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ABSTRACT 

We study Kr(~,) = sup {I S(A)] : ]A[ < ~,) and extend some results for 
totally transcendental theroies to the case of stable theories. We then inves- 
tigate categoricity of elementary and pseudo-elementary classes. 

0. Introduction In this article we shall generalize Morley's theorems in [2] to 

more general languages. 

In Section 1 we define our notations. 

In Theorems 2.1, 2.2. we in essence prove the following theorem: every first- 

order theory T of arbitrary infinite cardinality satisfies one of the possibilities: 

1) for all Z, I A] -- z ~ I S(A)[ -<__ z + 2 ITI, (where S(A) is the set of  complete 

consistent types over a subset A of a model of  T). 

2) for all •, I AI--x I S(A I =< x ~T~, and there exists A such that I AI--z, 
IS(A) I _>- z "o. 

3) for all Z there exists A, such that [A[ = Z, IS(A)] > IAI. 
Theories which satisfy 1 or 2 are called stable and are similar in some respects 

to totally transcendental theories. In the rest of Section 2 we define a generalization 

of Morley's rank of transcendence, and prove some theorems about it. Theorems 

whose proofs are similar to the proofs of the analogous theorems in 

Morley [2], are not proven here, and instead the number of the analogous theorem 

in Morley [2] is mentioned. 

In Section 3, theorems about the existence of sets of indiscernibles and prime 

models on sets are proved. 

* This paper is a part of the author's doctoral dissertation written at the Hebrew University 
of Jerusalem, under the kind guidance of Profeossr M. Rabin. 
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188 S. SHELAH Israel J. Math., 

In Section 4, a two-cardinal Skolem-L~Swenhiem theorem is given without proof, 

and is followed by some theorems about categorical elementary and pseudo- 

elementary classes. 

Among them appear: 

THEOREM. I f  Z is categorical in 2, ). > I TI ÷ 2 ~ in f (p :#  ~° > # + I z l }  

then T is categorical in every cardinal > 2, and in some cardinal < 
< '~ ((2trl)+). 

THEOREM. I f  the class of reducts of models o f T  to the language L is categorical 

in 4, >ITI, :at> I TI and the ordinal y is divided by (2/rt) +, then the class 

of reducts of models of T to the language L is categorical in "l v. 

Some of the results of this article appear in my notices [8], [7]. 

After proving the theorems in this article, an unpublished article of J. P. 

Ressayre [5] came to my attention. It deals with categorical theories and includes 

results previously obtained by F. Rowbottom. Among the results in Ressayre's 

article are a weaker version of Theorems 2.1 and 2.2, a partial version of 3.5, and 

a somewhat weaker version of 4.6. 

1. Notations. M will denote a model, [M I is the set of its elements, [A I is 

the cardinality of A, and II M II is the cardinality of the model M. We shall write 

a a M instead a a [ M  I. ~,/~, r, i, j ,  k, l, will denote ordinale, 6 a limit ordinal and 

n, m natural numbers. 

2, Z,/~ will denote infinite cardinals. 2 + is the first cardinal greater than 2. 

~1 (~, ~) is defined by induction: '~ (X, 0) = ~(, "~ (;~, ~ + 1) = 2 :(x'~), and "~ (4, 6) 

=[,.J~<~l(z,~); ~1(~)= ~1~ = ~l(No,~). i f  2(= N~ then N(Z, f l )=  %+~, where 

N~ = c% is the ~'th infinite cardinal. 

T will denote a fixed first-order theory with equality. If  ~b(x) is a formula in the 

language of T with one variable., ~(M) is the set of elements satisfying ~b. M ~ ff[a] 

if ~ [a ]  is satisfied in M. Without loss of generality we assume that for every 
formula ~b(x 1, ..., xh) there is a predicate R(x 1, ..., x~) such that (Vx)(~b(x 1, ..., x,) 

-R(x l , . . . , x~))  E T and that there are no function symbols in the language. 

Morley [2] explains why there is no loss of generality here. The language of T 

will be denoted by L(T). The predicates in L(T) will be (R~: i < [ T[ }. T is complete 

unless stated otherwise. Usually x, y, z will be individual variables, £, 37,~-- finite 

sequences of  variables, a, b, c will denote elements of models, and tf, b, ~ will de- 
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note finite sequences of elements of models. It is implicitly assumed that different 

sequences of variables contain no common variables. ( ) will be the empty sequence. 

d i o r  d(i) will be the i 'th element of  the sequence d. Instead of  writing (gn < co) (dumA) 
we shall write d, ~ A or d ~ A. A, B, C will denote substructures of  T-models, and 

when we speak about a set A, or define A, we speak about its relations as well. 

That is we do not distinguish between the substructure A and the set A. By 

A c M we mean that A c [ M I, and the relations on A are the relations on M 

restricted to A. T(A) is the theory T together with all the true sentences R[d], 
d E A, and T(A) is a complete theory. When writing R[-d] we assure implicitly that 

the length of the sequence d is equal to the number of places in the predicate R. 

We define p to be a type on A iff p is a set whose elements are of the form 

~(2, d), where d ~ A, and ~ is an arbitrary formula in L. q, r will also denote types. 

I f  for every ~, d ~ A -7  ~(:?, d) ~ p or ~(d, d) ~ p, p is called a complete type on A. 

I f  A is not mentioned, then it is assumed A is the empty set. When we speak about 

a type we implicitly assume that T(A)U p is a consistent set. We define p]A 
--{~(:?,d) ~p:  d~A}. I f  not otherwise assumed 2 = x in p. 

St(A) is the set of complete types on A. As T is fixed we write S(A). I f  I is a set 

of  predicates then P l I - - { ~ p : ~ = R ( x , d )  or ~ = - T R ( x , , d )  and R~I} ,  

SI(A) = {p [ I: p ~ S(A)}, p[ R = p I {R}, and SR(A) = S{R}(A). By our notations 

we can distinguish easily between p}l  and p}A. On S(A) (St(A)) a compact 

topology is defined by the sub-base which has the following sets as elements: 

for every ~ -- ~(x, d), V~ = {p:q/(x,d) Ep}. M realizes a type p on [M[, if there 

is an element b of M such that for every ~(x, d) ~ p M ~ ~[b, d] (that is : ~(b, d) 

is satisfied in M). M omits p if it does not realize p. M is called 2-saturated if  

every type on A with A c M, [p[ < 2, is realized in M. If M is [] M [[-saturated 

it is called saturated. 

#(X) is the smallest cardinal such that if T with [ T[ = X, has a model omitting 

a type p in every cardinal smaller than P(Z) and not smaller than IT  [, then it has 

such a model in every cardinal __> I T  I" In Vaught [9] the following results are 

mentioned: 

pCO < ~ where y = (2x)+ ; p(No) = ~ , ;  p( ' l  ~) = ' ~ ( ' ~ , 0  when 

c f6  = co. 

T is categorical in 2 if all models of T of cardinality 2 are isomorphic, pc (Tl, T) 
is the class of  reducts of models of T 1 to L(T). (We assume implicitly that 
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T = 7"1 n L(T).) pc(T:, T) is categorical in 2 if all models in pc(Tx, T) of car- 

dinality 2 are isomorphic. 

2. On possible eardinalities of S(A) 

DEFINITION 2.1: KT(,~)=sup{lS(A)l:lAl<=,q= inf{#:[A[__</~ IS(A)I  < ~}. 

NOTATIONS: /1, "C will denote ordinal sequences of zeroes and ones. For 0 < i < fit/) 

t h is the i ' th element of the sequence, where l(t/) is the length of the sequence. 

$~(0 will denote $ if t/(i) = 0, and -7  ~, if r/(i) = 1. r/I a is the sequence of the first 

a elements of t/. 

THEOREM 2.1. 1) I f  there exists A, Ialm--lAl, IS(A)I>IAI. Then for 

every 2, Kr(~) > inf{(2z) + : 2 z > 4}. 

2) There exists A as mentioned in 1, iff tthere exists a predicate R such that: 

F e = {(3x)(Ao ~_~<l(oR(x, )~"1~)~(0): l(~/) < o~} U T is consistent. 

REMARKS. The same argument will show that if there exists an A such that 

IAI l~l < IS(A)1, then Fa is consistent. 

Proof. Let us assume that A satisfies IAlITt = IA I, IS(A) I > IAI. Then we 

shall show that there exists a consistent Fa as mtntioned in 2, and that the con- 

sistency of Fe implies the conclusion of 1. This will prove the theorem. 

Now for every R, we define Pl "" Pz (mod R) iff Pl ] R = Pz I R. This is an equi- 

valence relation on S(A), which divides it into I S~(A) I equivalence classes. Since, 

for every Pl,Pz s S(A), Px # Pz, there is an R such that P1 '~ P2 (modR), 

IS(A)I~II-I.sR(A)I=II~IS~(A)[. If  for every R, IS.(A) I _<IAI. then 

IS(A)I~IAla~=IAI, a contradiction. Hence, there esxits an R such that 

I S~(A) I > I AI >-- ~o We shall prove that Fe is consistent. 

For every d such that d ~ A, R(x, tO divides SR(A) into two sets: the types p such 

that R(x, a) ~ p, and the types p such that ---, R(x, tO ~ p. If  in every such division 

one of the sets is of cardinality < [ A 1, for example the set {p ~ S~(A): R(x, a "(~) ~ p} 

then, 

IS (A) l : ll, J(p~S~(A):R(x,a):(%p} u {p~Sg(A): for all d 

R(x, a) :(a) q~ p} [ <= ~= [ {p ~ Sg(A) : R(x, ~i) :(a) ~ p} [ + I = [ A I ,  a contradiction. 
d 

So there exists ~i = ~i <> such that R(x, ti <> ) divides Se(A ) into two sets of car- 
dinality > ]A 1. For every one of them we can repeat the above discussion and 
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find. d <°>, a °>  such that there exists > l a l  types p with either R(x ,d  <> ), 

R(x,d<°>)ep; R(x,d<>), --, R(x, d <°>) ~p;  --7R(x,d<>), R(x ,d  <1>) ~'p ; or 

----,R(x, d<>),---,R(x, d <t>) ~p. We can continue defining d ~, and proving by it the 
consistency of F R. And so we have shown one direction. 

Let Z = inf {#: 2 ~ > 4}. We define 

F = {R(z~y~I~)~(~): l(rl) = Z,Y < Z} u T. 

It is easy to see that i fF  is not consistent then FR is not consistent. Let M be a model 

of F, and At the set of elements which realize the variables {(finlr)n : fir/) = Z, 

y < •, r /<  107~lr)}. The cardinality of A1 is < ~r<z2 Irl < 2, and in M 2 z different 

complete types on A1 are realized. (The types realized by elements which realizes 

the variables X,, l(r/)=X). So la~l__<4. I s(a~) 1__>2~ > 4, and so KT(4) >(2x) + > 2 +. 

I f  in T there is no predicate R such that FR is consistent, DEFINITION 2.2. 

T is called stable. 

DEFINITION 2.3. 

stable. 

If  for every 4, Kr(4) < 4 + + (21TI) + then T is called super 

THEOREM 2.2. 1) I f  T is stable and there exists A, ]A l>= 2 Irl such that 

S(A)I > I A [, then for every 2, KT(4) > 4 z°. So there exists arbitrarily large 

powers for which Kr(4) > 4 + + (2ITI) +. 

2) There exists A as mentioned in 1 iff  there exists a sequence 

of 09 predicates (R  n : n < o9) such that 

F (  g n : n 03 < ) = { R m ( x  f ,  fie,h) = --7 R m ( x  f ' ,  fig,h) : for all 

f = (  io, " " , i r a _ l ,  ira, " " , i  t "'" : I <09) , f '  ----(i0, "",im-l, im, "",it, "'":l < CO), 

i m ~ ira, g = ( i o , ' " , i m _ l )  , h = {ira, ira} and 

is consistent. 

i l, i~ < 09 for  all l < 09} 

3) I f  T is super stable and there exists A with I s(A)[ > ]A l, ] TI 
and if 4 > IAI +ITI ,  4 __< S(A) is regular then there exists B c A, IBI = I TI 
such that Itsw) I _>- 4 We can conclude that, for super stable T, if Kr(4) > ;t ÷ > ] T[ 

then K T([T 1) > I TI +. 
Proof. The way we prove 1 and 2 will be similar to that of Theorem 2.1. First, 
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we shall prove from the assumption of 1 that there exists (Rn: n<o~) such that 

F (R n: n < o~) is consistent, and then that if F (R n: n < ~o) is consistent then for 

every it there exists A, such that [A[ = it, ] S(A) [ > it~o. Then choosing such an A 

for 2 = N(2 Irl, o9), we close the circle. 

Let A be as in the assumption of 1. 

LEMMA 2.3. There exists R °, a predicate of L(T), such that the partition of 

S(A) by the equivalence relation (modR °) contains at least IT[ + classes of 

cardinality > ] A ]. 

Proof of the lemma. I f n o t - [ S ( A ) [  < ZRISR(A) I + ]Tim -- [ A l ,  a c o n t r a -  

diction. 

For every one of the [T[ + classes there exists Ri that divides it in a similar 

manner. But there are only [T[ predicates. So there exists R 1 such that there are 

iT[ + classes (modR °) such that in each of their partitions by R 1 there are [T[ + 

classes of cardinality > ]A[. It is easy to see that we can continue to define Rn 

for n < ~o. 

Now (R~: n < <~) is defined. By the construction just mentioned there exists for 

every n {p(j; io,--', ira- 1):J < [ T[ +, i, < [ T[ +, m < n} such that the following 

three conditions are satisfied: 

p(j; io,..., ira- 1) E SRrn(A); if j # j '  then p(j: io,"', ira- 1) and p(j'; io,'", i,,_ 1) 

are contradictory; and p(il) u P(i2; il) U p(ia, il, i2) U ... u p(im; io, "", ira-l) is 

consistent. 

From this it can be easily seen that F(R" :  n <  co) is consistent. Now we shall 

prove that if F ( R ~: n (co) is consistent, then for every it there exists an A such 

that [ A [ = it, [ S(A) [ > it ~°. Let F = T U {Rm(x f, 37~,h) = Rm(x f', 37g,h): for, all 

re<to,  f = (  io, '",im_l, im,'",it,"" :l< o~) ,g= (io, '" , im) , h = {i'm, im} , and 

f '  = ( io,'", ira- 1, i~, "", i~"" : l < 09) such that (Vj < 09) (iy < 2Ai~j < it)}. 

I f  F is inconsistent, then a finite subset of F is inconsistent and so F < R~:n < ~o) 

is inconsistent, a contradiction. Therefore F has a model. Let A be the set of 

elements realizing the variables appearing in 37 g,h. Then elements realizing different 

variables from {x ; : f  = < i0, ..., it,... : 1 < c~), il < it} realizes different types on A. 

So IAI =< 12. , it" -- it, l S(A)l >__ it 
Now it remains to prove part 3. We can try again to build the construction that 

appears in the beginning of the proof replacing "more than ] A 1" by "a t  least i t " ,  

As that attempt must fail by our assumption, we get a set S of > it types in S(A). 

such that for every R there are no more than ] T [ equivalence classes of power > it, 
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{S,(R) : i < JR ----< I T[  }. Now ] S - U i  Si(R) l < 2 and [ S - N g U i  S i ( R  ) ] 

< ~,R[S--UiSi(R)[ < 2  and this implies that ] c~ R U i S i (  R)[ > 2 > [ A I .  

If  Pl, p2 ~ ~RUiSi(R) ,  Pl ~ P2 there is an R such that Pl I g ~ p2 [R; but p, [R is 

one of[ T[ elements of {p ig :  p ~U~Si(R)} (by the definition of si(g)), and so there 

is A ( R ) ~  A, [ A ( R ) I  = IT I such that for every Pl, P2 ~ ~ R U i s i ( R ) i f  PlR [ ~P2 [R 

then Pl I A(R) v ~ P2 I A(R) • It follows that lS(URA(R)[>=[NR(.JiSi(R ) > 2, and 

IU A(R)I S lTI  • 

REMARK. By a more refined proof we can replace F (  R":n < co> by the more 

elegant set 

m i j -  1 
F ' ( R " : n < c o }  = T u {(gx) /~ [RJ(x, f r ) A  /~ ... RJ(x,~S)]:m < co, 

j = 0  h = 0  

g = (io, . . . , i j ) ,  f =  (io, . . . , i j_ l ,h  ~, io, '",im < co} 

DEFINITION 2.4. We shall define S~(A) and TRy(A) by induction on ~, where I is 

a set of predicates in L(T). S°(A) = SI(A). TRy(A) will be the set of types in S~(A), 

which have, in every extension B of A, at most one extension which is an element 
i of S~(B). S~(A) = SI(A) - U ,<,  TRI(A). 

REMARK. An analogous definition appears in Morley [1], 2.2 and footnote 13. 

THEOREM 2.4. I f  R is a predicate of L(T),  F R is consistent if f  S~(A) ~ 0 for  

every a and A. I f  for  some a and A S~(A)= O, then there exists fl < col such 

that for  every A, S~(A) = O. 

Proof. As in Morley [1], 2.7, 2.8. 

REMARK. In fact, fl < co. 

DEFINITION 2.5. 1) If  FR is not consistent, then to every type p ~ S(A), wc define 

Rank (R, p) as the first a such that p I R ~ TR  ~R(A). 

2) If  T is stable then Rank (p) = ( Rank (R i, p) : i < [ T [ }. 

LEMMA 2.5. It  is possible to define a lexicographic order on Rank(p),  

such that there is no monotonically decreasing sequence of  type I T t+. 

Proof. Immediate. 

THEOREM 2.6. 1) I f  B ~ A, and p E S(A), then Rank (R, p) _-< Rank (R, P)I B) and 

Rank(p)=<Rank (p]B), and there is no more than one extension q of p 

[ B, q ~ S(A), such that Rank(q) = Rank(PlB).  
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2) For all A, and p~  S(A), and for  every R, there exists a 

finite set B c A ,  such that Rank(R,p)  = Rank(R,p[  B). 

Proof. See Morley [-2] 2.4, 2.6. Notice the difference in terminology. (Rank 

here is rank and degree there.) 

3. On some properties of stable theories. 

THEOREM. 3,1. I f  M is a model of a stable theory T, ] T[ < 2 = [A[ < l[ M [[, 

KT(2) = 2 + and A a substructure of M, then there exists a set Y in M, I Y [ = 2 +, 

which is indiscernible on A (that is, for all Ys, "",Yh; zs, . . . ,z ,  ~ Y. as, . . . ,a s cA ,  

M ~ R ( y l , ' " ,  y,, a s , ' " ,  am) =- R( z s , ' " ,  z,, a s , " ' ,  am) if for  every i ¢ j, yi ~ yy and 

zi ¢: z j). 

R~MARK 1. A similar theorem, for totally transcendental theories appears in 

Morley [.2] 4.6. Rowbot tom has a weaker unpublished theorem. 

R~MARK 2. In fact we can prove more: in every B ~ M, [ B I > 2, and for every 

regular Z --< [B l, Z > 2, there is such a Y, provided [ B I < z * [ {p e s ( a ) :  p is 

realized in M}I < z.  

Proof. In S(A) there are 2 types, and so at least one of them, p, is realized at 

least [ A ] + times. Let the set of elements of M realizing p be B. 

LEMMA 3.2. There exists Al,  [A sI = 2 A c A l ~ M, and ps • S ( A t )  ps ~ p, 

such that, if  M ~ B s D As, [ Bs [ = 2, Ps has one and only one extension of the 

same rank in S(B1) and the extension is realized > 2 + times in M. 

Proof. of 3.2. Let us assume the lemma is not correct. We shall define by 

induction C~ which fulfills the following conditions: 

1) C, = { (A(k , j ) ,p (k , j ) ) :  j;  k <_ i} where p(i,j) •S(A( i , j ) ) ,  A(i , j)  ~ A, 

A(ij) l = 2. 

2) If  p ( i , j ) ~  p(i ' , j ' )  then i <  i' and there exists p(i + 1,j") such that 

p(i,j) ~ p(i + 1,j") _~ p(i' ,j ') .  

1 " '  3) If  p(i,j) ~ p(i + 1,j ') then Rank(p(i , j ))  < Rank(p(/ + ,j )) or [B(i,j)[ 

> 2 >= [B(i + 1,j ')  [, where B(i,j) is the set of elements of M realizing p(i,j). 

• ' " "i' /" 4) For every i,j, t , j ,  p(i,j) ~ p( ,j ) or p(i,j) = p(i ' , j ' )  or they are contra- 

dictory (that is, T u p(i,j) u p(i ' , j ' )  is inconsistent); 

5) C i ~ C j f o r i < j .  

We shall not prove the conditions explicitly as they are obvious from the 

construction. 
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Let Co = { CA, p)} = {(A(0, 0), p(0, 0))}. 

Let us define Ci+l. If[B(i,J) l > ~ then by our assumption there exists A 1 c M, 

A(ij) c At, [ A1 [ = 2 such that every extension of p(i,j) to A1 has a smaller rank or 

is realized at most 2 times. Then we add to C, (A(i + 1, lc), p(i + 1, k)) (where 

A(i + 1, k) = At) for every extension of  p(i,j), p(i + 1, k), which belongs to 

S(A(i + 1,k)) and is realized in M. Their number is < 2 as [All= 2 implies 

Is(A,)l <= 2. We do so to every (A(i , j ) ,p( i , j ) )~C, ,  and we get C,+1. (We have 

enough indices so that there will be no confusion.) It is easily seen that [ C~+ll 

< [ C,] + 21 C,I, and for every j, I A(i + 1,j)[ < [A(i,j ')  I + 2 < 2 for some j ' .  

Now we define C~. Let (A 1,p~) < ( A  2 ,p2)  if A t c A z and pl c p2. I 
i (A ' ,p ' ) i  < j  is an increasing sequence, then ~.J~<j (A', p ' )  = ([,,J~<~A ,I,.J,<j p ' ) .  

The elements of  C~ will be the elements of  [,.J~<~ C~, and unions of  increasing 

sequences in [..Ji<~ Ci, (A 1, p l ) ,  such that pl is realized in M. 

It will now be proved that CITI .  = CITI++ t  = CITI÷+2 . . . .  . It is sufficient to 

show that [J,{Ci: i < [ T[ + } = Cir I +. That comes from the construction, for if it is 

not correct, there is an increasing sequence ( ( A  i, p~) : i < ] T I+). Then Rank(pl) 

is decreasing sequence, and by Lemma 2.4 that sequence cannot be strictly decre- 

asing, so there exists an i such that Rank (p~) = Rank (Pi + 2) . . . .  . By condition 3 

[ { a ~ M :  a realizes Pi+t}I < 2  (as Rank (p,) = Rank (pi + t) and p , ~  P,+x) 

and similarly [ {a ~ M: a realizes p,+1 } ] > 2 (as Rank (p,+ 1) = Rank (p,+ 2) and 

Pi+ 1 ~ Pi+ 2), a contradiction. 

We shall now show that [ C, I < )" and [ A(/,j) I < 2 for i < ! T! +. If  not, let k 

be the first ordinal that contradicts our assertion. If  k = i + 1 then !Ck I < I C'I 
+ 2r c, [ < 2 and for every j, for somej '  l A(k,j)[ < [a(i,j')[ + )~ = 2 (as remarked 

in the definition of C~+ 1), so that k has to be a limit ordinal, and k < [ T ! +. Let 

A'=[..J{A(I,j):j; l< i}. Now it can be seen easily that lail_<_ lc,l. max,] A(i,j)[ <), 
for i < k, and from that, and the construction, it can be easily seen that [ A k ] < 2, 

and therefore I S(Ak) I -- ~. Now the {B(k,j) :j} are disjoint sets, and every one of 

them is the union of  sets realizing some complete types on Ak, and by the con- 

struction B(k , j )~  O, and so the number of B(k,j) is no more than 2. Thus 

[ Ck -- [,.Ji<k C, [ < 2. We can conclude that [ C k [ "~ [ C k - Ui<k C i [ -~- ~-~i<k [ Ci [ 
< 2 + k 2 =  2, a contradiction; and so Icj j.I __< 2, l <_ 2. 

For every b with b ~ B(O, 0), the set of (A(i,j), p(i,j)) in C I rl + such that b ~ B(i, j) 
is an increasing sequence in CITI +. The union of  the sequence is also in CITI+ ,  and 

so there is a last such element in C I rl  +, ( Ab, pb). The set of elements of M realizing 
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pb will be denoted by B b. Now if there is an element of  Cir I ÷ greater than (A b, pb), 
then by the construction of C; there is such an element (A' ,  p ' )  such that b realizes 

p', in contradiction to the definition of (A b, pb). Therefore [Bb[< 2.1 Now 

B---B(0,0) c U(B :b  :):18(i,:)  I < [BI 
< I Ctrl + I " 3. = 2 - -  contradiction. 

So we have proved Lemma 3.2. 

It follows that without loss of generality we can assume that for every C, such 

that A ~ C c M and [ C[ = 2, p has one and only one extension in S(C) which is 

of  the same rank, and that extension is realized at least 2 + times. Let the set of  

dements of  M realizing p be B. 

We define by induction the sequence {Yi: i < 2 + ). Yo is an arbitrary element of B. 

If  we define Yi for every i < j < 2 +, then yj = y(j) will be an element of  M that 

realizes the only extension of p to a type q in S(A U {yi:i <j} )  such that 

Rank(p) = Rank(q).  By the definitions of B and p, there is such a y~. 

LEMMA 3.3. I f  i 1 < i 2 < ' " < i ~ < 2  +, J l < ' " < J n < 2 +  then for every 
predicate R in T and every d, dEA, 

M ~ R[y(il),..., y(in), d] -- R[y(jl), "", Y(j,), d]. 

Proof  of Lemma 3.3. Without loss of  generality i k = k. 

Now, in the construction of the yi, in every stage in S(Al,.J(y~:i<j}) there is 

only one extension pj of p such that Rank(pt)  = Rank(p), so the type which yj  

realizes on A[_J (yi:i < j} is independent of the choice of yy. I f  {zi:i < j} satisfies: 

for every i, z i realizes a type qi on AU{Zk:k < i} such that qi ~ p ,  Rank(q/) 

= Rank(p),  then it can be easily proved by induction that (Yii, "",Y~) satisfies 

the same type on A as (z~1, ..., ..., z~,). Now, if we choose Y Jr as the first y, and y~  

as the second, etc., they will satisfy the same formulaes as y~, ..., y,. It remains to 

prove that after choosing yj~, ...,yj~ as the first k y's we can choose Y~k+~ as the 

next y. That is, perhaps yj~÷~ realized a type p on Al,.J{yj,,...,yj~}, such that 

Rank(j0) < Rank(p). But i fq  is the type of yyk÷ ~ on A[.J{yt, "",Yt} (l =Jk+t  - 1) 

then Rank (p) = Rank (q) < Rank (if) < Rank (p), contradiction. So Lemma 3.3 

is proved. 

LEMMA 3.4. Y is indiscernible on A. 

Proof. The proof  is the same as in Morley [2] 4.6, since in every cardinal X 

there is an ordered set that has more than Z Dedekind cuts. 

So Theorem 3.1 is proved. 
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DEFINITION 3.1. Let K be a class of models, A a substructure of such models, 

M ~ K is called K-prime on A, if for every M~ ~ A, M 1 e K, there exists an iso- 

morphism from M into M~ that is the identity on A. 

THEOREM 3.5. I f  T is a stable theory, and 

or ;t > ] T I +, then among the 2-saturated models of T, there is a prime model on 

every substructure A of a model of T. 

REMARK. An analogous theorem appears in Morley [2] 4.3. 

DEFINITION 3.2. p ~ S(A) is called 2-isolated if there is a type Px c p, [ Pl [ < ;t, 

such that p is the only element in S(A) that includes Pl. 

Proof of 3.5. In order that the model we will build on A be 2-saturated, we 

should realize every type of cardinality < ;t, and in order that it be a prime we 

should realize only types which are realized in every 2-saturated model including A. 

So it is sufficient to show that if p is type on a set A, ] p ] < 2, then there exists an 

extension PI of p, Pl ~ S(A), and Pl is ;t-isolated. For if it is right, we can add an 

element to A for every ;t-isolated type. And if we continue adding such elements 

for every type p, I P ] < ;t (by adding an element which realizes a ;t-isolated complete 

type containing it) we shall get the wanted prime model. 

Now let 2 > I T[ + and I pl < 2 where p is a type on A. Among the elements of 

S(A) containing p, there is a q with minimal Rank(Ro, q), so there are a finite 

number of formulaes which define the type completely with regard to R o (among 

the extension of p). We adjoin these formulaes to p, and continue with R t, R2,'--. 

Because of the compactness theorem, this operation does not lead to a contra- 

diction at the limit. So after [ T ] steps we get the required type - -  a type of power 

< l P] + [ T] < ;t, which has only one extension in S(A). 

It remains to deal with the case IAI ___ I s(A)l < 2  Let p be a type 

on A, I Pl < 2, which contradicts our conjecture. Let p = p<>. If  P o  has more 

than one extension to a type in S(A), then there is a formula R(x, a), such that 

P,o, = P U  {R(x, d)}, and p,~, = p[..) ( -  R(x, ~)} are consistent. We continue with 

P~I~ and P(o~ as with p~ and can define p~ for every sequence t / o f  ones and 

zeroes, l(t/) < 2, [ p, [ < 2, such that: 

1) if r/1 is not is not an initial segment of ~/2 or conversely, then p~, U p,~ is 

not consistent; 
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2) if t/t is an initial segment of  t/2, then p ~ =  p~; and 

3) if l(t/) is a limit ordinal then p~ =[Ji<Ic~)P~l~- Then {p,: l( t / )< ;t} are 2 ~ 

contradictory types on a set of cardinality < 2 + ~,z<x2~= ]~<a2 x < 2 ~, a contra- 

diction. 

4. On categorical elementary and pseudo elementary classes. 

THEOREM 4.1. Let M be a model of a not necessarily complete theory T, 

Q predicate in L(T), p a type. Let (21rl) + = ?. 

1) I f  M omits the type p, and ~ (] Q(M)1,7) < ]i M 1], then in every cardinal 

>=ITI, there is a model M1 oJ T which omit  p and such that IQ(M )I-<I T1 

2) I f  M omits the type p, and :1 (1Q(M)[,~) < ]1M If, ] Q(M) I >= ~1~ then for 

all cardinals Z > 2 > I rl, there is a model M1 of T which omits p and such 

that [ Q(M0[ = L 1[ M~ Ill= X- 

Proof. The proof is by the methods of Morley [3] and is not given here. 

(Also see Vaught [9].) 

RE~ARKS. The theorem can be slightly improved as don by Morley [2], in 

analogous theorems. 

THEOREM 4.2. I f  p C (7'1, T) is categorical in a cardinal ;t > [ T~ l, then for 

every ~, I Tit < X < 2, Kr(X) = Z+, and so T is stable. 

Proof. By Morley [1], 3.7 (the proof for the non-denumerable case in the same) 

there exists a model M of T~, 11M 1[ = 2, such that for every A c M, at most 

I A[ + IT l[ types on A are realized in M, and it follows from this that the same 

holds for the reduct of M to L(T). If  KT(Z) = Z +, [ T1 [ =< X < 2, there is a reduet 

to L(T) of a model of T 1 of  cardinality 2, for which there exists A ~ M satisfying 

[ A[ = X, and > X types of S(A) are realized on A in the model. This contradicts 

the categoricity. 

THEOREM 4.3. I f  pC (Tx, T) is not categorical in )~ = "1 (y.  ~) > [ T1 [ (where 

= (21rl) +, ~ > 0), then it has a non-] T]+-saturated model in every c a r l  

nality. This is also true if we replace the assumption by: "pC 7"1, T)has a n or, 

saturated model in 2x". 

Proof. As any two saturated models of the same cardinality > J ~ are ~so- 

morphie (see Morley and Vaught [1]), the second assumption follows trom the 

first. 
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Let M be a non-saturated model such that II M II = and M is the reduct to 
L(T) of M 1. Then there exists A ~ M IA I < II M II. and p~S(A), such that p is 

omitted in M. When we adjoin to Mt the relations Q(M) = A and to every predicate 

R of L(T) OR(M2) = {d:R(x,d) ep}, we get a model M2. Now ] Q(M2) ] < ][ M2 ]l 

and M2 omits Pl = {(VjT)(AiQ()Ti)~ R(x, ~)= ~/R(37)): R a predicate in L(T)}. 

By 4.1 in every cardinality there is a model M 3 of the theory of  M 2 such that 

[ Q(M3)] < ] T~ 1, and Ma omits the type {R(x, d): d, e Q(Ma), Ma ~ ~/R[a], R a 

predicate of L(T)} which is a type on a set of cardinality < I Tll (its consistency 

follows from the theory of M2), and this proves the theorem. 

LEMMA 4.4. 1)I f lz l  I ~ 2. 2 is regular, and IAl<2 lsT(A)l 2, then 

p E 7"1, T) has a saturated model in 2. 

2) I f  I Tll < 2, # < 2, # is regular and [A[ < 2 ~ [S T(A) 1 < 2, 
then pC(T2, T) has a 2-saturated model in 2. 

Proof. Since the proofs are essentially similar, we prove only 1). Let 

T 1 ----UI<IT11 T~ where T I c  Tliif i < j and T1 '=  T1 forl i > [ T 1 [ and ] T~[ < 2. By 

the conditions in 1 we can easily define a sequence (Mi :  i < 2)  such that: 
lil-<-II M'II <2 ,  M' as a model of T];  if i<j  then the reduct of MJ to  L(T~) 

is an elementary extension of Mi; the L(T)-types on M s are < p] :j <Jo  < 2)  

and pj, is realized in MJ; M ~ =~.J~<~M *. Mz is the required model. 

COROLLARY. 1) I f  T is not stable then pC (Ti, T) has a saturated model in a 

regular cardinal 2 >IT1[  i f f z  < 2 = 2 z <  2. 

Proof. Suppose there exists Z1 < 2 < 2 xl. Let Z = inf{z : 2 z >  2}. As T is not 

stable, by Theorem 2.1, there exists A, I AI _<_ ~:,<,2" ___< 2 such that there exists 

2 x > 2 contradicting types of power Z < 2 on A. If  T has a saturated model M of 

power 2, then there is A' c M, with A' isomorphic to A. Thus in M more than 

II M I1 contradicting types have to be realized, a contradiction. The opposite 

direction in trivial by 4.4.1, since always, S(A) < 2 lall+lrl . 

THEOREM 4.5. 1) I f  [ TI ] = bl~ and T is not stable then the number of iso- 

morphism types of pC(T1, T) in Np is at least [fl - ~1. 

2) I f  [ Ti[ = N~ and T is not super stable, then the number of isomrophism 

types of p C TI,(T) inN p is at least [(fl - e)/o9 [. 
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3) I f  p C (T1, T) is categorical in a cardinal > 17"11, different from 

inf{x: X ----T,x ~° > x+lrl}, then a) T is superstable, b) Kr(2 ) =2  + for 2 > I TI . 
c) PC (7"1, T) is categorical in a cardinal > I Tll iff all models in it are satu 

rated, and d) p C(T, ,T)  is caterogical in "~(7"~) for 7=(21rl)+,  

~>0, "~(y.~) > [ T, I. 

Proof. 1, 2) I f  K r ( 2 ) >  2 +, then for every X > 2+ there is a model M in 

pC (T,, T) such that there exists a set A with more than ] A { types realized on it in 

M, { A { = 2, and there is no such set of greater cardinality. (The existence is proved 

as in 4.2.) 
3) By 4.2, for every Z with [ 7"11 < ~ < 2, Kr(Z) = X +. So, if 2 is regular, 

then there is a model in p C (T,, T) of cardinality 2 which is saturated by Lemma 

4.1.2. If  2 is singular, then 2 > Z = inf{x:X_>- 17"l,x > x}, andso Kr(~) = ~+, 

and as X '~° > X, this implies that T is super stable. As Kr({ TI I) = 17"II +, by 2.2 

Kr(2) = 2 +, and so by Lemma 4.4.1 p C (TI, T) has a { T,{ + -saturated model 

in 2. Therefore by 4.3, p C (7"1, T) is categorical in 'n (y • ~) (~ = (2 Irl) +, ~ > 0), 

and so Kr(/z) =/*+ for every/~ > I T, l" That implies by Lemma 4.4, that in every 

power # > I TI l and regular X ~/z, there exists a model of power # in pC (T,, T), 

which is x-saturated. So if PC (T, T) is categorical in/~, its only model in / t  is 

saturated. It is clear that if pC (TI, T) has only saturated models in /~ >{7" I, 
then it is categorical in/~. 

REMARK. In 4.3 and 4.5.3 we apply a two-cardinal theorem to a categoricity 

theorem. In fact, a more general connection exists among the following conditions 

on X, 2,/z ~ < 2, #): 
1) If I r l < x and T has a model which omits a type p and such that II M II -- 4, 

I Q¢M) I < 4, then T has a model M'  which omits p such that # = II M' II > I Q(M')I" 
2) I f  I Tll < x and p C(TI T) is categorical in/z, then it is categorical in 4. 

3) If I T1 [ < X and every model of power # in p C (T1, T) is homogeneous, then 

the same holds for 2. 

1 implies 3. (Keisler proves this in [1].) 1 implies 2 if # #  inf{At:21 + > Z, 

2[  °>  21} or ifXl<X =~ N(Xl, °9) < X. 3 implies 1 if X is not greater than the first 

measurable cardinal, and there is no weakly compact X~ such that Xt < X --< (2x~) +. 

2 implies 1 if in addition/z ~ inf{2, : 2~" >-- Z,2~ ° >= 2} or X~ < X :~ N(Xl, co) < X. 

THEOREM 4.6. I f  T is categorical in a power 2, 2 > I r l ,  2 ~ inf{z: Z~°> X +1 rl}, 
then there exists a cardinal 2o, such that T is categorical in every cardinal 
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> 20, and is not categorical in any power X, I T[ < Z < 20. Furthermore 20 is 

such that ,~o < #(I TI)  < "~ ((21rl)+)" 
Proof. I f  for every z < #(I T I) T has a model M which is not IT I +-saturated, 

II M II >= x, then it has such a model in every cardinal > I T I a  contradiction by 4.4. 

(For if A c M, I AI < I TI, P ~ S(A), and p is omitted, we adjoin to M the constants 

(c,: i < I TI)  a names for the element of A, and relations as in 4.3, and the result 

follows by the definition of #([ T I ).) Now if M is a I T] +-saturated but not saturated 

model of T, then there exists A c M, [A[ < [1M I1, I AI > I TI, P S(A), such that 

p i s  omitted. As K T ( I A I ) = I A I  + and IIMII > l a l > l z l ~ l l M I l  > l z l  +, there 

exists an indiscernible set Y over A, I YI- - IAI  +, by Theorem 3.1. I f  

Y = {y,: i < l al  +}, let B = A U {y,: i < X}}, where {y,: i < Z} is indiscernible 

over A, and M 1 be a prime model over B among the I TI +-saturated models, 

which exists by 3.2. Now it will be proved that p is not realized in M1. In the 

construction of M 1, we adjoined to B the elements of {c,: i <  [Bt} one after 

another, such that cj realizes a ITI +-isolated type on B U0{c, : i<lj}, defined by pj, 

IpJl < +- If ck realizes p, let Bt = {Ck}, and Bi+ l = Bi U {b: b is mentioned 

in p,, and c,~B,}. Now IU,  B,I Z lTI,  and it can be easily seen that in a prime 

model over A U ({Yl : i < Z} NUi<~, Bi), P is realized, and so it is realized in M 

a contradiction, so p is not realized in M1. As we can take Z = "I~, (2'lrl) +[?, Z > [ A[, 

it follows that T has a non-saturated model in Z, in contradiction to 4.3, 4.4.3. 

So every IT[ +-saturated model is saturated. If  T is not categorical in 21, then 

it has a non-[ T[ +-saturated model of cardinality 21, and so T is not categorical 

in any cardinal 22. [ T I < 22 < 21. As we have shown that there exits a cardinal 

< T I)in which every model of T is I zl +-saturated, the theorem follows. 
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