The Singular Cardinals Problem
Independence Results

Saharon Shelah
Institute of Mathematics
The Hebrew University, Jerusalem, Israel

Abstract: Assuming the consistency of a supercompact cardinal, we prove the consistency of

1) ξ_{ω} strong limit, $2 \xi_{\omega}=\xi_{\alpha+1}, \alpha<\omega_{1}$ arbitrary;
2) $\delta \xi_{\omega_{1}}$ strong limit, $2^{\delta \delta_{\omega_{1}}}=\delta \delta_{\alpha+1}, \alpha<\omega_{2}$ arbitrary;
3) $\delta \delta_{\delta}$ strong limit, cf $\delta=\delta \delta_{O}, 2^{\delta \delta^{\prime}} \delta$ arbitrarily large before the first inaccessible cardinal; for \oint_{δ} "large" enough. Our work continues that of Magidor $[\operatorname{Mg} 1][\mathrm{Mg} 2]$.

The author would like to thank the United States-Israel Binational Science Foundation for partially supporting this research by Grant 1110 .

The author thanks Menachem Magidor for patiently listening to some wrong proofs and to the present one.

Notation:
Let $i, j, \alpha, \beta, \gamma, \xi, \zeta$ be ordinals, δ a limit ordinal, λ, μ, k, χ cardinals (usually infinite) ℓ, k, n, m, natural numbers.

Let $P_{<K}(A)=\{t: t$ a subset of cardinality $<k\}$. We let t, s denote members of $P_{<K}(\lambda)$.

Notation on forcing:
P, Q, R denote forcing notions, i.e. partial orders, $R \subseteq Q$ means every element of R is an element of Q and on R the partial orders are equal. Let $R<Q$ mean $R \subseteq Q$, any two elements of R are compatible in R iff they are compatible in Q and every maximal antichain of R is a maximal antichain of Q.

Let $\operatorname{Col}(\lambda,<\kappa)=\{f: E$ a partial function from $(\kappa-\lambda) \times \lambda$ to $k, f(\alpha, i)<\alpha, f$ has power $<\lambda\}$.

We let π, σ denote members of \underline{p}, q, r members of Q or R. We say π, σ are compatible if they have a common upper bound and equivalent if they are compatible with the same members of P. Note that π, σ are equivalent iff for any generic $G, \pi \in G \Leftrightarrow \sigma \in G$. For any forcing notion, let \varnothing be its minimal element.
§1.
1.1. Framework: In our universe V, k is λ_{n}-supercompact for $n<\omega, \lambda_{n} \leq \lambda_{n+1}$, moreover the λ_{n}-supercompactness is preserved by any k-directed complete forcing notion (see Laver [L]).
R_{n} is a k-complete forcing notion. $R<R_{n+1}, \|_{R_{n}} " \lambda_{n}^{<k}=\lambda_{n} "$. So if we force by R_{n}, k is still λ_{n}-supercompact (more exactly $\left|\lambda_{n}\right|$-supercompact, as maybe λ_{n} was collapsed), so there is an R_{n}-name $\underset{N_{n}}{ }$ of a normal fine ultrafilter on $P_{<K_{k}}\left(\lambda_{n}\right)=\{t: t$ a subset of λ_{n} of power $\left.<\kappa\right\}$. Note that $P_{<k}\left(\lambda_{n}\right)^{V^{R_{n}}}$ belongs to V, is included in it and is $P_{<K}\left(\lambda_{n}\right) V$; as forcing by R_{n} does not add sequences of ordinals of length $<\kappa$. But the members of $\underset{\sim}{\mathrm{E}_{\mathrm{n}}}$ (which are subsets of $P_{<k}\left(\lambda_{n}\right)$) are not necessarily from V.

Let for $t \in P_{<K}\left(\lambda_{n}\right), \alpha<\lambda_{n}, \alpha(t)$ be the order type of $\alpha \cap t$. Let $I_{n} \subseteq P_{<k}\left(\lambda_{n}\right), \|_{R_{n}} \quad I_{n} \in \underset{E_{n}}{E} " . t \in I_{n} \Rightarrow\left[\lambda_{n}(t)^{<K(t)}=\lambda_{n}(t)\right.$ and $t \cap K$ strongly inaccessible] possible as we have assumed $\|\left.\right|_{R_{n}} " \lambda_{n}^{<\kappa}=\lambda_{n}{ }^{\prime}$ 。
Let $t \subseteq s$ mean $t \subseteq s,|t|<k(s)$.
We let $\underset{\sim}{C}$ be an R_{n}-name for every n, i.e. C_{n} is an ${\underset{\sim}{n}}^{n}$-name for every n, and $H_{R_{n}} " C_{n}=C_{n+1}$ ".
1.2 The forcing notion: The forcing notion \underline{P} we shall use is defined as follows:

An element π of \underline{P} has the form:

$$
\langle r, \overline{\mathrm{t}}, \overline{\mathrm{~F}}, \overline{\mathrm{~A}}, \overline{\mathrm{G}}\rangle
$$

where for some $n<\omega$:
A) $r \in R_{0}$
B) $\bar{t}=\left\langle t_{1}, \ldots, t_{n}\right\rangle, t_{\ell} \in I_{\ell}, t_{\ell} \subset t_{\ell+1}$
C) $\overline{\mathbf{f}}=\left\langle\stackrel{f}{\sim}_{O}, \ldots,{\underset{\sim}{n}}_{n}\right\rangle,{\underset{\sim}{f}}_{\ell}$ an $R_{\ell+1}$-name
D) Let $k_{\ell}=k\left(t_{\ell}\right)$ - (which is the order-type of $\kappa \cap t_{\ell}$), then ${\underset{\sim}{f}}^{f} \in \operatorname{Col}\left(\oint_{1},<\kappa_{1}\right), \underset{\sim_{\ell}}{f} \in \operatorname{Col}\left(\lambda_{n}\left(t_{n}\right){ }^{+}, \kappa_{\ell+1}\right)$ for $1 \leq \ell<n$ and ${\underset{\sim}{f}}_{n} \in \operatorname{Col}\left(\lambda_{n}\left(t_{n}\right)^{+}\right.$, <K) (i.e. those things are forced, but ${\underset{\sim}{f}}_{\ell}$ is a name of an element of V, so we omit the \sim if we know the value and write $\bar{f} \in V\left(f_{\ell} \in \mathrm{V}\right)$.)
E) $\left.\bar{A}=<{\underset{\sim}{A}}_{\ell}: n<\ell<\omega\right\rangle, \underset{\sim_{\ell}}{A_{\ell}}$ is an R_{ℓ}-name of a member of $\underset{{\underset{N}{l}}^{E}}{ }$
F) $\bar{G}=\left\langle G_{\ell}: n<\ell<\omega\right\rangle, G_{\ell}$ is an $R_{\ell+1}$-name of a function with domain I_{ℓ}, and $G_{\ell}(t) \in \operatorname{Col}\left(\lambda_{\ell}(t)^{+},\langle\kappa)\right.$.
We write $n=n[\pi], t_{i}=t_{i}[\pi]$ etc., or $n=n^{\pi}$, etc.

1.2(A) The order on P:

The order is natural: $\pi \leq \sigma$ iff
A) $r^{\pi} \leq r^{\sigma}\left(\right.$ in $\left.R_{o}\right)$
B) $n^{\pi} \leq n^{\sigma}$ and $t_{\ell}^{\pi}=t_{\ell}^{\sigma}$ for $\ell=1, \ldots, n^{\pi}$

D) $r^{\sigma} \mathbb{H}_{R_{0}} " t_{\ell}^{\sigma} \in{\underset{\sim}{A}}_{\ell}^{\pi}$ and $G_{\ell}^{\pi}\left(t_{l}^{\sigma}\right) \subseteq{\underset{\sim}{f}}_{\ell}^{\sigma}$ "
for $\ell=n^{\pi}+1, \ldots, n^{\sigma}$
E) $\stackrel{A}{\sim}_{\ell}^{\pi} \geq A_{l}^{\sigma}{ }_{l}^{\prime}\left(\forall t \in I_{\ell}\right)\left[G_{\ell}^{\pi} \subseteq \mathcal{G}_{\ell}^{\sigma}\right]$ (i.e., this is forced by r^{σ})
1.2 (B) Claim: The set of $\pi \in \underline{P}$, such that $f^{\pi} \in V$ is a dense subset of \underline{P}. So usually we deal with such π only.
1.3 Technical Definitions on the forcing conditions:
1.3 A Definition: For $\pi, \sigma \in \underline{P}$ we call σ a j-direct extension of π if
a) $\pi \leq \sigma$
b) $\underset{\sim}{\underset{\sim}{f}}[\pi]=\underset{\sim}{\underset{\sim}{f}}[\sigma]$ for $j \leq \ell \leq n^{\pi}$
c) $\mathrm{q}[\sigma] \|_{\mathrm{R}_{\mathrm{O}}}$ " $\mathrm{G}_{\sim}\left(\mathrm{t}_{\ell}\right)=\underset{\sim}{f}{ }_{\ell}[\sigma]$ " for $\mathrm{n}^{\pi}<\ell \leq \mathrm{n}^{\sigma}$
d) $A_{\ell}[\pi]=A_{\ell}[\sigma]$ for $\ell>n^{\sigma}$
e) ${\underset{\sim}{l}}_{\ell}[\pi]=G_{\ell}[\sigma]$ for $\ell>n^{\sigma}$

Convention:

We omit j when $j=n^{\pi}+1$.
1.3 B Definition: For $\pi, \sigma \in \underline{P}$ we call σ a j-length preserving extension of π if
(a) $\pi \leq \sigma$
(b) $\mathrm{n}^{\pi}=\mathrm{n}^{\sigma}$
(c) $\underset{\ell}{\underset{\sim}{f}} \underset{\ell}{\mathbf{\pi}} \underset{\sim}{\ddagger}$ for $\ell<j$

Convention

We omit j when $j=n^{\pi}+1$
1.3.C Definition: 1) For $\pi, \sigma \in \underline{P}$, we call σ an R-extension of π if $\pi \leq \sigma, \overline{\mathrm{E}}^{\pi}=\overline{\mathrm{t}}^{\sigma}, \overline{\mathrm{f}}^{\pi}=\overline{\mathrm{f}}^{\sigma},{\underset{\sim}{A}}^{\pi}={\underset{\sim}{A}}^{\sigma},{\underset{\sim}{G}}^{\pi}={\underset{\sim}{G}}^{\sigma}$, or at least if r^{σ} forces those inequalities.
2) For $\pi, \sigma \in \underline{P}$ we call σ an R-constant extension of π if $\pi \leq \sigma, r^{\pi}=r^{\sigma}$.

1.3.D Claim and Definition:

If $j<\omega, \pi_{1} \leq \pi_{2}$ then there is a unique π such that π is a j-direct extension of π_{1}, π_{2} is a j-length preserving extension of π, and $x\left[\pi_{1}\right]=r\left[\pi_{2}\right]\left[\right.$ and $r[\pi]=r\left[\pi_{1}\right]$].

This unique π is called the upper [lower] j-intexpolant of π_{1}, π_{2}. If $j=n\left[\pi_{2}\right]+1$ we omit j.
1.4 The Inner Model:

The forcing \underline{P} gives too much, e.g. it collapses all
cardinals which are both $\leq \sum_{\mathrm{n}} \lambda_{\mathrm{n}}$ and $>K$, and maybe also k. But we shall use an inner model. Define some $\underset{\sim}{p-n a m e s: ~}{\underset{\sim}{n}}_{n}^{\prime}{\underset{\sim}{n}}$ are $t_{n^{\prime}}^{\pi} k\left(t_{n}^{\pi}\right)$ (for every large enough π in the generic set), ${\underset{\sim}{e}}_{\ell}=U\left\{f_{\ell}^{\pi}: \pi\right.$ in the generic set $\}$, and $\underset{\sim}{C}$ as an R_{O}-name is a P-name.

For a generic $G \subseteq P$, we shall be interssted in the inner model $\left.\mathrm{V}\left[<\kappa_{\ell}[G], \underset{\sim}{\underset{\sim}{f}}[\mathrm{G}]: \ell<\omega\right\rangle, \underset{\sim}{C}[G]\right]$; let $\underset{\sim_{f}}{ }$ be a P-name of this class.
1.5 Automorphism of P :

The proofs of the following are well known.

1. 5 A Claim: Suppose H is an automorphism of P, then it induces naturally a permutation of the set of p-names $a \rightarrow \underset{\sim}{a}$ and if $\underset{\sim}{a}, \ldots,{\underset{\sim}{n}}_{n}$ are $\underset{\sim}{p-n a m e s, ~} \phi\left(x_{1}, \ldots, x_{n}\right)$ a first order formula,
 say that H preservesa if $\|_{\underline{P}}$ "a $={\underset{\sim}{a}}^{H} "$.
1.5 B Claim: If $\pi \|_{P}$ "a $\in{\underset{\sim}{V}}_{f}$ " then there is a P-name b, such that $\pi\left\|\|_{P}\right.$ "a $=\underset{\sim}{b}$ ", and every automorphism of \underline{P} which preserves ${\underset{\sim}{V}}_{f}$ (i.e. preserve $\underset{\mathcal{K}_{\ell}}{ }{\underset{\sim}{f}}_{\ell}, \underset{\sim}{C}$) preserves also $\underset{\sim}{b}$.
1.5 C Claim: Let H be a permutation of $\int_{n<\omega} \lambda_{n}$, which maps
$\lambda_{n}(n<\omega)$ onto themselves, $H \|_{K}=$ the identity:
1) H induces an automorphism of \underline{P}, which we denote by H too, as follows:
```
for \(t \in I_{n}(n<\omega)\) let \(H(t)=\{H(i): i \in t\}\)
\(r^{H(\pi)}=r^{\pi}\)
\(\bar{t}^{H(\pi)}=\left\langle H\left(t_{\ell}^{\pi}\right): l \leq \ell \leq n^{\pi}\right\rangle\)
\(\overline{\mathbf{f}}^{\mathrm{H}(\pi)}=\overline{\mathbf{f}}\)
\(\underset{\sim}{\underset{\sim}{A}} \underset{\ell}{\mathrm{~A}(\pi)}=\left\{\mathrm{H}^{-1}(\mathrm{t}): \mathrm{t} \in \underset{\sim}{\underset{\sim}{A}}\right\}\)
\(G_{\ell}^{H(\pi)}(t)=G_{\ell}^{\pi}\left(H^{-1}(t)\right)\)
```

2) Note also that $\|_{R_{n}}$ "\{t $\left.\in I_{n}: H(t)=t\right\} \in \underset{\sim_{n}}{E_{n}}$ " and that H preserves ${\underset{\sim}{V}}^{f}$.
1.5 D Definition: We call a a ${\underset{\sim}{V}}_{f}$-name if it is a \underline{P}-name and is preserved by any automorphism of \underline{P} preserving ${\underset{\sim}{V}}_{f}$, and $\|_{\underline{P}} \quad " \underset{\sim}{a} \in{\underset{\sim}{V}}_{f}$ ".
1.5 E Claim: Suppose H is a permutation of $U \lambda_{n^{\prime}}$ mapping each λ_{n} onto itself, $H \Gamma_{K}=$ the identity.

Then for any $\pi \in \underline{P}, \mathrm{H}(\pi)$ and $\mathrm{H} *(\pi)=\left\langle\mathrm{r}^{\pi}, \overline{\mathrm{t}}^{\mathrm{H}(\pi)}, \overline{\mathrm{f}}^{\mathrm{H}(\pi)}, \overline{\mathrm{A}}^{\pi}, \mathrm{G}^{\pi}\right\rangle$ are compatible. Moreover suitable increasing of the $\underset{\sim}{\bar{A}}$ makes them equivalent.

Proof: By $1.5 \mathrm{C}(2)$, remembering that the $\underset{\sim}{\underset{\sim}{E}}$'s are ultrafilters. 1.6 Claim:

Suppose a) $\pi, \sigma \in \underline{P}, n(\pi)=n(\sigma)=n, \bar{t}^{\pi}=\bar{t}^{\sigma}, \bar{f}^{\pi}=\bar{f}^{\sigma}$ and is in $V,{\underset{\sim}{A}}^{\pi}={\underset{\sim}{A}}^{\sigma}$ and ${\underset{\sim}{G}}^{\pi}={\underset{\sim}{G}}^{\sigma}$.
b) every $r \in R_{n}$ compatible with $r[\sigma]$ is compatible with $r[\pi]$
c) $\underset{\sim}{\sim}$ is a ${\underset{\sim}{f}}^{\text {-name. }}$

Then if $\pi \|_{-p} " \underset{\sim}{a}=a$ " (for some $a \in V$) then $\sigma \|_{\underline{p}} \quad " a=a "$. Proof: Easy.

1.7 Definition. Good Cardinals for P

A cardinal μ is good for R_{n} or for n in short, if $\mu=\mu^{<k}$ and there are forcing notions $Q_{m}^{O}, Q_{m}^{1}, R_{m}=Q_{m}^{O} * Q_{m}^{1}, Q_{m}^{O}$ is μ^{+}-complete and ${\underset{\sim}{m}}_{\mathrm{m}}^{1}$ satisfies the μ^{+}-chain condition (i.e. $\|_{Q_{\mathrm{o}}}{ }^{\text {" } 2_{\mathrm{m}}^{1}}$ satisfies the μ^{+}-chain condition").
Remark: 1) Really $Q_{m}^{0} * \mathcal{L}_{m}^{1}>R_{m}$ is sufficient.
2) Note that Q_{L}^{1} is not required to be κ-complete, so $R_{m}=Q_{m}^{O} \times Q_{m}^{1}, Q_{m}^{O} \mu^{+}$-complete, Q_{m}^{l} satisfying the μ^{+}-chain condition is sufficient for this definition.

1.8 The Main Lemma:

A) If k is good for every $n \geq n_{o}$, then in $V_{f} k$ is strong limit. Moreover every subset of $\lambda_{n}\left({\underset{\sim}{n}}^{t_{n}}\right)$ belong to $L\left[\left\langle F_{\ell}: l \leq n>\right]\right.$, hence $2^{\lambda_{n}\left(t_{n}\right)}=\lambda_{n}\left(t_{n}\right)^{+}$(the + is in V_{f} and in V too).
B) If $\mu \geq \kappa$ is good for every $n \geq n_{0}, \|_{R_{n}}$ " μ is regular", then in $V_{f} \mu^{+}$is still a regular cardinal. Moreover for any function g from μ to ordinals, for some $A \in V, V|=\||A|=\mu "$ and Range $(g) \subseteq A$.

The proof is broken to a series of claims.

1.9. Notation:

For $m\left\langle\omega\right.$, let $\underline{p}_{m}^{n t}=\left\{\left\langle\bar{t}^{\pi}, \bar{f}^{\pi}\right\rangle: \pi \in \underline{P}, \bar{f}^{\pi} \in V\right.$ and $\left.n^{\pi}=m\right\}$. For any $\mu, \kappa \leq \mu \leq \lambda$ we define an equivalence relation \approx_{μ}^{m} on ${\underset{-}{m}}_{n t}^{n t}\left\langle\bar{t}^{1}, \overline{\mathrm{f}}^{1}\right\rangle \approx_{\mu}^{m}\left\langle\overline{\mathrm{t}}^{2}, \overline{\mathrm{f}}^{2}\right\rangle$ iff $\mathrm{t}_{\ell}^{1} \cap \mu=\mathrm{t}_{\ell}^{2} \cap \mu, \mathrm{f}_{\ell}^{1}=\mathrm{f}_{\ell}^{2}$, and there is a permutation of λ_{m} which is the identity on μ, preserves $k, \lambda_{0}, \ldots, \lambda_{m}$ and maps t_{l}^{1} onto t_{l}^{2} (all for $l \leq \ell \leq m$). 1.9 A Claim: \approx_{μ}^{m} has $\mu^{<K}$ equivalence classes, and we can find $\left\langle\bar{t}^{i, j}, \bar{f}^{i, j}\right\rangle\left(i<\mu^{<k}, j<\mu^{+}\right)$such that: $\left\langle t^{i, j}, \bar{f}^{i}, j\right\rangle / \pi_{\mu}^{m}$ depend on i only, every \approx_{μ}^{m}-equivalence class is represented by some $\left\langle\bar{t}^{i}, j, \bar{f}^{i, j}\right\rangle$, and if $\lambda_{m}>\mu$, there are $\alpha_{i, j}<\lambda_{m}$ defined when $t_{m}^{i, j} \notin \mu$ which belong to $t_{m}^{i^{\prime}, j^{\prime}}$ iff $i=i^{\prime}, j=j^{\prime}$. We can assume moreover $t_{m}^{i, j} \cap t_{m}^{i(1), j(1)} \subseteq \mu$. 1.10. Claim:

Suppose $\pi \in \underline{P}, m<\omega, g$ a ${\underset{\sim}{f}}$-name of a function from μ to ordinals, $\pi \|_{\underline{P}} " t_{m} \nsubseteq \mu "$. Suppose further that μ is good for m and $\mu=\mu^{<k}$.

Then there is a length preserving extension σ of π, such that if $\sigma \leq \sigma^{\prime} \in \underline{P}, i<\mu, \sigma^{\prime} \|_{\underline{\underline{P}}} " g(i)=\sigma^{\prime}, m\left[\sigma^{\prime}\right]=m$ then also the upper interpolant $\sigma^{\text {up }}$ of σ and σ^{\prime} force this. Moreover, for some set A of ordinals, $|A| \leq \mu$ ($A \in V$ of course), for every

R-extension σ^{*} of the lower interpolant of σ and σ^{\prime}, if $\sigma^{*} \mathbb{H}_{\underline{p}} " g(i)=\alpha "$, then $\alpha \in A$.

Proof of Claim 1.10:

So $R_{m}=Q_{m}^{O} *{\underset{\sim}{m}}_{1}^{l}$, and $R_{O}<R_{m}$, hence there is a pair $\left\langle q^{0},{\underset{\sim}{q}}^{1}\right\rangle \in Q_{m}^{0} *{\underset{\sim}{2}}_{1}^{1}$, such that every extension of it in $Q_{m}^{0} * Q_{m}^{1}$ is compatible with r^{π} (which belong to R_{o}).

We now define for $i<\mu$, ordinals $\alpha_{i}<\mu^{+}$, and for $j<\alpha_{i}$
a condition $\pi_{i, j}$, such that
A) $r\left[\pi_{i, j}\right]=\left\langle q_{i, j}^{O}, q_{i}^{1}{ }_{i}^{\prime}\right\rangle, \quad q_{i, j}^{O} \leq q_{\xi, \zeta}^{O}$ when $\langle i, j\rangle\langle\langle\xi, \zeta\rangle$ (i.e $i<\xi$ or $i=\xi, j<\zeta$).
B) for each $i,\left\{q_{i, j+1}^{1}: j+1<\alpha_{i}\right\}$ is a maximal antichain (of ${\underset{\sim}{m}}_{1}^{l}$) (i.e. $q_{i+1, o}^{0}$ forced this).
C) $\overline{\mathrm{t}}\left[\pi_{i, j+1}\right]=\overline{\mathrm{t}}^{\mathrm{i}, j}, \overline{\mathrm{f}}\left[\pi_{i, j+1}\right]=\overline{\mathrm{f}}^{\mathrm{i}, \mathrm{j}}, \mathrm{n}\left[\pi_{i, j}\right]=m$ (see Claim 1.9A).
D) $\pi_{0,0}$ is a direct extension of π.
E) For each $\alpha \in t_{m}^{i, j}$ either $\pi_{i, j+1}$ determines (i.e. forces) a value for $\underset{\sim}{g}(\alpha)$ or there is no length preserving $\pi{ }^{\prime} \geq \pi_{i, j}$ which does so.
F) For $\ell>m, \| H_{R_{\ell}}\left(\forall t \in \underset{\sim}{A_{t}}\left[\pi_{i, j+1}\right]\right)\left(t_{m}^{i, j} \subsetneq t\right)$.
G) For $\ell>m, G_{\ell}\left[\pi_{i, j}\right]$ increases, i.e. if $\langle i, j\rangle \leq\langle\xi, \zeta\rangle, t \in I_{\ell}$ then $\|_{R_{\ell}} "$ if (1) $t \in{\underset{\sim}{A}}_{A_{\ell}}\left[\pi_{i, j}\right]$ and $t \in{\underset{\sim}{A}}_{\ell}^{A_{\xi, \zeta}}\left[\pi_{\xi}\right]$ or
(2) $i=j=0$ then $G_{\ell}\left[\pi_{i, j}\right](t) \subseteq G_{\ell}\left[\pi_{\xi, \zeta}\right](t) "$.
H) ${\underset{G}{\ell}}^{\left[\pi_{i, j}\right]}$ does not increase unnecessarily, i.e.
$\|_{R_{\ell}}$ "if $t \notin \underset{\sim}{\underset{\sim}{A}}\left[\pi_{i, j}\right]$ or j is not a successor or ${\underset{\sim}{i}}_{i, j}^{1}$ is not in
the generic set then $G_{\ell}\left[\pi_{i, j}\right](t)$ is the union of $G_{\ell}\left[\pi_{\xi, \zeta}\right]$ $\langle\xi \zeta\rangle\left\langle\langle i, j\rangle, t \in \underset{\sim}{A}\left[\pi \xi_{,}, j\right.\right.$ or $i=j=0 "$.

Note that ${\underset{\sim}{l}}_{\ell}\left[\pi_{i, j}\right](t)$ is increased only when $t_{m}^{i, j} \subsetneq t$ so this occurs $\leq|t|^{<k(t)}=|t|=\lambda_{\ell}(t)$ times, but $\operatorname{col}\left(\lambda_{\ell}(t)^{+},<k\right)$ is $\lambda_{\ell}(t)^{+}$-complete, so we can continue to define. So there is no problem to carry the construction by induction on <i,j> (the α_{i} 's are defined as Q_{m}^{l} satisfies the μ^{+}-chain condition). In the end we have to define σ. For $r[\sigma]$, note first that $\left\{q_{i, j}^{O}: i<\mu, j<\alpha_{i}\right\}$ has an upper bound $q_{\mu}^{O} \in Q_{\mu}^{O}$ as Q_{μ}^{O} is $\mu^{+}-$ complete (and by A)), and $r[\pi],\left(q_{\mu}^{0}, q^{l}\right)$ are compatible by the choice of $\left(q^{0},{\underset{\sim}{q}}^{1}\right)$, and let $r[\sigma]$ be any upper bound of $r,\left(q_{\mu}^{0}, q_{\sim}^{1}\right)$. Obviously, $\overline{\mathrm{t}}^{\sigma}=\overline{\mathrm{E}}^{\pi}, \overline{\mathrm{E}}^{\sigma}=\overline{\mathrm{f}}^{\pi}$. Now $\underset{\sim_{\ell}^{A}}{\sigma}=\left\{t \in \mathrm{I}_{\ell}: \mathrm{t} \in \underset{\approx}{\mathbb{Z}_{\ell}}(\pi)\right.$ and for any $i<\mu, j<\alpha_{i}, t^{i, j} \cong t$ implies $\left.t \in{\underset{\sim}{l}}_{\ell}^{\left[\pi_{i, j+1}\right.}\right]$. Moreover if $s \subsetneq t, s \approx_{\mu}^{m} t^{i, j}, f_{m}^{i, j} \subseteq \kappa(t) \times k(t), H$ a permutation of ${ }_{i}^{u} \lambda_{i}$ which is the identity except interchanging $t^{i, j}$ and s then $t=H(t) \in H\left[{\underset{\sim}{A}}_{l}\left[\pi_{i}, j\right].\right\} \quad \underset{\sim}{A}, i s$ an R_{l}-name as each $\underset{\sim}{\underset{\sim}{A}}{ }_{\ell}\left[\pi_{i, j}\right]$ is, and is forced to be in $\underset{E_{\ell}}{ }$ by the normality of ${\underset{\sim}{\ell}}_{\ell}$ (a conclusion of it, more exactly).

Now ${\underset{G}{\ell}}[\sigma](t)$ is the union of $G_{\ell}\left[\pi_{i, j}\right](t), t \in \underset{A}{A}\left[\pi_{i, j}\right]$ or $i=j=0$. It is easy to check everything, because $\underset{\sim}{g} \in \underset{\sim}{\underset{f}{V}}$, (and use 5D, 6).

1.11. Claim:

Suppose $\pi \in \underline{P}, \underset{\sim}{g}$ a ${\underset{\sim}{V}}^{f}$-name of a function from π to ordinals, $\pi \|_{\underline{\underline{P}}}$ "for every $m>\mathrm{n}^{\pi},{\underset{\mathrm{t}}{\mathrm{m}}}^{\mathrm{t}} \underline{\mu}^{\prime \prime}$ " and $\mu=\mu^{<k}$.

Then there is a length preserving extension σ of π, such that if $\sigma \leq \sigma^{\prime} \in \underline{P}, \mu$ good for $n\left[\sigma^{\prime}\right]$, $i<\mu, i \in t_{n}[\sigma]^{\left[\sigma^{\prime}\right]}$, and $\sigma^{\prime} \|_{\underline{P}} " \underset{\sim}{g}(i)=\alpha "$ then also the upper interpolant $\sigma "$ of σ and σ^{\prime}
forcesthis. Also if for some $\left\langle A_{i}: i<\mu>\epsilon V,\right| A_{i} \mid \leq \mu$, and $\sigma \leq \sigma^{\prime} \in \underline{P}, \mu$ is good for $R_{n\left[\sigma^{\prime}\right]^{\prime}}$ i $\in \mu \cap t_{n\left[\sigma^{\prime}\right]^{\left[\sigma^{\prime}\right]}}$, $\sigma^{\prime} \|_{\underline{\underline{p}}} \quad \underline{\sim}(i)=\alpha^{\prime \prime}$ then $\alpha \in A_{i}$. Hence if μ is good for arbitrarily large m, if $\sigma \leq \sigma^{\prime} \in \underline{P}, \sigma^{\prime} \|_{-\underline{P}} \underline{\sim}_{(i)}^{g}=\alpha "$ then for some direct extension $\sigma^{\prime \prime}$ of σ^{\prime}, the upper interpolant $\sigma^{\prime \prime \prime}$ of σ, o" forces this.

Proof: Repeat claim 1.10ω times.
1.12 Proof of the Main Lemma 1.8B.

Quite easy from Claim 11 , because $\| \underline{-}_{\underline{P}} " \mu \subseteq \underset{n<\omega}{u} \stackrel{t}{n}^{\prime \prime}$ and $\left\{\pi: \|_{\underline{p}}\right.$ "for every $\left.m>n^{\pi}, t_{m} \notin \mu "\right\}$ is a dense subset of \underline{P}.
 from μ to ordinals".

Then there is $\sigma \in \underline{P}, \pi \leq \sigma$ such that
A) π and σ are identical except that possibly $G_{m}^{[\sigma]}$ is not equal
to $\operatorname{Gem}_{\mathrm{m}}[\pi]$,
B) Suppose $\sigma_{1} \in P, n\left[\sigma_{1}\right]=m, r\left[\sigma_{1}\right] \geq r[\sigma], t_{\ell} \in I_{\ell}$ for $1 \leq \ell \leq m$,
$r\left[\sigma_{1}\right] \|_{R_{0}} \quad \operatorname{GG}_{m}\left(t_{m}\right)=f_{m}\left[\sigma_{1}\right] "$ and $G_{\ell}\left[\sigma_{1}\right]=G_{\ell}[\sigma], A_{\ell}\left[\sigma_{1}\right]=A_{A_{l}}[\sigma]$ for $m<\ell<\omega$.

Suppose further σ_{2} is an ($\mathrm{m}-1$) -length preserving extension
of $\sigma_{1}, \mathrm{n}\left[\sigma_{2}\right]=\mathrm{n}\left[\sigma_{1}\right]=\mathrm{m}, \mathrm{t}\left[\sigma_{2}\right]=\overline{\mathrm{t}}\left[\sigma_{1}\right], \mathrm{f}_{\ell}\left[\sigma_{2}\right]=\mathrm{f}_{\ell}\left[\sigma_{1}\right]$ for $\ell<m, \underset{\sim}{A}\left[\sigma_{2}\right]=\underset{\sim}{\underset{\sim}{A}}\left[\sigma_{1}\right], \bar{G}\left[\sigma_{2}\right]=\bar{G}\left[\sigma_{1}\right], i \in t_{m} \cap \mu$, $\sigma_{2} \|_{\underline{\underline{P}}} " g(i)=\alpha " . \quad$ Then $\left\langle r\left[\sigma_{2}\right], \overline{\mathrm{E}}\left[\sigma_{1}\right], \overline{\mathrm{f}}\left[\sigma_{1}\right], \underset{\sim}{\mathrm{A}}\left[\sigma_{1}\right], \underset{\sim}{\mathrm{G}}\left[\sigma_{1}\right]\right\rangle$ forces this too.

Proof: Just note that for each t_{m} the number of $<t_{\ell}: 1 \leq \ell<m>$,
$<\mathrm{f}_{\ell}: \ell<m>$ we have to consider is $\leq\left|t_{m}\right|^{<k\left(t_{m}\right)}=\left|t_{m}\right| \equiv \lambda_{m}\left(t_{m}\right)$ whereas $\operatorname{Col}\left(\lambda_{m}\left(t_{m}\right)^{+},<k\right)$ is $\lambda_{m}\left(t_{m}\right)^{+}$-complete. Note also that we in fact, are interested in R_{m+1} only (not R_{o}). 1.13A Claim: The parallel claim to 13 holds for $m=n^{\pi}$. 1.14. Corollary. Suppose $\underset{\sim}{g}$ is a $\underset{\sim}{\underset{f}{f}}$-name, μ good for every $m \geq n[\pi], \underset{\sim}{g}$ a function from μ to ordinals. Then there is π_{1}, a length-preserving extension of π such that:

$$
\begin{aligned}
& \text { if } \pi_{1} \leq \sigma \in P, i \in t_{m}[\sigma] \cap \mu, \sigma \|_{\underline{P}} \quad{ }_{\sim}^{g}(i)=\alpha " \text { then also } \\
& \sigma^{*} \|_{\underline{P}} \quad \underset{\sim}{g}(i)=\alpha \text { " where } \sigma^{*} \text { is defined by } \\
& r\left[\sigma^{*}\right]=r[\sigma] \\
& \mathrm{n}\left[\sigma^{*}\right]=\mathrm{n}[\sigma], \mathrm{t}_{\ell}\left[\sigma^{*}\right]=\mathrm{t}_{\ell}[\sigma] \text { for } \ell=1, \ldots, \mathrm{n}[\sigma] \\
& \mathrm{f}_{\ell}\left[\sigma^{*}\right]=\mathrm{f}_{\ell}[\sigma] \text { for } \ell=0, \ldots, \mathrm{~m}-1 \\
& f_{\ell}\left[\sigma^{*}\right]={\underset{\sim}{l}}^{G}\left[\pi_{1}\right]\left(t_{\ell}\right) \text { for } \ell=m, \ldots, n[\sigma] \\
& {\underset{\sim}{A}}_{\ell}\left[\sigma^{*}\right]={\underset{\sim}{A}}_{\ell}\left[\pi_{1}\right] \text { for } n[\sigma]<\ell<\omega \\
& \mathrm{G}_{\ell}\left[\sigma^{*}\right]=\mathrm{G}_{\ell}\left[\pi_{1}\right] \text { for } \mathrm{n}[\sigma]<\ell<\omega \text {. }
\end{aligned}
$$

Proof: Use Claim 1.11 and then 1.13 for all m.
1.15 Claim: Suppose $\pi_{1}, g, n=n\left[\pi_{1}\right]$ are as in corollary 1.14, $\mu \leq \lambda\left(t_{n}^{\pi}\right)$ and $m<n\left[\pi_{1}\right]$, and $\underset{\sim}{g}$ is a function from μ to $\{0,1\}$ (i.e. $\underset{\sim}{g} \in V\left[<K_{\ell}[G], f_{\ell}[G]: n \leq \ell\langle\omega\rangle, C\right]$, and note that we can get ${\underset{\sim}{f}}^{f}[G]$ from this universe by forcing by the product of n Lévy collapsing).

Then there is $\pi_{2} \in \underline{P}$ such that:
A) $\pi_{1} \leq \pi_{2}, \overline{\mathrm{t}}\left[\pi_{1}\right]=t\left[\pi_{2}\right], \overline{\mathrm{G}}\left[\pi_{1}\right]=\overline{\mathrm{G}}\left[\pi_{2}\right]$
B) If σ is an m-direct extension of $\pi_{2}, \alpha<\mu, i<2$
$\sigma \|_{\underline{p}} " g(\alpha)=i "$ then also π_{2} forces this.

Proof: Fix α.
Let $W_{k}=\left\{\langle\bar{t}, \overline{\mathrm{f}}\rangle\right.$: for some m-direct extension σ of $\pi_{2}, n[\sigma]=k$, $\left.\bar{t}^{\pi}=\bar{t}, f^{\pi} \mid k=\bar{f} \in \mathrm{~V}\right\}$.
For every $w=(\bar{t}, \bar{f}) \in W_{k}$ we define an R_{k+1}-name ${\underset{\sim}{k}}(\bar{t}, \bar{f})$ of an ordinal < 3: for $r \in R_{k}$

$$
r \|-{ }_{\sim}^{V} V_{k}(\bar{t}, \bar{f})=\ell " \text { iff }
$$

A) $\ell<2,<r, \overline{\mathrm{t}}, \overline{\mathrm{f}}^{\wedge}<{\underset{\sim}{G}}_{k}\left(\mathrm{t}_{\mathrm{k}}\right)>, \underset{\sim}{\underset{\sim}{A}}\left\lceil[k+1, \omega), \underset{\sim}{\bar{G}}\lceil[k+1], \omega)>\|_{\underline{\underline{P}}} \underset{\sim}{g}(\alpha)=\ell "\right.$ or
B) $\ell=2$, and for no $r^{\prime}, r \leq r^{\prime} \in R_{k+1}, \ell^{\prime}<2$
$<r^{\prime}, \bar{t}, \overline{\mathrm{~F}}^{\wedge}<\underset{\sim}{G_{k}}\left(t_{k}\right)>, \underset{\sim}{\underset{A}{A}}\left\lceil[k+1, \omega), \underset{\sim}{G}\left\lceil[k+1, \omega)>\|_{\underline{p}} \quad " g(\alpha)=\ell "\right.\right.$.
Now for every $\mathrm{k}<\omega$ we define by downward induction on
$\ell \leq k$, for every $(\bar{t}, \bar{f}) \in W_{\ell}$ an $R_{\ell+1}$-name $V_{k}(\bar{f}, \bar{f})$ of an ordinal
<3 and $\underset{\sim}{B}(\bar{t}, \bar{f})$ of a member of $\underset{\underbrace{}_{\ell+1}}{E}$.
For $\ell=k$ we have defined $\underset{\sim}{\underset{N}{V}}(\bar{t}, \bar{f})$, and let $\underset{\sim}{\underset{\sim}{~}}(\bar{t}, \bar{f})=I_{k+1}$.
Now let $(\bar{t}, \bar{f}) \in W_{\ell^{\prime}} \ell<k,{\underset{\sim}{V}}\left(\bar{t}^{\prime}, \bar{E}^{\prime}\right)$ is defined for $\left(\overline{\mathrm{t}}, \overline{\mathrm{f}}^{\prime}\right) \in \mathrm{W}_{\ell+1}$. Then ${\underset{\sim}{V}}(\overline{\mathrm{t}}, \overline{\mathrm{f}})$ is the unique $\mathrm{i}<3$ such that: $\left(\bar{t}=\left\langle t_{1}, \ldots, t_{l}\right\rangle\right)$

$$
\left\{\mathrm{t}_{\ell+1} \in \mathrm{I}_{\ell+1}: i={\underset{\sim}{k}}^{{\underset{k}{k}}}\left(\overline{\mathrm{t}}^{\wedge}<t_{\ell+1}>, \overline{\mathbf{f}}^{\wedge}<{\underset{\sim}{G}}_{\ell}\left(\mathrm{t}_{\ell}\right)>\right)\right\} \in{\underset{\sim}{E}}_{\ell+1}
$$

(note all the names in the expression above are ${\underset{\sim}{R}}_{\ell+1}$-names)
and

$$
{\underset{\sim}{\mathrm{B}}}_{\mathrm{K}}(\bar{t}, \overline{\mathrm{f}})=\left\{\mathrm{t}_{\ell+1} \in \mathrm{I}_{\ell+1}:{\underset{\sim}{\mathrm{V}}}(\overline{\mathrm{t}}, \overline{\mathrm{f}})={\underset{\sim}{\mathrm{V}}}_{\mathrm{k}}\left(\bar{t}^{\wedge}<t_{\ell+1}>, \overline{\mathrm{f}}^{\wedge}<{\underset{\sim}{G}}_{\ell}\left(t_{\ell}\right)>\right)\right\}
$$

Now we can define ${\underset{\sim}{A}}_{\ell}^{\left[\pi_{2}\right]}$:
${\underset{\sim}{A}}_{\ell}\left[\pi_{2}\right]=\left\{t \in I_{k}\right.$: for every $(\bar{t}, \bar{f}) \in W_{\ell-1}$, such that $t_{\ell-1} \subsetneq t$, and $k \geq \ell, t \in B_{k}(\bar{t}, \bar{f})$, and of course $t \in \underset{\sim}{A}{\underset{\sim}{A}}^{\left.\left[\pi_{1}\right]\right\}}$

This is fine for α, and as there are "few" (i.e. μ) α 's there is no problem to prove the claim.

§2. Applications

For this section we make the following hypothesis.
2.1 Hypothesis: There is a universe V satisfying zFC + G.C.H., in which k is supercompact, moreover the supercompactness is preserved by k-directed complete forcing.

Remark: We can weaken " κ is supercompact" by " κ is λ-supercompact" for λ suitable for each theorem, bur as long as we cannot get inner models with supercompact this is not so interesting, and anyhow clearly we get by our proof the expected results (or almost, replacing λ by λ^{+}).

Similarly for assuming G.C.H. - it is expected that violating C.G.H. is "harder" so we do not lose generality, and so though it seemed that we can get rid of it, there is no point in doing this.
Notation: $\quad\left(\delta_{\alpha}\right)^{+i}=\aleph_{\alpha+i}$ so $\lambda^{+1}=\lambda^{+}$.
2.2. Theorem: 1) For any $\alpha<\delta_{S_{1}}$, there is an extension V_{f} of V in which k is ξ_{ω}, is strong and $2^{\xi_{\omega}}=\xi_{\alpha+1}$.
2) Moreover in v_{f} there are $f_{i} \in \pi_{n<\omega} \quad \delta_{n}$ for $i<\delta_{\alpha+1}$, such that for $i<j, f_{i}<{ }^{*} f_{j}, i . e .,\left\{n: f_{i}(n)<f_{j}(n)\right\}$ is co-finite. Proof: 1) For $\alpha<\omega$ this is done in Magidor [Mg l], so let $\alpha=\delta+k, \delta$ a limit ordinal, let $\delta=\underset{n<\omega}{u} D_{n^{\prime}} D_{n}$ finite, increasing. Let Q be any κ-complete forcing adding $\kappa^{+\alpha+2}$ subsets to κ and satisfying the κ^{+}-chain condition e.g. $Q=\left\{f: f\right.$ a partial function from $\kappa^{+\alpha+2}$ to $\{0,1\}$ of power $\left.<\kappa\right\}$.

Let $T_{n}=\left\{(\beta, \gamma): 0 \leq \beta<\gamma<\delta\right.$ and $\left.\left(\forall \xi \in D_{n}\right) \neg(\beta \leq \xi \leq \gamma)\right\}$

$$
\begin{aligned}
& R_{n}=\left(\mathrm{II}_{(\beta, \gamma) \in \mathrm{T}_{\mathrm{n}}} \operatorname{Col}\left(\kappa^{+\beta},<\kappa^{+\gamma}\right)\right) \times Q . \\
& \lambda_{\mathrm{n}}=\kappa^{+\alpha+2}
\end{aligned}
$$

Now clearly:
Fact $A: \quad R_{n}$ is κ-directed complete, $\left\|\|_{R_{n}} 2^{\kappa}<\kappa^{+\omega}\right.$, hence for every $t \in I_{n^{\prime}} \lambda_{n}(t)<\kappa(t)^{+\omega}$.

Fact B : $\kappa^{+\beta}$ is good for R_{n} if for some $\gamma, \beta=\gamma+2, \gamma+1 \in D_{n}$ or $\beta>\delta+1$, hence every $\gamma+2 \leq \alpha+1$ is good for R_{n} for every n large enough.
Fact C: In V_{f} (from §1) k is $\oint_{\omega^{\prime}} 2^{k_{n}} \leq \chi_{n}, 2^{X_{n}}=\lambda_{n}^{+}$and $\kappa_{n}<\kappa$, where $\chi_{n}=\lambda_{n}\left(t_{n}\right)$ so κ is \oiint_{ω} and strong limit.

Now the theorem is immediate.
2) Just change Q to add $f_{i}: \kappa \rightarrow k$, ($i<\kappa^{+\alpha+2}$), such that $f_{i}<{ }^{*} f_{j}$ for $i<j$.
2.3. Theorem: 1) For any $\alpha<\mathcal{S}_{2}$ there is an extension v_{f} of v in which κ is $\delta \oint_{\omega_{1}}$, and is strong limit, and $2^{\delta \omega_{1}}=\delta \oint_{\alpha+1}$.
2) For any fixed $\xi<\omega_{1}$ we can assume that
$H\left(\aleph_{\xi}\right)=H\left(\aleph_{\xi}\right)^{V_{f}}(H(\lambda)$ is the family of set of hereditary cardinality < λ).

Proof: l) Just amalgamate the proof of 2.2 and of Magidor [Mg 1] §5 (see [Mg 3] too).
2) Just let in $\S 1 \underset{\sim_{0}}{f} \in \operatorname{Col}\left(\aleph_{\xi^{\prime}},<\kappa_{1}\left(t_{1}\right)\right)$.

Remark: By Magidor [Mg 4] (improving Galvin and Hajnal) if Chang's conjecture holds, $\mathcal{S}_{\omega_{1}}$ is strong limit, then improve 2.3(1).

Remark: By [Sh 2], we cannot improve $2.2(1)$ result for $\alpha>\left(2 \mathrm{~S}_{\mathrm{O}}\right)+$ if the method gives $2.2(2)$ too.
2.4. Definition: 1) For a monotonic function f from ordinals to ordinals we define a function $f^{[i]}$ from ordinals to ordinals by induction on i:

$$
\begin{aligned}
& f^{[o]}(\alpha)=\alpha \\
& f^{[\alpha+1]}(\alpha)=f\left(f^{[i]}(\alpha)+1\right) \\
& f^{[\delta]}(\alpha)=\underset{i<\delta}{\cup} f^{[i]}(\alpha)
\end{aligned}
$$

2) For a function f from ordinals to ordinals we define a function f^{*} from ordinals to ordinals

$$
f^{*}(\alpha)=f^{[\alpha]}(0)
$$

3) For a class C of ordinals we define by induction on α a function $\operatorname{Suc}_{C}^{\alpha}$ from ordinals

$$
\begin{aligned}
& \operatorname{Suc}_{C}^{\alpha}(i)=\min \{\xi: \xi \in C, \xi>i\} \\
& \operatorname{Suc}_{C}^{\alpha+1}(i)=\left(\operatorname{Suc}_{C}^{\alpha}\right)^{*}(i) \\
& \operatorname{Suc}_{C}^{\delta}(i)=\operatorname{u}_{\alpha<\delta} \operatorname{suc}_{C}^{\alpha}(i)
\end{aligned}
$$

4) In 3) if C is the class of infinite cardinals, then we omit it.
2.5. Lemma: Suppose λ has cofinality δ_{0}^{\prime}, and for $\chi<\lambda, n<\omega$, $\operatorname{Suc}^{n}(x)<\lambda$. Suppose further $\mu \geq \lambda$ but there is no weakly
inaccessible cardinal $\kappa, \lambda \leq \kappa \leq \mu$. Then there are
$D_{n}, D_{n} \subseteq D_{n+1}, \cup D_{n} \supseteq\{\chi: \lambda \leq \chi \leq \mu, \chi$ a cardinal $\}$, and
$\operatorname{suc}_{D_{n}}^{n}(\kappa) \geq \mu$.
Proof: We prove, by induction on μ, the existence of $\left\langle D_{n}(\mu): n<\omega\right\rangle$ as required.

Case I: $\mu=\lambda$.
We let $D_{n}(\mu)=\{\lambda\}$, and there is no problem.
Case II: $\mu=\chi^{+}$for some χ, or even $\chi<\mu \leq \aleph_{X}$.
Let $D^{*}=\{\kappa: \chi<k\}, D_{O}(\mu)=\{\kappa: k \geq \mu\}, D_{1}(\mu)=D^{*}$
$D_{n+2}(\mu)=D_{n}(\chi) \cup D^{*}$.
So $D_{n}(\mu)(n<\omega)$ is increasing, with union $\supseteq\{k: \lambda \leq \kappa \leq \mu\}$;
$\operatorname{Suc}_{D_{n}}^{n}(\chi)^{(\lambda)} \geq \chi$, hence $\operatorname{Suc}_{D_{n}}^{n+2}(x)(\lambda) \geq \delta_{\chi}$ hence is $\geq \mu$, so
$\operatorname{Suc}_{D_{n}(\mu)}^{n}(\lambda) \geq \mu$ for $n>1$; for $n=0,1$ this is true too by the definition.

Case III: μ is a limit cardinal, but for $\chi<\mu, \mathcal{S}\rangle_{X}<\mu$.
Let $\mu=\sum_{i<\chi} \mu_{i}, \chi=\operatorname{cf} \mu, \mu_{i}<\mu, \mu_{i}$ increasing continuous, $\mu_{0}=\left\langle\xi_{0}\right.$.

Let $D_{0}(\mu)=D_{1}(\mu)=\{\kappa: \kappa \geq \mu\}, D_{n+2}(\mu)=\{\chi$: for some i, $\mu_{i} \leq \chi<\mu_{i+1}, \chi \in D_{n}\left(\mu_{i+1}\right)$ and $\hat{h}_{i} \in D_{n}\left(\delta_{\chi}\right)$. The checking is easy.
2.6. Theorem: 1) For any $\mu>k, \mu^{\kappa}=\mu$, smaller than the first inaccessible cardinal $>k$, there is a forcing extension V_{f} of V, in which κ is $\operatorname{Suc}^{\omega}\left(\mathcal{S}_{\mathrm{O}}\right)$, is strong limit, $2^{\kappa}=\mu$, and no cardinal in $[k, \mu]$ is collapsed, except possibly successors of singular cardinals.
2) Moreover we can assume that in V_{f} there are functions $f_{i} \in \prod_{n<\omega} \kappa_{n}\left(i<\mu\right.$ where $k=\sum_{n<\omega} k_{n}, k_{n}<\kappa_{n+1}$) such that for $i<j, f_{i}<{ }^{*} f_{j}$.

Proof: Similar to the proof of 2.2., using lemma 2.5 (so for
$\left.t \in I_{n}, \operatorname{Suc}^{n}(k(t)) \geq \lambda(t)\right)$.

REFERENCES

[GH] F. Galvin and A. Hajnal, Inequalities for cardinal powers, Annals of Math., lOl (1975), 491-498.
[L] R. Laver, Making the supercompactness of K indestructible under k-directed closed forcing, Israel J. Math., 29 (1978) , 385-388.
[Mg 1] M. Magidor, On the singular cardinals problem I, Israel J. Math., 28 (1977), l-31.
[Mg 2] M. Magidor, On the singular cardinals problem II, Annals of Math. 106 (1977), 517-549.
[Mg 3] M. Magidor, Changing cofinality of cardinals. Fund. Math. XCIX (1978), 61-71.
[Mg 4] M. Magidor, Chang conjecture and powers of singular cardinals, J. Symb. Logic, 42 (1977), 272-276.
[Sh 1] S. Shelah, A note on cardinal exponentiation. J. Symb. Logic. 45 (1980), 56-66.
[Sh 2] S. Shelah, Jonsson algebras in successor cardinals, Israel J. Math., 30 (1978), 57-64.
[Sh 3] S. Shelah, The singular cardinals problem independence results and other problems, A.MS. Abstracts.
[Si] J. Silver, On the singular cardinals problem, Proc. of the International congress of Mathematicians', Vancouver, 1974, Vol.1, 265-268.

