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Abstract

We deal with a finite combinatorial problem arising for a question on generalizing Arrow theorem
on social choices.
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0. Introduction

Let X be a finite set of alternatives. A choice functiois a mapping which assigns to
nonempty subset$ of X an element(S) of S. A rational choice function is one for which
there is a linear ordering on the alternatives such &8} is the maximal element of
according to that ordering. (We will conceate on choice functions which are defined on
subsets o of fixed cardinalityk and this will be enough.)

Arrow’s impossibility theorem [1] asserthdt under certain natural conditions, if there
are at least three alternatives then every non-dictatorial social choice gives rise to a non-
rational choice function, i.e., there exist profiles such that the social choice is not rational.
A profile is a finite list of linear orders on the alternatives which represent the individual
choices. For general references on Arrow’s theorem and social choice functions see [2,5,7].

Non-rational classes of choice functions which may representindividual behavior where
considered in [3,4]. For example(S) is the second largest element $haccording to
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some ordering, o¢(S) is the median element ¢f (assumgsS| is odd) according to some
ordering. Note that the classes of choice functions in these classes are symmetric, namely
are invariant under permutations of the alternatives. Gil Kalai asked if Arrow’s theorem
can be extended to the case when the individual choices are not rational but rather belong
to an arbitrary non-trivial symmetric class of choice functions. (A class is non-trivial if it
does not contain all choice functions.) The main theorem of this paper gives an affirmative
answer in a very general setting. See alsoffé]general forms of Arrow’s and related
theorem.

The part of the proof which deals with the gita case is related to clones which are
studied in universal algebras (but we do not use this theory). On clones see [8,9].

Notation

(1) n,m,k, £, rs,t, i, jnatural numbers; always many times- are constant (there may
be some misuses &}.

(2) X afinite set.

(3) ¢ afamily of choice function off}) = {Y: ¥ C X, |Y| =k}

(4) Fis aclone onX (see Definition 2.3(2)).

(5) a,b,ec X.

(6) c,dec.

(7) f.geF.

Annotated content

Sectionl: Framework
[What areX, €, F = Av(€), the Arrow property restricted t();f) Cis (X, k)=
FCF (note: no connection for differeht— s) and the Main Theorem. Fa%, F,
r=r(F).]
Part A: The simple case
Section2: Context and on nicg’s
[Define a cloner (F). If f € F is not a monarchy; > 4 on the family of not
one-to-one sequenceés " X then f is a projection, Claim 2.5.
Define f;., x, basic implications ory., x € F, Definition 2.6, Claim 2.7.
If r =3, f € Fi51 is not a monarchy on one-to-one triples, theémwithout loss of
generality, isf;.1,2 or g,.1,2 on a relevant set, Claim 2.8.
If =3, f is not a semi monarchy on permutations:of
If r =3, there are some “usefuf, Claim 2.11. Implications otf;., x € F.]
Section3: Getting€ is full
[Sufficient condition forr > 4 with f;.12 or so (Lemma 3.1), similarly when
r=23.
Sufficient condition for = 3 with g,.1 2 or so (Claim 3.3).
A pure sufficient condition fo€ full, Claim 3.4.
Subset(’?f), closed under a distance, Claim 3.5.
Getting the final conclusion (relying on Section 4).]
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Sectiod: Ther =2 case
[By stages we get & < Fp,1 which is a monarchy with exactly one exceptional
pair, Claims 4.2—4.4. Then by composition we get 7, similar to f;.1.2.]

Part B: Non-simple case

Sectiorb: Fullness — the non-simple case
[We derive € is full” from various assumptions, and then prove the main theo-
rem.]

Sectior6: The case =2

Section7: Thecase >4

1. Framework
1.1. Context. We fix a finite setX andr = {0, ..., r — 1}.
1.2. Definition. (1) An (X, r)-election rule is a function such that for every “votef = (z,:
aeX)eXrwehavec(f)er=1{0,...,r —1}.
(2) ¢ is a monarchy if3a € X) (Vi € X7)[c(t) =t4].
(3) c is reasonable ifVr) (c(1) € {t,: a € X}).

1.3. Definition. (1) We saye is a family of choice functions fok (X-FCF in short) if

¢C {c: ¢ is a function with Dondc) = P~ (X) (= family of nonempty subsets df)
and(VY € P~ (X)) (c(Y) € Y)}.

(2) ¢ is called symmetric if for everyr € Per(X) = group of permutations ok, we
have

ceC = mwxce whererxc(¥)=n"*(cm(Y)).
() Pe =P~ (X).
1.4. Definition. (1) We say av is a-averaging function fo€ if

(a) av is a function written auas1, ..., a,);
(b) foranycy,...,c € €, there isc € € such that

(VY e P7(X)) (c(Y))=avy(c1(Y),...,cr(Y));
(c)ifaeYeP (X)thenay(a,...,a)=a.
(2) av is simple if ay (ay, . . ., a,) does not depend on, so we may omit’.
(3) AV, (€) ={av: av is arr-averaging function fo€}, similarly AV;(€) = {av: av is

a simpler-averaging function fo€’}.
(4) AV(©) =, AV, (&) and A¥(¢) =, AVi(Q).



Sh:782

220 S. Shelah / Advances in Applied Mathematics 34 (2005) 217-251

1.5. Definition. (1) We say that which is anX-FCF, has the simple-Arrow property if

.
ave AVI(©) = \/(Vai.....a)(aV(a1.....a)) =a;);
=1

such av is called monarchical.
(2) Similarly without simple (using A¥(¢)).

1.6. Question. (1) Under reasonable conditions daghave the Arrow property?

(2) Does|¢| < poly(] X|) = r-Arrow property? This means, e.g., for every natural num-
bersr, " for everyX large enough for every symmetki¢ an X-FCF with< | X|" member,
¢ has the-Arrow property.

1.7. Remark. The question was asked withy, defined for everyX; but in the treatment
here this does not influence.

We actually deal with:

1.8. Définition. If 1 <k < |X| — 1 and we replac®~ (X) by (§) :={Y: Y C X, |Y| =k},
then is called(X, k)-FCF, P¢ = (), k = k(¢), av is [simple]r-averaging function for
¢ letk(€) = 0o if Pe =P~ (X); let F = F(€) = AV* (@) and letF, = (f € F: fis
r-placg.

1.9. Discussion. This is justified because:

(1) For simple averaging functiok,> r, the restriction to(f) implies the full result.

(2) Forthe non-simple case, there iktde connection between the variods (;f) (exer-
cise).

Our aim is (but we shall first prove the simple case) the following.

1.10. Main Theorem. There are natural numbers, r; < » (we shall be able to give
explicit values, e.g:f’ = r; =7 are OK) such that

® if X is finite, ri <k, |X| —r; > k and € is a symmetricakX, k)-FCF and some
ave AV, () is not monarchical, then every choice function (éb belongs toe (i.e.,
¢ is full).

Proof. By Claim 5.10. O

1.11. Conclusion. AssumeX is finite, r; < k < [X| — r; (whererj,r; from Theo-
rem 1.10).
(1) If ¢ is an(X, k)-FCF and some member of A&) is not monarchical, thetg| =
1X]
k( k )
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Part A. Thesimple case

2. Context and on nice f's

Note. Sometimes Part B gives alternative ways.

2.1. Hypothesis (for Part A).

(a) X afinite set;

(b) 5<k <|X|—5;

(c) € asymmetria X, k)-FCF and® # ¢;

(d) Fi-y={f: f anr-place function fromX to X such that® is closed under, that is
[ eAVIO}

e) F=U{Fpy: r <ol

2.2. Fact. F is a clone onX (see Definition 2.3) satisfying' € F,) = f(x1,...,x,) €
{x1,...,x,} andF is symmetric, i.e. closed by conjugation hye PerX).

2.3. Definition. (1) f is monarchicak is a projection, iff is anr-place function (fromX
to X) and for some, (Vx1,...,x,) f(x1,..., %) =x;.
(2) F is a clone onX if it is a family of functions fromX to X (for all arities, i.e.,
number of places) including the peajtions and closed under composition.
2.4. Definition. For €, F as in Hypothesis 2.1:
r(€) =r(F) :=min{r: somef € €, is not monarchical
(letr(F) = oo if € is monarchical).

2.5. Claim. Assume

@) f€Fp;
(b) 4<r=r(F)=min{r: somef € F is not a monarchy.

Then

(1) forsomet € {1,...,r} we havef (x1, ..., x,) = x¢ if x1, ..., x, has some repetition.
(2) r<k.

Proof. (1) Clearly there is a two-place functignfrom {1, ...,r} to {1,..., r} such that:
if ye=yx ALFEkthenf(yi,...,¥) = Yne.x; we have some freedom, so without loss of
generality:

X €#£k=h(l, k) #k.
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Assume toward contradiction that (1)'s conclusion fails, i.e.
® h[{{, k) 1< <k<r}isnotconstant.
Casel.Forsomer €"X andl1 #£k1€{1,...,r} we have

Xty = Xkq» f(f)?é)C(l;

equivalentlyh{€1, k1} ¢ {£1, k1}, recallingX.

Without loss of generality)s =r — 1, k1 =r, (k) = x1 (as for a permutatios of
{1,...,r}, we canreplac¢ by f5, fo(x1,.... %) = f(Xo ), - - -+ Xo(r)))-

We can choose # y in X, sOh(x,y,...,y) =x hencel #k € {2,...,r} implies
h(t, k) =1.

Now for ¢ € {2, ..., r} we have agreed(l, ¢) # ¢, (seeX) so ash | {(£,k): £ <k} is
not constantly 1 (by®), without loss of generality (1, 2) = 3. But asr > 4, lettingx #
y € X we havef (x,x,y,y,...)isyash(l,2) =3 and isx ash(3,4) = 1, contradiction.

Case 2. Not Case 1.

Let x # y, now considerf(x,x,y,y,...), itis x ash(1,2) € {1,2} and it isy as
h(3,4) € {3, 4}, contradiction.

(2) follows as forr > k we always have a repetition (see Definition 1.4 plays the
role ofc). O

2.6. Définition. f,., x = fr.¢.x is ther-place function orX defined by

-, _ | xe, xiswith repetition
Jriex(®) = {xk, otherwise
27.Clam. () If fri2e Fthenf,pre€foré£kefl,... r}.

) If fr12e Fandr =r >3thenf, 112€ F.

Proof. (1) Trivial (by Fact 2.2).
(2) First, assume > 5. Let g(x1,...,xr41) = fr1.2(x1, X2, 73, ..., 7,) Wheret, =
Sram(X1, ooy Xmy Xmg2, - o, Xry1); (that isx,, 41 is omitted). So for anyi:
— if a has no repetitions then
3(a) =as, ..., .(a) =ay, gla) = f(ay,az,as,...,a;) =az;
— if a has repetitions, say, = ax, then there ism € {3,...,r} \ {¢ — 1,k — 1},
hence(as, ..., am, am+2, ..., ar+1) is with repetition; sor,, (a) = a1, so (a1, az, . . .,

(), ...) has a repetition, sg(a) = as.

Second, assume= 4. Letg be the function of arity 5 defined by: far= (x1, ..., xs5)
we letg(x) = fr1.2(11(x), ..., t4(x)) where
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()1 T2(X) = x1;

()2 12(X) = fr1,2(x1, x2, X3, X4);

()3 13(X) = fr1,3(x1, x2, X3, X5);

()4 T4(X) = fr,1,4(x1, X2, X5, X4).

Note that

(x)5 for x with no repetitionr, (x) = xy.

Now check thag is as required.
Third, assume = 3. Letg(x1, x2, x3, x4) = fr.1,2(71, T2, T3) Where

T1 = X1, T2 = fr,1,2(x1, X2, X4), 13 = fr,1,2(x1, X3, X4).
Now check (or see the proof of Claim 4.7)0
2.8. Claim. Assume
(x) FisasinFact2.2,
(B) everyf € Fizisamonarchyy =r[F]=3; B B
(y) f* e Fmandfornoi {1, 2,3} do we haveVvb e 3X) (b notone-to-ones f*(b) =
b;).

Then for someg € F3; not a monarchy we havéa) or (b) where

(a) for b € 3X which is not one-to-ong(b) = f.1,2(b), i.e.= ba;
(b) for b € 3X which is not one-to-ong(b) = gr:1.2(b), see below.

Where
2.9. Définition. g1, 2 is the following functiort from X to X:

x2, fxp=x3=-=x,
. X1, X2, o vy Xp) = .
8ri1.2, (X1, X2 r) {xl, otherwise
Similarly g,.¢ x(x1, ..., x.) iSxg if [{x;: i #£}| =1 andx, otherwise.

Proof of Claim 2.8. The same as the proof of the next claim ignoring the one-to-one
sequences (i.ef (a1, az, az)), see more later.

2.10. Claim. AssumeF is asin Fact2.2, r =r(F) =3, f* € F, f* is a3-place function
and not a monarchy and e 3X is with no repetition such thaif a’ = (aj, a5, a3) is a

permutation of: then f*(@’) = ay; but—(¥b € 3X) (b not one-to-one= f*(b) = b1)).

1 This is the majority function for = 3.
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Then for somg € F3 we have(a) or (b) where

(a) (i) for b € 3X with repetition,g(b) = f,.1.2(b), i.e. g(b) = by;
(ii) g(&/_) = a, for any permutati_om‘z/ ofa;
(b) (i) for b € X with repetition,g(b) = g,.1.2(b);
(i) g(a’) =aj forany permutatiora’ of a (see org,,1 2 in Definition2.9).

Proof. Leta = (a1, a2, a3); (a, b, c) denote any permutagion af
Let W = {b: b e 3X and[b is a permutation ofi or b not one-to-ong. Let F~ =

{fIW:feF), f=f1W.
Let for 5 € 3{1, 2}, fn be the 3-place function with domalif, such that

Mo fr(as), as2), ao(3)) =as () foro e Pell, 2, 3},

X1 fyla1, az, a2) = ayq),

Mo fy(a1,az,a1) =aye);

N3 fy(a1,a1,a2) =aya).

Now

(o fel{fy ne32}.

[Why? Just think: by the assumption git and asr(F) = 3, in details: forlX, X, X

remember thaf (x, y, y), f(x, y,x), f(x, x, y) are monarchies and féfo remember the
assumption o@ and of coursef (x, x, x) = x.]

()1 if n=(1,1,1) thenf, # f.

[Why? f,,(x1, x2, x3) = x1 on W, i.e. is a monarchy.]

(02 if n,ve3(1, 2}, n(D) =v(@), n(2 =v(3), 13 =v(2),thenf, e F~ & f, € F~.
[Why? In f(x, vy, z) we just exchange andz.]

(#)3 if fo22)y€Fthenfi122 € F~.

[Why? Defineg by g(x,y.z) = fi2.22(x, f2.22/(y, X, 2), fi2.2.2(z, x,y)) (S0g € F~)
hence

gla,b,c)= fp22/(a,b,c)=a; henceg satisfiesXp,
gla,b,b) = fi222(a, fiz.22/(b,a,b), f222(b,a,b))= fi22/(a,a,a)=a,

gla,b,a)= fp22(a, fie22(b,a,a), fe22(a,a,b)) = fie22(a,a,b)=b,
gla,a,b)= fe22(a, fie22(a,a,b), fe22/(b,a,a)) = fi22/(a,b,a)=b.
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Sog = fi1,2,2 hencefi122 € F~ as promised.]
(04 fir22€F = for e F .
[Why? Let
g(x,y,2) = fu22(x. y, fn22@. x, ),
sog(a, b, c) = a, henceg satisfiesXlp and
gla,b,b) = fu22(a, b, f22(b,a,b)) = fa22(a, b,a)=>b,

gla,b,a)= fu22(a,b, fr22/(a, a,b))= fiu22(a,b,b)=a,
gla,a,b)= fu22(a.a, fr22(b,a,a)) = f122(a,a,b)=b.

Sog = fi2,1,2), hencefz 1,2 € 77, as promised.]
(®)s fiz1,2) = f3:3.1, 1.€.

x1, if [{xg, x2, x3}| =3,

X1, X2, X3) = .
(1. 32, 23) {x3, if [{x1, x2, x3}| <2,

[Why? Check.]

(®)6 fiz,2,1)(x1, X2, x3) = x2 if 2 > |{x1, x2, x3}/.
[Why? Check.]

(®)7 feireF~ & fe2neF .

[Why? See(x)2 in the beginning.]

()8 fiuazneF~ € fiuin e F .

[Why? By (x)2 in the beginning.]

()9 fir2zneF™ = fe2neF .

[Why? Letg(x, y,2) = fir,2,0(x, fir.2,(y, 2, %), fi1,2,1)(z, x, y)); then

gla,b,c) = fu2y(a, fir2yb, c,a), fu21(c,a,b)) = fu2y(a,b,c)=a,

and henceg satisfiesXl,

when(xy, x2, x3) € W.

225
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gla,b,b)= fu21(a, fr21®.b,a), fu21(b.a,b))= f121(a,b,a)=b,
gla,b,a)= fu21(a, fr21(b,a,a), fa2y(a, a,b))= fu2y(a,b,a)=>b,
gla,a,b)= fu21(a, fin2n (@, b,a), fa2yb,a,a))= fu21(a, b b)=a.

Sog = f2.2,1), hencefi2 21y € F~.]
Diagram (arrows mean belonging 6~ follows)

f22€eF™
M(*h

fa22 € F~ faz2yeF- ﬁ faiz e F-
M(*M H(*)g

()7

fie12 e F- <=—= fp2nye€F~

among the qunctionsf,,; one,f(1,1,1), is discarded being a monarchy, seg,, six appear
in the diagram and imply;.3 1 € F~ by (x)s5; hence clause (a) of Claim 2.10 holds; and
one isg,.1 2 because

()10 gr;1,2= fi21,1y ONW.

[Why? Check.] So clause (b) of Claim 2.10 holdsa

Continuation of the proof of Claim 2.8. As r(F) = 3 for somen € 32, f* agrees with
f, for all not one-to-one triple. If n = (1,1, 1), we contradict assumptio@y) as in
(x)1 of the proof of Claim 2.10, and if = (2, 1, 1), possibility (b) of Claim 2.8 holds
as in (x)10 in the proof of Claim 2.10. If; = (2, 1, 2) then f*(b) = b3 for b € 3X not
one-to-one (seéx)s) and this contradicts assumptigp); similarly if n = (2, 2, 1). In the
remaining case (see the diagram in the proof of Claim 2.10), thefeciss agreeing on
{b € 3X: b is not one-to-onpwith f, for n = (1,2,2) or n = (1,2, 1), without loss of
generalityf* = f.

If n=(1,2,2), defineg as in (x)a, i.e. g(x,y,2) = f*(x,y, f*(z, x,y)); so for a
non-one-to-one sequendec 3X we haveg(h) = fi2.1.2)(b) = bs. If for some one-to-
onea € 3X we havef*(as, a1, a2) # az theng(ai, az, az) = f*(a1, a2, f*(az, a1, a2)) €
{a1, a2}; so permuting the variables we get possibility (a). So we are left with the case
a € 3X is one-to-one= f*(a) =ax.

Let us defineg € Fiz by g(x1,x2,x3) = f*(f*(x2, x3, x1), X3, x2). Let b e 3x;
if b is without repetitions therg(b) = f*(b, b3, bo) = bz. In caseb = (a, b, b), we
have g(b) = f*(f*(b,b,a),b,b) = f*(a,b,b) = a = by, for b = (a, b, a), it follows
that g(b) = f*(f*(b,a,a),a,b) = f*(b,a,b) = a = by; and forb = (a,a, b) we de-
rive g(b) = f*(f*(a,b,a),b,a) = f*(b,b,a) = a = by, together forb non-one-to-one,
g(b) = b1. Sog is as required in clause (a).
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Lastly, letn = (1,2,1) and letg(x,y,z) = f*(x, f*(y,z.x), f*(z, x,y)); now by
(*)g of the proof of Claim 2.10, easilyb[is non-one-to-ones g(b) = fi2.2.1)(b) = b2].
Now if (a1, az,a3) is without repetitions andf*(az, as, a1) = a1 then g(a1, az, az) =
a1 and possibility () holds for this g. Otherwise, we havéhb e 3X is one-to-one
= f*(b) € {b1, ba}]; SO if (a1, az, az) € 3X is one-to-one and*(az, as, a1) # a» then
g(a1, az, az) # az (@s f*(as, a1, az) # az, henceg(ai, az, az) = g(ax, a,, ay) for some
dy, ay # ap); so g is not a monarchy, hence possibility) holds. Hencelb € 3X is
one-to-one= f*(b) = by]. Let g* € F be g*(x, y,z) = f*(f*(x,v,2), f*(x,2,y), x).
Now if b is one-to-one theg*(b) = f*(bo, bz, b1) = bz. Also for b = (a, b, b) we have
g (b) = f*(f*(a,b,b), f*(a,b,b),a) = f*(a,a,a) = a, for b = (a,b,a) we derive
g"(h) = f*(f*(a,b,a), f*(a,a,b),a) = f*(b,a,a) = b, and forb = (a,a, b) we ob-
tain g*(b) = f*(f*(a,a,b), f*(a,b,a),a) = f*(a,b,a) =b. Sog* is as required in the
casen = (1, 2, 2); so we can return to the previous casel

2.11. Claim. Assume

(x) FisasinFact2.2
(B) everyf € Fz) is monarchical
(y) f* e Fa1 is not monarchical.

Then one of the following holds

(a) for every one-to-oné € 3X for somef = f;, we have
() fa(a)=ap, )
(i) if b € 3X is not one-to-one they; (b) = b1;
(b) for every one-to-oné < 3X, for somef = f; € Fi31, we have
(i) if b is a permutation ofi then f(b) = b1,
(i) if b € 3X is not one-to-one thei; (b) = g,.1.2(b).

Proof. As F is symmetric, it suffices to prove “for sonag instead of “for everya.”

Case 1. For some((x) if b € 3X is not one-to-one theyi* (b) = by(x).

As f* is not monarchical for some one-to-odes 3X, f*(a) # agx), say f*(a) =
ak(x), k(%) # £(x). As F is symmetrical; without loss of generali§(x) = 1, k(x) = 2. So
possibility (a) holds.

Case 2. Not Case 1.

By Claim 2.8, without loss of generality;* satisfies (a) or (b) of Claim 2.8 witlf™*
instead ofg. But clause (a) of Claim 2.8 is Case 1 above. So we can assume that case (b)
of Claim 2.8 holds, i.e.

() if b € 3X is not one-to-one theyi*(h) = g,.1.2, i.€.,

w iy | b2 if b =b3,
f(b)_{bl if bo £ b3.
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If Claim 2.10 applies, we are done as then (a) or (b) of Claim 2.10 holds; hence (a) or (b) of
Claim 2.11 respectively holds; so assume Claim 2.10 does not apply. So consider a one-to-
one sequence € 3X and (recalling that fob € 3X with repetitionSg,;l,z(IE) is preserved

by permutations ob) it follows that we have sequencés$, a2, both permutations of

such that

VI(r @) =ai) = (£*(@%) #a?)]-

Using closure under composition 8f and its being symmetric, for every permutation
o of {1, 2,3} (and asg,.1,2(b) is preserved by permuting the variabkesvhens is with
repetition), for eaclyr = Perfy 2 3) there isf, € Fi3 such that

() folas), a02,a03) =a1, )
(i) if b e 3X not one-to-one theif (b) = g,.1.2(b).

Let (0,: p € 32) list the permutations of1, 2, 3}, necessarily with repetitions. Now we

define by downward induction &f< 3, f, € F for p € k2 (sequences of zeroes and ones
of lengthk) as follows:

lg(p)=3 = fo=/s,,
lg(p) <3 = fo(x1,x2,x3) = fp(x1, fro (X1, X2, X3), fon1y (x1, X2, x3)).

Easily (by downward induction):

(¥)1 if b € 3X is with repetitions ang € %2, k < 3, then f, (b) = g,.1.2(b) (@Sg,.1.2 act
as majority).

Now we prove by downward induction dn< 3:
(x)2 if bis a permutation of, p € X2, p <v € 32 andf, (b) = a1 then £, (b) = as.
This is straightforward and sfy, is as required in clause (b).O

Similarly we derive

2.12.Claim. If g,.; x € F then

8riti kg €F whenli#kiefl, ... r}

Proof. Trivial. 0O
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3. Getting € isfull
3.1. Lemma. Assume

(@) r >3, Fisasin Fact2.2 (orjustis a clone onx),
(%) fri1.2€ F orjust
(x)” if a € "X is one-to-one then for somg= f; € F, fa(a) =ap and[b "X
non-one-to-ones f;(b) = b1l;
(b) ¢ is a(non emptyfamily of choice functions fof}) = (Y € X: |Y| = k};
(c) ¢isclosed under every € F;
(d) ¢is symmetrig
) k=2r>2k>7,|X|—k=5,r.

Thenc is full (i.e. every choice function is in)it

Proof. Without loss of generality; > 4 (if » = 3 then clause (e) is fine also fer= 4; if

in clause (a) the cage) holds, itis OK by Claim 2.7, and ifx) ~ then we repeat the proof
of Claim 2.7 for the case = 3, only with g(x1, x2, x3, X4) = fla;,a0.a3) (X1, T2, T3) Where
12 = flay.ap.as) (X1, X2, X4), T3 = flay.az.as) (X1, X3, X4) Where for one-to-oné € 3X, f; is
defined by the symmetry; this is the proof of Claim 4.7). Assume

X ciee Y e (}), ci(Y*) =a} andaj € Y*\ {a}.
Question. Is therec € € such that(Y*) =aj and(VY € (2‘)) Y #Y*=c(Y)=cj(Y))?
Choose; € € such that

(@) c3(¥Y") =a3,
(b) n(cy) = 1{Y € (}): c5(Y) = c;(¥)}| is maximal under (a).

Easily¢ is not a singleton, sa(c3) is well defined.

3.2. Subfact. A positive answer to the question implies tidais full.
[Why? Easy.]

Hence ifn(cj) = (¥') — 1, we are done; so assume not and et (}), Z # Y™,
ci(Z) # ¢5(2).

Case 1. For someZ as above and; € ¢, we have
c3(Y*) ¢ {af, a3}, c3(2) € {c1(2), c3(2)).
If so, leta; = c3(Y*) anday € Y* \ {a], a3, a3}, €tc.; so(ay, ..., a) is one-to-one,
a; eY*.
¢

Letcy e Cfor £ =4,... be suchthat;(Y*) = a, exists a is symmetric. By assump-
tion (a) we can choosg¢ € F;,q such that
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f(afv"'sa;k)Za;v (1)
a €" X has repetitions =  f(a) =aj. (2)
Letc= f(c].c5,...,c)), soc e € and
c(Y" = f(a’lk, az, ..., af) =a3,

X
Y€<k> & cJY)=c3(Y)

= c(Y)=f(ci(N),3(Y),...) = f(cf (), cf(Y),...) =cf(Y),
c(2)=f(c1(2),c5(2), ¢5(2),..) =c5(Z) (as|{c](2).c5(2),c5(2)}| < 2).

Soc contradicts the choice ef;.

Case 2. There arec3, c; € € such thate3(Y*) # c;(Y™*) and+# ay, a3, butc3(Z2) = c;(Z)
or atleast{ci(Z), c5(2), c3(Z), c;(2)}| < 4.
Proof is similar.

Case 3. Neither Case 1 nor Case 2.
LetP={Z: ZC X, |Z| =k andc](Z) # c5(Z)}, sO

(®1 Y*ePandP # (§), {r*).

[Why? P # {Y*} by Subfact 3.2. Also we can fin& € (}) such that|y*\Z| = 2,
c;(Y*) ¢ Z. Letm € PerX) be the identity onZ, w(cj(Y*)) # c;(¥Y*), n(Y*) =Y. So
conjugating} by 7, we getc; satisfyingn(c3) > 0.]

(x)2 If Z€P,ceCandc(Z) € (cH(Z), c5(Z)) thenc(Y*) € {c3(Y*), c5(YH)).

[Why? By negating Case 1 except fér= Y* which is trivial.]

Subcase 3dor someZ, we haveZ € P and
[Y*\Z| >4 orjust |[Y*\Z\{d},a3}|>2 and |Y*\Z|>3.

Let b1, b2, b3 € Y* \ Z be pairwise distinct. A€ is symmetric, there aré;, dp, dz € €
such thatd,(Y*) = by for £ =1, 2, 3. The number of possible truth values&{Z) € Y*
is 2; so without loss of generality;(Z) € Y* < d2(Z) € Y*, and we can forgeis, ds.

So for somer € PerX) we haver (Y*) =Y*,n(Z) = Z,n | (Y*\ Z) = identity, hence
7 (be) =by for £ = 1,2 andn (d1(Z)) = d2(Z); note thatd,(Z) € Z, so this is possible; so
without loss of generality/1(Z) = d2(Z).

As |Y*\ Z \ {a3,a3}| > 2, using anotherr € PerX) and without loss of generality,
{b1, b2} N {a7, a3} = 0. Sods, d2 gives a contradiction by our assumption “not Case 2.”
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Remark. This is enough for non-polynomi#t| as|{Y: |Y \ Z*| < 3}| <|Y|S.

Subcase 3Not Subcase 3a.
SoZ e P\{Y*}=|Z\ Y* <3, hence (recallingZ \ Y*| = |Y*\ Z|) we haveZ ¢
P\{Y*}=|ZNY* >k—3>1. Now

Ko for Z e P\ {Y*} there isc* € € such that*(Y*) # ¢*(2).
[Why? Otherwise “by¢ is symmetric” for anyZ € P \ {Y*} we have:
® ceCAY, Y e(})&IYNY|=1ZNY* = c(Y))=c(Y").

Define a graph = &: the set of nodeﬁf), the set of edges(Y’,Y”): |[Y' NY"| =
|Y* N Z|}. This graph is connected: #1, P> are nonempty disjoint set of nodes with
union (f) then there is a cross edge by Claim 3.5 below (why? clésisthere is impos-
sible by ()1 and claus€p) is impossible by the first sentence of Subcase 3b). This gives
contradiction to®. SoX holds.]

We claim:

X1 forZePandd e €¢we haved(Y*) e ZNY* = d(Z) =d(Y™).

[Why? Assumed, Z forms a counterexample; recall thgt* \ Z| < 3 andk > 7 (see
Lemma3.1(e))soit > 8thenY*NZ| > k—3>5s0Y*NZ\{aj,a;} has> 3 members;
looking again at Subcase 3a, this always holds. Now for seme, € PerX) we have
that r1(Y™*) = Y* = m2(Y"), m1(Z2) = Z = m2(2), m1(d(2)) = 72(d(Z)), w1(d(Y™)) #
ma(d(Y™)) are fromZ N Y* \ {a7, a5}, recall we are assuming thdtY*) e ZNY* and
d(Z) #d(Y*). Letds, d» be gotten fromd by conjugating byr1, 72, SO we get Case 2,
contradiction to the assumption of Case 3.]

X, if de €, Y e (})andd(Y) =athen(vY)a e Y € ({) = d¥") =a).

[Why? By X; + “€ closed under permutations &f,” we get: if k* e N :={|Z N Y*|:
Z e P\ {Y*}} (which is not empty) then fronZy, Z» € (}), |Z1 N Z2| = k*, d € € and
d(Z1) € Z2 it follows d(Z1) = d(Z2). Clearly, if k* € N thenk™ <k (by Z # Y™*) and
2k — k* < | X|. As in the beginning of the proof &1, we can choose sudt > 0. So for
the givend € € anda € X, Claim 3.5 below applied té* — 1,k — 1, X \ {a}, ({Y’\ {a}:
acY andd(Y)=a}, {Y'\ {a}: a € Y andd(Y’) # a}). By our assumption, the first
family is # . Now clause(«) there gives the desired conclusion (lara as inlXp). As
we know,k — k* < 3,k > 7, clausg8) is impossible, so we are done.]

Now we get a contradiction: as said abové&ig, for somec* € € andZ € P\ {Y*} we
havec*(Y*) # c*(Z), chooseY e (f) such that{c*(Y*), c*(Z)} € Y. So byX, we have
d(Y)=d*) and alsal(Y) = d(Z), contradiction. O
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3.3. Claim. In Lemma3.1 we can replac&a) by

(a)* (i) FisasinFact2.2 (orjustis aclone onx, r = 3) and
(i) g* € Fi3y where(noteg™ = g3.1,2)

*(x X9, X )_{x25 X2 = X3,
8 W1, X2, X3) =1y, otherwise

or just
(i)~ foranya* e "X without repetitions, for somg= gz+, g(@*) = aj andifa e "X
has repetitions thegz«(a) = g*(a).

Proof. Letc; e €, Y* e (f) aj =c§(Y*), a3 € Y*\ {aj}; we choose?} as in the proof of
Lemma 3.1.

Let P = (Y: Y € (), Y # Y*, ci(Y) # c5(Y)}; we assumeP # ¢ and shall get a
contradiction (this suffices).

(¥)1 There are n& € P andd € € such that
d(Y*) =c5(Y"), d(Z) #c5(2).

[Why? If so, letc = g(c], c5, d) whereg is g* or just anyg(cx(z).c3(2).d(2)) (from (@*(ii)~
of the assumption).
Soce¢and

(A) c(Y*)=g(ci(Y"),c5(Y™"),d(Y*)) = g(ci(Y), c5(Y™), c5(Y™)) = c5(Y™);

(B) ¢(2) = g(cj(2),c5(2),d(Z)) = c;(Z) asd(Z) # c3(Z) (just check two cases: if
(c1(2),c3(2),d(Z)) is without repetitions—by the choice gf otherwise it is equal
t0 g*(c1(2), c5(2), c1(2)) = i (2));

(Y € (Z), Y#Y* Y &P =Y =)= cY) =g5(Y), c5(Y),dY)) =
g (c1(Y), ci(Y),d(Y)) =ci(Y).

So(x)1 holds byc3’s choice.]

(x)2 if m e PenX), m(Y*) =Y* andn (c5(Y™*)) = c5(Y*) then
(@) YeP&a¥)=Y =n(c5(Y)) =c5(Y),
(B) Y eP = c5(n(Y)) =m(c5(Y)).

[Why? Otherwise may “conjugate’ by =~ gettingd € € which gives a contradiction
to (%)1.]

(¥)3 let Z € P then there are naly,dz € € such thatdi(Z) = d2(Z) # c5(Z) and
di1(Y™) # da(Y™).

[Why7 By (*)2, d@(Y*) 75 L;(Y*) Letg = g(cz(Y*),dl(Y*),dg(Y*)) be as in the prOOf O¢*)1
If the conclusion fails, we let = g(c3, d1,d2) SOc(Y™) = g(c5(Y™), di(Y™),d2(Y™)) =
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c3(Y*) as di(Y*) # d2(Y*) plus choice ofg and c(Z) = g(c5(Z),d1(Z),d2(Z)) =
d1(Z) # c5(Z) asdi(Z) = d2(Z) # c¢5(Z). Soc contradicts(x)1.]

(x)4 for Z € P, there are nd1, d» € € such thatl1(Z) = d2(Z), d1(Y*) # d2(Y*) except
possibly whend,(2)} = {c5(Z)} e {ZNY*, Z\ Y*} for somet =1, 2.

[Why? If d1(Z) # c3(Z) use(x)3, SO assume1(Z) = c5(Z). By the “except possibly”
there ism € Per(X) satisfyingn (Y*) = Y*, n(Z) = Z andn (c5(Z)) # c5(Z); now we use
it to conjugatels, dz, getting the situation irtx)3; contradiction.]

Let

K = {(m): for someZ € P we havelZ N Y*| =m},
we are assuming # (. By (x)4 plus symmetry, we know

()5 if (m) € K,1#m <k—1,andey, c2 € €andZy, Z, € (}) satisfies1(Z1) = c2(Z1)
and|Z1 N Z2| =m, thenc1(Z2) = c2(Z>).

[Why? LetZ e P, |ZNY*| =m, somer € Per(X) mapsZi, Zpto Z, Y*, respectively.]

Casel. Thereis(m) € K suchthat % m <k —1,letP' =P U {Y*}.

For anyca, c2 € €let ey, = {Y € (}): ca(Y) = ca(Y)}.

By (x)s We havelY1, Y2 € ({) A Y1 N Y2l =m = [Y1 € Pey.c; = Y2 € Pey o]l

LetY: € (}), c1€ €, andleta = c1(Y1), Y2 € (}) be such thafa, b} = Y1\ Y- for some
b # a. By conjugation, there is; € € such thata(Y1) = a = c1(Y1) andc1(Y2) # c2(Y2).
SoY1 € Pey,e, andY2 ¢ Py ¢,. TO Py, ¢, apply Claim 3.5 below; so necessarily| = 2k,
m = 0. Butasm =0, (m) € K, there isY € P satisfying|Y N Y*| =m = 0; henceY =
X\ Y*, and by(x)2(a) we get a contradiction, i.e. we can findcontradicting it.

Case2. (m) € K,m =k — 1 and not Case 1 (i.e., for na).
Let Z € P be suchthatZ N Y*| =k — 1, so by(x)4 and€ being symmetric we have:

(6 if Z1,Z2 € (), 1Z1N Zaol =k — 1,d1,dz € €, d1(Z1) = do(Z1), d1(Z2) # do(Z2)
then{d1(Z1)} = Z1\ Z>.

Also,

(*)7 if Z1, Z2 € ({), 121N Z2| = k — 1 then for nad € € do we havel(Z1) # d(Z2) and
{d(Z1),d(Z2)} € Z1N Zo.

[Why? Applying appropriate € Per(X), we get a contradiction tex)s.] Case 2 is finished
by the following claim (and then we shall continue).

3.4. Claim. Assumga)* of Claim 3.3 and (b), (c) of Lemma3.1 and (x)7 above(on ¢).
Thenc is full.
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Proof of Claim 3.4. Now we state:

(x)g for everyZy, Zo € (), 1Z1N Zal = k — 1 anda € Z1 N Z there is nod € € such
thatd(Z1) = d(Z2) = a.

Why? Otherwise we can fin@1, Z> such thatjZz1 N Z3| =k — 1, d(Z1) = d(Z2) = a,
hence for everyZy, Zo e (f) suchthatZ, N Zy| =k — 1 anda € Z1 N Z, there is sucll
(using appropriate € Per(X)).

LetZy,Zo € (;f) suchthatZ;NZy| =k —1.Letx #y € Z1 N Z,. Choosel; € € such
thatd1(Z1) = d1(Z2) = x. Chooseds € € such thatd2(Z1) = d2(Z2) = y. Choosealz € €
such thatls(Z1) =y, d3(Z2) € Z2\ Z1.

Why is it possible to choogk? Usingr € Pel(X), otherwise (usingx)7) we have

® if Y1, Y2€ (§), IY1NY2| =k —1,d € €, d(Y1) € Y1 N Y2 thend(Y>) € Y1 N Y2; hence
by (x)7, d(Y2) =d(Y1); so ford € € we have (by a chain df’s):

X
Y]_,YzE(k), diYy)erinYy, = dYo) =d(1).

Letced, Y, e (;{(),xl =c(Y1). Letxp € X\ Y1, Yo =Y1U{x2}\{x1}; soifc(Y2) € Y1NY2,
we get a contradiction, therefo#gY2) = x».

LetxzeY1NYy, Y3=Y1UY2\ {x3};s0Y3¢€ (f), [Y3NY1 =k —1=|Y3N Y, and
clearlyc(Y1), c(Y2) € Ya.

If ¢(Y3) ¢ Y1 thenYs, Y1 contradict®. If ¢(Y3) ¢ Y2 thenYs, Y> contradict®. But
c(Y3) € Y3 C Y1 UY>, contradiction. Sal3 exists.

We shall usels, d2, d3, Z1, Z» to get a contradiction (thus proving)s). Let{z} = Z>\
Z1,s0(x, y, z) is without repetitions. Led = g(d1, d2, d3); SOWithg = g* Or g = g(x,y.2),

d(Z1) = g(dl(Zl), dx(Z1), d3(Zl)) =g(x,y,y)=y (see Definition of),
d(Z2) = g(d1(Z2), d2(Z2), d3(Z2)) = g(x,y,2) =x

by Definition ofg asy = z because € Z1, z ¢ Z1.
S0Z1, Z>, d contradictyx)7 and we have provegk)s.

(x)g If |Z1NZo|=k—1,Z1,Z2 ¢ (f), de€, d(Zy) e Z1NZy thend(Zo) € Z3\ Z1.

[Why? By ()7, d(Z2) ¢ Z1 N Z2\ {d(Z1)} and by(x)s, d(Z2) ¢ {d(Z1)}.]

Let ¢c € € and x1, x2 € X be distinct andY C X \ {x1,x2}, |Y|=k. Let x3 = ¢(Y),
x4 €Y\ {x3} andxs € Y \ {x3, xa}.

SoY; = Y U{x1}\ {x4} belongs tc(f) satisfiesY,1NY|=k—1andc(¥Y) =x3€ Y1NY;
hence by(x)g we havec(Y1) = x1.

Let Yo =Y U {x2} \ {xa}, so similarlyc(Y2) = x2. Let Y3 =Y U {x1, x2} \ {x4, x5}, SO
Yae (;f) Y3\ Y1 = {x2} andY3\ Y2 = {x1}. The proof now splits into three cases:
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o If ¢(Y3) €Y, thenc(Y3) e YaNY =Y \ {x4, x5} C Y1, hencec(Y3) € Y3N Y. Recall
thatc(Y1) =x1 € Y3N Y1 ande(Y3) # x1 asx1 ¢ Y, so(Y3, Y1, ¢) contradictg(*)7.

o If c(Y3) = x1, then recalling:(Y1) = x1 clearlyc, Y3, Y1 contradicts(x)sg.

o If c(Y3) = x2, then recalling:(Y2) = x2 clearlyc, Y3, Y2 contradicts(x)sg.

Together contradiction, so we have finished proving Claim 3.4 hence Case 2 in the proof
of Claim 3.3. O

Continuation of the proof of Claim 3.3

Case 3. Neither Case 1 nor Case 2. &5+ () (otherwise we are done), clearky = {(1)}.
So easily follows (clearlyR— 1 < | X| as(1) € K):

M1 if [Y1NY2|=1,Y1€ (}), Y2 € (}) andd € € thend(Y1) € Y1NY2 0rd(Y2) € Y1 NYa.
[Why? Otherwise by conjugation we can get a contradictiofxjg above.]
M, Y1,Yo e (5{‘), [Y1NYo=k—1,d €€, d(Y1),d(Y2) € Y1 N Y5 isimpossible.

[Why? Assume this fails. Let € Y1\ Y2 andy € Y> \ Y1; we can findys € () such that
Y3N (Y1 UY2) = {x, y},soY3N Y1 ={x}, Y3N Yo = {y}; this is possible agX| > 2k — 1.
Apply X to Y3, Y1,d and asd (Y1) # x (asd (Y1) € Y>2), we havec(Y3) = x.

Apply X to Y3, Y2, d and asd(Y2) # y (asd(Y2) € Y1), we getd(Y3) = y. Butx # y,
contradiction.]

By X2 we can use the proof of Case 2 fr@m)7, i.e. Claim 3.4 to get contradiction.O

3.5. Claim. Assume

(@) k* <k < |X]| < Rop;

(b) P< (%)

©ifz.Ye(}),1ZnY|=k*thenZeP & Y € P;

(d) 2k —k* < |X] (this is equivalent to clausg) being non-empty

Then

@ P=0gvP=({)or

(B) |X| =2k k*=0andsoE = Ex ;1= {(Y1,Y2): Y1 € (}), Y2€ (}), (Y1UY2=X)} is
an equivalence relation oi, with each equivalence class a doubleton &hd union
of a set ofE-equivalence classes.

Proof. If not clause(a), then for someZq e P, Zs € (;{() \ P we have|Z; \ Z»| = 1. Let
Z1\ Zo={a*}, Z2\ Z1 = {b*}.

Casel. 2k — k* < | X]|.
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We can find a se¥+ € X \ (Z1 U Z1) with k — k* members (Us€Z1 U Z| =k + 1,
X\ (Z1UZ)|=IX|-(k+1D > (2k—k*+1)— (k+1) =k —k*).

LetY- € ZyNZobesuchthaty -|=k*. LetZ=Y"UY*t;s0Z e (j{‘), |ZNZ =
Y™ |=k*, |ZNZo|=|Y"|=k* henceZ, € P & Z € P & Z, € P, contradiction.

Case2. 2k — k* = |X| andk* > 0.
LetYt =X\ (Z1U Z>), so

\Yﬂ =2k—k)—*k+D=k—k*—-1.
LetY- CZiNnZybesuchthaty | =k* — 1 (OK, as|Z1N Zs| =k — 1> k™).
letZ=YTUY U{a*b*}.S0|Z|=(k —k* =1+ (*k* -1 +2=k, |Z1NZ|=
Y~ Ul{a*}| =k* |Z2NZ|=|Y~ U{b*}| =k* and as in Case 1 we are donel

3.6. Claim. Assume& > 7, | X| — k > 5. If r(F) < oo then Lemm&.1 or Claim 3.3 apply,
so¢ is full.

Remark. Recallr (F) = inf{r: somef e F,1 is not a monarchl see Definition 2.4.

Proof. Case 1. r(F) > 4. Let f € Fy,) exemplify it, so by Claim 2.5 we have> r and
for somef(x):

a € "X with repetitions = f(a) = agx).

As f is not a monarchy for somax) € {1,...,r} anda* € "X, we havef (a*) = ay) #
ag(x. Without loss of generality(x) = 1, k(x) = 2 and Lemma 3.1 applies.

Case2.r(F)=3.

Let f* € Fi exemplify it. Now apply Lemma 2.11; if (a) there holds, apply
Lemma 3.1, if (b) there holds, apply Claim 3.3.
Case3.r(F)=2.

By Claim 4.7 below, clause (a) of Lemma 3.1 holds, so we are done.

4, Thecaser =2

This is revisited in Section 6 (non-simple case), and we can make presentation simpler
(e.g. Fact 6.4).

4.1. Hypothesis. As in Hypothesis 2.1 and

@ r(F)=2,
(b) 1X| > 5 (have not looked at 4).
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4.2. Claim. Chooser* = (a], a3), a] #a5 € X.
4.3. Claim. For somef € Fiz andb € %X, we have

() f@)= as;
(b) a*"b has no repetition
(©) f(b) =b1# b2

Proof. Thereisf e Fiz) non-monarchical, so for sonte¢ € X,
f(b)=b1#b2,  [@=co#c1

If Rapg(l;) NRangc) = ¢, we can conjugateto a*, f to f which is as required. If not,
find d € 2X’_, d1 # d> satisfying Ran@/) N (Ranga) U Rangb)) =@, sod, b ord, ¢ are
like ¢, b or b, ¢, respectively. O

4.4.Claim. There isf™* € F2; such that

(@ f*(@*) =a3;
(b) b1 # b2 e X, {b1, b2} C{aj, a5} = f(b1,b2) =bz;
(c) b1# b2, {b1,b2} € {a], a3} = f(b1,b2) =b1.

Proof. Choosef such that

(i) f€Fpp
(i) f@*) =as3;
(i) n(f)=|{be2X: f(b)=b1}|is maximal under (i} (ii).

Let P = {b € 2X: f(b) =b1}. In each case we can assume that the previous cases do not
hold for any f satisfying (i)—(iii).

Casel. Thereisb € (X \ {a}, a}}) such thatf (b) = by # b1.
There is g € Fiz), g(a@*) = a3, g(b) = by (by Claim 4.3 plus conjugation). Let
fTx,y)=f(x,g(x, ). So

(A) @)= f(a;.g@") = f(aj.aj) =a3;
(B) /¥ ()= f(b1.g(h)) = f (b1 b1) = by;
(C) if ¢ e P then £ () = c1.

[Why does (C) hold? I§(¢) = c1 then f7(¢) = f(c1,8(@) = f(c1,c1) =c1. If g(@) =c2
then f+(¢) = f(c1, g(¢)) = f(c1, c2) = f(¢) = c1 (the last equality ag € P).]
By the choice off, the existence of T is impossible, so

() be?(X\{a},a3}) = f(b) =b1= b e P (if by = bp—trivial).
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Case2. There aré # by such thatby, bo} & {aj, ab}, f (b1, b2) = bo andby # aj Aby #
as.

There isg € Fi2) such that(a}, a3) = a3, g(b1, b2) = b1.

[Why? There ism € PelX), n(b1) = af, n(b2) = a3, 77 1({b1, b2})) is disjoint to
{a], a3}. Conjugatef by m~1, gettingg, so g(ay,a3) = g(mwh1, wb) = n(f (b1, b2)) =
w(by) = a>2k; let c1, c2 be such thatr (c1) = b1, w(c2) = b2, SO

g(b1,b2) = g(mer, mep) =7 (f(c1, c2)) =m(c1) =b1

(third equality as1, c2 ¢ {a5, a5} by not Case 1). So there is sugke F.]
Let f*(x,y) = f(x, g(x, y)); as before f+ contradicts the choice of.

Case 3. For someb’ #b" € X \ {a], a3} we havef (af,b") =b' A f(a7,b") =aj.
As in Case 2, using € PerX) such thatr (a}) =af, w(ay) =a;,n(b') =b".

Case4. For someb’ #b" € X \ {a], a3} we havef (b, a3) =aj A f(b",a3) =D".
As in Case 3, recall that without loss of generality, Cases 14 fail.

Case 5. For someb’, b” € X \ {a], a3}, we havef (a],b') =b' A f(b",a3) = a3.

As Cases 1-4 fail, this holds for every sughb”; so without loss of generality, # b”
and prove as in Case 2 conjugatingsby Per(X) such thatr (b') = a3, w(a}) = a7 and
m(b") =b", gettingg which satisfieg(a}, a}) = g(wa}, nb’") = n(f (@}, b)) = n(b) =
a5 andg(b”,ab) = g(xb", 7b') = (f(b", b)) = w(b") = b", whereasf (b', a3) = aj;
so ft(x,y) = f(x, g(x, y)) contradicts the choice of.

Without loss of generality, Cases 1-5 fail.

Case 6. For someb € X \ {aj, a5} we havef (a7, b) = b and f (a5, b) = a; follows.

Subcase 6Af (a3, ay) = aj. Letm € PerX), n(a}) = a3, n(ay) =aj (andm(a) =a
fora € X \ {a],a3}); theng = nfnt satisfiesg(aj, a3) = a3, g(aj,a]) = aj but for
b e X\ {aj, a3}, gajy,b) = g(wa3, wb) = n(f (a3, b)) = wa; = aj, easy contradiction
(or as below)).

Subcase 6BSo as Cases 1-5 and 6A fail, we have
® (Vb1,b2 € X)[f (b1,b2) # b1 (b1 =a] & ba #aj)].
Hence for every € X there isf. € Fi2; such that
®f (Vb1,b2 € X)[fc(b1,b2) #b1 < (b1=c & b2 F#0)].
Let a # ¢ be from X and definef, . € Fiz1 by fac(x,y) = falx, fc(y,x)). As-
sumeby # bz, SO f; .(b1,b2) = bz # by implies f.(b2, b1) € {b1, b2}, fa.c(b1,b2) =

fa(b1, fc(b2,b1)) and so (by the choice of,) b1 = a and f,.(b2, b1) = b2, which (by
the choice off.) implies (p1 = a and) by # c. But b1 = a, b # ¢ and by # by imply
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fc(sz b1) = by, fa,c(bla b)) = fa(bly bo) = by. So fa,c(bly bo) = by 75 b1 iff b1 =a,
bo # ¢ andby # b1.

Leta=aj.Let{c;: i <i*=|X|-2)list X\ {a], a3}. We define by induction oh< i*
a functionf; € Fio; by

fo(-x7y)=y7 ﬁ'+1(xay)=fi(x’fa,c,-(x’y))

andletf’ = fi«. Now by induction oni, we can show thaf; (a3, a3) = a3 and f' (b1, b2) =
bz # by imply (Vi < i*)(fa.c; (b1, b2) = b2 # b1).

So f' € Fi2, f/(af, a>2k) = a}‘ andb1 # b A (b1, b)) # (aik, a}‘) imply f/(b1, b2) = b1.
By the choice off (minimalr(f)), we get a contradiction.

Case 7. For someb € X \ {a], a3}, we havef (b, a3) = a5 and f (a], b) = a; follows.
Similar to Case 6.
Subcase 7Af (a5, a}) = a]. Similar to 6A.
Subcase 7BThat is, as there, without loss of generality, for everg X and for some
fa € Fr21, we have
® (Vb1,b2 € X)[(fa(b1,b2) =b2# b1 & ba=a # b1)].
Leta #ce X and fy.c(x,y) = fu(fe(y,x),x). Soforby # bs € X,

(1) fa.c(b1,b2) = b2 (3 by) implies f,(fe(b2, b1), b1) = bz, which impliesb, = ¢ and
fe(b2, b1) = b, which impliesb, = ¢ andby # a.

We continue as there.

Case 8. Not Cases 1-7; not the conclusion.
So fora = (a1, ap) = 2X, a1 # ap there isf; € F such that

{b1,b2} € {a1,a2} =  fa(b1,b2) = by,

fa(a1, a2) = az
and (as “not the conclusion”)
fa(az, a1) = az.

Let (b': i <i* =|X|? —|X| — 2) list the pairsh = (b1, b) € 2X such thatby # by,
{b1, b2} # {a], a5}.

Defineg; € F2) by induction oni: let go(x, y) =x andg;11(x, y) = f;: (gi (x, ¥), y).
We can prove by induction oh< i* thatg; (a7, a3) = af, gi(a3,ay) = a3, and forj <i,
gi(b)) = b}. Sog; is as required interchanging 1 and 2, thag(s, y) := gi=(y, x) is as
required. O
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4.5. Definition/choice. Forb # ¢ € X, let f3, . be like f in Claim 4.4 with(b, ¢) instead of
(a7, a3), 80 fep(c,b)isb, f(b,c)=cand f(x1,x2) = x1 if {x1,x2} € {b, c}.

4.6. Claim. Letas, az, az € X be pairwise distinct. Then for songes Fi3;:

(i) b e3X with repetitions= g(b) = b1,
(i) g(a1,az,as) =az.

Proof. Without loss of generality, we replaee by a3z in (ii). Let &, for £ =1, 2, 3,4 be
the three-place functions

h1(X) = fay,a(x1, x2), h2(X) = fay,a3(x1, X3),
h3(x) = faz,ag(hl(i), ha, (i)), ha(X) = fay.as (x, h3()?)).
Clearlyhy, hp, h3, ha € Frz). We shall show thaky is as required.

To prove clause (i), note that far = (a1, az, az) we havehi(a) = az, ha(a) = as,
h3(a@) = fap.as(az, as) = as and ha(a) = fay,as(a1, as) = as, as agreed above. To prove
clause (i), let € 3X be such thab # a and we show that byb) = b1.

Case l. b1 # a1, az, SO
h4(l;) = far,a3 (bl, h3(l;)) =by1 ashy #ai,as.
Case2. b1 =ay, by # az, henceb1 # ap, az, SO
h1(b) = fay,ar (b1, b2) = fur.ap(a1,b2) =a1=Db1, asby+# az (if b =aj also OK)
h3(b) = fap.az(h1(b), h2(b)) = fa.az(b1. h2(b)) =b1 asbi+# az, a3,
ha(b) = fay.as(b1. h3(D)) = hay.as(b1, b1) = by.

Case3. b1 = a1, bp = ap, b3 # az, SO
h1(D) = fay.a,(b1,b2) = fay.ap(ai, az) = az = by,
h2(b) = fay,a5(b1, b3) = fuy.a3(ar,b3) =a1=b1 ashz # az (if bz =ay, fine),

h3(b) = fapas(h1(b), h2(b)) = hay,ay(b2, b1) = bz asby=a1 #az, as,
ha(b) = fayr.az(b1, h3(b)) = fayaz(b1,b2) =b1  asbhy=az # a1, as.

Case4. b1 = a3, b3 # ai. SO

h1(b) = fay.ap(b1.b2) =b1 asby=az# a1, a,
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h2(b) = fay.as(b1,b3) = fay.a5(as, ba) = az=b1
asbs # a1 (if b3 = az thenbz = b1, so OK 1009,

h3(b) = fag.az(h1(b), h2(b)) = fap.as(b1. b1) = b1,

ha(b) = fay.az(b1, £3(b)) = fay.a3(b1, b1) = b1.

Caseb. b1 =a3, b3 =aji.

h1(b) = fay.ap(b1,b2) =b1 asbi=az# a1, az,
h2(b) = fay,as(b1, b3) =b3 as{bi, ba} ={a1, as},
h3(b) = fupas(h1(b). h2(P)) = fap.as(b1,b3) =b1 asbs= a1 # az, a3,
ha(B) = fuyas(b1. f3(B)) = far.as (b1, b1) = b1,

as required. O

4.7.Claim. Leta* = (aj,a3,a3,ay) € 4X be with no repetitions. Then for songes Fiy
we have

(i) if b € *X is with repetitions thery (b) = b,
(i) g@*) =as.

Proof. For anya € 3X without repetitions, letf; be as in Claim 4.6 for the sequenge
Let us define (witht = (x1, x2, x3, x4)) g(¥) = go(x1, g2(x1, x2, x4), g3(x1, x3, x4)) With
80 = flaz,a3.a%)+ 82 = flat,a3.a5)1 83 = Slat.ag.a})- SO

(A) g(@*) = golay, g2(ay, a3, a3), g3(ay, a3, a)) = go(ay, a3, a3) = as; i
(B) if b € *X and (b1, b, bs) has repetitions thego (b1, b, bs) = b1, henceg(b) =
go(b1, by, g3(b1, b3, ba)) = b1; )

(C) if b € *X and (b1, b3, bs) has repetitions thegs(bi, b3, b4) = b1, henceg(b) =
go(b1, g2(b1, b2, ba), b1) = b1;

(D) be*X has repetitions, but neither (B) nor (C), then necessagiby b3, S0 (b1, b2, b3)
has repetitions, sg(b) = go(b1, b2, b3) =b1. O

Part B: Non-simple case
5. Fullnessfor the non-simple case

5.1. Context. As in Section 1:¢ is a (X, k)-FCF, F = | J{F,): r < oo} and F = {f:
feAV (¢}, so

X
Fir= {f: S is (not necessarily simple) function writtefi (x1, ..., x,), forY € <k>
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X1,...,Xxr € Y such thafy(x1,...,x,) € {x1,...,x,} and¢ is closed under,
ie.,ifci,....cr €€andc= f(c1,...,cp), i.e.c(Y) = fy(ca(Y),....cr(Y)),

thenc € (t}

and we add (otherwise use Part A; alternatively combine the proofs):
5.2. Hypothesis. If f € F is simple then it is a monarchy.

5.3. Definition. (1) F[Y]1={fy: f € F}.
@) Fin¥) ={fr: f€Fn}

5.4. Observation. If f € Fj,},Y € (f) then fy is anr-place function front to Y and
(x) F[Y]isasin Fact2.2 of.

5.5. Définition. (1) r(F) = min{r: r > 2, somef € F{,] is not a monarchywhere
(2) f is amonarchy if for somewe have(VY)(Vx1,...,x, € V)[fr(x1, ..., x) = x¢].

5.6. Claim. (1) For proving that¢ is full, it is enough to prove, for somecs {3, ..., k}:

(+) foreveryY e (¥) anda €Y which is one-to-one, there j§ = %" e F such that
() fr(@) =agz, ) i
(i) if Ze (¥), Z#Y,berZthen fz(b) =br.

(2) If r > 4, we can weakerfz(b) = b1 in clause(i) to [b3=ba Vv by =bzV by =
b3V by =b3] = fy(b) =b1.

Proof. The proofis as in the proof of Claim 5.8 below, only we choeses, ..., ¢, such
thata = (c,(Y): £=1,2,...,r) is without repetitions ang = %Y from (x). O

5.7. Claim. In Claim 5.6 we can replacéx) by. r = 3 and

(%) ifYe (f) anda e 3Y is one-to-onéor justaz # az), then for some € Fj,q,
() gr(a)=a, . .
(i) if Ze (Z) Z #Y, b e3Z is not one-to-one thepy (b) = b for b = b3, and is
b1 otherwise(i.e. g3.1.2(b)).

Proof. Like for Claim 3.3. Letc} € €, Y* € (}), at = c1(Y*), aj € Y*\ {a}}; we choose
c3 as in the proof of Claim 5.6, i.e. Lemma 3.1, thatjgY*) = a5 and with|P| minimal
whereP = {Y: Y € (}), Y # Y*, i (¥) # c5(Y)}. As there suffices to prove th@ = .
Now otherwise
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X there are n& € P andd € ¢ such that
d(Y*)=c5(Y"), d(Z) # c5(2).

[Why? If so, letc = g*(c], c5,d) whereg is from (x) for Z, a1 = ¢j(Z), a2 = c5(2),
az = d(Z).] Continue as there: thg; depends also orY, and we writec(Y) =
frca@),....cr(Y)). O

5.8. Claim. Assume-(F) =2 (&, F as usua)l and

(x) foreveryay #az € Y € (), for somef = f! . e F, we have
(i) fr@=a2 )
(i) Ze(}), Z#Y, be?Z= fz(b)=b

Thent is full.

Remark. ¢ is full iff every choice function of(f) belongs to it.

Proof. If ¢ is not full, as¢ # @, there arecy € €, g ¢ €, co a choice function for(;f).
Choose such a pait1, co) with |P| minimal whereP = {Y € (;f) c1(Y) # co(Y)}. So
clearlyP is a singleton saYY} By symmetry, for somez € € we haveca(Y) = co(Y).
Let f befl(y) V) = Cl(y) ) from the assumption, s¢ € F and letc = f(c1, c2);
so clearlyc € € (asC is closedz under every member 5.

Now

(A) (V)= fy(ca(Y), ca(Y) = ca(Y) = co(Y);
(B) if Z € () \ (Y} thenc(Z) = fz(c1(2), ca(Z)) = c1(Z) = co(Y).

Soc = ¢, hencerg € €, contradiction. O

5.9. Claim. Assumer(F) = 2 and XI(f*) of Claim 6.9 (see Definition$.3, 6.6) below
holds. There is full.

Proof. We use conventions from Definition 6.6 and Claims 6.7, 6.9 belo®d(1fi*) there
are two possibilities:

Possibility(i). This holds by Claim 5.8.

Possibility (ii). Similar to the proof of Claim 5.8. AgaifP = {Y} whereP = {Y ¢ (;f)
c1(Y) # co(Y)}. We choose; € € such thatea(Y) = co(Y) andcea(X \ Y) =c1(X \ ),
continue as before. Why is this possible? lete PerX) be such thatt(Y) =Y,
w(c1(Y)) =co(Y), m(c1(X \Y)) =c1(X \ Y) (and of courseg (X \ Y) = X \ Y). Now
conjugatinge1 by 7 givescs as required. O

5.10. Claim. If r(F) < oo then¢€ is full.
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Proof. Letr =r(F).

Casel.r=2.

So Hypothesis 6.1 holds.

If X(f) of Claim 6.9 holds for som¢ € Fi,1, by Claim 5.9 we know that is full. If
X(f) of Claim 6.9 fails for everyf € Fi, then Hypothesis 6.11 holds hence 6.12-6.18
holds. So by Claim 6.18 we know théat) of Claim 5.6 holds (an®.. is a singleton, see
Conclusion 6.17(c) plus Claim 6.18(2)). So by Claim %6s full.

Case2.r > 4.
So Hypothesis 7.1 holds. By Claim 7.5 cleanly) of Claim 5.6 holds hence by
Claim 5.6(2) we know that is full.

Case3d.r =3.

Let f* € Fi3) be not a monarchy. So fére 3y not one-to-oney e (), clearly f;: (b)
does not depend an, so we writef = (b). If for somet (), £~ (b) = by, for every suctb
then easily Claim 5.6(1) apply. If ~(5) = g,.12(5), leta € %Y, ¥ € (}), a is one-to-one,
so fy (b) = a for somek; by permuting the variableg,~ does not change while we have
k=1, so Claim 5.7 applies. If both fail, then by repeating the proof of Claim 2.8, for some
f’ € Fig, for b € 3X not one-to-one, we haviee 3Y = £, (b) = f1,21)(b) or for b not
one-to-oneé € 3Y = f,(b) = f1,2,2(b). By the last paragraph of the proof of Claim 2.8
we can assume that Case 2 holds. In this case, repeat the proof of the€a%$e2, 2) in
the end of the proof of Claim 2.8.0

6. Thecaser(F)=2
For this section
6.1. Hypothesis. r = 2.

6.2. Discussion. So («) or (8) holds where

(o) there areY e (f) and f € F1(Y) which is not monarchy. Hence by Section 4, i.e.
Claim 4.4 fora £ b € Y there isf = fay’b e FolY],

_ 1y if{x,yt={a, b},
fY(x’y)_{x, otherwise

(B) every fy is a monarchy but somg € F,q is not.

6.3. Definition/choice. Choosef™* € F> such that

(@) =(VY)(Vx,y € V)(fr(x,y) =x);
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(b) under (a)(f) = |donmu(f)| is maximal where doa(f) = {(Z,a, b): fz(a,b) =
a#b,Ze(})and{a,b} C Z of course.

6.4. Fact. If f1, fo € Froy and f is f(x,y) = fi(x, fo(x,y)) (formally f(¥,x,y) =
f1Y, x, f2(Y, x, y)) but we shall be careless) then daiyi) = domy(f1) U domy(f2).
Proof is easy.

6.5.Claim. If Z e (§), fi(a*, b*) =b* #a then

(@ (Vx,y € 2)[f;(x,y)=y]lor
(b) x,ye Z& {x,y} L {a*, b*} = fF(x,y) =x.

Proof. As in Claim 4.4 (plus Definition/choice 6.3 and Fact 6.4), recalling 5.4, i.e., that
FlZ]lisaclone. O

6.6. Definition. Let

) Pr=Pi(f*) ={Z e (}): Va.be Z)(fi(a.b)=a};
(2) Po=Pao(f*)=1{Z € (}): (Ya,be Z)(f}(a,b)=D};
(3) P+ =P+(f* = ;) \ Pr(fH\ P5(f*).

6.7. Claim. For Y € () we have

(1) Y e Pe(f*) iff Y € (}) and 3a,b € Y) (f;(a,b) = a # b) and also(3a,b € Y)
(fy(a,b)y=>b#a).
(2) If Y € P4, thenthere ar@ry # by € Y such thatfy (ay, by) = by and
{a,b}<Y, {a,b}Z{ay,by} = fy(a,b)=a.
Proof. By Claim 6.5. O

6.8. Claim. (1) (P1, P2, Px) is a partition of ().
(2) For Y € P4 the pair(ay, by) is well definedbut maybeby, ay) can serve as well

Proof. (1) By Definition 6.6. (2) By Claim 6.7. O
6.9. Claim. If Po(f*) # ¢ then

K(f*) (i) P2=Pa(f*) is asingletonP+ = or
(i) 2k =|X|, P2 is {Y*, Y**} € (}) whereY* U Y™ = X and Py = ¢.

Proof. AssumeP, £ @, letY* € P>. As f* is not a monarchy

(¥)1 PLUPL #0.
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By Definition 6.6 and Fact 6.4(* € F|,] satisfies

(02 () fy(a,by=bfora,beY*,
(ii) if g € Fir, gy+(a,b)=b fora, b e Y* then dom(f*) 2 domy(g).

Hence

(k)3 if Yo € P2, Yo ¢ Po, k* =|Y1NYz andY € ({), |Y NY*| =k*, thenY ¢ P, (even
Y eP1& YoeP).

[Why? By (x)2 as we can conjugatg* by = € Per(X) which mapsy* ontoY; andY onto
Y2.]
So by Claim 3.5 (applied t&*) and (x)1

(x)a () P2isthe singletor{Y*} or
(iiy Poisaf{Y* Y**}, 2k=|X|andY*™ =X\ Y*;

(x)5 if Z € P+, then(a) or (B):
(@) faz,bz}=ZNY*, f;(bz,az)=az,
(B) laz,bz}=Z\Y*, f7(bz,az) =az.

[Why? If {az,bz} ¢ {ZNY* Z\ Y*} then, ask > 3, we can chooser € PerX),
n(Y*) =Y* n(Z) = Z such thatr"{az,bz} ¢ {az.bz} and use Definition 6.3 and
Fact 6.4 on a conjugate gf. So{az, bz} e {ZNY*, Z\Y*}andif f;(bz,az) #az, we
user € PerX) such thatr (Y*) =Y*, n(Z) = Z andn(az) = bz, w(bz) =az and 6.4.]

Itis enough by(x)4 to proveP+ = J. So assume toward contradictiti. £ ¢. By (x)s
one of the following two cases occurs.

Casel Z* € Py, |Z*NY*| =k — 2.

As we are allowed to assuntet 4 < | X|, there is Ye (f) suchthalY N Y*| =k —1
andY N Z* =Y* N Z*. Now (by (x)5) we haveY ¢ P, and (by(x)4) we haveY ¢ P, so
Y € P1. So there ist € Per(X) such thatt (Y*) =Y, 7 | Z* = identity, let f = (f*)™ so

by Fact 6.4 we get a contradiction to the choicef6f

Case2. Z* € Py, |Z*NY*| = 2.

A proof similar to Case 1 works iZ* U Y* # X. Otherwise letr € Per(X) be the
identity onZ* N Y* and interchang€*, Y*. Apply Fact 6.4 onf™, (f*)™, so(az«, bz*) ¢
domy (f*) Udomy((f*)™), etc., easy contradiction.O

6.10. Remark. If X( f*) of Claim 6.9 holds for somg* then (in the context of Section 5)
¢ is full by Claim 5.9.

6.11. Hypothesis. For no f € Fy,q is XI(f).
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6.12. Conclusion. (1) Po(f*) = 0.

(2) P # 0.

(3) P #0.

@fYyePLandlYNZi|=|YNZzanday € Z1 < ay € Z andby € Z1 < by € Z2
where, of courseY, Z1, Z1 € (}), thenZy € Py & Zp € Px.

Proof. (1) By Hypothesis 6.11 and Claim 6.9.

(2) Otherwisef™* is a monarchy.

(3) Assume not, s®s = (}). LetY € Py, Z € (), ZN{ay,by} =#and ZNY| > 2
and|Z \ Y| > 2, we can get a contradiction i f*)’s minimality.

(4) By Definition/choice 6.3 and Fact 6.4 as we can find Per X) suchthatr (Y) =Y,
w(Z1) = Zz,n(ay) =ay,w(by) =by. O

6.13.Claim. If Y, Z € P+ andY # Z, then there is nar € PerX) such that

7(Y) =Y, n(2)=2,
w(ay) =ay, 7 (by) = by, {m(az), 7w (b2)} € {az, bz}

Proof. By Definition/choice 6.3 and Fact 6.40
6.14.Clam.f Y e P+, ZeP+,2<|YNZ| <k —2then{az, bz} = {ay, by}.

Proof. By Claim 6.13. Except wheli N Z = {ay, by, az, bz}. Then choos&; = Z and
Zoe (f) Zon(YNZ)y={ay,by},|YNZ1|=|YNZ|,Z1\YNZ=Y'\Y/\YNZwhere
Y, C Y\ Z has|Y N Z|_> members.

By 6.12(2),Z» € P*, so as in the original casg N Z, = {ay,by,az,,bz,} and for
Z1, Z» the original case suffices. (Alternatively as a lemma #&% N Z| < k — 4, and
in 6.12 replace 4 by 6.) O

6.15. Claim. If Zg, Z1 € P+ and|Z1\ Zo| = 1then{az,, bz,} = {az,, bz, }.

Proof. We shall choose by inductian=0, 1, 2,3,4asetZ; € P, suchthati <i = |Z; \
Zj|=i—j.ByClaim 6.14 we have — j =3,4< 4= {az,, bz} = laz;, bz}, as this
applies to(j, i) = (0, 4) and(j, i) = (1, 4), we get the desired conclusion by transitivity of
equality.

To chooseZ;, letx; € X \ (ZpU---U Z;_1); possible as we exclude+ i — 1 elements
and choose; € ZoN---NZ;_1\{az,_,,bz,_,}. NowletZ; = Z;_1 U{y;} \ {x;} easilyj <
i=|Z;\ Z;|=i— jandZ; € P+ by Conclusion 6.12(4) witlY, Z,, Z, there standing
for Zi1,2i—2,7Z; here. O

6.16. Choice. Y* € P4.

2 | am sure that after careful checking we can improve the bound.
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6.17. Conclusion.

(@) Y*eP.
(b) If Y € PL then({ay, by} = {ay*, by+}.
(c) One of the following possibilities holds.
() Pr={Y"}
(B) Pr={Y € (}): {ay= by-} S Y}
(y) Py ={Y* Y*} whereY*™ = (X \ Y*) U {ay*, by=} and | X| = 2k — 2 (hence
{ays, by«} = {ay+, by+}).

Proof. Note that

(%) if Y1, Y2 € P, Y1\ Yol =1 and¥z € Py, Y4 € (), |¥3\ Yal = 1 and{ay,, by} =
{ay,, by,} C Y4 thenYy € Py (hencelay,, by,} = {ay,, by} = {ay,, by, }).

[Why? As there is a permutationof X such thatr (ay,) = ay,, 7 (by,) = by,, 7 (¥3) = Y1,
(Ys) = Y. By Fact 6.4 we get a contradiction to the choicefdf] The hence of (Q)y)
is by 6.13.

By the choice ofY* € P., we have (a), now (b) follows from (c) so it is enough to
prove (c). Assuméw), (y) fail and we shall proveg). So there isZ; € P+ such that
Z1 ¢ {Y*, (X \ Y*) U {ay*, by*}} We can ﬁnd,‘l, coe X \ {ay*, by*} such that']_ eY* s
c2eY*ande1 € Z1 & 2 ¢ Z1.

[Why?if Y*UZ1# X anyc1 € X\ Y*\ Z1,c2 € Z1\ Y* willdo; so assum&*U Z1 =
X; so ask + 2 < |X]|, clearly |[Y* N Z| < k — 2; hence by Claim 6.14Z1 N Y*| < 2.
As not case(y) of (c), that is by the choice df1, necessarilfay+, by«} € Y* N Z; and
usingr € Per(X), n [ Z1=id, 7 (Y*) = Y*, = the identity onZ1 and{m (ay+), 7 (by+)} =
{ay+, by+}; now by Claim 6.13 we contradict Definition/choice 6.3 and Fact 6.4.]

Let Zo = Z1 U {c1,c2} \ (Z1N{c1,c¢2}), SO Z1,Z2 € (f), |Z>NY*| =|Z1NY* and
Z1 N {ay+, by+} = Zo N {ay+, by+}; hence by Conclusion 6.12(4) we ha#e € P+ and
clearly|Z1\ Z5| = 1.

By Claim 6.15 we havéaz,, bz,} = {az,, bz,}. Similarly by (x) we can prove by in-
duction onm = |Z \ Z1| that{az,,bz,} S Z € (;f) =ZePir&laz, bz} ={az,,bz}. If
(B) of (c) fails, then there i3 € P4 satisfying{az,,bz,} € Z. Easily{az,, bz} C Z €
(f) = Z € Py & {az, bz} = {az,, bz,}. As we are assuming > 4, we can findy e (f)
suchthataz,, bz,,az,, bz,} € Y; contradiction. O

6.18. Claim. (1) The(x) of Claim5.8 holds.
(2) In Conclusion6.17 clause(c), clause(w) holds.

Proof. (1) Obvious by part (2) fronfo).

(2) First assumég), so by Conclusion 6.17(b), Definition/choice 6.3 and Fact 6.4, we
have without loss of generality eithés, b} = {ay+, by+} C Y € (f) = fy(a,b)=>bor
{ay«, by«} C Y € (X) = fyi(ay+, byx) = by = f(by+,ay+). In both casesf* is simple
and not a monarchy contradiction, to Hypothesis 5.2.
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Second, assume’). Let (m;: i < i*) be a list of the permutations of X such that
wt(ay«, by+) = (ayx, by+). '
Let £ be f* conjugated byr;. Now defineg’ fori < i* by induction on: gg(xl, X2) =

x1, g5 (1, x2) = £7¥(gh (x1, x2), x2). S0 g’ € Fizy and dom(g'") = N _;~ dome(f)

where dona(g) = {(Z,a,b): a,be Z € (f) and gz(a,b) = b # a}, so dom(g’’) =

U; <= domu (/) hence

(01 8} (a1, a2) = a2 if {a1, a2} = {ay+, by+},
(x)2 gy (a1,az2) = ay if {a1, az} # {ay+, by+}.

Now g is simple but non-monarchical contradiction to Hypothesis 5.2.

7. Thecaser >4
7.1. Hypothesis. r =r(F) > 4.
7.2.Claim. (1) For every f € F, there ist(f) € {1, ..., r} such that
®ifYe (f) a €'Y and|Ranga)| < r (i.e.a is not one-to-ongthen fy (@) = ae(s).
2 r <k.
Proof. (1) Clearly there is a two-place functignfrom {1, ...,r} to {1,...,7} such that

if y1,...,y, €Y € (f) ye = yr and{ # k then fy(y1,..., yr) = yne k), we have some
freedom, so let without loss of generality

X €#k=h(l,k) £k

Assume toward contradiction that the conclusion fails, i.e., there & fip as required;
ie.

® hl{@m,n): L<m <n <r}is notconstant.
Casel. Forsomet €'Y, Y € (}) and¢1 # k1 € {1,..., 7}, we have

IRangx)|=r —1, Xey = Xky, Jr (%) # xey,

equivalently:h (€1, k1) ¢ {£, k}. Without loss of generalityf1 =r — 1, k1 =r, fy(x) =
x1 (as by a permutatios of {1,...,r}, we can replacef by f7: fy(x1,...,x2) =
Sy oy, -0 Xo ()

We can choose’ e (f) andx # y in Y, so h(x,y,...,y) = x; hencel # k ¢
{2,....r}=h(,k)=1.

Now for ¢ € {2,...,r} we have agreed (1, ¢) # ¢ (seelX), as we can assume |
{(m,n): 1<m <n <r}isnotconstantly 1, bw’ for some sucht, 4(1, £) # 1 so without
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loss of generalityl = 2; soh(1, 2) # 1, 2, so without loss of generality(1, 2) = 3, but as
r>4,we havethatik £yeY e (f) then fy (x,x,y,y,...,y) isy for h(1,2) =3 and
is x for h(3,4) = 1, contradiction. So

® h[{{ k) 1<f<k<r}isconstantly 1.

hence
X € "X hasrepetitions =  h(x) = x1,
as required.

Case 2. Not Case 1.
Soh(l, k) e (£, k}fore £k e{l,...,r}. Now letY e (f)x #y eY and look at
fr(x,x,y,y,...)itisbothx ash(l, 2) € {1, 2} andy ash(3, 4) € {3, 4}, contradiction.

(2) This follows as if f € Fy,1, k < r(F) and{(x) is as in part (1) thernfy (x) = x¢(x)
always, asi(«) has repetitions by pigeon-holen

Recall
7.3. Définition. f = f,.,x = f"%* is ther-place function

_. ) xe, x hasrepetitions
fro) = {xk, otherwise
7.4.Claim. (1) If fr.12€ F thenf,.,x € F for £ k.

@ If frii2€F,r>3thenf,112€ F.

Proof. (1) Trivial.

(2) Forr > 5 let g(x1,...,xr41) = fr12(x1,x2, 13(x1,...), ..., T+ (x1,...)) Where
T = fr1m(X1, .oy Xmy Xm42, - -, Xr41), that iSx,41 iS omitted. Continue as in the proof
of Claim2.7. O

7.5. Claim. AssumeY € (), @ €Y is one-to-one. There ig = f¥@ € 7. such that
frY@ =az and f3%(b) = b1 if Z € (}) and b € "X is not one-to-oneso () of
Claim5.6(2) holds.

Proof. Let f € F, be non-monarchical, andithout loss of generalityf(x) =1 in
Claim 7.2. By being not a monarchy, for soniie a and somek € {2,...,r}, we have
fr(a) = ax # a1; necessarily: is one-to-one. Conjugating by € Per(X) and permuting
[2,r], we getf¥-“ as required, in particulaf % (@) = a. O
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