdots: l<\omega\right\rangle$ such that $\left.(\forall j<\omega)\left(i_{j}<\lambda \Lambda i^{\prime} j<\lambda\right)\right\}$.

If Γ is inconsistent, then a finite subset of Γ is inconsistent and so $\left.\Gamma<R^{n}: n<\omega\right\rangle$ is inconsistent, a contradiction. Therefore Γ has a model. Let A be the set of elements realizing the variables appearing in $\tilde{y}^{g, h}$. Then elements realizing different variables from $\left\{x^{f}: f=\left\langle i_{0}, \cdots, i_{l}, \cdots: l<\omega\right\rangle, i_{l}<\lambda\right\}$ realizes different types on A. So $|A| \leqq \Sigma_{m<\omega} \lambda^{m}=\lambda,|S(A)| \geqq \lambda^{N_{0}}$.
Now it remains to prove part 3 . We can try again to build the construction that appears in the beginning of the proof replacing "more than $|A|$ " by "at least λ ", As that attempt must fail by our assumption, we get a set S of $\geqq \lambda$ types in $S(A)$. such that for every R there are no more than $|T|$ equivalence classes of power $\geqq \lambda$,
$\left\{S_{i}(R): i<j_{R} \leqq|T|\right\}$. Now $\left|S-\bigcup_{i} S_{i}(R)\right|<\lambda$ and $\left|S-\cap_{R} \bigcup_{i} S_{i}(R)\right|$ $\leqq \Sigma_{R}\left|S-\bigcup_{i} S_{i}(R)\right|<\lambda$ and this implies that $\left|\cap_{R} \bigcup_{i} S_{i}(R)\right| \geqq \lambda>|A|$. If $p_{1}, p_{2} \in \cap_{R} \bigcup_{i} S_{i}(R), p_{1} \neq p_{2}$ there is an R such that $p_{1}\left|R \neq p_{2}\right| R$; but $p_{1} \mid R$ is one of $|T|$ elements of $\left\{p \mid R: p \in \bigcup_{i} S_{i}(R)\right\}$ (by the definition of $S_{i}(R)$), and so there is $A(R) \subset A,|A(R)|=|T|$ such that for every $p_{1}, p_{2} \in \cap_{R} \bigcup_{i} S_{i}(R)$ if $p_{1 R}\left|\neq p_{2}\right| R$ then $p_{1}\left|A(R) \neq p_{2}\right| A(R)$. It follows that $\mid S\left(\bigcup_{R} A(R)|\geqq| \cap_{R} \bigcup_{i} S_{i}(R) \geqq \lambda\right.$, and $\left|\bigcup_{R} A(R)\right| \leqq|T|$.

Remark. By a more refined proof we can replace $\Gamma\left\langle R^{n}: n\langle\omega\rangle\right.$ by the more elegant set

$$
\begin{aligned}
\Gamma^{\prime}\left\langle R^{n}: n<\omega\right\rangle & =T \bigcup\left\{(\exists x) \bigwedge_{j=0}^{m}\left[R^{j}\left(x, \bar{y}^{g}\right) \bigwedge \bigwedge_{h=0}^{i j-1} \cdots R^{j}\left(x, \bar{y}^{f}\right)\right]: m<\omega,\right. \\
g & \left.=\left\langle i_{0}, \cdots, i_{j}\right\rangle, f=\left\langle i_{0}, \cdots, i_{j-1}, h\right\rangle, i_{0}, \cdots, i_{m}<\omega\right\}
\end{aligned}
$$

Definition 2.4. We shall define $S_{I}^{\alpha}(A)$ and $T R_{I}^{\alpha}(A)$ by induction on α, where I is a set of predicates in $L(T) . S_{I}^{0}(A)=S_{I}(A) . T R_{I}^{\alpha}(A)$ will be the set of types in $S_{I}^{\alpha}(A)$, which have, in every extension B of A, at most one extension which is an element of $S_{I}^{\alpha}(B) . S_{I}^{\alpha}(A)=S_{I}(A)-\bigcup_{i<\alpha} T R_{I}^{i}(A)$.

Remark. An analogous definition appears in Morley [1], 2.2 and footnote 13.
Theorem 2.4. If R is a predicate of $L(T), \Gamma_{R}$ is consistent iff $S_{R}^{a}(A) \neq 0$ for every α and A. If for some α and $A S_{R}^{\alpha}(A)=0$, then there exists $\beta<\omega_{1}$ such that for every $A, S_{R}^{\beta}(A)=0$.

Proof. As in Morley [1], 2.7, 2.8.
Remark. In fact, $\beta<\omega$.
Definition 2.5. 1) If Γ_{R} is not consistent, then to every type $p \in S(A)$, we define $\operatorname{Rank}(R, p)$ as the first α such that $p \mid R \in T R_{R}^{z}(A)$.
2) If T is stable then $\operatorname{Rank}(p)=\left\langle\operatorname{Rank}\left(R_{i}, p\right): i<\right| T| \rangle$.

Lemma 2.5. It is possible to define a lexicographic order on $\operatorname{Rank}(p)$, such that there is no monotonically decreasing sequence of type $|T|^{+}$.

Proof. Immediate.
Theorem 2.6. 1) If $B \subset A$, and $p \in S(A)$, then $\operatorname{Rank}(R, p) \leqq \operatorname{Rank}(R, p) \mid B)$ and $\operatorname{Rank}(p) \leqq \operatorname{Rank}(p \mid B)$, and there is no more than one extension q of p $\mid B, q \in S(A)$, such that $\operatorname{Rank}(q)=\operatorname{Rank}(p \mid B)$.
2) For all A, and $p \in S(A)$, and for every R, there exists a finite set $B \subset A$, such that $\operatorname{Rank}(R, p)=\operatorname{Rank}(R, p \mid B)$.

Proof. See Morley [2] 2.4, 2.6. Notice the difference in terminology. (Rank here is rank and degree there.)

3. On some properties of stable theories.

Theorem. 3,1. If M is a model of a stable theory $T,|T|<\lambda=|A|<\|M\|$, $K_{T}(\lambda)=\lambda^{+}$and A a substructure of M, then there exists a set Y in $M,|Y|=\lambda^{+}$, which is indiscernible on A (that is, for all $y_{1}, \cdots, y_{h} ; z_{1}, \cdots, z_{n} \in Y . a_{1}, \cdots, a_{m} \in A$, $M \vDash R\left(y_{1}, \cdots, y_{n}, a_{1}, \cdots, a_{m}\right) \equiv R\left(z_{1}, \cdots, z_{n}, a_{1}, \cdots, a_{m}\right)$ if for every $i \neq j, y_{i} \neq y_{j}$ and $z_{i} \neq z_{j}$).

Remark 1. A similar theorem, for totally transcendental theories appears in Morley [2] 4.6. Rowbottom has a weaker unpublished theorem.

Remark 2. In fact we can prove more: in every $B \subset M,|B|>\lambda$, and for every regular $\chi \leqq|B|, \chi>\lambda$, there is such a Y, provided $|B|<\chi \Rightarrow \mid\{p \in S(A): p$ is realized in $M\} \mid<\chi$.
Proof. In $S(A)$ there are λ types, and so at least one of them, p, is realized at least $|A|^{+}$times. Let the set of elements of M realizing p be B.

Lemma 3.2. There exists $A_{1},\left|A_{1}\right|=\lambda A \subset A_{1} \subset M$, and $p_{1} \in S\left(A_{1}\right) p_{1} \supset p$, such that, if $M \supset B_{1} \supset A_{1},\left|B_{1}\right|=\lambda, p_{1}$ has one and only one extension of the same rank in $S\left(B_{1}\right)$ and the extension is realized $\geqq \lambda^{+}$times in M.

Proof. of 3.2. Let us assume the lemma is not correct. We shall define by induction C_{i} which fulfills the following conditions:

1) $C_{i}=\{\langle A(k, j), p(k, j)\rangle: j ; k \leqq i\}$ where $p(i, j) \in S(A(i, j)), A(i, j) \supset A$, $A(i j) \mid=\lambda$.
2) If $p(i, j) \nsubseteq p\left(i^{\prime}, j^{\prime}\right)$ then $i<i^{\prime}$ and there exists $p\left(i+1, j^{\prime \prime}\right)$ such that $p(i, j) \varsubsetneqq p\left(i+1, j^{\prime \prime}\right) \subseteq p\left(i^{\prime}, j^{\prime}\right)$.
3) If $p(i, j) \nRightarrow p\left(i+1, j^{\prime}\right)$ then $\operatorname{Rank}(p(i, j))<\operatorname{Rank}\left(p\left(i+1, j^{\prime}\right)\right)$ or $|B(i, j)|$ $>\lambda \geqq\left|B\left(i+1, j^{\prime}\right)\right|$, where $B(i, j)$ is the set of elements of M realizing $p(i, j)$.
4) For every $i, j, i^{\prime}, j^{\prime}, p(i, j) \subset p\left(i^{\prime}, j^{\prime}\right)$ or $p(i, j) \supset p\left(i^{\prime}, j^{\prime}\right)$ or they are contradictory (that is, $T \cup p(i, j) \cup p\left(i^{\prime}, j^{\prime}\right)$ is inconsistent);
5) $C_{i} \subset C_{j}$ for $i<j$.

We shall not prove the conditions explicitly as they are obvious from the construction.

Let $C_{0}=\{\langle A, p\rangle\}=\{\langle A(0,0), p(0,0)\rangle\}$.
Let us define C_{i+1}. If $|B(i, j)|>\lambda$ then by our assumption there exists $A_{1} \subset M$, $A(i j) \subset A_{1},\left|A_{1}\right|=\lambda$ such that every extension of $p(i, j)$ to A_{1} has a smaller rank or is realized at most λ times. Then we add to $C_{i}\langle A(i+1, k), p(i+1, k)\rangle$ (where $A(i+1, k)=A_{1}$) for every extension of $p(i, j), p(i+1, k)$, which belongs to $S(A(i+1, k))$ and is realized in M. Their number is $\leqq \lambda$ as $\left|A_{1}\right|=\lambda$ implies $\left|S\left(A_{1}\right)\right| \leqq \lambda$. We do so to every $\langle A(i, j), p(i, j)\rangle \in C_{i}$, and we get C_{i+1}. (We have enough indices so that there will be no confusion.) It is easily seen that $\left|C_{i+1}\right|$ $\leqq\left|C_{i}\right|+\lambda\left|C_{i}\right|$, and for every $j,|A(i+1, j)| \leqq\left|A\left(i, j^{\prime}\right)\right|+\lambda \leqq \lambda$ for some j^{\prime}.
Now we define C_{b}. Let $\left\langle A^{1}, p^{1}\right\rangle\left\langle\left\langle A^{2}, p^{2}\right\rangle\right.$ if $A^{1} \subset A^{2}$ and $p^{1} \subset p^{2}$. I $\left\langle A^{i}, p^{i}\right\rangle i<j$ is an increasing sequence, then $\bigcup_{i<j}\left\langle A^{i}, p^{i}\right\rangle=\left\langle\bigcup_{i<j} A^{i}, \bigcup_{i<j} p^{i}\right\rangle$. The elements of C_{δ} will be the elements of $\bigcup_{i<\delta} C_{i}$, and unions of increasing sequences in $\bigcup_{i<\delta} C_{i},\left\langle A^{1}, p^{1}\right\rangle$, such that p^{1} is realized in M.
It will now be proved that $C_{|T|^{+}}=C_{|T|^{+}+1}=C_{|T|_{++2}}=\cdots$. It is sufficient to show that $\bigcup_{i}\left\{C_{i}: i<|T|^{+}\right\}=C_{|T|+}$. That comes from the construction, for if it is not correct, there is an increasing sequence $\left.\left.\left\langle\left\langle A^{i}, p^{i}\right\rangle: i<\right| T\right|^{+}\right\rangle$. Then $\operatorname{Rank}\left(p_{i}\right)$ is decreasing sequence, and by Lemma 2.4 that sequence cannot be strictly decreasing, so there exists an i such that $\operatorname{Rank}\left(p_{i}\right)=\operatorname{Rank}\left(p_{i+2}\right)=\cdots$. By condition 3 $\mid\left\{a \in M\right.$: a realizes $\left.p_{i+1}\right\} \mid \leqq \lambda\left(\operatorname{as} \operatorname{Rank}\left(p_{i}\right)=\operatorname{Rank}\left(p_{i+1}\right)\right.$ and $\left.p_{i} \subsetneq p_{i+1}\right)$ and similarly $\mid\left\{a \in M\right.$: a realizes $\left.p_{i+1}\right\} \mid>\lambda$ (as $\operatorname{Rank}\left(p_{i+1}\right)=\operatorname{Rank}\left(p_{i+2}\right)$ and $\left.p_{i+1} \nsubseteq p_{i+2}\right)$, a contradiction.
We shall now show that $\left|C_{i}\right| \leqq \lambda$ and $|A(i, j)| \leqq \lambda$ for $i \leqq|T|^{+}$. If not, let k be the first ordinal that contradicts our assertion. If $k=i+1$ then $\left|C_{k}\right| \leqq\left|C_{i}\right|$ $+\lambda\left|C_{i}\right| \leqq \lambda$ and for every j, for some $j^{\prime}|A(k, j)| \leqq\left|A\left(i, j^{\prime}\right)\right|+\lambda=\lambda$ (as remarked in the definition of C_{i+1}), so that k has to be a limit ordinal, and $k \leqq|T|^{+}$. Let $A^{i}=\bigcup\{A(l, j): j ; l \leqq i\}$. Now it can be seen easily that $\left|A^{i}\right| \leqq\left|C_{i}\right| \cdot \max _{j}|A(i, j)| \leqq \lambda$ for $i<k$, and from that, and the construction, it can be easily seen that $\left|A^{k}\right| \leqq \lambda$, and therefore $\left|S\left(A_{k}\right)\right|=\lambda$. Now the $\{B(k, j): j\}$ are disjoint sets, and every one of them is the union of sets realizing some complete types on A_{k}, and by the construction $B(k, j) \neq 0$, and so the number of $B(k, j)$ is no more than λ. Thus $\left|C_{k}-\bigcup_{i<k} C_{i}\right| \leqq \lambda$. We can conclude that $\left|C_{k}\right| \leqq\left|C_{k}-\bigcup_{i<k} C_{i}\right|+\sum_{i<k}\left|C_{i}\right|$ $\leqq \lambda+k \lambda=\lambda$, a contradiction; and so $\left|C_{|T|^{+}}\right| \leqq \lambda,\left|A^{|T|^{+}}\right| \leqq \lambda$.
For every b with $b \in B(0,0)$, the set of $\langle A(i, j), p(i, j)\rangle$ in $C_{|T|^{+}}$such that $b \in B(i, j)$ is an increasing sequence in $C_{|T|}$. The union of the sequence is also in $C_{|T|^{+}}$, and so there is a last such element in $C_{|T|^{+}},\left\langle A^{b}, p^{b}\right\rangle$. The set of elements of M realizing
p^{b} will be denoted by B^{b}. Now if there is an element of $C_{|T|+}$ greater than $\left\langle A^{b}, p^{b}\right\rangle$, then by the construction of C_{i} there is such an element $\left\langle A^{\prime}, p^{\prime}\right\rangle$ such that b realizes p^{\prime}, in contradiction to the definition of $\left\langle A^{b}, p^{b}\right\rangle$. Therefore $\left|B^{b}\right| \leqq \lambda .1$ Now $B=B(0,0) \subset \bigcup\left\{B_{b}: b \in B\right\}=\bigcup\left\{B(i, j):|B(i, j)| \leqq \lambda ; j ; i<|T|^{+}\right\} \lambda<|B|$ $\leqq\left|C_{|T|+}\right| \cdot \lambda=\lambda-$ contradiction.

So we have proved Lemma 3.2.
It follows that without loss of generality we can assume that for every C, such that $A \subset C \subset M$ and $|C|=\lambda, p$ has one and only one extension in $S(C)$ which is of the same rank, and that extension is realized at least λ^{+}times. Let the set of elements of M realizing p be B.

We define by induction the sequence $\left\{y_{i}: i<\lambda^{+}\right\} . y_{0}$ is an arbitrary element of B. If we define y_{i} for every $i<j<\lambda^{+}$, then $y_{j}=y(j)$ will be an element of M that realizes the only extension of p to a type q in $S\left(A \bigcup\left\{y_{i}: i<j\right\}\right)$ such that $\operatorname{Rank}(p)=\operatorname{Rank}(q)$. By the definitions of B and p, there is such a y_{j}.

Lemma 3.3. If $i_{1}<i_{2}<\cdots<i_{h}<\lambda^{+}, j_{1}<\cdots<j_{n}<\lambda^{+}$then for every predicate R in T and every $\bar{a}, \bar{a} \in A$,

$$
M \vDash R\left[y\left(i_{1}\right), \cdots, y\left(i_{n}\right), \bar{a}\right] \equiv R\left[y\left(j_{1}\right), \cdots, y\left(j_{n}\right), \bar{a}\right]
$$

Proof of Lemma 3.3. Without loss of generality $i_{k}=k$.
Now, in the construction of the y_{i}, in every stage in $S\left(A \bigcup\left\{y_{i}: i<j\right\}\right)$ there is only one extension p_{j} of p such that $\operatorname{Rank}\left(p_{1}\right)=\operatorname{Rank}(p)$, so the type which y_{j} realizes on $A \bigcup\left\{y_{i}: i<j\right\}$ is independent of the choice of y_{j}. If $\left\{z_{i}: i<j\right\}$ satisfies: for every i, z_{i} realizes a type q_{i} on $A \bigcup\left\{z_{k}: k<i\right\}$ such that $q_{i} \supset p$, $\operatorname{Rank}\left(q_{i}\right)$ $=\operatorname{Rank}(p)$, then it can be easily proved by induction that $\left\langle y_{i_{1}}, \cdots, y_{i n}\right\rangle$ satisfies the same type on A as $\left\langle z_{i_{1}}, \cdots, \cdots, z_{i_{n}}\right\rangle$. Now, if we choose $y_{j_{1}}$ as the first y, and $y_{j_{2}}$ as the second, etc., they will satisfy the same formulaes as y_{1}, \cdots, y_{n}. It remains to prove that after choosing $y_{j_{1}}, \cdots, y_{j_{k}}$ as the first $k y$'s we can choose $y_{j_{k+1}}$ as the next y. That is, perhaps $y_{j_{k+1}}$ realized a type p on $A \bigcup\left\{y_{j_{1}}, \cdots, y_{j_{k}}\right\}$, such that $\operatorname{Rank}(\bar{p})<\operatorname{Rank}(p)$. But if q is the type of $y_{j_{k+1}}$ on $A \bigcup\left\{y_{1}, \cdots, y_{l}\right\}\left(l=j_{k+1}-1\right)$ then $\operatorname{Rank}(p)=\operatorname{Rank}(q) \leqq \operatorname{Rank}(\bar{p})<\operatorname{Rank}(p)$, contradiction. So Lemma 3.3 is proved.

Lemma 3.4. Y is indiscernible on A.
Proof. The proof is the same as in Morley [2] 4.6, since in every cardinal χ there is an ordered set that has more than χ Dedekind cuts.

So Theorem 3.1 is proved.

Definition 3.1. Let K be a class of models, A a substructure of such models, $M \in K$ is called K-prime on A, if for every $M_{1} \supset A, M_{1} \in K$, there exists an isomorphism from M into M_{1} that is the identity on A.

TheOrem 3.5. If T is a stable theory, and $|A| \leqq \Sigma_{x<\lambda} 2^{x} \Rightarrow|S(A)|<2^{\lambda}$, or $\lambda \geqq|T|^{+}$, then among the λ-saturated models of T, there is a prime model on every substructure A of a model of T.

Remark. An analogous theorem appears in Morley [2] 4.3.
Definition 3.2. $p \in S(A)$ is called λ-isolated if there is a type $p_{1} \subset p,\left|p_{1}\right|<\lambda$, such that p is the only element in $S(A)$ that includes p_{1}.

Proof of 3.5. In order that the model we will build on A be λ-saturated, we should realize every type of cardinality $<\lambda$, and in order that it be a prime we should realize only types which are realized in every λ-saturated model including A. So it is sufficient to show that if p is type on a set $A,|p|<\lambda$, then there exists an extension p_{1} of $p, p_{1} \in S(A)$, and p_{1} is λ-isolated. For if it is right, we can add an element to A for every λ-isolated type. And if we continue adding such elements for every type $p,|p|<\lambda$ (by adding an element which realizes a λ-isolated complete type containing it) we shall get the wanted prime model.

Now let $\lambda \geqq|T|^{+}$and $|p|<\lambda$ where p is a type on A. Among the elements of $S(A)$ containing p, there is a q with minimal $\operatorname{Rank}\left(R_{0}, q\right)$, so there are a finite number of formulaes which define the type completely with regard to R_{0} (among the extension of p). We adjoin these formulaes to p, and continue with R_{1}, R_{2}, \cdots. Because of the compactness theorem, this operation does not lead to a contradiction at the limit. So after $|T|$ steps we get the required type - a type of power $\leqq|p|+|T|<\lambda$, which has only one extension in $S(A)$.

It remains to deal with the case $|A| \leqq \Sigma_{\chi<\lambda} 2^{x} \Rightarrow|S(A)|<2^{\lambda}$. Let p be a type on $A,|p|<\lambda$, which contradicts our conjecture. Let $p=p_{\langle \rangle}$. If p_{\diamond}, has more than one extension to a type in $S(A)$, then there is a formula $R(x, \bar{a})$, such that $p_{\langle 0\rangle}=p \bigcup\{R(x, \bar{a})\}$, and $p_{\langle 1\rangle}=p \bigcup\{-R(x, \bar{a})\}$ are consistent. We continue with $p_{\langle 1\rangle}$ and $p_{\langle 0\rangle}$ as with p_{\circlearrowleft} and can define p_{η} for every sequence η of ones and zeroes, $l(\eta) \leqq \lambda,\left|p_{\eta}\right| \leqq \lambda$, such that:

1) if η_{1} is not is not an initial segment of η_{2} or conversely, then $p_{\eta_{1}} \cup p_{\eta_{2}}$ is not consistent;
2) if η_{1} is an initial segment of η_{2}, then $p_{\eta_{1}} \subset p_{\eta_{2}}$; and
3) if $l(\eta)$ is a limit ordinal then $p_{\eta}=\bigcup_{i<l(\eta)} p_{\eta \mid i}$. Then $\left\{p_{\eta}: l(\eta) \leqq \lambda\right\}$ are 2^{λ} contradictory types on a set of cardinality $\leqq \lambda+\Sigma_{x<\lambda} 2^{x}=\Sigma_{<\lambda} 2^{x}<2^{\lambda}$, a contradiction.

4. On categorical elementary and pseudo elementary classes.

Theorem 4.1. Let M be a model of a not necessarily complete theory T, Q predicate in $L(T)$, p a type. Let $\left(2^{|T|}\right)^{+}=\gamma$.

1) If M omits the type p, and $\beth(|Q(M)|, \gamma) \leqq\|M\|$, then in every cardinal $\geqq|T|$, there is a model M_{1} of T which omits p and such that $\left|Q\left(M_{1}\right)\right| \leq|T|$.
2) If M omits the type p, and $\beth(|Q(M)|, \gamma) \leqq\|M\|,|Q(M)| \geqq \beth_{\gamma}$ then for all cardinals $\chi \geqq \lambda \geqq|T|$, there is a model M_{1} of T which omits p and such that $\left|Q\left(M_{1}\right)\right|=\lambda,\left\|M_{1}\right\|_{1}=\chi$.

Proof. The proof is by the methods of Morley [3] and is not given here. (Also see Vaught [9].)

Remarks. The theorem can be slightly improved as don by Morley [2], in analogous theorems.

Theorem 4.2. If $p \subset\left(T_{1}, T\right)$ is categorical in a cardinal $\lambda>\left|T_{1}\right|$, then for every $\chi,\left|T_{1}\right| \leqq \chi<\lambda, K_{T}(\chi)=\chi^{+}$, and so T is stable.

Proof. By Morley [1], 3.7 (the proof for the non-denumerable case in the same) there exists a model M of $T_{1},\|M\|=\lambda$, such that for every $A \subset M$, at most $|A|+\left|T_{1}\right|$ types on A are realized in M, and it follows from this that the same holds for the reduct of M to $L(T)$. If $K_{T}(\chi)=\chi^{+},\left|T_{1}\right| \leqq \chi<\lambda$, there is a reduct to $L(T)$ of a model of T_{1} of cardinality λ, for which there exists $A \subset M$ satisfying $|A|=\chi$, and $>\chi$ types of $S(A)$ are realized on A in the model. This contradicts the categoricity.

Theorem 4.3. If $p \subset\left(T_{1}, T\right)$ is not categorical in $\lambda_{1}=\beth(\gamma \cdot \alpha)>\left|T_{1}\right|$ (where $\gamma=\left(2^{|T|}\right)^{+}, \alpha>0$), then it has a non- $|T|^{+}$-saturated model in every car ${ }^{1}$ nality. This is also true if we replace the assumption by: " $\left.p \subset T_{1}, T\right)$ has $a n$ on saturated model in $\lambda_{1}{ }^{\prime}$ '.

Proof. As any two saturated models of the same cardinality >1 : are ssomorphic (see Morley and Vaught [1]), the second assumption follows trom the first.

Let M be a non-saturated model such that $\|M\|=\lambda_{1}$ and M is the reduct to $L(T)$ of M_{1}. Then there exists $A \subset M|A|<\|M\|$, and $p \in S(A)$, such that p is omitted in M. When we adjoin to M_{1} the relations $Q(M)=A$ and to every predicate R of $L(T) \psi_{R}\left(M_{2}\right)=\{\bar{a}: R(x, \bar{a}) \in p\}$, we get a model M_{2}. Now $\left|Q\left(M_{2}\right)\right|<\left\|M_{2}\right\|$ and M_{2} omits $p_{1}=\left\{(\forall \tilde{y})\left(\wedge_{i} Q\left(\bar{y}_{i}\right) \rightarrow R(x, \bar{y}) \equiv \psi_{R}(\bar{y})\right): R\right.$ a predicate in $\left.L(T)\right\}$.

By 4.1 in every cardinality there is a model M_{3} of the theory of M_{2} such that $\left|Q\left(M_{3}\right)\right| \leq\left|T_{1}\right|$, and M_{3} omits the type $\left\{R(x, \bar{a}): \tilde{a}_{i} \in Q\left(M_{3}\right), M_{3} \vDash \psi_{R}[a], R\right.$ a predicate of $L(T)\}$ which is a type on a set of cardinality $\leqq\left|T_{1}\right|$ (its consistency follows from the theory of M_{2}), and this proves the theorem.

Lemma 4.4. 1) If $\left|T_{1}\right| \leqq \lambda$, λ is regular, and $|A|<\lambda \Rightarrow\left|S^{T}(A)\right| \leqq \lambda$, then $\left.p \subset T_{1}, T\right)$ has a saturated model in λ.
2) If $\left|T_{1}\right| \leqq \lambda, \mu \leqq \lambda, \mu$ is regular and $|A| \leqq \lambda \Rightarrow\left|S^{T}(A)\right| \leqq \lambda$, then $p \subset\left(T_{2}, T\right)$ has a λ-saturated model in λ.

Proof. Since the proofs are essentially similar, we prove only 1). Let $T_{1}=\bigcup_{i<\left|T_{1}\right|} T_{1}^{i}$ where $T_{1}^{i} \subset T_{1}^{j}$ if $i<j$ and $T_{1}^{i}=T_{1}$ for $i \geqq\left|T_{1}\right|$ and $\left|T_{1}^{i}\right|<\lambda$. By the conditions in 1 we can easily define a sequence $\left\langle M^{i}: i \leqq \lambda\right\rangle$ such that: $|i| \leqq\left\|M^{i}\right\|<\lambda ; M^{i}$ as a model of T_{1}^{i}; if $i<j$ then the reduct of M^{j} to $L\left(T_{1}^{i}\right)$ is an elementary extension of M^{i}; the $L(T)$-types on M^{i} are $\left.<p_{j}^{i}: j<j_{0} \leqq \lambda\right\rangle$ and p_{j}^{i} is realized in $M^{j} ; M^{\delta}=\bigcup_{i<\delta} M^{i} . M_{\lambda}$ is the required model.

Corollary. 1) If T is not stable then $p \subset\left(T_{1}, T\right)$ has a saturated model in a regular cardinal $\lambda \geqq\left|T_{1}\right|$ iff $\chi<\lambda=2^{\chi} \leqq \lambda$.

Proof. Suppose there exists $\chi_{1}<\lambda<2^{\chi_{1}}$. Let $\chi=\inf \left\{\chi: 2^{x}>\lambda\right\}$. As T is not stable, by Theorem 2.1, there exists $A,|A| \leqq \sum_{\mu<\chi} 2^{\mu} \leqq \lambda$ such that there exists $2^{\chi}>\lambda$ contradicting types of power $\chi<\lambda$ on A. If T has a saturated model M of power λ, then there is $A^{\prime} \subset M$, with A^{\prime} isomorphic to A. Thus in M more than $\|M\|$ contradicting types have to be realized, a contradiction. The opposite direction in trivial by 4.4.1, since always, $S(A) \leqq 2^{|A||+|T|}$.

Theorem 4.5. 1) If $\left|T_{1}\right|=\aleph_{\alpha}$ and T is not stable then the number of isomorphism types of $p \subset\left(T_{1}, T\right)$ in \aleph_{β} is at least $|\beta-\alpha|$.
2) If $\left|T_{1}\right|=\aleph_{\alpha}$ and T is not super stable, then the number of isomrophism types of $p \subset T_{1},(T)$ in \aleph_{β} is at least $|(\beta-\alpha) / \omega|$.
3) If $p \subset\left(T_{1}, T\right)$ is categorical in a cardinal $>\left|T_{1}\right|$, different from $\inf \left\{\chi: \chi \geqq T, \chi^{\pi_{0}}>\chi+|T|\right\}$, then a) T is superstable, b) $K_{T}(\lambda)=\lambda^{+}$for $\lambda \geqq|T|$. c) $p \subset\left(T_{1}, T\right)$ is categorical in a cardinal $>\left|T_{1}\right|$ iff all models in it are satu rated, and d) $p \subset\left(T_{1}, T\right)$ is caterogical in $\beth(\gamma \cdot \alpha)$ for $\gamma=\left(2^{|\boldsymbol{T}|}\right)^{+}$, $\alpha>0, \quad \beth(y, \alpha)>\left|T_{1}\right|$.

Proof. 1, 2) If $K_{T}(\lambda)>\lambda^{+}$, then for every $\chi \geqq \lambda^{+}$there is a model M in $p \subset\left(T_{1}, T\right)$ such that there exists a set A with more than $|A|$ types realized on it in $M,|A|=\lambda$, and there is no such set of greater cardinality. (The existence is proved as in 4.2.)
3) By 4.2, for every χ with $\left|T_{1}\right| \leqq \chi<\lambda, K_{T}(\chi)=\chi^{+}$. So, if λ is regular, then there is a model in $p \subset\left(T_{1}, T\right)$ of cardinality λ which is saturated by Lemma 4.1.2. If λ is singular, then $\lambda>\chi=\inf \left\{\chi: \chi \geqq|T|, \chi^{\aleph_{0}}>\chi\right\}$, and so $K_{T}(\chi)=\chi^{+}$, and as $\chi^{\aleph_{0}}>\chi$, this implies that T is super stable. As $K_{T}\left(\left|T_{1}\right|\right)=\left|T_{1}\right|^{+}$, by 2.2 $K_{T}(\lambda)=\lambda^{+}$, and so by Lemma 4.4.1 $p \subset\left(T_{1}, T\right)$ has a $\left|T_{1}\right|^{+}$-saturated model in λ. Therefore by 4.3, $p \subset\left(T_{1}, T\right)$ is categorical in $\beth(\gamma \cdot \alpha)\left(\gamma=\left(2^{|T|}\right)^{+}, \alpha>0\right)$, and so $K_{T}(\mu)=\mu^{+}$for every $\mu \geqq\left|T_{1}\right|$. That implies by Lemma 4.4, that in every power $\mu>\left|T_{1}\right|$ and regular $\chi \leqq \mu$, there exists a model of power μ in $p \subset\left(T_{1}, T\right)$, which is χ-saturated. So if $p \subset\left(T_{1} T\right)$ is categorical in μ, its only model in μ is saturated. It is clear that if $p \subset\left(T_{1}, T\right)$ has only saturated models in $\mu>|T|$, then it is categorical in μ.

Remark. In 4.3 and 4.5 .3 we apply a two-cardinal theorem to a categoricity theorem. In fact, a more general connection exists among the following conditions on $\chi, \lambda, \mu(\chi \leqq \lambda, \mu)$:

1) If $|T|<\chi$ and T has a model which omits a type p and such that $\|M\|=\lambda$, $|Q(M)|<\lambda$, then T has a model M^{\prime} which omits p such that $\mu=\left\|M^{\prime}\right\|>\left|Q\left(M^{\prime}\right)\right|$.
2) If $\left|T_{1}\right|<\chi$ and $p \subset\left(T_{1} T\right)$ is categorical in μ, then it is categorical in λ.
3) If $\left|T_{1}\right|<\chi$ and every model of power μ in $p \subset\left(T_{1}, T\right)$ is homogeneous, then the same holds for λ.

1 implies 3. (Keisler proves this in [1].) 1 implies 2 if $\mu \neq \inf \left\{\lambda_{1}: \lambda_{1}^{+} \geqq \chi\right.$, $\left.\lambda_{1}^{\aleph_{0}} \geqq \lambda_{1}\right\}$ or if $\chi_{1}<\chi \Rightarrow N\left(\chi_{1}, \omega\right)<\chi$. 3 implies 1 if χ is not greater than the first measurable cardinal, and there is no weakly compact χ_{1} such that $\chi_{1}<\chi \leqq\left(2^{x_{1}}\right)^{+}$. 2 implies 1 if in addition $\mu \neq \inf \left\{\lambda_{1}: \lambda_{1}^{+} \geqq \chi, \lambda_{1}^{\aleph_{0}} \geqq \lambda\right\}$ or $\chi_{1}<\chi \Rightarrow \mathcal{N}\left(\chi_{1}, \omega\right)<\chi$.

Theorem 4.6. If T is categorical in a power $\lambda, \lambda>|T|, \lambda \neq \inf \left\{\chi: \chi^{\aleph_{0}}>\chi+|T|\right\}$, then there exists a cardinal λ_{0}, such that T is categorical in every cardinal
$\geqq \lambda_{0}$, and is not categorical in any power $\chi,|T|<\chi<\lambda_{0}$. Furthermore λ_{0} is such that $\lambda_{0}<\mu(|T|)<\beth\left(\left(2^{|T|}\right)^{+}\right)$.

Proof. If for every $\chi<\mu(|T|) T$ has a model M which is not $|T|^{+}$-saturated, $\|M\| \geqq \chi$, then it has such a model in every cardinal $>|T|$ a contradiction by 4.4. (For if $A \subset M,|A| \leqq|T|, p \in S(A)$, and p is omitted, we adjoin to M the constants $\left\{c_{i}: i<|T|\right\}$ a names for the element of A, and relations as in 4.3, and the result follows by the definition of $\mu(|T|)$.) Now if M is a $|T|^{+}$-saturated but not saturated model of T, then there exists $A \subset M,|A|<\|M\|,|A|>|T|, p \in S(A)$, such that p is omitted. As $K_{T}(|A|)=|A|^{+}$and $\|M\|>|A|>|T| \Rightarrow\|M\|>|T|^{+}$, there exists an indiscernible set Y over $A,|Y|=|A|^{+}$, by Theorem 3.1. If $Y=\left\{y_{i}: i<|A|^{+}\right\}$, let $\left.B=A \cup\left\{y_{i}: i<\chi\right\}\right\}$, where $\left\{y_{i}: i<\chi\right\}$ is indiscernible over A, and M_{1} be a prime model over B among the $|T|^{+}$-saturated models, which exists by 3.2. Now it will be proved that p is not realized in M_{1}. In the construction of M_{1}, we adjoined to B the elements of $\left\{c_{i}: i<|B|\right\}$ one after another, such that c_{j} realizes a $|T|^{+}$-isolated type on $B \cup_{0}\left\{c_{i}: i<l j\right\}$, defined by p_{j}, $\left|p_{j}\right|<|T|^{+}$. If c_{k} realizes p, let $B_{1}=\left\{c_{k}\right\}$, and $B_{i+1}=B_{i} \cup\{b: b$ is mentioned in p_{l}, and $\left.c_{l} \in B_{i}\right\}$. Now $\left|\bigcup_{i} B_{i}\right| \leqq|T|$, and it can be easily seen that in a prime model over $A \cup\left(\left\{y_{i}: i<\chi\right\} \cap \bigcup_{i<\omega} B_{i}\right), p$ is realized, and so it is realized in M a contradiction, so p is not realized in M_{1}. As we can take $\chi=\beth_{\gamma},\left(2^{\prime|T|}\right)^{+}|\gamma, \chi>|A|$, it follows that T has a non-saturated model in χ, in contradiction to 4.3, 4.4.3. So every $|T|^{+}$-saturated model is saturated. If T is not categorical in λ_{1}, then it has a non- $|T|^{+}$-saturated model of cardinality λ_{1}, and so T is not categorical in any cardinal $\lambda_{2} .|T|<\lambda_{2} \leqq \lambda_{1}$. As we have shown that there exits a cardinal $\lambda<\mu(|T|)$ in which every model of T is $|T|^{+}$-saturated, the theorem follows.

References

1. H. J. Keisler, Some model theoretic results for w-logic, Israel J. of Math. 4 (1966), 249-261.
2. M. Morley, Categoricity in power, Trans. Amer. Math. Soc. 114 (1965), 514-538.
3. M. Morley, Omitting classes of elements, The theory of models, Proceedings of the 1964 International Symp., North-Holland Publishing Company (1965), 265-274.
4. M. Morley and R. L. Vaught, Homogeneous universal models, Mathematica Scandinavia 11 (1962), 37-57.
5. J. P. Ressayre, Sur les théories du premier ordre catégorique en un cardinal, mimeograph, Paris.
6. F. Rowbottom, The Lo's conjecture for uncountable theories, Notices of the Amer. Math. Soc. 11 (1964), 248.
7. S. Shelah, Classes with homogeneous models only, Notices of the Amer. Math. Soc. 15 (1968), 803.
8. S. Shelah, Categoricity in power, Notices of the Amer. Math. Soc. 15 (1968), 903.
9. R. L. Vaught, The Löwenheim-Skolem theorem, Logic Methodology and Philosophy of Science, Proceedings of the 1964 International Congress, North-Holland Publishing Company, Amsterdam (1965), 81-89.

The Hebrew University of Jerusalem

[^0]: * This paper is a part of the author's doctoral dissertation written at the Hebrew University of Jerusalem, under the kind guidance of Profeossr M. Rabin.

 Received April 25, 1969

