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Very many clones above the unary clone

Martin Goldstern, Gábor Sági, and Saharon Shelah

Abstract. Let c := 2ℵ0 . We give a family of pairwise incomparable clones on N with
2c members, all with the same unary fragment, namely the set of all unary operations.

We also give, for each n, a family of 2c clones all with the same n-ary fragment,
and all containing the set of all unary operations.

1. Introduction

In this paper, X will always be a countably infinite set. For a fixed base
set X, an operation on X is a function f : Xn → X for some positive natural
number n. A clone on X is a set of operations that contains all projection
functions and is closed under composition. The set of all clones on X ordered
by inclusion forms a complete lattice. (The survey paper [3] gives some back-
ground about clones, and in particular collects many recent results concerning
clones on infinite sets.)

We write O(n) for the set XXn

of all n-ary operations. For a clone C,
call C(n) := C ∩ O(n) the n-ary fragment of C. The unary fragment C(1)

is a submonoid of the monoid XX of all unary operations. For any monoid
M ⊆ XX , the set of all clones C with C(1) = M is called the monoidal interval
of M ; it has a least element, the clone generated by M , and a largest element
Pol(M), the set of all operations f satisfying f(m1, . . . , mk) ∈ M whenever
m1, . . . , mk ∈ M . (Here, f(m1, . . . , mk) is the unary operation mapping x to
f(m1(x), . . . , mk(x)).)

In [2], we showed that on X = N there are uncountably many clones con-
taining all unary operations (but only two coatoms, see [1], [4]); in other words,
the monoidal interval of XX is uncountable. Pinsker in [6] has constructed (on
arbitrary infinite base sets X) different monoids whose monoidal intervals have
various sizes, among them also one whose monoidal interval has size 22|X|

.
We will show here that (for |X| = ℵ0) the interval associated with the

monoid XX has the largest possible size: 2c. We will also construct, for any
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natural number n ≥ 1, many clones which share their n-ary fragment with 2c

other clones.
The rest of this paper is organized as follows. In Subsection 1.1, we an-

nounce the main results of the paper in a more precise way. Before doing so,
we need further technical preparations. In this subsection, we also present
some preliminary observations which we will use later. Section 2, is devoted
to the proof of Theorem 1.1: if X is a countably infinite set, then there exist
2c clones on X such that each of these clones contain all unary operations
on X. This is the first main result of the paper. Our construction is based
on an Erdős type probabilistic argument. For further motivation and intuitive
explanation about our method, we refer to the beginning of Section 2. Fi-
nally, in Section 3, we prove Theorem 1.3 which we consider the second main
result of the paper (for a detailed formulation of Theorem 1.3, we refer to
Subsection 1.1 below).

1.1. Main results. The first main result of the paper is as follows.

Theorem 1.1. Let X = N be countably infinite. Then there are 2c clones
on X containing the monoid of all unary operations.

To generalize the theorem also to larger arities, we need the following tech-
nical definition:

Definition 1.2. Let α ∈ R. An operation f : Xd → X is defined to be α-
modest iff for all natural numbers N and all Y ⊆ X of cardinality N , the range
of f�Y d has at most αN elements.

• f is modest iff f is α-modest for some α.
• We call a clone C modest iff all operations in C are modest.
• We write M for the set of all modest operations.

Note that M is a clone (the greatest modest clone) and that all unary
operations are modest; in addition, all operations with finite range are modest,
as well.

Theorem 1.3. Let d ≥ 1 and let C be a modest clone on N containing all
d-ary operations with range {0, 1}. Then there are 2c many clones D with
D ∩ O(d) = C ∩ O(d).

Taking d = 1 and C the clone of all essentially unary operations, we get
Theorem 1.1 as a special case.

Machida [5] has defined a natural metric on clones: The distance between
two clones is 1/n, where n is minimal with C ∩ O(n) 	= D ∩ O(n). In this
language, Theorem 1.3 says that certain sets of clones can be arbitrarily small
from the metric/topological point of view—and still large when measured by
cardinality.

Let F be a set of operations. We write 〈F 〉 for the smallest clone contain-
ing F . If C is a clone, then we may write 〈F 〉C instead of 〈F ∪ C〉. Similarly,
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for F = {f, g, . . .}, we write 〈f, g, . . .〉C instead of 〈{f, g, . . .}〉C . Note that
f ∈ 〈F 〉C iff there is a finite subset F0 ⊆ F with f ∈ 〈F0〉C .

Both sections of this paper use the following easy fact:

Lemma 1.4. Let C be a clone, and let (fi : i ∈ I) be a family of operations
which is independent over C (which means that fi /∈ 〈fj : j 	= i〉C for all
i ∈ I). For J ⊆ I, let CJ = 〈fi : i ∈ J〉C .

(a) The map J 
→ CJ is a 1-1 order-preserving map from P(I), the power set
of I, into the interval [C, 〈fi : i ∈ I〉C ] in the clone lattice (both ordered
by inclusion).

(b) If I has cardinality κ, then {CJ : J ⊆ I} contains 2κ many elements and
it is order-isomorphic with P(I).

(c) Assume moreover that {fi : i ∈ I} ⊆ Pol(C ∩O(d)). (Here, Pol(C ∩O(d))
is the set of all operations f with f(c1, . . . , cm) ∈ C ∩ O(d) whenever
c1, . . . , cm ∈ C ∩ O(d).) Then CJ ∩ O(d) = C ∩ O(d) for all J ⊆ I.

Proof. (a) and (b) are clear. The assumption of (c) implies

C ⊆ 〈fi : i ∈ I〉C ⊆ Pol(C ∩ O(d)),

and by definition, the clones C and Pol(C ∩ O(d)) have the same d-ary frag-
ment D. Consequently, the d-ary fragment of CJ is D, as well. �

2. Sparse graphs and modest operations

Definition 2.1. Let (V,E) be a graph (i.e., E ⊆ [V ]2, where [V ]2 is the set of
2-element subsets of V ). We say that (V,E) is (k, l)-sparse iff for every U ⊆ V

of size at most k, the induced subgraph on U has at most l edges.

We note that there is an ambiguity in the literature about the notion of
sparse graphs. Some authors use this name for graphs with low maximum
average degree, some others define a graph to be (k, l)-sparse iff no subset of n

vertices spans more than kn − l edges. Our notion is slightly different from
all of these. We also note that by the size of a graph we mean the cardinality
of the set of its vertices (and not, as sometimes done in graph theory, the
cardinality of the set of its edges).

In order to help the reader, in this paragraph we are providing a brief and
informal explanation for the technical details of the rest of this section. In
Lemma 2.3 below, we will show that for all M , for all large enough N , and for
all 0 < ε < 1

2 , there exist graphs G on N vertices whose M -sized subgraphs
are (k, l)-sparse for certain k and l (where M is small relative to N); while
at the same time, these G have “many” edges: the number of their edges is
at least N1+ε. Using this lemma, we will be able to construct functions on
finite domains having large range, but the range of their restrictions to small
sets remains small; for the details see Lemma 2.6. Carefully “gluing together”
an infinite sequence of such operations we obtain a set S of operations on N
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such that S is independent (over O(1), see Lemma 1.4) and has cardinality c.
Combining this with Lemma 1.4, the proof of Theorem 1.1 will follow quickly.

Definition 2.2. Let M , N be natural numbers, and 0 < ε < 1
2 . We write

M 
ε N iff M · N2ε−1 < 1/10.

Lemma 2.3. Let 0 < ε < 1/2 and let 1 ≤ M 
ε N . Then there is a graph
G = (V,E) with N vertices and more than N1+ε edges that is (k, 2k)-sparse
for all k � M .

Proof. We will use an Erdős type probability argument: we will define a suit-
able probability measure on all graphs on N vertices and then show that the
set of graphs not satisfying the conclusion has small measure.

We note that a somewhat stronger form of the lemma follows quickly from
the Central Limit Theorem. For completeness, we present an elementary proof.

Let p := 4N−1+ε and let μ be the probability measure on {0, 1} with
μ({1}) = p. Fix a set V of N vertices; there are N(N−1)

2 potential edges.
Via characteristic functions, we identify the set of all graphs on V with the
product space {0, 1}N(N−1)

2 , equipped with the product probability structure.
In order to keep notation simple, the product measure will also be called μ.

In other words, for each potential edge e we flip a weighted coin (indepen-
dent of all other coin flips) and with probability p we decide to add e to our
graph. The expected number of edges is N(N−1)

2 · p ≈ 2N1+ε, with variance
N(N−1)

2 p(1 − p) ≈ 2N1+ε. By Chebyshev’s inequality, most graphs will have
more than N1+ε edges. More precisely, the measure of the set of graphs with
fewer than N1+ε edges is smaller than

N(N−1)
2 p(1 − p)

(N(N−1)
2 · p − N1+ε)2

≈ 2N1+ε

(N1+ε)2
= 2N−1−ε < 1/2,

because, by the assumptions of the lemma, we have 4 ≤ N .
We now estimate the measure of the set G of all graphs on V which are not

(k, 2k)-sparse for some k � M .
For any set E′ ⊆ [V ]2, we let GE′ be the set of all graphs whose edges

include the set E′. Clearly, μ(GE′) = (4N−1+ε)|E
′|.

For each graph (V,E) which is not (k, 2k)-sparse, there exists a set V ′

of k vertices and a set E′ ⊆ [V ′]2 with 2k elements such that E ⊇ E′, i.e.,
(V,E) ∈ GE′ . So the measure of all those graphs is bounded above by

∑

V ′⊆V
|V ′|=k

∑

E′⊆[V ′]2

|E′|=2k

μ(GE′).

The crucial component in this sum is the summation over all subsets of size k;
this will be estimated by a factor Nk; the other summations will be replaced
by factors that depend on k only. Altogether, we get an upper bound

Nk(k2)2k(4N−1+ε)2k = (2k)4kNkN−2k(1−ε) = (2k)4kNk(2ε−1) ≈ Nk(2ε−1).
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Now summing over all k � M yields
M∑

k=1

Nk(2ε−1) � M · N2ε−1 < 1/10,

as M 
ε N . Hence, the set of graphs satisfying the conclusion has mea-
sure > 0, so it is nonempty. �

Lemma 2.4. Let 0 < ε < 1
2 . There is an increasing sequence 〈N� : � ∈ N〉

of natural numbers and a sequence 〈(V�, E�) : � ∈ N〉 of graphs such that the
following hold:

(1) max{N2
�−1 + 1, 23N�−1 , 1 + |E�−1|} < N�.

(2) V� = [N�−1, N�).
(3) |E�| ≥ N1+ε

� .
(4) For all k � 2�+1N�−1, the graph (V�, E�) is (k, 2k)-sparse.

Proof. We can choose N� by recursion; given N�−1, Lemma 2.3 tells us how
large N� has to be. In more detail, let ε′ be such that ε < ε′ < 1

2 . Then
by Lemma 2.3, there exist N ′

� and a graph G with N ′
� vertices and more than

(N ′
�)

1+ε′
edges which is (k, 2k)-sparse for all k ≤ 2�+1N�−1. Enlarging N ′

� if
necessary, we may assume that

• (1) holds (more precisely, N ′
� is larger than the left hand side of (1)), and

• (1 + ε) ln(2) < (ε′ − ε) ln(N ′
�) and 2N�−1 ≤ N ′

�.

Take N� := N�−1+N ′
�. Let G� be an isomorphic copy of G with V� = [N�−1, N�).

Now (2) and (4) of the statement clearly hold for G�. To check (3), it is enough
to show that N1+ε

� ≤ (N ′
�)

1+ε′
, that is,

ln(N1+ε
� ) ≤ ln((N ′

�)
1+ε′

). (∗)
The following calculation proves (∗):

ln(N1+ε
� ) = (1 + ε) ln(N�−1 + N ′

�) ≤ (1 + ε) ln(2N ′
�)

= (1 + ε) ln(N ′
�) + (1 + ε) ln(2) ≤ (1 + ε) ln(N ′

�) + (ε′ − ε) ln(N ′
�)

= (1 + ε′) ln(N ′
�) = ln((N ′

�)
1+ε). �

So our graphs (V�, E�) have “many edges” on a large scale (i.e., looking
at the whole graph), but only “few edges” on a small scale (looking at small
induced subgraphs).

Definition 2.5. A d-ary (partial) function f : V d → N is defined to be (k, l)-
modest iff for any U0, . . . , Ud−1 ⊆ V of size at most k, f�(U0 × · · ·×Ud−1) has
at most l values.

Lemma 2.6. Let (V,E) be a graph which is (k, 2k)-sparse for all k � M . Let
f : V × V → N be a symmetric function which takes different values on all
edges in E and is constantly zero outside E. Then f has at least |E| values
but is (k, 5k)-modest for all k � M/2.
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Proof. For each U1, U2 ⊆ V of size k � M/2, E ∩ (U1 ∪U2)2 has at most 2 · 2k

edges, so f can take at most 4k + 1 values on U1 × U2 ⊆ (U1 ∪ U2)2. �

Corollary 2.7. There is an increasing sequence 〈N� : � ∈ N〉 of natural num-
bers and a sequence 〈s� : � ∈ N〉 of operations s� : [N�−1, N�)2 → N satisfying
the following:

(1) max{N2
� + 1, 23N� , 1 + |E�|} < N�+1.

(2) Each s� is (k, 5k)-modest for all k � 2�N�−1.
(3) Each s� is (k, 5k)-modest for all k ≥ N�+1.
(4) For all �, the range of s� has more than N

4/3
� elements.

Proof. Let ε = 1
3 and let 〈N� : � ∈ N〉 and 〈(V�, E�) : � ∈ N〉 be the sequences

obtained from Lemma 2.4. In addition, for every � ∈ N, let s� be the operation
obtained from (V�, E�) by Lemma 2.6. We claim that this choice satisfies the
statement.

(1) follows from Lemma 2.4(1). Combining Lemma 2.4(4) with Lemma 2.6,
one obtains (2). By Lemma 2.6, the range of s� has cardinality at most
|E�| + 1 < N�+1. Hence, (3) holds trivially because of Lemma 2.4(1). Fi-
nally, (4) follows from Lemma 2.4(3) (combined with the choice of ε and with
Lemma 2.6). �

From now on we fix sequences 〈N� : � ∈ N〉 and 〈s� : � ∈ N〉 as above.

Definition 2.8. For every A ⊆ N, let sA : N × N → N be defined from s� as
follows: sA is

⋃
�∈A s�, extended by the value 0 wherever it is undefined (i.e.,

sA�[N�−1, N�) × [Ni−1, Ni) is constantly zero for � 	= i).

Lemma 2.9.

(1) If � < i, then si is (k, 5k)-modest for all k � 2�N�.
(2) If � /∈ A, then sA is (k, 12k)-modest for all k in [N�, 2�N�].

Proof. First we prove (1). By Lemma 2.7(2), si is (k, 5k)-modest for all k �
2iNi−1, so certainly also for all k � 2�N�.

Now we prove (2). Let X, Y be sets of size k, with k in [N�, 2�N�]. Let
X− = X ∩ N�, X+ = X \ X−, and define Y−, Y+ similarly. We have

sA[X × Y ] ⊆ sA[X− × Y−] ∪ sA[X+ × Y+] ∪ {0}.
Because � 	∈ A, sA is constantly 0 on (X− × Y−) \ (N�−1 × N�−1). Hence, the
first set has size at most N2

�−1 � N� − 1 � k − 1.
To estimate the size of sA[X+×Y+]∪{0}, we partition X+ as X+ =

⋃
i>� Xi

with Xi := X+ ∩ [Ni, Ni+1), similarly for Y+.
We can find sets X ′

i, Y
′
i ⊆ [Ni, Ni+1), both of size qi := max(|Xi|, |Yi|), with

Xi ⊆ X ′
i and Yi ⊆ Y ′i . Note that qi � |Xi| + |Yi|, so

∑
i qi � 2k.

We have sA[X+ × Y+] ∪ {0} ⊆ {0} ∪⋃
i>� si[X ′

i × Y ′i ]. By (1), the function
si is (qi, 5qi)-modest, so the sets si[X ′

i × Y ′i ] are at most of size 5qi. Hence,
sA[X+ × Y +] has size at most 11k. So sA[X × Y ] has size at most 12k. �
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Definition 2.10. Let A1, . . . , An ⊆ N. A (binary) term in the operations
sA1 , . . . , sAn is a formal expression involving (some of) the variables x, y, (some
of) the operations sA1 , . . . , sAn

, as well as any unary operations. (We trust
the reader to supply a formal definition by induction.)

The depth of a term τ is defined inductively as follows:

• x and y have depth 0.
• For any unary operation u, the depth of u(τ) is 1 more that the depth

of τ .
• Let m be the maximum of the depths of τ1 and τ2. Then the depth

of sAi(τ1, τ2) is m + 1.

Every term naturally induces a binary operation on N. (Note that the
same operation may be represented by different terms, even terms of different
depths.)

Lemma 2.11. Let τ be a term in the operations sA1 , . . . , sAn
of depth d. Let

� > d log2(12) and assume � /∈ A1 ∪ · · · ∪ An. Then we have:

(1) The operation represented by τ is (N�, 12dN�)-modest.
(2) In particular, τ cannot represent the operation s�, or sB for any B con-

taining �.

Proof. We start to show (1) by induction on d (or more precisely, on τ).
If τ is x or y, then this is trivial.
If τ = u(τ1), then again the range of u(τ1) is not larger than the range of τ1.
Assume τ = sAi(τ1, τ2), where the depths of τ1 and τ2 are at most d.

Observe the following:

• Both τ1 and τ2 are (N�, 12dN�)-modest by the inductive assumption.
• By Lemma 2.9(2), sAi

is (12dN�, 12 ·12dN�)-modest. (Recall that we have
d log2(12) � �, so 12dN� � 2�N�.)

Now let U1, U2 ⊆ N be two sets, both of size at most N�. Then, according
to the previous observation, the ranges of τ1�U1 and τ2�U2 have size at most
12dN�. Hence, again by the previous observation, the cardinality of the range
of τ�U1 × U2 is at most 12 · 12dN� = 12d+1N�, as desired.

Now we turn to prove (2). By assumption, 12d � 2� � 2N�−1 . By (1) of

Corollary 2.7, we have 2N�−1 < N
1
3
� , so 12dN� � 2N� ·N� < N

4
3
� . Hence, by (1)

of the present lemma, |range(τ�N� × N�)| ≤ 12dN� < N
4/3
� , while, according

to Corollary 2.7 (4), we have |range(sB�N�)| > N
4/3
� . �

Corollary 2.12. Let B, A1, . . . , An be pairwise distinct subsets of N such that
B \ (A1 ∪ · · · ∪ An) is infinite. Then sB /∈ 〈sA1 , . . . , sAn

〉O(1) .

Proof. Assume, seeking a contradiction, that sB ∈ 〈sA1 , . . . , sAn
〉O(1) . Then

there exists a term τ in A1, . . . An representing sB . Let d be the depth of τ .
Then there exists � ∈ B \ (A1 ∪ · · · ∪ An) with � > d log2(12). Then by
Lemma 2.11(2), τ does not represent sB . This contradiction completes the
proof. �
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Fact 2.13. There exists an independent family (Ar : r ∈ R) of c subsets of N.
That is, for all disjoint finite subsets I+, I− ⊆ R, the set

⋂
r∈I+

Ai ∩
⋂

r∈I−
(N \ Ai)

is nonempty and even infinite.

Proof. This is well known. For example, replacing the base set N by Q[x], the
set of all polynomials with rational coefficients, we can take Ar := {p(x) ∈
Q[x] : p(r) > 0}. �

Proof of Theorem 1.1. Choose an independent family (Ar : r ∈ R) of subsets
of N. Then for all finite S ⊆ R and all r ∈ R\S, the set Ar\

⋃
s∈S As is infinite.

By Corollary 2.12, {sAr
: r ∈ R} is a family of operations independent over

O(1): for any r ∈ R, we have sAr
	∈ 〈sAp

: p ∈ R \ {r}〉M∩O(d) . By Lemma 1.4,
we are done. �

3. Higher arities

According to Definition 1.2, we say that an operation f : Xd → X is modest
iff there is some k such that for all N > 1, f is (N, kN)-modest, i.e., the set
f [X1 × · · · × Xd] has at most kN elements whenever each set Xi ⊆ X has at
most N elements. We call a clone C modest if all operations in C are modest.

As we already observed in Subsection 1.1, the set of all modest operations
is a clone (the greatest modest clone) and all unary operations are modest, as
are all operations with finite range.

This section is devoted to the second main result of the paper, which is
Theorem 1.3. We postpone the proof of this theorem to the end of this section.
The number d will be fixed throughout this section.

In the previous section, we defined the notion of (binary) terms. For tech-
nical reasons, in the present section we need a more precise, and somewhat
more general definition of terms. Throughout the present section, we use the
word term in the sense of the following definition.

Definition 3.1.

• We fix a language with object variables xi for i ∈ N and formal operation
variables fi

j for i, j ∈ N, where the superscript i denotes the formal arity
of fi

j . Terms are defined as usual: each object variable is a term, and
whenever t1, . . . , ti are terms and j ∈ N, then fi

j(t1, . . . , ti) is a term, as
well.

• The set of all terms can be enumerated as {τ1, τ2, . . .} such that τm con-
tains at most m occurrences of operation symbols, and each operation
symbol occurring in τm is at most m-ary.

• Let τ be a term. We say that a family of functions ḡ = (gi
j : (i, j) ∈ S) is

suitable for τ iff each gi
j has arity i and (i, j) ∈ S whenever the variable

fi
j appears in τ .
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• Let τ be a term and suppose ḡ = (gi
j : (i, j) ∈ S) is a family of operations

on X which is suitable for τ . Then plugging in the gi
j for the fi

j will yield
an operation on X which we denote by τ [ḡ].

Definition 3.2. Let d ≥ 2. For any set V , we let [V ]d be the set of d-element
subsets of V . The structure (V,E) is defined to be a d-uniform hypergraph iff
E ⊆ [V ]d. The elements of E are called the hyperedges of (V, E).

Every V ′ ⊆ V naturally induces a hypergraph (V ′, E ∩ [V ′]d), which we
may also denote by (V ′, E�V ′).

We say that (V,E) is (k, l)-sparse iff for every Z ⊆ V of size at most k, the
hypergraph (Z, E�Z) has at most l hyperedges.

Definition 3.3. The support of a partial function f is the set of elements in
the domain of f where the value of f is not equal to 0.

Lemma 3.4. Fix d, k, ε. Let V be a set of cardinality N and let (V, E) be
a (d + 1)-uniform hypergraph with at least Nd+ε hyperedges. If N is large
enough, then there is an operation s : V d+1 → V whose support is contained
in E and whose values are in {0, 1} such that for any set W with V ⊆ W and
|W | ≤ kN , the following holds: whenever τ ∈ {τ1, . . . , τk}, and ¯̄g = (gi

j)i,j is
a suitable sequence of operations for τ on W with each gi

j being

• either of arity at most d

• or of arity d + 1 with support of size at most 3N log2 N ,

then τ [ḡ] does not represent s. In particular, there exists e ∈ E such that s

and τ [ḡ] have different values on e.
If N satisfies the above conditions, then we will say that N is k-large.

Proof. Let W be a set containing V with |W | = kN . Clearly, it is enough to
show that there exists an operation s : V d+1 → V satisfying the statement for
this particular W . There are only (kN)(kN)d

d-ary operations on W , and only
k terms to be considered. A support is a subset of [W ]d+1; there are fewer
than

( (kN)d+1

3N log2 N

)
� (kN)3N log2(N)(d+1) possible supports of size 3N log2 N . For

any fixed support of size 3N log2 N , there are at most (kN)3N log2 N possible
operations that have this support. By the enumeration fixed in Definition 3.1,
each term τi (i ≤ k) contains at most k many operation variables. Counting
the possibilities of choosing k many d-ary operations and k many (d + 1)-ary
operations with support of size at most 3N log2 N , one can see that altogether
there are fewer than

t := (kN)(kN)d·k · k · (kN)3N log2(N)(d+1)k · (kN)3N log2(N)k

operations represented by such terms. We may assume k � log2 N . Estimating
k by N or by log2 N , one obtains

t ≤ (log2 N) · (N · log2 N)log2 N ·(N log2 N)d · N6N(d+1) log2
2 N · N6N log2

2 N .

Recall that for any δ > 0 and d ∈ N and for large enough N , one has logd
2 N ≤

N δ. Let 0 < δ < ε. Then for large enough N , each of the four factors of t
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can be estimated by N
1
4 ·Nd+δ

. Consequently, for large enough N , we have
t < NNd+δ

= 2Nd+δ·log2 N . This number (for large enough N), is certainly less
than 2Nd+ε

.
But there are at least 2Nd+ε

possible operations on E with values in {0, 1}.
So not all of them are representable. �

Lemma 3.5. Let 0 < ε < 1/2. Then there are sequences N̄ = 〈N� : � < N〉,
Ē = 〈E� : � < N〉 with the following properties:

(1) N̄ is strictly increasing and in fact Nd+1
�−1 < N�, 2� ≤ N�, and N� is �-large

for all �. We will write V� for the interval [N�−1, N�).
(2) (V�, E�) is a (d+1)-uniform hypergraph with more than Nd+ε

� hyperedges.
(3) For every k � N2

�−1, (V�, E�) is (k, 2k)-sparse.

Proof. This proof is only a slight variation of the proof of Lemma 2.7, so we
will be brief.

Assume N�−1 has already been defined. We will choose N� after a certain
amount of extra work such that N� � N�−1. Assume, for a moment, that N�

is already defined. Let V� := [N�−1, N�). Let J be the cardinality of the set
[V�]d+1 of all potential hyperedges: J =

(
N�−N�−1

d+1

)
.

On the set of all (d + 1)-uniform hypergraphs (which we may identify
with 2J), we define a product measure by declaring the probability of each
potential hyperedge to be p := 2(d + 1)! · Nε−1.

So the expected number of hyperedges of a random hypergraph is pJ =
2(d+1)!·Nε−1

� ·(N�−N�−1
d+1

) ≈ 2Nε−1
� ·Nd+1

� = 2Nd+ε
� . Again using Chebyshev’s

inequality, we see that with high probability a random hypergraph will have
more than Nd+ε

� hyperedges.
Now we estimate the probability that there is a sub-hypergraph with k �

N2
�−1 vertices which has more than 2k hyperedges, and we will show that it is

very low.
For each potential k, there are at most

(
N�

k

)
� Nk

� subsets; for each such
subset S, the probability that a given set H of hyperedges with j := |H| ≥ 2k

appears as a subset of E�S is � pj � p2k. There are
(
kd

j

)
� 2kd

possibilities
for H. So the probability that such a bad subgraph of size k exists is bounded
from above by Nk

� · p2k · 2kd

. There are N2
�−1 possibilities for k, so we have to

choose N� such that

N2
�−1∑

k=1

Nk
� · p2k2kd ≤ 1

2
. (∗∗)

But Nk
� · p2k ≈ Nk

� N
(ε−1)2k
� = N

k(2ε−1)
� which converges to 0 if N� converges

to infinity. Hence, one may choose N� so large, that

Nk
� · p2k <

1

N2
�−1 · 2(N2

�−1)
d
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and N� > max{2�, Nd+1
�−1 } hold. Further increasing N� if necessary, we may

choose it to be �-large, as well. Estimating 2kd

by 2(N2
�−1)

d

in the left hand
side of (∗∗), it follows that the inequality in (∗∗) holds.

So the set of hypergraphs on V� which are not (k, 2k)-sparse for some k ≤
N2

�−1 has measure at most 1
2 , while almost all hypergraphs on V� have Nd+ε

�

hyperedges. It follows that there exist N� and E� satisfying the requirements
of the lemma, and thus, the sequences in the statement can be constructed
recursively. �

Definition 3.6. Let N̄ and Ē be as in Lemma 3.5. For each V� = [N�−1, N�),
let s� be a (d+1)-ary operation with support E� which differs on E� from each
τi[g] (i � �, ḡ as in Lemma 3.4).

For each infinite A ⊆ N, let sA :=
⋃

�∈A s� (where we replace all undefined
values of sA with 0).

Lemma 3.7. Let B ⊆ N be infinite and assume � ∈ N \ B. Let W ⊆ N be
such that |W | ≤ � · N�. Then the cardinality of the support of sB�W d+1 is at
most N�(1 + 2 log2 N�).

Proof. Throughout this proof, we write supp(f) for the support of a function f .
Let W1 = W ∩ [0, N�−1), W2 = W ∩ [N�−1, N�), and W3 = W \ (W1 ∪W2). By
construction,

supp(sB�W d+1) ⊆ supp(sB�W d+1
1 ) ∪ supp(sB�W d+1

2 ) ∪ supp(sB�W d+1
3 ).

Clearly, | supp(sB�W d+1
1 )| ≤ Nd+1

�−1 and Nd+1
�−1 ≤ N� by Lemma 3.5(1). In

addition, supp(sB�W d+1
2 ) is empty because � 	∈ B. Clearly,

|W3| ≤ |W | ≤ � · N� ≤ log2(N�)N�

(in the last estimation, we used Lemma 3.5 (1): � ≤ log2 N�). In addition, by
Lemma 3.5 (3), for any j > �, (Vj , Ej) is (N� log2 N�, 2N� log2 N�)-sparse. It
follows that | supp(sB�W d+1

3 )| ≤ 2N� log2 N�. Combining these observations,
the statement follows. �

Lemma 3.8. If f1, . . . , fm are (k, k′)-modest d-ary operations and g is a
(k′, k′′)-modest m-ary operation, then g(f1, . . . , fm) is (k, k′′)-modest.

Proof. The proof is easy. �

Lemma 3.9. Let M be the clone of all modest operations. Let A\(B1∪· · ·Br)
be infinite. Then sA /∈ 〈sB1 , . . . , sBr

〉M∩O(d) .

Proof. For any term τ and any suitable sequence ḡ (consisting only of oper-
ations in 〈(M ∩ O(d)) ∪ {sB1 , . . . , sBr}〉), we will find � ∈ A such that τ [g]
disagrees with s� (hence also with sA) on E�.

So fix a term τ = τi and ḡ. Let ν be the number of subterms of τ and let k

witness that all operations in ḡ are modest. Let � > ν ·ki be in A\(B1∪· · ·Br).
We claim that for each subterm σ of τ (of depth s), the range of σ[ḡ] over the
domain V d+1

� has cardinality at most N� · ks.
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This can be proved by induction on the depth of σ using Lemma 3.8 com-
bined with the fact that the operations sBj take only 2 values, and that all
other operations in ḡ are modest, witnessed by k.

Recall that according to the enumeration fixed in Definition 3.1, the depth
of τ = τi is at most i. So the set of all intermediate values in the computation
of τ [g] on E� has size at most ν · kiN� < �N�. Let W ⊇ V� be a set of size
at most �N� containing {0, 1} and all these intermediate values. The term τ

induces a partial function τ [ḡ]�E�. By replacing all values of the operations
in ḡ by 0 if they are outside W , we get a sequence ḡ′ of operations with the
following properties:

• τ [ḡ′] is a total function from W d+1 to W .
• τ [ḡ′] agrees with τ [ḡ] on E�.
• All operations in ḡ′ are either some sBj or an operation of arity at most d.

By Lemma 3.7, the support of each sBj �W d+1 is at most N�(1+2 log2 N�) ≤
3N� log2 N�. So by the construction of s�, and by Lemma 3.4, s� disagrees with
τ [ḡ′] somewhere on E�; so s� also disagrees with τ [ḡ]. �

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Similarly to the proof of Theorem 1.1, choose an inde-
pendent family (Ar : r ∈ R) of subsets of N. Then for all finite S ⊆ R and
all r ∈ R \ S, the set Ar \ ⋃

s∈S As is infinite. By Lemma 3.9, {sAr : r ∈ R}
is a family of operations independent over M ∩ O(d): for any r ∈ R, we have
sAr 	∈ 〈sAp : p ∈ R \ {r}〉O(1) . By Lemma 1.4, we are done. �

Corollary 3.10. There exists a clone C on N such that for any d ∈ N, there
are 2c clones D with C ∩ O(d) = D ∩ O(d).

Proof. Let C be the clone generated by all operations whose ranges are a
subset of {0, 1}. To check that this C satisfies the statement of the corollary,
let d ∈ N and let C ′ be the clone generated by all at most d-ary operations
whose ranges are contained in {0, 1}. Then C ∩ O(d) = C ′ ∩ O(d) and C ′

is modest. Therefore, by Theorem 1.3, there exist 2c many clones D with
D ∩ O(d) = C ′ ∩ O(d) = C ∩ O(d). �
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