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CLONES FROM CREATURES

MARTIN GOLDSTERN AND SAHARON SHELAH

Abstract. We show that (consistently) there is a clone C on a countable set
such that the interval of clones above C is linearly ordered and has no coatoms.

0. Introduction

A clone C on a set X is a set of finitary operations f : Xn → X which contains
all the projections and is closed under composition. (Alternatively, C is a clone if
C is the set of term functions of some universal algebra over X.)

The family of all clones forms a complete algebraic lattice Cl(X) with greatest
element O =

⋃∞
n=1 O(n), where O(n) = XXn

is the set of all n-ary operations
on X. (In this paper, the underlying set X will always be the set N = {0, 1, 2, . . .}
of natural numbers.)

The coatoms of this lattice Cl(X) are called “precomplete clones” or “maximal
clones” on X.

For singleton sets X the lattice Cl(X) is trivial; for |X| = 2 the lattice Cl(X)
is countable, and well understood (“Post’s lattice”). For |X| ≥ 3, Cl(X) has
uncountably many elements. Many results for clones on finite sets can be found in
[16]. In particular, there is an explicit description of all (finitely many) precomplete
clones on a given finite set ([10], see also [9] and [1]); this description also includes
a decision procedure for the membership problem for each of these clones. It is
also known that every clone C �= O is contained in a precomplete clone, that is,
the clone lattice Cl(X) on any finite set X is dually atomic. (This gives an explicit
criterion for deciding whether a given set of functions generates all of O; just check
if it is contained in one of the precomplete clones.)

Fewer results are known about the lattice of clones on an infinite set: [3] investi-
gated the interval of clones above the clone of unary functions on a countable set,
[4] did this also for uncountable sets. [6] classified the countably many precomplete
clones on a countable set that contain all bijections. [12] showed that there are al-
ways 22κ

precomplete clones on a set of infinite cardinality κ, and [11] gave specific
examples of such precomplete clones. [7] investigated minimal clones.
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3526 MARTIN GOLDSTERN AND SAHARON SHELAH

[13] investigated “local” clones on infinite sets (clones that are closed sets in the
product topology). It is easy to see that the lattice of local clones is far from being
dually atomic ([5]).

Already Gavrilov in [2, pp. 22 and 23] asked whether the lattice of all clones on
a countable set is also dually atomic, since a positive answer would be an important
component for a completeness criterion, as remarked above. This question is also
listed as problem P8 in [8, page 91], and has been open until now.

We will show here (assuming the continuum hypothesis, CH) the following:

0.1. Theorem (CH). The lattice of clones on a countably infinite set is not dually
atomic, i.e., there is a clone C �= O which is not contained in any precomplete
clone.

We also remark that the full strength of CH is not needed for this theorem.
The clone CU that we construct has the additional feature that we can give a

good description of the interval [CU ,O]. (See 5.7(2) and 5.8(d).) In particular, it
will be a linear order without a penultimate element, in which every countable set
has an upper bound.

All clones that we consider will be in the interval [Cid,O], where Cid is the clone
of all functions which are bounded by the max function. The clones in the interval
[Cid,O] have the property that they are determined by their unary part. Moreover,
the map that assigns to each clone its unary part is a lattice isomorphism between
[Cid,O] and the set of all those monoids ⊆ N

N which are lattice ideals (in the product
order; see Definition 1.4).

Thus, our theorem can be reformulated as follows:

0.2. Theorem (CH). The lattice of all submonoids of NN which are ideals is not
dually atomic.

The method behind our proof is “forcing with normed creatures”, a set-theoretic
construction originating in the second author’s paper [15]. The book [14], an ency-
clopedia of such creatures, may be useful for constructing variants of our clone CU

to get clone intervals with prescribed properties; however, for the purposes of this
paper the connection with forcing machinery is sufficiently shallow to allow us to
be self-contained.

In particular, no knowledge of set theory is required for our theorem, except for
Section 5, where a basic understanding of CH and transfinite induction up to ω1 is
needed, and the discussion in Section 6, which is mainly directed at set theorists
and not essential for the rest of the paper. Most of our constructions deal with
finite structures, or with countable sequences of finite structures.

1. Clones defined by growth conditions

1.1. Notation.
(1) O(1) = N

N is the monoid of all functions from N to N (the operation is
composition of functions). For k ≥ 1, O(k) is the set of all functions from
N

k to N, and O =
⋃∞

k=1 O(k).
(2) For f, g ∈ NN

k

, we write f ≤ g iff for all k-tuples �n = (n1, . . . , nk) we have
f(�n) ≤ g(�n).

(3) We write f ≤∗ g iff f(�n) ≤ g(�n) holds for almost all (i.e., for all but finitely
many) tuples �n = (n1, . . . , nk). In general, we use the superscript ∗ or the
keyword “almost” to indicate that finitely many exceptions are allowed.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:808



CLONES FROM CREATURES 3527

(4) id : N → N is the identity function.
(5) For f ∈ N

N, we write f (n) for the n-fold composition of f with itself (f (0) =
id, f (1) = f).

(6) maxk is the k-ary maximum function. Often we just write max.
(7) A growth function is a (not necessarily strictly) increasing function from N

to N satisfying f(n) > n for all n. We write G for the set of all growth
functions.

(8) For any function g : N
k → N we let ḡ : N → N be defined by

ḡ(n) := max{g(x1, . . . , xk) : x1, . . . , xk ≤ n},
and we let ĝ(n) = max{n, ḡ(n)}. So ĝ + 1 is a growth function.

(9) If f is k-ary, g1, . . . , gk are n-ary, then we write f(g1, . . . , gk) for the function
that maps �x = (x1, . . . , xn) to f(g1(�x), . . . , gk(�x)). For example, max(g, h)
is the pointwise maximum of g and h.

(10) Cid := {g ∈ O : g ≤ max} = {g ∈ O : ḡ ≤ id}.

It is clear that Cid is a clone. We will only consider clones that include Cid.
Note that the function ḡ is always increasing (but not necessarily strictly). ḡ

measures the “growth” of g.

1.2. More notation. The following symbols are collected here only for easier ref-
erence:

• Relations between functions: f ≤ g, f ≤∗ g, f =∗ g; see 1.1.
• Growth functions, G; see 1.1.
• The function hA and the relation f ≤A g for infinite sets A; see 1.13.
• The Ramsey function R; see 2.4.
• Relations between fronts or *fronts in zoos: F ≺s G, F ≺∗

s G, F �s G,
F �∗

s G, F ≈∗
s G; see 4.9.

• More relations between fronts: F + n �∗
s G, F + n ≈∗

s G, F + ∞ �∗
s G;

again see 4.9.
• Relations between growth functions f and g that are gauged by a zoo s:

f ≺s g, f ≺∗
s g, f �∗

s g, f ≈∗
s g; see 4.13.

• The *fronts F (s, f); see 4.5
• Relations between zoos: t =∗ s (see 3.3), t ≤ s, t ≤∗ s (see 3.9), t � s,

t �∗ s; see 3.10.
• Tree order �, �; see 2.1. Lexicographic order < on nodes in creatures (see

2.5), and on zoos; see 3.5. Direct lexicographic successor �; see 3.5.

From clones to ideal monoids. We first show that above Cid we can restrict our
attention to unary functions.

1.3. Lemma. Let C be a clone with Cid ⊆ C. Then:
(1) C is downward closed: If f ≤ g, and g ∈ C, then f ∈ C.
(2) For all g : Nk → N: g ∈ C iff ḡ ∈ C iff ĝ ∈ C. (See 1.1(8).)
(3) If the successor function id+1 (mapping each x ∈ N to x+1) is in C, then

we also have g ∈ C iff ĝ + 1 ∈ C.

Proof. (1) Let g ∈ C, g : Nk → N, and f ≤ g. Define a k + 1-ary function F by

F (�x, n) = min(f(�x), n).

Clearly F ∈ Cid, and f(�x) = F (�x, g(�x)) for all �x = (x1, . . . , xk), so f ∈ C.
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3528 MARTIN GOLDSTERN AND SAHARON SHELAH

(2) Note that g ≤ ḡ(maxk), and ḡ ≤ ĝ, so ĝ ∈ C ⇒ ḡ ∈ C ⇒ g ∈ C, as C is
downward closed. The implication ḡ ∈ C ⇒ ĝ ∈ C follows from max2 ∈ Cid.

It remains to check that g ∈ C ⇒ ḡ ∈ C: So assume g ∈ C. For each n ∈ N

choose (h1(n), . . . , hk(n)) ≤ (n, n, . . . , n) such that

g(h1(n), . . . , hk(n)) = max{g(x1, . . . , xk) : x1, . . . , xk ≤ n}.
Then h1, . . . , hk ∈ Cid, so ḡ = g(h1, . . . , hk) ∈ C.
(3) The implication ĝ ∈ C ⇒ ĝ + 1 ∈ C follows because id + 1 ∈ C, the converse

is true because C is downward closed. �

1.4. Definition. A set M ⊆ O(1) is an ideal monoid iff M is both a monoid and a
(lattice) ideal, i.e.,

(1) (M, ◦, id) is a monoid,
(2) M is downward closed: ∀g ∈ M ∀f ≤ g : f ∈ M ,
(3) M is closed under max: ∀f1, f2 ∈ M : max(f1, f2) ∈ M .

Using (1) and (2), this is equivalent to: ∀f ∈ M : max(f, id) ∈ M .
Let J be the set of ideal monoids.

1.5. Proposition.
(1) (J ,⊆) is a complete algebraic lattice, isomorphic to the interval [Cid,O] in

the clone lattice.
(2) The map C 
→ C∩O(1) is an isomorphism from [Cid,O] onto J , with inverse

M 
→ {g ∈ O : ḡ ∈ M}.

Proof. If C ⊇ Cid is a clone, then C is downward closed by 1.3(1) and contains the
max function, so C ∩ O(1) is an ideal monoid.

Conversely, if M is an ideal monoid, then C(M) := {g : ḡ ∈ M} certainly
contains Cid. To check that C(M) is closed under composition of functions it is
enough to verify:

If h = g(f1, . . . , fk) and f̄1, . . . , f̄k, ḡ ∈ M , then also h̄ ∈ M ,
which follows from h̄ ≤ ḡ(max(f̄1, . . . , f̄k)).

The fact that the two maps are inverses of each other now follows easily from
Lemma 1.3(2). �

1.6. Remark. The isomorphism from J onto [Cid,O] can also be described by the
map M 
→ Pol(M), where (see [8]; we treat M ⊆ XX as an X-ary relation on X)

Pol(M) :=
⋃

k

{g ∈ O(k) : ∀h1, . . . , hk ∈ M : g(h1, . . . , hk) ∈ M}.

We leave the verification to the reader.

So from now on we will only investigate ideal monoids instead of clones above Cid.
Our aim is to find an ideal monoid M such that the interval [M,O(1)] of ideal
monoids (is linearly ordered and) has no coatom.

From ideal monoids to growth semigroups. The next step is mainly cosmet-
ical; functions f satisfying f(n) = n for some n are unpleasant to work with, so we
want to ignore them.

Recall that G is the set of growth functions (see 1.1(7)). Note the following easy
facts.
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CLONES FROM CREATURES 3529

1.7. Fact.

(a) If f and g are growth functions, then f ◦ g is a growth function.
(b) For any n ∈ N, the set Mn := {f ∈ O(1) | ∀k ≤ n : f(k) ≤ n} is a coatom in

the lattice of ideal monoids. (In clone theory, the set Mn is usually called
Pol({0, . . . , n}).)

(c) The map M 
→ M ∩ G, mapping an ideal monoid to its set of growth
functions, is not 1-1.

Proof. (a) is trivial, and (b) is easy and well known.
For (c), note that the sets Mn from (b) are all different, but all satisfy Mn ∩G =

∅. �

These observations motivate us to restrict our attention to the set of those ideal
monoids that contain the function x 
→ x + 1 (the smallest growth function).

1.8. Definition. A set S ⊆ G is called a growth semigroup iff S is nonempty, closed
under composition of functions, and (in G) downward closed. (Since max(f, g) ≤
f ◦ g holds for all growth functions f and g, S must also be closed under the max
function.)

We write Cid+1 for the clone generated by Cid together with the successor function
x 
→ x + 1; thus Cid+1 ∩ O(1) is the smallest ideal monoid containing the successor
function, and Cid+1 ∩ G is the smallest growth semigroup.

1.9. Fact. The map M 
→ M ∩ G is an isomorphism from the interval [Cid+1 ∩
O(1),O(1)] of ideal monoids onto the set of growth semigroups.

Proof. By Lemma 1.3(3). �

So the interval [Cid+1,O] in the clone lattice is isomorphic to the lattice of growth
semigroups. From now on we will only investigate growth semigroups. Our aim is
to find a growth semigroup S such that the interval [S,G] of growth semigroups (is
linearly ordered and) has no coatom.

From growth semigroups to single growth functions. The next reduction is
the most important one. Instead of investigating a lattice of growth semigroups (or
clones, or ideal monoids), we can reduce our analysis to the investigation of the natu-
ral partial quasiorder “g generates f” of growth functions which (after factorization)
turns out to be an upper semilattice. The interval of clones/monoids/semigroups
that we are interested in will be naturally isomorphic to the set of ideals of this
semilattice.

1.10. Fact. Let S be a growth semigroup, f and g growth functions. Then the
following are equivalent:

(1) f is in the smallest growth semigroup containing S ∪ {g}.
(2) There is a growth function h ∈ S and a natural number k such that f ≤

(h ◦ g)(k).
(3) There is a growth function h ∈ S and a natural number k such that f ≤

(max(h, g))(k).
(4) f is in the clone generated by S ∪ Cid ∪ {g}.
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3530 MARTIN GOLDSTERN AND SAHARON SHELAH

Proof. The equivalence (2) ⇔ (3) follows from max(h, g) ≤ h ◦ g ≤ (max(h, g))(2).
The implication “(2)⇒(1)” follows from the closure properties of growth semi-
groups, and “(1)⇒(2)” follows from the fact that, for any g, the set of growth
functions f satisfying (2) is a growth semigroup.

The equivalence of (4) to the other conditions is left to the reader. �

1.11. Definition. If any/all of the above conditions (1), (2), (3), (4) are satisfied,
we will write f ≤S g, and we will write ∼S for the associated equivalence relation:
f ∼S g iff f ≤S g and g ≤S f . We write G/∼S or just G/S for the set of equivalence
classes.

We have:
(a) ≤S is a partial quasiorder of functions.
(b) The set S is the smallest ∼S-equivalence class.
(c) The set G/S (with the order induced by ≤S) is a join-semilattice.

Proof. It is clear that ≤S is transitive and reflexive. Clause (1) in the definition
of ≤S easily implies that S is the smallest equivalence class.

We will write f/S for the ∼S-class of f . To show clause (c) we prove that the
class max(f1, f2)/S is the least upper bound of the classes f1/S and f2/S. Clearly
max(f1, f2)/S is an upper bound; if g/S is also an upper bound, then we have
f1 ≤ (max(h1, g))(k1) and f2 ≤ (max(h2, g))(k2) for some h1, h2 ∈ S, k1, k2 ∈ N.

Now let h := max(h1, h2) ∈ S and k := max(k1, k2). So we have max(f1, f2) ≤
(max(h, g))(k), so max(f1, f2) ≤S g. �

1.12. Fact. Fix a growth semigroup S0.
Then for every growth semigroup S ⊇ S0, the set {f/S0 : f ∈ S} is an ideal in

the semilattice G/S0.
Conversely, if I ⊆ G/S0 is a (nonempty) semilattice ideal, then {f ∈ G : f/S0 ∈

I} is a growth semigroup containing S0.
Moreover, the maps defined in the previous two paragraphs are inverses of each

other. Thus, the interval [S0,G] in the set of growth semigroups is naturally iso-
morphic to the set of ideals on G/S0.

In particular, we get: If G/S0 is linearly ordered, then:
(1) The interval [S0,G] in the lattice of growth semigroups corresponds exactly

to the nonempty downward closed subsets of G/S0 (the “Dedekind cuts”).
(2) The interval [S0,G] has a coatom iff G/S0 has a greatest element.

Proof. Again this boils down to max(h, g) ≤ h ◦ g ≤ (max(h, g))(2). The fact that
semigroups are always unions of ∼S0-equivalence classes is clear if we use 1.10(1)
to define ≤S .

�

Conclusion and goals. We will construct a growth semigroup S0 such that the
partial order G/S0 will be a linear order with a smallest element where each ele-
ment has a direct successor and (except for the smallest one) a direct predecessor;
moreover, all countable sets will be bounded, and all intervals in this order will be
either finite or uncountable.

The set of growth semigroups (or equivalently, the interval of clones) above S0

will be the Dedekind completion of this order; it will be a linear order with no
coatom.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:808



CLONES FROM CREATURES 3531

Replacing growth semigroups by filters. It turns out to be convenient to
concentrate on growth functions of a certain kind, the functions hA defined below.

1.13. Definition.
(1) For any infinite set A ⊆ N, we let hA be defined by

hA(n) := min{a ∈ A : a > n}.
We let SA be the growth semigroup generated by hA.

(2) For any infinite set A ⊆ N, and for any growth functions f, g we write
f ≤A g for f ≤SA

g, or more explicitly:

f ≤A g :⇔ ∃k : f ≤ (max(g, hA))(k)

(equivalently: there is a k such that f ≤ (g ◦ hA)(k)).
(3) If U is a filter of infinite subsets of N, we let f ≤U g iff there is A ∈ U with

f ≤A g.
(4) If U is as above, we let GU := {g ∈ G : g ≤U id} = {g ∈ G : ∃A ∈ U ∃k :

g ≤ h
(k)
A }. (Note that id + 1 = hN ∈ GU for any U .)

1.14. Fact.
(1) hA is a growth function. Conversely, for any (growth) function g : N → N

there is a set A such that g ≤ h
(2)
A .

(2) If A ⊆ B, then hB ≤ hA, so f ≤B g implies f ≤A g. Hence hA∩B ≥
max(hA, hB) (if A ∩ B is infinite).

(3) If A =∗ B, then the relations ≤A and ≤B coincide.
Therefore, if U is a filter of infinite sets, then GU is the smallest growth semigroup
containing {hA : A ∈ U}. Moreover, the relations

f ≤GU
g

(defined in 1.11), and
f ≤U g

(defined in 1.13(3)) are equivalent.

Outline of the proof of Theorem 0.1. The relations ≤A and ≤U are partial
quasiorders (i.e., reflexive and transitive relations) on G.

Factoring out by the relation

f ∼U g ⇔ f ≤U g & g ≤U f

will thus give a partial order LU .
We will find a filter U (in fact, U will be an ultrafilter) such that the relation ≤U

is a linear quasiorder on G, so LU := G/∼U will be linearly ordered. The smallest
element in this order is the equivalence class of the function id, i.e., the set GU .

(It is not necessary to have this interval linearly ordered in order to obtain a
clone C with [C,O] not dually atomic, but it will make the proof more transparent.)

How do we construct U? For each pair of growth functions f, g we want to have
a set A ∈ U witnessing f ≤A g or g ≤A f . This requirement tends to add very
“thin” sets to U (since we have to add a set A such that some iterate of max(g, hA)
dominates f).

Achieving this goal alone (under CH) would be a trivial exercise: Let (fi, gi :
i ∈ ω1) be an enumeration of all pairs of growth functions, then we can define a

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:808



3532 MARTIN GOLDSTERN AND SAHARON SHELAH

⊆∗-decreasing sequence (Ai : i ∈ ω1) of infinite subsets of N, making Ai so thin
that fi ≤Ai

gi or the converse holds. We then let U be the filter generated by the
sets Ai.

However, such a naive construction will make the sets Ai so thin that the family
{hA : A ∈ U} might dominate all unary functions, which would result in GU = G.

So we will modify this naive construction. Together with the sets Ai we will
construct objects si which place a limit on how fast the sets Ai may be thinned
out. These auxiliary objects si will help to give a more explicit description of the
relation ≤Ai

(see 4.15 and 4.16).

2. Trees and creatures

2.1. Definition. For any finite partial order (T, �) we let ext(T ) be the set of
maximal elements of T , and int(T ) := T \ ext(T ).

We let x � y iff x � y and x �= y.
For η ∈ T we let succT (η) be the set of direct successors of η in T , i.e.,

succT (η) = {ν ∈ T : η � ν,¬∃ν′ (η � ν′ � ν)}

(so succT (η) = ∅ iff η ∈ ext(T )).
We say that (T, �) is a tree iff

• T is a finite set,
• � is a partial order on T , with a least element, called root(T ), and
• for all ν ∈ T the set {η : η � ν} is linearly ordered by �.

Elements of a tree T will be called “nodes”, elements of int(T ) are “internal
nodes”.

Elements of ext(T ) are called “leaves” or “external nodes”.
For any η ∈ T we let

T [η] := {ν : η � ν}

(with the induced order). If T is a tree, then also T [η] is a tree, with root η.

2.2. Definition. Let (T, �) be a tree. A branch of T is a maximal linearly ordered
subset of (T, �). In other words, a branch is a set of the form {η : η � ν} for some
ν ∈ ext(T ). (We may occasionally identify a node ν ∈ ext(T ) with the branch
{η : η � ν}.)

A front is a subset of T which meets each branch exactly once. For example,
ext(T ) is a front, and the singleton {root(T )} is also a front. If F ⊆ int(T ) is a
front, then also

⋃
η∈F succT (η) is a front.

Note that for any tree (S, �), any subset T ⊆ S containing root(S) (with the
induced order) will again be a tree. The following definition singles out some of
those subsets.

2.3. Definition. If (S, �) is a tree, T ⊆ S, we call T a subtree of S (“T ≤ S”) iff
T contains the root of S and ∀η ∈ T ∩ int(S) : ∅ �= succT (η) ⊆ succS(η).

(T, �) will again be a tree, and we have ext(T ) ⊆ ext(S), int(T ) ⊆ int(S).

Below we will need the following version of Ramsey’s theorem, a well-known
theorem from finite combinatorics.
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η3 = 0

η2

η1

root(T)

ν1

ν2 = 2 ν3 = 3

Figure 1.

2.4. Fact. For every natural number n there is a natural number k = R(n) such
that:

Whenever f : [C]2 → {0, 1}, with |C| ≥ k,
there is a subset A ⊆ C with |A| ≥ n which is homogeneous for f ,
i.e., such that f�[A]2 is constant.

Here, [C]2 := {{x, y} : x, y ∈ C, x �= y} is the set of all unordered pairs from C.
It is well known that one can choose R(n) = 4n or even smaller, but we do not

need any good bounds on R(n), its mere existence is sufficient. For the rest of the
paper we fix such a function R.

Note that R will satisfy R(n) ≥ 2n for all n ≥ 3. For technical reasons we will
use a function R that satisfies R(n) ≥ 2n also for n = 1, 2. Thus we also have for
all n ≥ 1:

Whenever f : C → {0, 1}, with |C| ≥ R(n),
there is a subset A ⊆ C with |A| ≥ n which is homogeneous for f ,
i.e., such that f�A is constant.

We let R−1(k) = max{n : R(n) ≤ k}.

2.5. Definition. A creature is a finite tree T where
• ext(T ) ⊆ N, int(T ) ∩ N = ∅, and
• whenever η1, η2 are �-incomparable, then:

either max extT [η1] < min extT [η2], or else max extT [η2] < min extT [η1].
T is called improper if T consists of the single external node root(T ). Otherwise

(i.e., if root(T ) ∈ int(T )), T is called a proper creature.
We will write max[η] and min[η] for max extT [η] and min extT [η], if the under-

lying tree T is clear from the context. In particular, if η ∈ ext(T ) then T [η] = {η},
so max[η] = min[η] = η.

If η1, η2 are �-incomparable, we will write η1 <T η2 or just η1 < η2 to abbreviate
max[η1] < min[η2]. η1 ≤ η2 iff η1 < η2 or η1 = η2. This is a partial order.

We visualize this order as being embedded in the real plane R2, with the order
� pointing from the bottom to the top, whereas the order ≤ can be viewed as
pointing from left to right. (See Figure 1, where we have η1 � η2 � η3, ν1 � ν2,
ν1 � ν3, ν2 < ν3, and ηi < νj for all i, j ∈ {1, 2, 3}.)

We call ≤ the lexicographic order of nodes, since clearly
whenever η1 < η2, and η1 � ν1, η2 � ν2,
then also ν1 < ν2.

Note that on ext(T ) this lexicographic order and the usual order of N agree.
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If T is a proper creature, then we let ‖T‖ := min{|succT (ν)| : ν ∈ int(T )}. (If
T is improper, ‖T‖ is undefined.)

2.6. Remark. (Readers not familiar with creature forcing are advised to skip this
remark.) The reader who is familiar with [14] will be disappointed to see that
norms, an essential ingredient in [14]’s creatures, are not mentioned here at all. It
will become clear that for our purposes there is in fact a natural norm, namely
norT (η) := max{k : R(k)(4) ≤ |succT (η)|}. See also 3.2.

2.7. Notation. Let E be a finite nonempty set of “colors” (often with only 2
elements).

We will consider three kinds of “coloring functions” on creatures S.
(1) (Partial) functions c : S → E. These are called unary node colorings.
(2) (Partial) functions c :

⋃
η∈int(S)[succS(η)]2 → E. These are called bi-

nary node colorings. We may write such functions more sloppily as c :
[S]2 → E, with the understanding that we will only be interested in the
values c({ν1, ν2}), where ν1 and ν2 have a common direct �-predecessor.

(3) (Partial) functions c : ext(S) → E, or equivalently, functions c whose
domain is contained in the set of branches of S. These are called unary
branch colorings.

If c is a coloring of one of these types, and T ≤ S, we say that T is c-homogeneous
(or homogeneous for c), iff:

(1) In the first case: c�succT (η) is constant, for all η ∈ int(T ) (i.e., for all η
there is a color eη such that for all ν ∈ succT (η): either c(ν) is undefined,
or c(ν) = eη.)

(2) In the second case: c�[succT (η)]2 is constant, for all η ∈ int(T ).
(3) In the third case: c�ext(T ) is constant.

(The reader may wonder at this point why our colorings are only partial func-
tions. Later we introduce an operation that produces new trees from old trees by
gluing several old trees together, adding a new root. If the old trees are colored,
this induces naturally a partial coloring function on the new tree, but the new root
will not get a color.)

2.8. Lemma. Let n ≥ 3, and let S be a creature with ‖S‖ ≥ R(n), let E := {0, 1},
and let c : S → E, or c : [S]2 → E, or c : ext(S) → E be a coloring (with 2 colors)
of one of the types mentioned above.

Then there is a creature T ≤ S, ‖T‖ ≥ n, which is homogeneous for c.
Similarly, if c is a coloring with at most 2k colors, and ‖S‖ ≥ R(k)(n), then we

can find a c-homogeneous creature T ≤ S with ‖T‖ ≥ n.

Proof. We will prove this only for the case of 2 colors. For 2k colors, apply the
argument for 2 colors k times.

First and second case (unary and binary node colorings): We will define T
by (“upward”) induction, starting with root(T ) := root(S). For any η ∈ T we
let succT (η) be a c-homogeneous subset of succS(η) of size ≥ n. (Such a large
homogeneous set exists since succS(η) has at least R(n) elements.) This defines a
creature T with ‖T‖ ≥ n, and it is clear that T is c-homogeneous.

Third case: Let c : ext(S) → {0, 1}. We will define a unary node coloring c′ as
follows, by (“downward”) induction starting at the leaves:

• If η ∈ ext(S), then c′(η) = c(η).
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• If η ∈ int(S), and c′�succS(η) is already defined, then we choose c′(η) ∈
{0, 1} such that

|{ν ∈ succ(η) : c′(ν) = c′(η)}| ≥ n.

This is possible as |succ(η)| ≥ R(n) ≥ 2n.
Now let �0 := c′(root(S)), and define T ≤ S by requiring root(T ) = root(S), and

∀η ∈ T : succT (η) = {ν ∈ succS(η) : c′(ν) = �0}.
Then ‖T‖ ≥ n, and c′ is constant on T with constant value �0, so also c is constant
on ext(T ). �

3. Zoos

3.1. Definition. A zoo is a sequence s = (S0, S1, . . .) of proper creatures (see 2.5)
such that:

• All Sn are pairwise disjoint.
• For all n, max ext(Sn) < min ext(Sn+1) (recall that ext(Sn) ⊆ N).
• The sequence (‖Sn‖ : n ∈ N) diverges to ∞, and ∀n : ‖Sn‖ ≥ 4.

We define ext(s) :=
⋃

n∈N
ext(Sn), similarly int(s).

We similarly transfer other notation from creatures to zoos, e.g., for η ∈ Sn we
may write succs(η) for succSn

(η), s[η] for S
[η]
n , etc. For η ∈ Sn, we may write

max[η] or maxs[η] for max ext(S[η]
n ). We sometimes identify s with int(s)∪ext(s),

i.e., for s = (S0, S1, . . .) we write η ∈ s instead of η ∈
⋃

n Sn.

3.2. Remark. (Again this remark is only for the benefit of readers familiar with
[14].) With the definition nor(A) := max{k : R(k)(4) ≤ |A|} (for any finite set A),
it is clear that limn→∞ nor(An) = ∞ is equivalent to just limn→∞ |An| = ∞. This
equivalence allows us to omit the definition of norms for our creatures.

3.3. Definition. Let s = (S0, . . .) and t = (T0, . . .) be zoos. We say s =∗ t if there
are n0 and k0 such that (Sn0 , Sn0+1, . . .) = (Tk0 , Tk0+1, . . .).

3.4. Definition. Let t = (T0, T1, . . .) be a zoo.
A branch of t is a set which is a branch in one of the trees Tn.
A front is a set F ⊆ t (i.e., F ⊆

⋃
n Tn) such that each of the sets F ∩ Tn is a

front in Tn. Equivalently, F meets every branch of t in exactly one node.
A *front (or “almost front”) is a set F ⊆

⋃
n Tn such that for some t′ =∗ t, F ∩ t′

is a front in t′. Equivalently, F is a *front iff almost all (=all except finitely many)
branches of t meet F in exactly one node.

If F and G are *fronts in t, we write F ≈∗ G iff there is some t′ =∗ t such that
F ∩ t′ = G ∩ t′. (Equivalently, F ≈∗ G iff the symmetric difference of F and G is
finite.)

3.5. Definition. Let s = (S0, S1, . . .) be a zoo. For η, ν ∈
⋃

n Sn we define

η < ν ⇔ max[η] < min[ν],

and we let η � ν iff η and ν are on adjacent branches, i.e.,
η < ν and for all k ∈ ext(s): k ≤ max[η] or k ≥ min[ν].

For example, in Figure 1 we have ηi � νj for i ∈ {1, 2} and j ∈ {1, 2}, but not
for j = 3.

The following fact is not needed, but can be useful to visualize fronts.
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3.6. Fact. Let s = (S0, S1, . . .) be a zoo. A set F ⊆
⋃

n Sn is a front in s iff F can
be enumerated as F = {η0, η1, . . . } where min[η0] = min extS0, and for all n we
have ηn � ηn+1.

Below we will several times have to generate new (“improved”) zoos from old
ones. The following examples are special cases of the general definition below.

3.7. Construction. Let s = (S0, S1, . . .) be a zoo.
drop: Let n0 < n1 < · · · be an infinite increasing sequence. Let t =

(T0, T1, . . .) be defined by Tk = Snk
. Then t is a zoo.

We say that t is obtained from s by dropping creatures (namely, by drop-
ping the creatures Si with i ∈ N \ {n0, n1, . . .}).

shrink: For each n let Tn ≤ Sn (see 2.3). Then t = (T0, T1, . . .) is a zoo,
provided that limn→∞ ‖Tn‖ = ∞ and ∀n : ‖Tn‖ ≥ 4.
We say that t is obtained by shrinking s.

glue: Partition N into intervals: N =
⋃∞

k=0[nk, nk+1) with 0 = n0 < n1 <
n2 < · · · and

lim
k→∞

(nk+1 − nk) = ∞, ∀n : nk+1 − nk > 4.

For each k, let Tk := {τk}∪
⋃nk+1−1

i=nk
Si, where τk = root(Tk) will be a new

element. Make Tk into a creature by requiring: For all i ∈ [nk, nk+1), all
η ∈ Si: S

[η]
i = T

[η]
k . Again t will be a zoo.

Sometimes we have to compose the steps described above, but at one point (see
3.14) we will need a more complicated gluing process, as described in the following
definitions.

3.8. Definition. A gluing recipe is a sequence r = (R0, R1, . . .) of (not necessarily
proper) creatures satisfying ∀k : max ext(Rk) < min ext(Rk+1), and moreover, if
the set A := {k : Rk proper} is infinite, then limk∈A ‖Rk‖ = ∞.

That is, a gluing recipe looks like a zoo, except that we allow all or some of the
creatures to be just single natural numbers.

Figure 2 shows a zoo s together with a gluing recipe r.

3.9. Definition. Let s = (S0, . . .) and t = (T0, . . .) be zoos, and let r = (R0, R1, . . .)
be a gluing recipe.

We say that “t ≤ s via r” iff there are creatures S′
k ≤ Sk with

⋃

n

int(Rn) ∩
⋃

k∈ext(r)

int(S′
k) = ∅

such that t is obtained from r by replacing each k ∈ ext(r) by S′
k, i.e.,

Tn = (Rn \ ext(Rn)) ∪
⋃

k∈ext(Rn)

S′
k,

and T
[η]
n = S′

k
[η] for η ∈ S′

k, k ∈ ext(Rn), and T
[η]
n = int(R[η]

n )∪
⋃

k∈ext(R
[η]
n )

S′
k for

η ∈ int(Rn).
Figure 3 shows the zoo t obtained from the zoo s via the gluing recipe r from Fig-

ure 2.
We say “t ≤ s” iff there is a gluing recipe r such that “t ≤ s via r” holds.
We say “t ≤∗ s” iff there is some t′ =∗ t such that t′ ≤ s.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:808



CLONES FROM CREATURES 3537

S0 S2 S5 S6 · · ·S1 S3 S4

0 2 3

R1R0

5

· · ·

Figure 2.

S′
0 S′

2 S′
3

S′
5

T0 T1

· · ·

Figure 3.

We leave it to the reader to check that the relation t ≤ s and t ≤∗ s are indeed
transitive (and reflexive). Also, ≤ is antisymmetric, and

s ≤∗ t & t ≤∗ s ⇒ s =∗ t.

For visualizing creatures, and also for avoiding notational complications, it is
often useful to replace the relation ≤ by the following relation �:

3.10. Convention. We will write t � s if t ≤ s via some gluing recipe r, and in
addition to ⋃

n

int(Rn) ∩
⋃

k∈ext(r)

int(S′
k) = ∅

we have moreover ⋃

n

int(Rn) ∩
⋃

n

int(Sn) = ∅,

i.e., the internal nodes from s that were omitted (either in the passage from Sn

to S′
n, or because they are in some Sk with k /∈ ext(r)) will not be recycled as

nodes from r. Note that:
(1) The relation � is not transitive.
(2) However: For any t ≤ s we can find (by renaming internal nodes of t) a zoo

t′ � s, t′ = (T ′
0, . . .) such that t′ is isomorphic to t, i.e., there is a bijection

between
⋃

n T ′
n and

⋃
n Tn which is the identity on leaves, and preserves

the relations � and the norms.
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(3) Moreover: Let (si : i ∈ I) be a family of zoos, and ∀i : t � si. Assume
t1 ≤ t via r1. Then there is a gluing recipe r′1 which is isomorphic to r1

and a condition t′1 isomorphic to t1, with t1 � t via r′1, and also satisfying
∀i : t′1 � si.

Thus, whenever we consider conditions t ≤ s we will usually assume without loss of
generality that we have even t � s. This guarantees that any η ∈ t ∩ s will appear
in t “in the same place” as in s, e.g., succt(η) ⊆ succs(η).

We write t �∗ s iff there is t′ =∗ t with t′ � s.

3.11. Definition. Let E be a finite set, and let s be a zoo. A coloring (of s, with
colors in E) is a partial map c : s → E, or c : [s]2 → E, or c : ext(s) → E, such
that each map c�Sn, or c�[Sn]2, or c�ext(Sn) is a coloring as in 2.7. Again we call
c a unary node coloring, a binary node coloring, or a branch coloring, respectively.

Let t � s. Then c induces a coloring of t, which we also call c.
We say that t is c-homogeneous if:

• In the first case: for all n, c�succTn
(η) is constant, for all η ∈ int(Tn) ∩ s.

• In the second case: for all n, c�[succTn
(η)]2 is constant, for all η ∈ int(Tn)∩

s.
• In the third case: not only is each c�ext(Tn) constant, but all constant

values are the same, i.e., c�ext(t) is constant.

We say that t �∗ s is almost c-homogeneous iff there is t′ =∗ t, such that t′ is
c-homogeneous.

3.12. Fact. If t is c-homogeneous, then any t′ � t is also c-homogeneous.
If t is almost c-homogeneous, then any t′ �∗ t is also almost c-homogeneous.

3.13. Lemma. Let s = (S0, . . .) be a zoo, and let E be a finite set. Let c :
⋃

n Sn →
E, or c :

⋃
n[Sn]2 → E, or c :

⋃
n ext(Sn) → E be a coloring of s with colors

from E.
Then there is a zoo t � s which is homogeneous for c.
Moreover, t can be obtained from s by combining the steps “shrinking” and “drop-

ping” (i.e., with gluing recipes which contain only improper creatures).

Proof. We show this only for the case |E| = 2. (For larger E, repeat the proof
�log2 |E|� many times, or use the unproved assertion from Lemma 2.8.)

We may assume ‖Sn‖ ≥ R(4) for all n. By Ramsey’s theorem we can find a
sequence (�n : n ∈ N) [namely: �n := R−1(‖Sn‖)] which diverges to infinity and
satisfies ∀n : ‖Sn‖ ≥ R(�n), and �n ≥ 4.

Apply Lemma 2.8 to each Sn separately to get creatures Tn ≤ Sn which are
homogeneous for c and satisfy ‖Tn‖ ≥ �n. Thus t = (T0, T1, . . .) is a zoo.

If c is a coloring of the third kind (a unary branch coloring), then it is still
possible that the constant values that c takes on each creature are different. One
of the constant values appears infinitely often, so by dropping creatures from t we
obtain t′ � t which is c-homogeneous. �

It is clear that we can extend this lemma to the slightly more general case of
finitely many colorings: If s = (S0, . . .) is a zoo, and c1, . . . , ck are colorings of s,
each with finitely many colors E1, . . . , Ek, respectively, then there is a zoo t � s
which is homogeneous for each ci.
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If we have countably many colorings, then we can in general not find a zoo which
is homogeneous for all of them; however, the following construction shows that this
is almost possible.

3.14. Lemma. Let (s0, s1, . . .) be a sequence of zoos with ∀k, n : k < n ⇒ sn �∗ sk.
Then there is a zoo t with ∀n : t �∗ sn.

Proof. Let sn = (Sn
0 , Sn

1 , . . .). Without loss of generality, we may assume (omitting
finitely many creatures from sn if necessary) that we have in fact sn � sk for
all k < n.

Moreover, we may assume, for all n:
(a) min ext(Sn+1

0 ) > max ext(Sn
0 ), and

(b) ‖Sn
0 ‖ ≥ n + 4.

Now let t := (S0
0 , S1

0 , S2
0 , . . .), then we claim that t �∗ sn for all n.

First, note that t is indeed a zoo, by (a) and (b).
We will show only t � s0; a similar proof establishing (Sn

0 , Sn+1
0 , . . .) � sn is left

to the reader.
Write Sn for S0

n.
Since sn = (Sn

0 , Sn
1 , . . . ) � s0, there is a creature Rn such that Sn

0 = int(Rn) ∪⋃
k∈ext(Rn) S′

k, where S′
k ≤ Sk. Note ‖Rn‖ ≥ ‖Sn

0 ‖ ≥ n (if Rn is proper).
We leave it to the reader to check that max ext(Rn) < min ext(Rn+1) (using

max ext(Sn
0 ) < min ext(Sn+1

0 )).
Now the gluing recipe r = (R0, R1, . . .) witnesses t � s0. �

The following corollary will be used in our transfinite construction 5.6. See also
6.1.

3.15. Corollary. Let Z be a countable set of zoos which is linearly quasiordered
by �∗. Then there is a zoo t with ∀s ∈ Z : t �∗ s.

Proof. Let Z = {z0, z1, . . .}. Choose a sequence s0 �∗ s1 �∗ · · · in Z such that
sn ∈ Z, and sn �∗ zn, and apply Lemma 3.14. �

3.16. Corollary. Let s = (S0, . . .) be a zoo, and for each n ∈ N let cn : s → En or
cn : [s]2 → En or cn : ext(s) → En be a coloring with finitely many colors.

Then there is a zoo t �∗ s which is almost homogeneous for each cn. That is,
there is a zoo t �∗ s, and for each n there is tn =∗ t, tn � s, which is homogeneous
for cn.

Proof. Apply Lemma 3.13 infinitely many times to get a decreasing sequence s �
s0 � s1 � · · · such that each si is ci-homogeneous. By 3.14 there is a �∗-lower
bound t for this sequence; by 3.12, t is almost ci-homogeneous for each i. �

4. Gauging growth

4.1. Motivation. The comparison “f ≤ g” between growth functions is too coarse
for our purposes. For finer comparisons, we will consider the growth behavior
of these functions “locally”. For example, if I = [a, b] is an interval in N, and
f(I)∩I = ∅ (i.e., f(a) > b), then we can say that f grows fast on I, or symbolically:
f�I > I. Similarly, if I = {[a1, b1], . . . , [an, bn]} is a set of intervals with a1 < b1 <
· · · < an < bn, and f(a1) > bn, we can say that f “grows faster than I”, or “is
stronger than the set I”, symbolically: f�I > I.
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This point of view allows us to introduce a dual concept: If again we have
a1 < b1 < · · · < an < bn, but now f(bk) < ak+1 for k = 1, . . . , n − 1, then
we can say that f “grows more slowly than I”, or f is “weaker” than the set I,
symbolically: f�I < I.

Note that this is indeed a local notion: If I1 and I2 are sets of intervals, f and
g growth functions, then it is quite possible that f�I1 < I1 but f�I2 > I2, while g
satisfies the converse inequalities.

How does this help us to compare f and g? If we label certain sequences of
intervals as “distinguished”, we introduce a (kind of) ordering relation on growth
functions: f < g iff there is a distinguished sequence of intervals I which is stronger
than f but weaker than g: f�I < I < g�I. Our aim in the remaining sections is
to show how we can select such distinguished sequences such that the resulting
ordering relations can be viewed as a linear order.

Zoos (or rather: nodes in zoos) are our way of coordinatizing sequences of inter-
vals. If s is a zoo, η ∈ s, then η is associated with the interval [min[η], max[η]], and
also with the set of intervals {[min[ν], max[ν]] : ν ∈ succ(η)}.

4.2. Definition. Let f be a growth function, and s = (S0, S1, . . .) a zoo.
(a) s is f-strong iff

∀n : f(max ext(Sn)) ≤ min ext(Sn+1).

Not surprisingly, we say that s is almost f-strong if the above inequality
holds for all but finitely many n.

(b) Let η ∈ int(Sn). We call η f-strong in s iff
for all ν1 < ν2 in succSn

(η) : f(max[ν1]) ≤ min[ν2].
(c) Let η ∈ Sn. We call η f-weak in s iff

f(min[η]) > max[η].

4.3. Fact.

(1) No η can be both weak and strong.
(2) For η ∈ ext(Sn), max[η] = min[η] = η ∈ N. So (since f is a growth

function), every leaf is f -weak: f(η) > η.
(3) If η � ν, and η is weak, then ν cannot be strong.
(4) If t � s, and η ∈ t ∩ s is f -weak in s, then η is also f -weak in t.
(5) Similarly, if η is f -strong in s, then η is also f -strong in t.
(6) Finally, if s is f -strong, then any t � s is also f -strong.

4.4. Fact. Let s be a zoo, f a growth function. Then there is t � s which is
f -strong.

Proof. The sequence (min ext(Sn) : n = 0, 1, 2, . . .) diverges to infinity, so replacing
(S0, S1, . . .) by a subsequence, if necessary, we get f(max ext(Sn)) < min ext(Sn+1)
for all n. �

4.5. Definition. Let s be a zoo, f a growth function, F ⊆ s a *front.
We say that F gauges f (or more precisely: F gauges f in s) iff
(1) all η ∈ F are f -weak,
(2) whenever η1 < η2 are in F , then f(max[η1]) ≤ min[η2] (since f is monotone,

it is enough to require this only for all η1 � η2),
(3) s is almost f -strong. (This actually follows from (2).)
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We say that s gauges f iff there is a *front F ⊆ s which gauges f . In this case
we fix such a *front (or, if possible, an actual front) and call it F (s, f).

The following lemma is easy but important:

4.6. Crucial Lemma.
(1) If F1, F2 ⊆ s both gauge f , then F1 ≈∗ F2.
(2) If s gauges f , and t �∗ s, then also t gauges f , and F (t, f) ≈∗ F (s, f) ∩ t.

Proof. (1) Let s = (S0, S1, . . . ). Without loss of generality (dropping finitely many
creatures if necessary) we may assume that F1 and F2 are not only *fronts but
actually fronts. Now assume F1 �= F2. So there is (wlog) η ∈ int(Sn) ∩ (F1 \ F2)
such that F2 ∩ S

[η]
n is a front in S

[η]
n . Let ν1 < ν2 be in F2 ∩ S

[η]
n . Since F2 gauges

f we must have f(max[ν1]) ≤ min[ν2], but since η is f -weak we must also have
f(min[η]) > max[η]. Clearly min[η] ≤ min[ν1] and max[η] ≥ max[ν2], so we have a
contradiction.

(2) Let F ′ := F (s, f) ∩ t. Clearly F ′ is a *front in t, and F ′ gauges f , so
F ′ ≈∗ F (t, f) by (1). �

The following fact is easy:

4.7. Fact. Let F be a front in s. Then there is a growth function f and t � s such
that t gauges f , and F (t, f) ≈∗ F ∩ t. (In fact, we can choose t = s.)

Proof. Choose a growth function f satisfying f(min[η]) = f(max[η]) = max[η] + 1
for all η ∈ F . We leave the details to the reader. �
4.8. Lemma. Let f be a growth function, and s = (S0, S1, . . .) a zoo which is almost
f-strong. Then there is t � s such that t gauges f .

In fact, we will find a coloring function c such that any t � s which is almost
c-homogeneous will gauge f , and then invoke 3.13 to show that there is such t.

Proof. We start with a zoo s = (S0, S1, . . .) which is f -strong.
By ignoring finitely many of the Si we may assume ‖Sn‖ ≥ R(R(4)) for all n.
For each η ∈ int(s) we define a pair coloring cη of succs(η) with three colors as

follows: Whenever ν < ν′ in succs(η), then
• cη({ν, ν′}) = strong, if f(max[ν]) < min[ν′],
• cη({ν, ν′}) = weak, if f(min[ν]) > max[ν′],
• cη({ν, ν′}) = undecided, otherwise.

Note that if ν1 < ν2 < ν3 < ν4 are in succs(η), then at least one of

c({ν1, ν4}) = strong or c({ν2, ν3}) = weak

has to hold, since otherwise we would have

f(max[ν1]) ≥ min[ν4] and f(min[ν2]) ≤ max[ν3],

which together with

min[ν1] ≤ max[ν1] < min[ν2] ≤ max[ν2] < min[ν3] ≤ max[ν3] < min[ν4] ≤ max[ν4]

yields a contradiction to the fact that f is monotone.
(Also note that if f(max ext(S[ν])) < min ext(S[ν′]), and T ≤ S with ν, ν′ ∈ T ,

then we also have f(max ext(T [ν])) < min ext(T [ν′]).)
The family (cη : η ∈ int(s)) defines on s a binary node coloring c. Let t � s be

c-homogeneous, t = (T0, T1, . . .), ‖Tn‖ ≥ 4 for all n.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use

Sh:808



3542 MARTIN GOLDSTERN AND SAHARON SHELAH

ν

ν1 ν2

η1 η2

max[η1] max[ν1] min[ν2] min[η2]

Figure 4.

Since each set succTn
(η) has more than 3 elements, it is impossible that cη is

constantly “undecided”.
Clearly each η ∈ t is either f -weak or f -strong.
Now we show that any c-homogeneous zoo t � s gauges f . (Note that if t � s

via r, then the f -strength of s ensures that almost all η ∈ int(r) will be f -strong
in t.)

On every branch b let ηb be the �-lowest node on b which is f -weak (recall that
all leaves are f -weak), and let F := F (t, f) := {ηb : b a branch in t}.

Note that if ν � ηb, then ν is f -weak (by Fact 4.3), while any ν � ηb is f -strong.
So F ∩ b = {ηb} for all b. Hence F (t, f) is a front.
Let η1 < η2 be in F , η1 ∈ Tn1 , η2 ∈ Tn2 . We have to check that f(max[η1]) ≤

min[η2].
The case n1 < n2 is trivial (since t is f -strong).
So assume n1 = n2 =: n. In (Tn, �) let ν be the greatest lower bound of η1 and

η2. Then ν � η1, so ν is f -strong. Let ν1 < ν2 in succ(ν), ν1 � η1, ν2 � η2; see
Figure 4.

Clearly f(max[η1]) ≤ f(max[ν1]) ≤ min[ν2] ≤ min[η2] (where the middle in-
equality holds because ν is f -strong).

Hence F gauges f . �

We now fix a zoo s; the fronts in s are naturally partially ordered by the re-
lation “is everywhere higher”. We will show below that the relation f ≤ext(s) g
(see 1.13(2)) can be translated to a “F (s, f) is higher than F (s, g)”, for sufficiently
small s.

4.9. Definition. Let s be a zoo, and let F and G be *fronts in s. We write
F ≺ G (or F ≺s G) iff, for all branches b of s, b meets F �-above G, i.e., letting
b ∩ F = {ηF,b}, b ∩G = {ηG,b}, we have ηF,b 	 ηG,b. (The reason for this apparent
reversal of inequalities will become clear in Remark 4.14 below.)

Recall that F ≈∗ G iff there is some s′ =∗ s such that F ∩ s′ = G ∩ s′.
We write F ≺∗

s G if the relation ηF,b 	 ηG,b holds for almost all branches b of s
(i.e., for all except finitely many). Equivalently, F ≺∗

s G iff there is some s′ =∗ s
such that F ∩ s′ ≺s′ G ∩ s′.
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Similarly, we define F �s G [F �∗
s G], by requiring that for all [except finitely

many] branches b, b meets F �-above G, i.e., letting b∩F = {ηF,b}, b∩G = {ηG,b},
we have ηF,b � ηG,b.

We write F + 1 ≈∗
s G iff F ≺∗

s G, and moreover, for almost all branches b of s,
ηF,b is a direct successor of ηG,b.

Similarly, we write F +n ≈∗
s G iff F �∗

s G, and moreover, for almost all branches
b of s, ηF,b is exactly n nodes above ηG,b.

The notations F + n �∗
s G and G �∗

s F + n have the obvious meanings. In
particular, F + 1 �∗

s G will be equivalent to F ≺∗
s G.

Finally, we write F + ∞ �∗
s G iff for all n, for almost all branches b of s, ηF,b is

more than n nodes above ηG,b. (Equivalently, if for all n, F + n �∗
s G.)

4.10. Remark.
(1) It is easy to see that [F + n ≈∗ G and F + n ≈∗ G′] implies G ≈∗ G′, so

this functional notation is justified.
(2) There are fronts F such that F + 1 is undefined. For example, if we let F

be the front

root(s) := {root(S0), root(S1), . . .},
then there is no *front G with F + 1 ≈∗

s G.
(3) However, if F + 1 �∗

s root(s), then F + 1 is “well defined”, i.e., there is a
*front G with F + 1 ≈∗

s G, and by (1), G is unique up to ≈∗
s .

4.11. Fact. If F �∗
s G, and t �∗ s, then also (F ∩ t) �∗

t (G ∩ t). Similarly, for
F + n �∗

s G or F + ∞ �∗
s G.

4.12. Lemma.
(1) Let s be a zoo, and let F, G be *fronts in s. Then there is a coloring c such

that whenever t �∗ s is almost c-homogeneous, then (F ∩ t) �∗
t (G ∩ t) or

(G ∩ t) �∗
t (F ∩ t).

(2) Let s be a zoo, and let F �∗
s G be *fronts in s. Then there is a coloring c

of s such that whenever t �∗ s is almost c-homogeneous, then exactly one
of the following holds:

• (F ∩ t) ≈∗
t (G ∩ t),

• (F ∩ t) + 1 �∗
t (G ∩ t).

(3) Let s be a zoo, and let F �∗
s G be *fronts in s. Then there are colorings

c0, c1, . . . such that whenever t � s is almost ck-homogeneous for all k, then
exactly one of the following holds:

• (F ∩ t) + n ≈∗
t (G ∩ t) for some (unique) n,

• (F ∩ t) + ∞ �∗
t (G ∩ t).

Proof. (1) For each branch b of s that meets F (G, respectively) in a unique point,
let {ηF,b} = F ∩ b ({ηG,b} = G ∩ b, respectively).

Now color each branch b as follows:
• c(b) = small if ηF,b � ηG,b,
• c(b) = big if ηF,b � ηG,b,
• c(b) = unknown if ηF,b and/or ηG,b is undefined.

Now let t �∗ s be almost homogeneous for c. Clearly the color unknown appears
only finitely many times as a value of c�ext(t). If c�ext(t) is almost constant with
value small, then (F ∩ t) �∗ (G ∩ t), otherwise (G ∩ t) �∗ (F ∩ t).
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(2) Define ηF,b and ηG,b as above. Define a branch coloring c as follows:
• c(b) = equal if ηF,b = ηG,b,
• c(b) = bigger if ηF,b 	 ηG,b,
• c(b) = unknown if ηF,b and/or ηG,b is undefined, or if ηF,b � ηG,b.

Again, any almost homogeneous condition can take the value unknown at most
finitely many times.

(3) For each n = 0, 1, 2, . . . define a branch coloring cn as follows:
• cn(b) = small if ηF,b is at most n nodes �-above ηG,b,
• cn(b) = big if ηF,b is more than n nodes above ηG,b,
• cn(b) = unknown if ηF,b and/or ηG,b is undefined, or if ηF,b � ηG,b.

Now assume that t �∗ s is almost cn-homogeneous, for all n. We distinguish two
cases:
(Case 1) There is some n such that cn�ext(t) is constantly small (with finitely

many exceptions). Let n̄ be the smallest n for which this happens, then
on almost all branches b of t, ηF,b is exactly n̄ nodes above ηG,b, so

(F ∩ t) + n̄ ≈∗
t (G ∩ t).

(Case 2) Each cn is (almost equal to) the constant function with value big. Then
we can easily see that

(F ∩ t) + ∞ �∗
t (G ∩ t).

�
4.13. Definition. Let f and g be growth functions, and assume that s gauges both
f and g. (So F (s, f) and F (s, g) are well defined.)

We now write f ≈∗
s g, f ≺∗

s g, etc., iff F (s, f) ≈∗ F (s, g), F (s, f) ≺∗
s F (s, g),

etc., respectively.

Combining 4.6 and 4.11, we get: If f ≺∗
s g, and t �∗ s, then also f ≺∗

t g, etc.

4.14. Remark. If f ≤ g, then every g-strong node is also f -strong, and every f -weak
node is g-weak.

Hence the front corresponding to f is �-higher in the trees than the one for g.
Thus, f ≤ g implies f �∗

s g, whenever s gauges f and g.

The converse is of course not true, but we will show below that it is “true modulo
ext(s)”:

4.15. Lemma. Let s be a zoo, let f and g be growth functions, and let s gauge f
and g.

Assume f �∗
s g.

Then f ≤ext(s) g. (See 1.13.)

Proof. Write A for ext(s).
First note that if s =∗ s′, then also ext(s) =∗ ext(s′), so by 1.14 we may

(replacing s by an appropriate s′ =∗ s), without loss of generality, assume that not
only F (f, s) �∗

s F (g, s) but even F (f, s) �s F (g, s).

Part 1. We first show ∀k ∈ A : f(k) ≤ (hA ◦ g)(k).
So fix k ∈ A. Let η ∈ F (f, s), η � k.
Let η′ ∈ F (f, s), where η � η′.
So f(k) ≤ f(max[η]) ≤ min[η′], because F (s, f) gauges f .
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But g(k) ≥ g(min[η]) > max[η], as η is g-weak. By the definition of η � η′ this
means that hA(g(k)) ≥ min[η′], as hA(· · · ) ∈ A.

So f(k) ≤ (hA ◦ g)(k).

Part 2. We now consider a general n ∈ N. Let k := hA(n). Clearly n ≤ k ∈ A =
ext(s). So by part 1, f(n) ≤ f(k) ≤ (hA ◦ g)(k) = (hA ◦ g ◦ hA)(n).

So in any case we have f ≤ hA ◦ g ◦ hA, which means f ≤A g. �

4.16. Lemma. If f ≺∗
s g, then f ≤ext(s) g and g �≤ext(s) f .

Proof. We already have f ≤ext(s) g, so we only have to refute g ≤ext(s) f .
Again replacing s by an appropriate s′ =∗ s we may assume f ≺s g. For

notational simplicity only we will assume that the *fronts F (s, f) and F (s, g) are
actually fronts.

Let A := ext(s). Assume g ≤ max(hA, f)(j). All except finitely many η ∈ int(s)
have more than j direct successors; find n and η ∈ F (s, g) ∩ Sn such that η has
more than j successors. Consider the set C := {ν ∈ F (s, f) : η � ν}. We know
that this set is nonempty and even that it has more than j elements (since each
branch through η must meet C). We can write C as C = {ν1, . . . , ν�}, where � > j
and ν1 � ν2 � · · · � ν�.

Then hA(min[νi]) ≤ min[νi+1] for all i, and also f(min[νi]) ≤ min[νi+1], as
νi ∈ F (s, f). Hence

max(hA, f)(j)(min[ν0]) ≤ max[ν�].
But g(min[ν0]) > max[ν�], because η is g-weak (as η ∈ F (s, g)). �

The last two facts allow us to replace the relation ≤A between functions (this is
the relation that we are really interested in) by the relation �∗

s between the associ-
ated fronts (this is the relation that can be more easily manipulated, by modifying s),
assuming that A = ext(s) and that s “knows enough” about f and g.

5. Direct limit

We will fix a nonempty partial order (I,≤) in which every countable set has an
upper bound. Later we will consider only the special case I = ω1.

5.1. Definition. Let �s = (si : i ∈ I) be a sequence of zoos with ∀i < j : sj �∗ si.
We say that F is a *front in �s if there is i ∈ I such that F ⊆ si is a *front in si.
(Note that this implies that each F ∩ sj is a *front in sj , for all j ≥ i.)

5.2. Definition. Let �s be as above, and let F and G be *fronts in si1 , si2 , respec-
tively.

We will write F ≈∗
�s G iff there is some i ≥ i1, i2 such that we have (F ∩ si) ≈∗

si

(G ∩ si). Equivalently, we could demand:
For some i∗ ≥ i1, i2, for all i ≥ i∗: (F ∩ si) ≈∗

si
(G ∩ si).

Clearly, this is an equivalence relation.
Similarly, we define F ��s G, F �∗

�s G, F + n ≈∗
�s G, etc. (See Definition 4.9 and

Fact 4.11.)
For example, F +n ≈∗

�s G iff one or both of the following two equivalent conditions
hold:

(1) ∃i : (F ∩ si) + n ≈∗
si

(G ∩ si),
(2) ∃i0∀i ≥ i0 : (F ∩ si) + n ≈∗

si
(G ∩ si).
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Given �s, we write F�s for the set of ≈∗
�s-classes of *fronts. F�s is naturally partially

ordered by �∗
�s .

5.3. Definition. Let �s be as above.
For each i, if si = (Si

0, S
i
1, . . .), we let root(si) be the front

{root(Si
0), root(Si

1), . . .}.

5.4. Definition. �s = (si : i ∈ I) is “sufficiently generic” if:
(1) i < j implies sj �∗ si.
(2) For any i ∈ I, and any coloring c of si (of one of the three types described

in 3.11) there is j ∈ I, j > i, such that sj is almost c-homogeneous.
(3) For all growth functions f : N → N there is i such that si is almost f -strong.
(4) For all i there is j ≥ i such that (root(si) ∩ sj) + 1 �∗

sj
root(sj).

At the end of this section we will show that (assuming CH) there exists a suffi-
ciently generic sequence (si : i ∈ ω1).

But first we will show how a sufficiently generic sequence helps to get the desired
clone. We first show that the set F�s of ≈∗

�s-equivalence classes of *fronts is linearly
ordered by ≤�s, without a last element.

As a byproduct, we get more information about this linear order (such as: every
element has a direct successor). Assuming CH, this information will be sufficient
to characterize this order up to order isomorphism.

We then consider the filter U generated by the sets ext(si). The results from
the previous section will easily show that the map f 
→ F (si, f) (for an appropriate
i = i(f) ∈ I) induces an isomorphism between the order G/U and F�s. This is
enough to prove our main theorem.

5.5. Fact. Assume that �s = (si : i ∈ I) is sufficiently generic. Then:
(5) For all i: if c0, c1, . . . are colorings of si, then there is j > i such that sj is

almost ck-homogeneous for each k.
(6) For all *fronts F, G we have F �∗

�s G or G �∗
�s F .

(7) For all *fronts F, G with F �∗
�s G, exactly one of the following holds:

• F + n ≈∗
�s G for some (unique) n,

• F + ∞ �∗
�s G.

(8) For all *fronts F there is a *front G such that F + 1 ≈∗
�s G.

(9) Every countable set of *fronts has a �∗
�s-upper bound. Moreover, if F1 and

F2 are countable sets of *fronts and ∀F1 ∈ F1 ∀F2 ∈ F2 : F1 �∗
�s F2, then

there is a *front G with

∀F1 ∈ F1 ∀F2 ∈ F2 : F1 �∗
�s G �∗

�s F2.

(10) For all *fronts F there is a *front G such that F + ∞ �∗
�s G.

(11) Whenever F + ∞ �∗
�s G, then there are 2ℵ0 equivalence classes of *fronts

between F and G. (Hence by (7) and (10), if we divide the set F�s by the

equivalence relation generated by “the interval [x, y] is finite”, then we get a

linear order which is 2ℵ0 -dense.)

(12) For all i, j: ext(si) ≈∗
�s ext(sj); the equivalence class of these *fronts is the

�∗
�s-smallest class.

(13) For all *fronts G not in the class described in (12), there is a *front F with
F + 1 ≈∗

�s G.
(14) For all f : N → N there is i such that si gauges f .
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Proof.

(5) We can find a sequence i ≤ i0 ≤ i1 ≤ · · · in I such that sin
is almost cn-

homogeneous. Now let j be any upper bound of the set {i0, i1, . . .}, then
sj must be almost cn-homogeneous for all n.

(6) By 4.12(1), and 5.4(1,2).
(7) By (5) and 4.12(3).
(8) Let F be a *front in si. First we show that there is a *front H such that

F + 1 �∗
�s H. If root(si) cannot serve as such an H, then we must have

F ≈∗
si

root(si), so we can use 5.4(4) to get an appropriate H.
Now use 4.10(3).

(9) Not needed for our main conclusion, and left to the reader.
(10) Use (8) and (9).
(11) Not needed for our main conclusion, and left to the reader.
(12) Clear.
(13) Clear.
(14) Use 4.8 and 5.4(1,2,3). �

The following transfinite construction is now routine.

5.6. Conclusion. Assume CH. Then there is a sufficiently generic sequence (si :
i ∈ ω1).

Proof. Recall that ω1 is an uncountable well-ordered set with the property that for
all j ∈ ω1 the set {i ∈ ω1 : i < j} is countable. Also recall that each element i ∈ ω1

has a direct successor

i + 1 := min{j ∈ ω1 : i < j}.
Limit points of ω1 are those elements which are not of the form i + 1. The least
element of ω1 is called 0.

We will use a straighforward bookkeeping argument to take care of 5.4(2–4).
By CH, let (fi : i ∈ ω1) enumerate all growth functions. Let H : ω1 × ω1 → ω1

be a bijection satisfying H(α, β) ≥ α for all α, β ∈ ω1, and let (H1, H2) be the
inverse functions, i.e., H(H1(γ), H2(γ)) = γ for all γ ∈ ω1.

Now define a �∗-decreasing sequence (si : i ∈ ω1) as follows:

• s0 is arbitrary.
• Assume that (sj : j ≤ i) is already defined. We will define si+1. Let
{ci

j : j ∈ ω1} be the set of all coloring functions of si. (Again, such an
enumeration exists because we are assuming CH.)
Now let si+1 � si be such that
(a) si+1 is fi-strong,
(b) (root(si) ∩ si+1) + 1 �si+1 root(si+1),
(c) si+1 is c

H1(i)
H2(i)

-homogeneous. (Recall that H1(i) ≤ i, so sH1(i) is already

defined; c
H1(i)
H2(i)

is a coloring of sH1(i).)

si+1 can easily be obtained in 3 steps si � s
(a)
i � s

(b)
i � s

(c)
i = si+1, where

in each step we satisfy one of the demands (a), (b), (c). For example, (b)
can be realized by using the “gluing” step from 3.7.

• If j is a limit point, then let sj be any zoo satisfying ∀i < j : sj �∗ si. This
is possible by 3.15. (See also Remark 6.1.) �
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The following facts are easy and well known:

5.7. Fact.

(1) Assume CH. Then there is a unique linear order (D1,≤) with the following
properties:

• D1 has a smallest element but no largest element.
• D1 is of cardinality ℵ1.
• D1 is ℵ1-dense, i.e., between any two elements there are uncountably

many elements.
• Every countable subset of D1 is bounded, and moreover:

For any two countable sets C, C ′ ⊆ D1 with C ≤ C ′ [i.e., ∀x ∈ C ∀y ∈
C ′ : x ≤ y] there is c with C ≤ {c} ≤ C ′.

(2) Assuming CH, there is also a unique linear order D2 with the following
properties:

• D2 has a smallest element but no largest element.
• Every element of D2 has a direct successor.
• Every element of D2 (except for the minimal element) has a direct

predecessor.
• Factoring D2 by the relation

x ∼ y ⇐⇒ the interval [x, y] is finite

yields D1.

Proof. A back-and-forth argument, similar to Cantor’s theorem characterizing the
rationals as the unique dense linear order without endpoints.

D2 can be obtained as the lexicographic order on

({min D1} × N) ∪ (D1 \ {min D1}) × Z.

�

5.8. Conclusion. Assume CH.
Let �s = (si : i ∈ ω1) be sufficiently generic, and let U be the filter generated by

(ext(si) : i ∈ ω1). Then

(a) U is an ultrafilter.
(b) (F�s, �∗

�s) is order isomorphic to D2.
(c) The set G/∼U , ordered by ≤U , is order isomorphic to D2.
(d) Letting 〈U〉 be the clone generated by Cid ∪ {hA : A ∈ U}, the interval

[〈U〉,O] in the clone lattice is order isomorphic to the Dedekind completion
of D2.

Proof. (a) is not needed and left to the reader.
(b) By 5.5 and 5.7.
(c) We define a map K from G to the set of *fronts in �s:

For any f ∈ G, pick i ∈ I such that si is almost f -strong and gauges f . Let

K(f) = F (si, f).

(Recall that for all j ≥ i, F (sj , f) ≈∗
sj

K(f) ∩ sj .)
We now claim that

(∗) f ≤U g iff K(f) �∗
�s K(g).
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To prove this claim, fix f and g. Pick some sufficiently large j ∈ ω1. By 5.5, one
of the following cases holds:

(i) K(f) ≈∗
�s K(g), so F (sj , f) ≈∗

sj
F (sj , g),

(ii) K(f) + 1 �∗
�s K(g), so F (sj , f) ≺∗

sj
F (sj , g),

(iii) K(g) + 1 �∗
�s K(f), so F (sj , g) ≺∗

sj
F (sj , f).

In the first case, 4.15 implies f ≤ext(sj) g, hence f ≤U g and also g ≤U f , so
f ∼U g.

In the second case, we have F (si, f) ≺∗
si

F (si, g) for all i ≥ j, so by 4.16

∀i ≥ j : f ≤ext(si) g and g �≤ext(si) f

which implies f ≤U g but g �≤U f .
In the third case we get similarly g ≤U f and f �≤U g.
So in each case the desired equivalence holds, and (∗) is proved.
Hence K induces an order isomorphism between G/U and F�s.
(d) follows from our discussion in Section 1. �

6. Discussion

6.1. Remark. It is clear that the full strength of CH is not necessary for this con-
struction. Martin’s axiom MA (even the version for σ-centered forcing notions)
is easily shown to imply an analogue of Corollary 3.15, in which “countable” is
replaced by “of size < 2ℵ0”. This allows us to modify the construction in 5.6 to
a transfinite induction of length 2ℵ0 , which shows that already MA implies the
existence of a sufficiently generic sequence.

Thus, the conclusion of our theorem is also consistent with the negation of CH.

To analyse our proof, the following cardinal may be helpful.

6.2. Definition. In analogy to the usual “tower” number t (see [17, 18]) we let tz

the smallest cardinal for which a counterexample to corollary 3.15 exists, i.e., the
smallest cardinality of a linearly quasiordered set Z of zoos such that there is no
zoo t with ∀s ∈ Z : t ≤∗ s.

A cardinal pz can be defined similarly.

What we really showed was:
(1) tz ≥ ℵ1 (3.15).
(2) If tz = 2ℵ0 , then

(∗) there is an ultrafilter U such that G/U is linearly ordered without last
element.

(3) If (∗), then
(∗∗) Cl(N) is not dually atomic.

This leads naturally to the following questions:

6.3. Problems.
(1) Is tz = 2ℵ0 provable in ZFC?
(2) Is (∗) (or a sufficiently strong variant) provable in ZFC?
(3) Is (∗∗) provable in ZFC?

Note that “yes” to questions 6.3(1) or 6.3(2) also implies “yes” to the subsequent
question(s); however, while it will be interesting to compare tz and pz to the other
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well-known cardinal characteristics of the continuum ([17, 18]) we suspect that
tz < 2ℵ0 is consistent with ZFC, which makes such a discussion useless as far as
problem 6.3(3) is concerned.

Note also that our whole construction took part within the interval [Cid,O] of the
clone lattice. Even the strongest possible negative answer to 6.3(2), “Consistently,
[Cid,O] is dually atomic”, would not exclude the possibility that dual atoms may
be absent from other intervals [C,O].
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