On the Arrow property

Saharon Shelah
The Hebrew University of Jerusalem, Einstein Institute of Mathematics, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
Department of Mathematics, Hill Center-Busch Campus, Rutgers, The State University of New Jersey, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA
Received 4 September 2001; accepted 10 March 2002

Available online 11 November 2004
Communicated by Gil Kalai

Abstract

We deal with a finite combinatorial problem arising for a question on generalizing Arrow theorem on social choices. © 2004 Elsevier Inc. All rights reserved.

Keywords: Arrow theorem; Social choice functions; Finite combinatorics

0. Introduction

Let X be a finite set of alternatives. A choice function c is a mapping which assigns to nonempty subsets S of X an element $c(S)$ of S. A rational choice function is one for which there is a linear ordering on the alternatives such that $c(S)$ is the maximal element of S according to that ordering. (We will concentrate on choice functions which are defined on subsets of X of fixed cardinality k and this will be enough.)

Arrow's impossibility theorem [1] asserts that under certain natural conditions, if there are at least three alternatives then every non-dictatorial social choice gives rise to a nonrational choice function, i.e., there exist profiles such that the social choice is not rational. A profile is a finite list of linear orders on the alternatives which represent the individual choices. For general references on Arrow's theorem and social choice functions see [2,5,7].

Non-rational classes of choice functions which may represent individual behavior where considered in [3,4]. For example: $c(S)$ is the second largest element in S according to
some ordering, or $c(S)$ is the median element of S (assume $|S|$ is odd) according to some ordering. Note that the classes of choice functions in these classes are symmetric, namely are invariant under permutations of the alternatives. Gil Kalai asked if Arrow's theorem can be extended to the case when the individual choices are not rational but rather belong to an arbitrary non-trivial symmetric class of choice functions. (A class is non-trivial if it does not contain all choice functions.) The main theorem of this paper gives an affirmative answer in a very general setting. See also [6] for general forms of Arrow's and related theorem.

The part of the proof which deals with the simple case is related to clones which are studied in universal algebras (but we do not use this theory). On clones see [8,9].

Notation:

(1) $n, m, k, \ell, r, s, t, i, j$ natural numbers; always k, many times r are constant (there may be some misuses of k).
(2) X a finite set.
(3) \mathfrak{C} a family of choice function on $\binom{X}{k}=\{Y: Y \subseteq X,|Y|=k\}$.
(4) \mathcal{F} is a clone on X (see Definition 2.3(2)).
(5) $a, b, e \in X$.
(6) $c, d \in \mathfrak{C}$.
(7) $f, g \in \mathcal{F}$.

Annotated content

Section 1: Framework
[What are $X, \mathfrak{C}, \mathcal{F}=\operatorname{Av}(\mathfrak{C})$, the Arrow property restricted to $\binom{X}{k}, \mathfrak{C}$ is $(X, k)=$ FCF (note: no connection for different $k-s$) and the Main Theorem. For $\mathfrak{C}, \mathcal{F}$, $r=r(\mathcal{F})$.]
Part A: The simple case
Section 2: Context and on nice f 's
[Define a clone, $r(\mathcal{F})$. If $f \in \mathcal{F}_{(r)}$ is not a monarchy, $r \geqslant 4$ on the family of not one-to-one sequences $\bar{a} \in{ }^{r} X$ then f is a projection, Claim 2.5.
Define $f_{r ; \ell, k}$, basic implications on $f_{r ; \ell, k} \in \mathcal{F}$, Definition 2.6, Claim 2.7.
If $r=3, f \in \mathcal{F}_{[s]}$ is not a monarchy on one-to-one triples, then f without loss of generality, is $f_{r ; 1,2}$ or $g_{r ; 1,2}$ on a relevant set, Claim 2.8.
If $r=3, f$ is not a semi monarchy on permutations of \bar{a}.
If $r=3$, there are some "useful" f, Claim 2.11. Implications on $f_{r ; \ell, k} \in \mathcal{F}$.]
Section 3: Getting \mathfrak{C} is full
[Sufficient condition for $r \geqslant 4$ with $f_{r ; 1,2}$ or so (Lemma 3.1), similarly when $r=3$.
Sufficient condition for $r=3$ with $g_{r ; 1,2}$ or so (Claim 3.3).
A pure sufficient condition for \mathfrak{C} full, Claim 3.4.
Subset $\binom{X}{3}$, closed under a distance, Claim 3.5.
Getting the final conclusion (relying on Section 4).]

Section 4: The $r=2$ case
[By stages we get a $f \in \mathcal{F}_{[r]}$ which is a monarchy with exactly one exceptional pair, Claims 4.2-4.4. Then by composition we get $g \in \mathcal{F}_{2}$ similar to $f_{r ; 1,2}$.]
Part B: Non-simple case
Section 5: Fullness - the non-simple case
[We derive " \mathfrak{C} is full" from various assumptions, and then prove the main theorem.]
Section 6: The case $r=2$
Section 7: The case $r \geqslant 4$

1. Framework

1.1. Context. We fix a finite set X and $r=\{0, \ldots, r-1\}$.
1.2. Definition. (1) An (X, r)-election rule is a function c such that for every "vote" $\bar{t}=\left\langle t_{a}\right.$: $a \in X\rangle \in{ }^{X} r$ we have $c(\bar{t}) \in r=\{0, \ldots, r-1\}$.
(2) c is a monarchy if $(\exists a \in X)\left(\forall \bar{t} \in X^{X}\right)\left[c(\bar{t})=t_{a}\right]$.
(3) c is reasonable if $(\forall \bar{t})\left(c(t) \in\left\{t_{a}: a \in X\right\}\right)$.
1.3. Definition. (1) We say \mathfrak{C} is a family of choice functions for X (X-FCF in short) if $\mathfrak{C} \subseteq\left\{c: c\right.$ is a function with $\operatorname{Dom}(c)=\mathcal{P}^{-}(X)(=$ family of nonempty subsets of $X)$

$$
\text { and } \left.\left(\forall Y \in \mathcal{P}^{-}(X)\right)(c(Y) \in Y)\right\} .
$$

(2) \mathfrak{C} is called symmetric if for every $\pi \in \operatorname{Per}(X)=$ group of permutations of X, we have

$$
c \in \mathfrak{C} \Rightarrow \pi * c \in \mathfrak{C} \quad \text { where } \pi * c(Y)=\pi^{-1}(c \pi(Y)) .
$$

(3) $\mathcal{P}_{\mathfrak{C}}=\mathcal{P}^{-}(X)$.
1.4. Definition. (1) We say av is a r-averaging function for \mathfrak{C} if
(a) av is a function written $\operatorname{av}_{Y}\left(a_{1}, \ldots, a_{r}\right)$;
(b) for any $c_{1}, \ldots, c_{r} \in \mathfrak{C}$, there is $c \in \mathfrak{C}$ such that

$$
\left(\forall Y \in \mathcal{P}^{-}(X)\right) \quad(c(Y))=\operatorname{av}_{Y}\left(c_{1}(Y), \ldots, c_{r}(Y)\right) ;
$$

(c) if $a \in Y \in \mathcal{P}^{-}(X)$ then $\operatorname{av}_{Y}(a, \ldots, a)=a$.
(2) av is simple if $\mathrm{av}_{Y}\left(a_{1}, \ldots, a_{r}\right)$ does not depend on Y, so we may omit Y.
(3) $\mathrm{AV}_{r}(\mathfrak{C})=\{$ av: av is an r-averaging function for $\mathfrak{C}\}$, similarly $\mathrm{AV}_{r}^{s}(\mathfrak{C})=\{$ av: av is a simple r-averaging function for $\mathfrak{C}\}$.
(4) $\mathrm{AV}(\mathfrak{C})=\bigcup_{r} \mathrm{AV}_{r}(\mathfrak{C})$ and $\mathrm{AV}^{s}(\mathfrak{C})=\bigcup_{r} \mathrm{AV}_{r}^{s}(\mathfrak{C})$.
1.5. Definition. (1) We say that \mathfrak{C} which is an X-FCF, has the simple r-Arrow property if

$$
\text { av } \in \mathrm{AV}_{r}^{s}(\mathfrak{C}) \Rightarrow \bigvee_{t=1}^{r}\left(\forall a_{1}, \ldots, a_{r}\right)\left(\operatorname{av}\left(a_{1}, \ldots, a_{r}\right)=a_{t}\right)
$$

such av is called monarchical.
(2) Similarly without simple (using $\mathrm{AV}_{2}(\mathfrak{C})$).
1.6. Question. (1) Under reasonable conditions does \mathfrak{C} have the Arrow property?
(2) Does $|\mathfrak{C}| \leqslant \operatorname{poly}(|X|) \Rightarrow r$-Arrow property? This means, e.g., for every natural numbers r, t^{n} for every X large enough for every symmetric \mathfrak{C}; an X-FCF with $\leqslant|X|^{n}$ member, \mathfrak{C} has the r-Arrow property.
1.7. Remark. The question was asked with $\mathfrak{C}_{(X)}$ defined for every X; but in the treatment here this does not influence.

We actually deal with:
1.8. Definition. If $1 \leqslant k \leqslant|X|-1$ and we replace $\mathcal{P}^{-}(X)$ by $\binom{X}{k}:=\{Y: Y \subseteq X,|Y|=k\}$, then \mathfrak{C} is called $(X, k)-\mathrm{FCF}, \mathcal{P}_{\mathfrak{C}}=\binom{X}{k}, k=k(\mathfrak{C})$, av is [simple] r-averaging function for \mathfrak{C}; let $k(\mathfrak{C})=\infty$ if $\mathcal{P}_{\mathfrak{C}}=\mathcal{P}^{-}(X)$; let $\mathcal{F}=\mathcal{F}(\mathfrak{C})=\mathrm{AV}^{s}(\mathfrak{C})$ and let $\mathcal{F}_{[r]}=\{f \in \mathcal{F}: f$ is r-place $\}$.
1.9. Discussion. This is justified because:
(1) For simple averaging function, $k \geqslant r$, the restriction to $\binom{X}{k}$ implies the full result.
(2) For the non-simple case, there is a little connection between the various $\mathfrak{C} \upharpoonright\binom{X}{k}$ (exercise).

Our aim is (but we shall first prove the simple case) the following.
1.10. Main Theorem. There are natural numbers $r_{1}^{*}, r_{2}^{*}<\omega$ (we shall be able to give explicit values, e.g. $r_{1}^{*}=r_{2}^{*}=7$ are OK) such that:
\circledast if X is finite, $r_{1}^{*} \leqslant k,|X|-r_{2}^{*} \geqslant k$ and \mathfrak{C} is a symmetrical $(X, k)-F C F$ and some av $\in \mathrm{AV}_{r}(\mathfrak{C})$ is not monarchical, then every choice function for $\binom{X}{k}$ belongs to \mathfrak{C} (i.e., \mathfrak{C} is full).

Proof. By Claim 5.10.

1.11. Conclusion. Assume X is finite, $r_{1}^{*} \leqslant k \leqslant|X|-r_{2}^{*}$ (where r_{1}^{*}, r_{2}^{*} from Theorem 1.10).
(1) If \mathfrak{C} is an (X, k)-FCF and some member of $\operatorname{Av}_{r}(\mathfrak{C})$ is not monarchical, then $|\mathfrak{C}|=$ $k^{\left(\left\lvert\, \begin{array}{c}|X| \\ k\end{array}\right.\right)}$.

Part A. The simple case

2. Context and on nice f 's

Note. Sometimes Part B gives alternative ways.

2.1. Hypothesis (for Part A).

(a) X a finite set;
(b) $5<k<|X|-5$;
(c) \mathfrak{C} a symmetric (X, k)-FCF and $\mathfrak{C} \neq \emptyset$;
(d) $\mathcal{F}_{[r]}=\{f: f$ an r-place function from X to X such that \mathfrak{C} is closed under f, that is $\left.f \in \mathrm{AV}_{r}^{s}(\mathfrak{C})\right\} ;$
(e) $\mathcal{F}=\bigcup\left\{\mathcal{F}_{[r]}: r<\omega\right\}$;
2.2. Fact. \mathcal{F} is a clone on X (see Definition 2.3) satisfying $f \in \mathcal{F}_{[r]} \Rightarrow f\left(x_{1}, \ldots, x_{r}\right) \in$ $\left\{x_{1}, \ldots, x_{r}\right\}$ and \mathcal{F} is symmetric, i.e. closed by conjugation by $\pi \in \operatorname{Per}(X)$.
2.3. Definition. (1) f is monarchical $=$ is a projection, if f is an r-place function (from X to X) and for some $t,\left(\forall x_{1}, \ldots, x_{n}\right) f\left(x_{1}, \ldots, x_{r}\right)=x_{t}$.
(2) \mathcal{F} is a clone on X if it is a family of functions from X to X (for all arities, i.e., number of places) including the projections and closed under composition.
2.4. Definition. For $\mathfrak{C}, \mathcal{F}$ as in Hypothesis 2.1:

$$
r(\mathfrak{C})=r(\mathcal{F}):=\min \left\{r: \text { some } f \in \mathfrak{C}_{r} \text { is not monarchical }\right\}
$$

(let $r(\mathcal{F})=\infty$ if \mathfrak{C} is monarchical).

2.5. Claim. Assume

(a) $f \in \mathcal{F}_{[r]}$;
(b) $4 \leqslant r=r(\mathcal{F})=\min \{r$: some $f \in \mathcal{F}$ is not a monarchy $\}$.

Then
(1) for some $\ell \in\{1, \ldots, r\}$ we have $f\left(x_{1}, \ldots, x_{r}\right)=x_{\ell}$ if x_{1}, \ldots, x_{r} has some repetition.
(2) $r \leqslant k$.

Proof. (1) Clearly there is a two-place function h from $\{1, \ldots, r\}$ to $\{1, \ldots, r\}$ such that: if $y_{\ell}=y_{k} \wedge \ell \neq k$ then $f\left(y_{1}, \ldots, y_{r}\right)=y_{h(\ell, k)}$; we have some freedom, so without loss of generality:
$\boxtimes \ell \neq k \Rightarrow h(\ell, k) \neq k$.

Assume toward contradiction that (1)'s conclusion fails, i.e.
$\circledast h \upharpoonright\{(\ell, k): 1 \leqslant \ell<k \leqslant r\}$ is not constant.
Case 1. For some $\bar{x} \in{ }^{r} X$ and $\ell_{1} \neq k_{1} \in\{1, \ldots, r\}$ we have

$$
x_{\ell_{1}}=x_{k_{1}}, \quad f(\bar{x}) \neq x_{\ell_{1}}
$$

equivalently: $h\left\{\ell_{1}, k_{1}\right\} \notin\left\{\ell_{1}, k_{1}\right\}$, recalling \boxtimes.
Without loss of generality, $\ell_{1}=r-1, k_{1}=r, f(\bar{x})=x_{1}$ (as for a permutation σ of $\{1, \ldots, r\}$, we can replace f by $\left.f_{\sigma}, f_{\sigma}\left(x_{1}, \ldots, x_{r}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right)\right)$.

We can choose $x \neq y$ in X, so $h(x, y, \ldots, y)=x$ hence $\ell \neq k \in\{2, \ldots, r\}$ implies $h(\ell, k)=1$.

Now for $\ell \in\{2, \ldots, r\}$ we have agreed $h(1, \ell) \neq \ell$, (see $\boxtimes)$ so as $h \upharpoonright\{(\ell, k): \ell<k\}$ is not constantly $1($ by $\circledast)$, without loss of generality $h(1,2)=3$. But as $r \geqslant 4$, letting $x \neq$ $y \in X$ we have $f(x, x, y, y, \ldots)$ is y as $h(1,2)=3$ and is x as $h(3,4)=1$, contradiction.

Case 2. Not Case 1.

Let $x \neq y$, now consider $f(x, x, y, y, \ldots)$, it is x as $h(1,2) \in\{1,2\}$ and it is y as $h(3,4) \in\{3,4\}$, contradiction.
(2) follows as for $r>k$ we always have a repetition (see Definition 1.4(1), f plays the role of c).
2.6. Definition. $f_{r ; \ell, k}=f_{r, \ell, k}$ is the r-place function on X defined by

$$
f_{r ; \ell, k}(\bar{x})= \begin{cases}x_{\ell}, & \bar{x} \text { is with repetition } \\ x_{k}, & \text { otherwise }\end{cases}
$$

2.7. Claim. (1) If $f_{r, 1,2} \in \mathcal{F}$ then $f_{r, \ell, k} \in \mathfrak{C}$ for $\ell \neq k \in\{1, \ldots, r\}$.
(2) If $f_{r, 1,2} \in \mathcal{F}$ and $r=r \geqslant 3$ then $f_{r+1,1,2} \in \mathcal{F}$.

Proof. (1) Trivial (by Fact 2.2).
(2) First, assume $r \geqslant 5$. Let $g\left(x_{1}, \ldots, x_{r+1}\right)=f_{r, 1,2}\left(x_{1}, x_{2}, \tau_{3}, \ldots, \tau_{r}\right)$ where $\tau_{m} \equiv$ $f_{r, 1, m}\left(x_{1}, \ldots, x_{m}, x_{m+2}, \ldots, x_{r+1}\right)$; (that is x_{m+1} is omitted). So for any \bar{a} :

- if \bar{a} has no repetitions then

$$
\tau_{3}(\bar{a})=a_{3}, \ldots, \tau_{r}(\bar{a})=a_{r}, \quad g(\bar{a})=f\left(a_{1}, a_{2}, a_{3}, \ldots, a_{r}\right)=a_{2} ;
$$

- if \bar{a} has repetitions, say $a_{\ell}=a_{k}$, then there is $m \in\{3, \ldots, r\} \backslash\{\ell-1, k-1\}$, hence $\left\langle a_{1}, \ldots, a_{m}, a_{m+2}, \ldots, a_{r+1}\right\rangle$ is with repetition; so $\tau_{m}(\bar{a})=a_{1}$, so $\left(a_{1}, a_{2}, \ldots\right.$, $\left.\tau_{m}(\bar{a}), \ldots\right)$ has a repetition, so $g(\bar{a})=a_{1}$.

Second, assume $r=4$. Let g be the function of arity 5 defined by: for $\bar{x}=\left(x_{1}, \ldots, x_{5}\right)$ we let $g(\bar{x})=f_{r, 1,2}\left(\tau_{1}(\bar{x}), \ldots, \tau_{4}(\bar{x})\right)$ where
$(*)_{1} \quad \tau_{1}(\bar{x})=x_{1} ;$
$(*)_{2} \quad \tau_{2}(\bar{x})=f_{r, 1,2}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$;
$(*)_{3} \quad \tau_{3}(\bar{x})=f_{r, 1,3}\left(x_{1}, x_{2}, x_{3}, x_{5}\right)$;
$(*)_{4} \tau_{4}(\bar{x})=f_{r, 1,4}\left(x_{1}, x_{2}, x_{5}, x_{4}\right)$.
Note that
$(*)_{5}$ for \bar{x} with no repetition $\tau_{\ell}(\bar{x})=x_{\ell}$.
Now check that g is as required.
Third, assume $r=3$. Let $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{r, 1,2}\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ where

$$
\tau_{1}=x_{1}, \quad \tau_{2}=f_{r, 1,2}\left(x_{1}, x_{2}, x_{4}\right), \quad \tau_{3}=f_{r, 1,2}\left(x_{1}, x_{3}, x_{4}\right)
$$

Now check (or see the proof of Claim 4.7).
2.8. Claim. Assume:
(α) \mathcal{F} is as in Fact 2.2;
(β) every $f \in \mathcal{F}_{[2]}$ is a monarchy, $r=r[\mathcal{F}]=3$;
$(\gamma) f^{*} \in \mathcal{F}_{[3]}$ and for no $i \in\{1,2,3\}$ do we have $\left(\forall \bar{b} \in{ }^{3} X\right)$ (\bar{b} not one-to-one $\Rightarrow f^{*}(\bar{b})=$ $\left.b_{i}\right)$.

Then for some $g \in \mathcal{F}_{[3]}$ not a monarchy we have: (a) or (b) where
(a) for $\bar{b} \in{ }^{3} X$ which is not one-to-one $g(\bar{b})=f_{r ; 1,2}(\bar{b})$, i.e. $=b_{1}$;
(b) for $\bar{b} \in{ }^{3} X$ which is not one-to-one $g(\bar{b})=g_{r ; 1,2}(\bar{b})$, see below.

Where
2.9. Definition. $g_{r ; 1,2}$ is the following function ${ }^{1}$ from X to X :

$$
g_{r ; 1,2,}\left(x_{1}, x_{2}, \ldots, x_{r}\right)= \begin{cases}x_{2}, & \text { if } x_{2}=x_{3}=\cdots=x_{r} \\ x_{1}, & \text { otherwise }\end{cases}
$$

Similarly $g_{r ; \ell, k}\left(x_{1}, \ldots, x_{r}\right)$ is x_{k} if $\left|\left\{x_{i}: i \neq \ell\right\}\right|=1$ and x_{ℓ} otherwise.
Proof of Claim 2.8. The same as the proof of the next claim ignoring the one-to-one sequences (i.e. $f\left(a_{1}, a_{2}, a_{3}\right)$), see more later.
2.10. Claim. Assume \mathcal{F} is as in Fact 2.2, $r=r(\mathcal{F})=3, f^{*} \in \mathcal{F}, f^{*}$ is a 3-place function and not a monarchy and $\bar{a} \in{ }^{3} X$ is with no repetition such that: if $\bar{a}^{\prime}=\left(a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ is a permutation of \bar{a} then $f^{*}\left(\bar{a}^{\prime}\right)=a_{1}^{\prime}$; but $\neg\left(\forall \bar{b} \in{ }^{3} X\right)\left(\bar{b}\right.$ not one-to-one $\left.\left.\Rightarrow f^{*}(\bar{b})=b_{1}\right)\right)$.

[^0]Then for some $g \in \mathcal{F}_{3}$ we have (a) or (b) where:
(a) (i) for $\bar{b} \in{ }^{3} X$ with repetition, $g(\bar{b})=f_{r ; 1,2}(\bar{b})$, i.e. $g(\bar{b})=b_{1}$;
(ii) $g\left(\bar{a}^{\prime}\right)=a_{2}^{\prime}$ for any permutation \bar{a}^{\prime} of \bar{a};
(b) (i) for $\bar{b} \in{ }^{3} X$ with repetition, $g(\bar{b})=g_{r ; 1,2}(\bar{b})$;
(ii) $g\left(\bar{a}^{\prime}\right)=a_{1}^{\prime}$ for any permutation \bar{a}^{\prime} of $\bar{a}\left(\right.$ see on $g_{r ; 1,2}$ in Definition 2.9).

Proof. Let $\bar{a}=\left(a_{1}, a_{2}, a_{3}\right) ;(a, b, c)$ denote any permutation of \bar{a}.
Let $W=\left\{\bar{b}: \bar{b} \in{ }^{3} X\right.$ and $[\bar{b}$ is a permutation of \bar{a} or \bar{b} not one-to-one] $\}$. Let $\mathcal{F}^{-}=$ $\{f \upharpoonright W: f \in \mathcal{F}\}, f=f^{*} \upharpoonright W$.

Let for $\eta \in{ }^{3}\{1,2\}, f_{\eta}$ be the 3-place function with domain W, such that
$\boxtimes_{0} f_{\eta}\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}\right)=a_{\sigma(1)}$ for $\sigma \in \operatorname{Per}\{1,2,3\} ;$
$\boxtimes_{1} \quad f_{\eta}\left(a_{1}, a_{2}, a_{2}\right)=a_{\eta(1)}$;
$\boxtimes_{2} \quad f_{\eta}\left(a_{1}, a_{2}, a_{1}\right)=a_{\eta(2)}$;
$\boxtimes_{3} \quad f_{\eta}\left(a_{1}, a_{1}, a_{2}\right)=a_{\eta(3)}$.

Now

$(*)_{0} f \in\left\{f_{\eta}: \eta \in{ }^{3} 2\right\}$.
[Why? Just think: by the assumption on f^{*} and as $r(\mathcal{F})=3$, in details: for $\boxtimes_{1}, \boxtimes_{2}, \boxtimes_{2}$ remember that $f(x, y, y), f(x, y, x), f(x, x, y)$ are monarchies and for \boxtimes_{0} remember the assumption on \bar{a} and of course $f(x, x, x)=x$.]
$(*)_{1}$ if $\eta=\langle 1,1,1\rangle$ then $f_{\eta} \neq f$.
[Why? $f_{\eta}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}$ on W, i.e. is a monarchy.]
$(*)_{2}$ if $\eta, \nu \in{ }^{3}\{1,2\}, \eta(1)=v(1), \eta(2)=v(3), \eta(3)=v(2)$, then $f_{\eta} \in \mathcal{F}^{-} \Leftrightarrow f_{v} \in \mathcal{F}^{-}$.
[Why? In $f(x, y, z)$ we just exchange y and z.]
$(*)_{3}$ if $f_{\langle 2,2,2,\rangle} \in \mathcal{F}^{-}$then $f_{\langle 1,2,2\rangle} \in \mathcal{F}^{-}$.
[Why? Define g by $g(x, y, z)=f_{\langle 2,2,2\rangle}\left(x, f_{\langle 2,2,2\rangle}(y, x, z), f_{\langle 2,2,2\rangle}(z, x, y)\right.$) (so $g \in \mathcal{F}^{-}$) hence

$$
\begin{aligned}
& g(a, b, c)=f_{\langle 2,2,2\rangle}(a, b, c)=a ; \quad \text { hence } g \text { satisfies } \boxtimes_{0}, \\
& g(a, b, b)=f_{\langle 2,2,2\rangle}\left(a, f_{\langle 2,2,2\rangle}(b, a, b), f_{\langle 2,2,2\rangle}(b, a, b)\right)=f_{\langle 2,2,2\rangle}(a, a, a)=a, \\
& g(a, b, a)=f_{\langle 2,2,2\rangle}\left(a, f_{\langle 2,2,2\rangle}(b, a, a), f_{\langle 2,2,2\rangle}(a, a, b)\right)=f_{\langle 2,2,2\rangle}(a, a, b)=b, \\
& g(a, a, b)=f_{\langle 2,2,2\rangle}\left(a, f_{\langle 2,2,2\rangle}(a, a, b), f_{\langle 2,2,2\rangle}(b, a, a)\right)=f_{\langle 2,2,2\rangle}(a, b, a)=b .
\end{aligned}
$$

So $g=f_{\langle 1,2,2\rangle}$ hence $f_{\langle 1,2,2\rangle} \in \mathcal{F}^{-}$as promised.]
$(*)_{4} \quad f_{\langle 1,2,2\rangle} \in \mathcal{F}^{-} \Rightarrow f_{\langle 2,1,2\rangle} \in \mathcal{F}^{-}$.
[Why? Let

$$
g(x, y, z)=f_{\langle 1,2,2\rangle}\left(x, y, f_{\langle 1,2,2\rangle}(z, x, y)\right),
$$

so $g(a, b, c)=a$, hence g satisfies \boxtimes_{0} and

$$
\begin{aligned}
& g(a, b, b)=f_{\langle 1,2,2\rangle}\left(a, b, f_{\langle 1,2,2\rangle}(b, a, b)\right)=f_{\langle 1,2,2\rangle}(a, b, a)=b, \\
& g(a, b, a)=f_{\langle 1,2,2\rangle}\left(a, b, f_{\langle 1,2,2\rangle}(a, a, b)\right)=f_{\langle 1,2,2\rangle}(a, b, b)=a, \\
& g(a, a, b)=f_{\langle 1,2,2\rangle}\left(a, a, f_{\langle 1,2,2\rangle}(b, a, a)\right)=f_{\langle 1,2,2\rangle}(a, a, b)=b .
\end{aligned}
$$

So $g=f_{\langle 2,1,2\rangle}$, hence $f_{\langle 2,1,2\rangle} \in \mathcal{F}^{-}$, as promised.]
$(*)_{5} \quad f_{\langle 2,1,2\rangle}=f_{3 ; 3,1}$, i.e.

$$
f_{\langle 2,1,2\rangle}\left(x_{1}, x_{2}, x_{3}\right)=\left\{\begin{array}{ll}
x_{1}, & \text { if }\left|\left\{x_{1}, x_{2}, x_{3}\right\}\right|=3, \\
x_{3}, & \text { if }\left|\left\{x_{1}, x_{2}, x_{3}\right\}\right| \leqslant 2,
\end{array} \quad \text { when }\left(x_{1}, x_{2}, x_{3}\right) \in W .\right.
$$

[Why? Check.]

$(*)_{6} f_{\langle 2,2,1\rangle}\left(x_{1}, x_{2}, x_{3}\right)=x_{2}$ if $2 \geqslant\left|\left\{x_{1}, x_{2}, x_{3}\right\}\right|$.
[Why? Check.]
$(*)_{7} \quad f_{\langle 2,1,2\rangle} \in \mathcal{F}^{-} \Leftrightarrow f_{\langle 2,2,1\rangle} \in \mathcal{F}^{-}$.
[Why? See $(*)_{2}$ in the beginning.]
$(*)_{8} \quad f_{\langle 1,2,1\rangle} \in \mathcal{F}^{-} \Leftrightarrow f_{\langle 1,1,2\rangle} \in \mathcal{F}^{-}$.
[Why? By $(*)_{2}$ in the beginning.]
$(*)_{9} \quad f_{\langle 1,2,1\rangle} \in \mathcal{F}^{-} \Rightarrow f_{\langle 2,2,1\rangle} \in \mathcal{F}^{-}$.
[Why? Let $g(x, y, z)=f_{\langle 1,2,1\rangle}\left(x, f_{\langle 1,2,1\rangle}(y, z, x), f_{\langle 1,2,1\rangle}(z, x, y)\right)$; then

$$
g(a, b, c)=f_{\langle 1,2,1\rangle}\left(a, f_{\langle 1,2,1\rangle}(b, c, a), f_{\langle 1,2,1\rangle}(c, a, b)\right)=f_{\langle 1,2,1\rangle}(a, b, c)=a
$$

and hence g satisfies \boxtimes_{0},

$$
\begin{aligned}
& g(a, b, b)=f_{\langle 1,2,1\rangle}\left(a, f_{\langle 1,2,1\rangle}(b, b, a), f_{\langle 1,2,1\rangle}(b, a, b)\right)=f_{\langle 1,2,1\rangle}(a, b, a)=b, \\
& g(a, b, a)=f_{\langle 1,2,1\rangle}\left(a, f_{\langle 1,2,1\rangle}(b, a, a), f_{\langle 1,2,1\rangle}(a, a, b)\right)=f_{\langle 1,2,1\rangle}(a, b, a)=b, \\
& g(a, a, b)=f_{\langle 1,2,1\rangle}\left(a, f_{\langle 1,2,1\rangle}(a, b, a), f_{\langle 1,2,1\rangle}(b, a, a)\right)=f_{\langle 1,2,1\rangle}(a, b, b)=a .
\end{aligned}
$$

So $g=f_{\{2,2,1\rangle}$, hence $f_{\{2,2,1\rangle} \in \mathcal{F}^{-}$.]
Diagram (arrows mean belonging to \mathcal{F}^{-}follows)

among the 2^{3} functions f_{η}; one, $f_{\langle 1,1,1\rangle}$, is discarded being a monarchy, see $(*)_{1}$, six appear in the diagram and imply $f_{r ; 3,1} \in \mathcal{F}^{-}$by $(*)_{5}$; hence clause (a) of Claim 2.10 holds; and one is $g_{r ; 1,2}$ because
$(*)_{10} g_{r ; 1,2}=f_{\langle 2,1,1\rangle}$ on W.
[Why? Check.] So clause (b) of Claim 2.10 holds.
Continuation of the proof of Claim 2.8. As $r(\mathcal{F})=3$ for some $\eta \in{ }^{3} 2$, f^{*} agrees with f_{η} for all not one-to-one triples \bar{b}. If $\eta=\langle 1,1,1\rangle$, we contradict assumption (γ) as in $(*)_{1}$ of the proof of Claim 2.10, and if $\eta=\langle 2,1,1\rangle$, possibility (b) of Claim 2.8 holds as in $(*)_{10}$ in the proof of Claim 2.10. If $\eta=\langle 2,1,2\rangle$ then $f^{*}(\bar{b})=b_{3}$ for $\bar{b} \in{ }^{3} X$ not one-to-one (see $\left.(*)_{5}\right)$ and this contradicts assumption (γ); similarly if $\eta=\langle 2,2,1\rangle$. In the remaining case (see the diagram in the proof of Claim 2.10), there is $f \in \mathcal{F}$ agreeing on $\left\{\bar{b} \in{ }^{3} X: \bar{b}\right.$ is not one-to-one $\}$ with f_{η} for $\eta=\langle 1,2,2\rangle$ or $\eta=\langle 1,2,1\rangle$, without loss of generality $f^{*}=f$.

If $\eta=\langle 1,2,2\rangle$, define g as in $(*)_{4}$, i.e. $g(x, y, z)=f^{*}\left(x, y, f^{*}(z, x, y)\right)$; so for a non-one-to-one sequence $\bar{b} \in{ }^{3} X$ we have $g(\bar{b})=f_{\langle 2,1,2\rangle}(\bar{b})=b_{3}$. If for some one-toone $\bar{a} \in{ }^{3} X$ we have $f^{*}\left(a_{3}, a_{1}, a_{2}\right) \neq a_{3}$ then $g\left(a_{1}, a_{2}, a_{3}\right)=f^{*}\left(a_{1}, a_{2}, f^{*}\left(a_{3}, a_{1}, a_{2}\right)\right) \in$ $\left\{a_{1}, a_{2}\right\}$; so permuting the variables we get possibility (a). So we are left with the case $\bar{a} \in{ }^{3} X$ is one-to-one $\Rightarrow f^{*}(\bar{a})=a_{1}$.

Let us define $g \in \mathcal{F}_{[3]}$ by $g\left(x_{1}, x_{2}, x_{3}\right)=f^{*}\left(f^{*}\left(x_{2}, x_{3}, x_{1}\right), x_{3}, x_{2}\right)$. Let $\bar{b} \in{ }^{3} X$; if \bar{b} is without repetitions then $g(\bar{b})=f^{*}\left(b_{2}, b_{3}, b_{2}\right)=b_{3}$. In case $\bar{b}=(a, b, b)$, we have $g(\bar{b})=f^{*}\left(f^{*}(b, b, a), b, b\right)=f^{*}(a, b, b)=a=b_{1}$; for $\bar{b}=(a, b, a)$, it follows that $g(\bar{b})=f^{*}\left(f^{*}(b, a, a), a, b\right)=f^{*}(b, a, b)=a=b_{1}$; and for $\bar{b}=(a, a, b)$ we derive $g(\bar{b})=f^{*}\left(f^{*}(a, b, a), b, a\right)=f^{*}(b, b, a)=a=b_{1}$; together for \bar{b} non-one-to-one, $g(\bar{b})=b_{1}$. So g is as required in clause (a).

Lastly, let $\eta=\langle 1,2,1\rangle$ and let $g(x, y, z)=f^{*}\left(x, f^{*}(y, z, x), f^{*}(z, x, y)\right)$; now by $(*)_{9}$ of the proof of Claim 2.10, easily [\bar{b} is non-one-to-one $\Rightarrow g(\bar{b})=f_{\langle 2,2,1\rangle}(\bar{b})=b_{2}$]. Now if $\left(a_{1}, a_{2}, a_{3}\right)$ is without repetitions and $f^{*}\left(a_{2}, a_{3}, a_{1}\right)=a_{1}$ then $g\left(a_{1}, a_{2}, a_{3}\right)=$ a_{1} and possibility (a) holds for this g. Otherwise, we have $\left[\bar{b} \in{ }^{3} X\right.$ is one-to-one $\left.\Rightarrow f^{*}(\bar{b}) \in\left\{b_{1}, b_{2}\right\}\right]$; so if $\left(a_{1}, a_{2}, a_{3}\right) \in{ }^{3} X$ is one-to-one and $f^{*}\left(a_{2}, a_{3}, a_{1}\right) \neq a_{2}$ then $g\left(a_{1}, a_{2}, a_{3}\right) \neq a_{2}$ (as $f^{*}\left(a_{3}, a_{1}, a_{2}\right) \neq a_{2}$, hence $g\left(a_{1}, a_{2}, a_{3}\right)=g\left(a_{1}, a_{2}^{\prime}, a_{3}^{\prime}\right)$ for some $a_{2}^{\prime}, a_{3}^{\prime} \neq a_{2}$); so g is not a monarchy, hence possibility (a) holds. Hence $\left[\bar{b} \in{ }^{3} X\right.$ is one-to-one $\Rightarrow f^{*}(\bar{b})=b_{2}$]. Let $g^{*} \in \mathcal{F}$ be $g^{*}(x, y, z)=f^{*}\left(f^{*}(x, y, z), f^{*}(x, z, y), x\right)$. Now if \bar{b} is one-to-one then $g^{*}(\bar{b})=f^{*}\left(b_{2}, b_{3}, b_{1}\right)=b_{3}$. Also for $\bar{b}=(a, b, b)$ we have $g^{*}(\bar{b})=f^{*}\left(f^{*}(a, b, b), f^{*}(a, b, b), a\right)=f^{*}(a, a, a)=a$; for $\bar{b}=(a, b, a)$ we derive $g^{*}(\bar{b})=f^{*}\left(f^{*}(a, b, a), f^{*}(a, a, b), a\right)=f^{*}(b, a, a)=b$, and for $\bar{b}=(a, a, b)$ we obtain $g^{*}(\bar{b})=f^{*}\left(f^{*}(a, a, b), f^{*}(a, b, a), a\right)=f^{*}(a, b, a)=b$. So g^{*} is as required in the case $\eta=\langle 1,2,2\rangle$; so we can return to the previous case.

2.11. Claim. Assume:

(α) \mathcal{F} is as in Fact 2.2;
(β) every $f \in \mathcal{F}_{[2]}$ is monarchical;
$(\gamma) f^{*} \in \mathcal{F}_{[3]}$ is not monarchical.
Then one of the following holds:
(a) for every one-to-one $\bar{a} \in{ }^{3} X$ for some $f=f_{\bar{a}}$, we have:
(i) $f_{\bar{a}}(\bar{a})=a_{2}$,
(ii) if $\bar{b} \in{ }^{3} X$ is not one-to-one then $f_{\bar{a}}(\bar{b})=b_{1}$;
(b) for every one-to-one $\bar{a} \in^{3} X$, for some $f=f_{\bar{a}} \in \mathcal{F}_{[3]}$, we have:
(i) if \bar{b} is a permutation of \bar{a} then $f_{\bar{a}}(\bar{b})=b_{1}$,
(ii) if $\bar{b} \in{ }^{3} X$ is not one-to-one then $f_{\bar{a}}(\bar{b})=g_{r ; 1,2}(\bar{b})$.

Proof. As \mathcal{F} is symmetric, it suffices to prove "for some \bar{a} " instead of "for every \bar{a}."
Case 1. For some $\ell(*)$ if $\bar{b} \in{ }^{3} X$ is not one-to-one then $f^{*}(\bar{b})=b_{\ell(*)}$.
As f^{*} is not monarchical for some one-to-one $\bar{a} \in{ }^{3} X, f^{*}(\bar{a}) \neq a_{\ell(*)}$, say $f^{*}(\bar{a})=$ $a_{k(*)}, k(*) \neq \ell(*)$. As \mathcal{F} is symmetrical; without loss of generality, $\ell(*)=1, k(*)=2$. So possibility (a) holds.

Case 2. Not Case 1.

By Claim 2.8, without loss of generality, f^{*} satisfies (a) or (b) of Claim 2.8 with f^{*} instead of g. But clause (a) of Claim 2.8 is Case 1 above. So we can assume that case (b) of Claim 2.8 holds, i.e.
(*) if $\bar{b} \in{ }^{3} X$ is not one-to-one then $f^{*}(\bar{b})=g_{r ; 1,2}$, i.e.,

$$
f^{*}(\bar{b})= \begin{cases}b_{2} & \text { if } b_{2}=b_{3} \\ b_{1} & \text { if } b_{2} \neq b_{3}\end{cases}
$$

If Claim 2.10 applies, we are done as then (a) or (b) of Claim 2.10 holds; hence (a) or (b) of Claim 2.11 respectively holds; so assume Claim 2.10 does not apply. So consider a one-toone sequence $\bar{a} \in{ }^{3} X$ and (recalling that for $\bar{b} \in{ }^{3} X$ with repetitions $g_{r ; 1,2}(\bar{b})$ is preserved by permutations of \bar{b}) it follows that we have sequences \bar{a}^{1}, \bar{a}^{2}, both permutations of \bar{a} such that

$$
\bigvee_{i}\left[\left(f^{*}\left(\bar{a}^{1}\right)=a_{i}^{1}\right) \equiv\left(f^{*}\left(\bar{a}^{2}\right) \neq a_{i}^{2}\right)\right]
$$

Using closure under composition of \mathcal{F} and its being symmetric, for every permutation σ of $\{1,2,3\}$ (and as $g_{r ; 1,2}(\bar{b})$ is preserved by permuting the variables \bar{b} when \bar{b} is with repetition), for each $\sigma=\operatorname{Per}_{\{1,2,3\}}$ there is $f_{\sigma} \in \mathcal{F}_{[3]}$ such that
(i) $f_{\sigma}\left(a_{\sigma(1)}, a_{\sigma(2)}, a_{\sigma(3)}\right)=a_{1}$,
(ii) if $\bar{b} \in{ }^{3} X$ not one-to-one then $f(\bar{b})=g_{r ; 1,2}(\bar{b})$.

Let $\left\langle\sigma_{\rho}: \rho \in{ }^{3} 2\right\rangle$ list the permutations of $\{1,2,3\}$, necessarily with repetitions. Now we define by downward induction of $k \leqslant 3, f_{\rho} \in \mathcal{F}$ for $\rho \in{ }^{k} 2$ (sequences of zeroes and ones of length k) as follows:

$$
\begin{aligned}
\lg (\rho)=3 & \Rightarrow f_{\rho}=f_{\sigma_{\rho}} \\
\ell g(\rho)<3 & \Rightarrow f_{\rho}\left(x_{1}, x_{2}, x_{3}\right)=f_{\rho}\left(x_{1}, f_{\rho^{\wedge}\langle 0\rangle}\left(x_{1}, x_{2}, x_{3}\right), f_{\rho^{\wedge}\langle 1\rangle}\left(x_{1}, x_{2}, x_{3}\right)\right) .
\end{aligned}
$$

Easily (by downward induction):
$(*)_{1}$ if $\bar{b} \in{ }^{3} X$ is with repetitions and $\rho \in{ }^{k} 2, k \leqslant 3$, then $f_{\rho}(\bar{b})=g_{r ; 1,2}(\bar{b})$ (as $g_{r ; 1,2}$ act as majority).

Now we prove by downward induction on $k \leqslant 3$:
$(*)_{2}$ if \bar{b} is a permutation of $\bar{a}, \rho \in{ }^{k} 2, \rho \triangleleft v \in{ }^{3} 2$ and $f_{v}(\bar{b})=a_{1}$ then $f_{\rho}(\bar{b})=a_{1}$.
This is straightforward and so $f_{\langle \rangle}$is as required in clause (b).
Similarly we derive
2.12. Claim. If $g_{r ; \ell, k} \in \mathcal{F}$ then

$$
g_{r ; \ell_{1}, k_{1}} \in \mathcal{F} \quad \text { when } \ell_{1} \neq k_{1} \in\{1, \ldots, r\} .
$$

Proof. Trivial.

3. Getting \mathfrak{C} is full

3.1. Lemma. Assume:
(a) $r \geqslant 3, \mathcal{F}$ is as in Fact 2.2 (or just is a clone on X),
(*) $\quad f_{r ; 1,2} \in \mathcal{F}$ or just
$(*)^{-}$if $\bar{a} \in{ }^{r} X$ is one-to-one then for some $f=f_{\bar{a}} \in \mathcal{F}, f_{\bar{a}}(\bar{a})=a_{2}$ and $\left[\bar{b} \in{ }^{r} X\right.$ non-one-to-one $\left.\Rightarrow f_{\bar{a}}(\bar{b})=b_{1}\right]$;
(b) \mathfrak{C} is a (non empty) family of choice functions for $\binom{X}{k}=\{Y \subseteq X:|Y|=k\}$;
(c) \mathfrak{C} is closed under every $f \in \mathcal{F}$;
(d) \mathfrak{C} is symmetric;
(e) $k \geqslant r>2, k \geqslant 7,|X|-k \geqslant 5, r$.

Then \mathfrak{C} is full (i.e. every choice function is in it).
Proof. Without loss of generality, $r \geqslant 4$ (if $r=3$ then clause (e) is fine also for $r=4$; if in clause (a) the case $(*)$ holds, it is OK by Claim 2.7, and if $(*)^{-}$then we repeat the proof of Claim 2.7 for the case $r=3$, only with $g\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=f_{\left\langle a_{1}, a_{2}, a_{3}\right\rangle}\left(x_{1}, \tau_{2}, \tau_{3}\right)$ where $\tau_{2}=f_{\left\langle a_{1}, a_{2}, a_{4}\right\rangle}\left(x_{1}, x_{2}, x_{4}\right), \tau_{3}=f_{\left\langle a_{1}, a_{3}, a_{4}\right\rangle}\left(x_{1}, x_{3}, x_{4}\right)$ where for one-to-one $\bar{a} \in{ }^{3} X, f_{\bar{a}}$ is defined by the symmetry; this is the proof of Claim 4.7). Assume
$\boxtimes c_{1}^{*} \in \mathfrak{C}, Y^{*} \in\binom{X}{k}, c_{1}^{*}\left(Y^{*}\right)=a_{1}^{*}$ and $a_{2}^{*} \in Y^{*} \backslash\left\{a_{1}^{*}\right\}$.
Question. Is there $c \in \mathfrak{C}$ such that $c\left(Y^{*}\right)=a_{2}^{*}$ and $\left(\forall Y \in\binom{X}{k}\right)\left(Y \neq Y^{*} \Rightarrow c(Y)=c_{1}^{*}(Y)\right)$?
Choose $c_{2}^{*} \in \mathfrak{C}$ such that
(a) $c_{2}^{*}\left(Y^{*}\right)=a_{2}^{*}$,
(b) $n\left(c_{2}^{*}\right)=\left|\left\{Y \in\binom{X}{k}: c_{2}^{*}(Y)=c_{1}^{*}(Y)\right\}\right|$ is maximal under (a).

Easily \mathfrak{C} is not a singleton, so $n\left(c_{2}^{*}\right)$ is well defined.
3.2. Subfact. A positive answer to the question implies that \mathfrak{C} is full.
[Why? Easy.]
Hence if $n\left(c_{2}^{*}\right)=\binom{|X|}{k}-1$, we are done; so assume not and let $Z \in\binom{X}{k}, Z \neq Y^{*}$, $c_{1}^{*}(Z) \neq c_{2}^{*}(Z)$.

Case 1. For some Z as above and $c_{3}^{*} \in \mathfrak{C}$, we have

$$
c_{3}^{*}\left(Y^{*}\right) \notin\left\{a_{1}^{*}, a_{2}^{*}\right\}, \quad c_{3}^{*}(Z) \in\left\{c_{1}^{*}(Z), c_{2}^{*}(Z)\right) .
$$

If so, let $a_{3}^{*}=c_{3}^{*}\left(Y^{*}\right)$ and $a_{4}^{*} \in Y^{*} \backslash\left\{a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right\}$, etc.; so $\left\langle a_{1}^{*}, \ldots, a_{r}^{*}\right\rangle$ is one-to-one, $a_{\ell}^{*} \in Y^{*}$.

Let $c_{\ell}^{*} \in \mathfrak{C}$ for $\ell=4, \ldots$ be such that $c_{\ell}^{*}\left(Y^{*}\right)=a_{\ell}$ exists as \mathfrak{C} is symmetric. By assumption (a) we can choose $f \in \mathcal{F}_{[r]}$ such that

$$
\begin{align*}
f\left(a_{1}^{*}, \ldots, a_{r}^{*}\right) & =a_{2}^{*} \tag{1}\\
\bar{a} \in^{r} X \text { has repetitions } & \Rightarrow f(\bar{a})=a_{1} . \tag{2}
\end{align*}
$$

Let $c=f\left(c_{1}^{*}, c_{2}^{*}, \ldots, c_{r}^{*}\right)$, so $c \in \mathfrak{C}$ and

$$
\begin{gathered}
c\left(Y^{*}\right)=f\left(a_{1}^{*}, a_{2}^{*}, \ldots, a_{r}^{*}\right)=a_{2}^{*} \\
Y \in\binom{X}{k} \quad \& \quad c_{1}^{*}(Y)=c_{2}^{*}(Y) \\
\Rightarrow \quad c(Y)=f\left(c_{1}^{*}(Y), c_{2}^{*}(Y), \ldots\right)=f\left(c_{1}^{*}(Y), c_{1}^{*}(Y), \ldots\right)=c_{1}^{*}(Y), \\
c(Z)=f\left(c_{1}^{*}(Z), c_{2}^{*}(Z), c_{3}^{*}(Z), \ldots\right)=c_{1}^{*}(Z) \quad\left(\text { as }\left|\left\{c_{1}^{*}(Z), c_{2}^{*}(Z), c_{3}^{*}(Z)\right\}\right| \leqslant 2\right) .
\end{gathered}
$$

So c contradicts the choice of c_{2}^{*}.
Case 2. There are $c_{3}^{*}, c_{4}^{*} \in \mathfrak{C}$ such that $c_{3}^{*}\left(Y^{*}\right) \neq c_{4}^{*}\left(Y^{*}\right)$ and $\neq a_{1}^{*}$, a_{2}^{*}, but $c_{3}^{*}(Z)=c_{4}^{*}(Z)$ or at least $\left|\left\{c_{1}^{*}(Z), c_{2}^{*}(Z), c_{3}^{*}(Z), c_{4}^{*}(Z)\right\}\right|<4$.

Proof is similar.
Case 3. Neither Case 1 nor Case 2.
Let $\mathcal{P}=\left\{Z: Z \subseteq X,|Z|=k\right.$ and $\left.c_{1}^{*}(Z) \neq c_{2}^{*}(Z)\right\}$, so
$(*)_{1} \quad Y^{*} \in \mathcal{P}$ and $\mathcal{P} \neq\binom{ X}{k},\left\{Y^{*}\right\}$.
[Why? $\mathcal{P} \neq\left\{Y^{*}\right\}$ by Subfact 3.2. Also we can find $Z \in\binom{X}{k}$ such that $\left|Y^{*} \backslash Z\right|=2$, $c_{1}^{*}\left(Y^{*}\right) \notin Z$. Let $\pi \in \operatorname{Per}(X)$ be the identity on $Z, \pi\left(c_{1}^{*}\left(Y^{*}\right)\right) \neq c_{1}^{*}\left(Y^{*}\right), \pi\left(Y^{*}\right)=Y$. So conjugating c_{1}^{*} by π, we get c_{2}^{*} satisfying $n\left(c_{2}^{*}\right)>0$.]
$(*)_{2}$ If $Z \in \mathcal{P}, c \in \mathfrak{C}$ and $c(Z) \in\left\{c_{1}^{*}(Z), c_{2}^{*}(Z)\right\}$ then $c\left(Y^{*}\right) \in\left\{c_{1}^{*}\left(Y^{*}\right), c_{2}^{*}\left(Y^{*}\right)\right\}$.
[Why? By negating Case 1 except for $Z=Y^{*}$ which is trivial.]
Subcase $3 a$. For some Z, we have $Z \in \mathcal{P}$ and

$$
\left|Y^{*} \backslash Z\right| \geqslant 4 \quad \text { or just } \quad\left|Y^{*} \backslash Z \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}\right| \geqslant 2 \quad \text { and } \quad\left|Y^{*} \backslash Z\right| \geqslant 3 .
$$

Let $b_{1}, b_{2}, b_{3} \in Y^{*} \backslash Z$ be pairwise distinct. As \mathfrak{C} is symmetric, there are $d_{1}, d_{2}, d_{3} \in \mathfrak{C}$ such that $d_{\ell}\left(Y^{*}\right)=b_{\ell}$ for $\ell=1,2,3$. The number of possible truth values of $d_{\ell}(Z) \in Y^{*}$ is 2 ; so without loss of generality, $d_{1}(Z) \in Y^{*} \Leftrightarrow d_{2}(Z) \in Y^{*}$, and we can forget b_{3}, d_{3}.

So for some $\pi \in \operatorname{Per}(X)$ we have $\pi\left(Y^{*}\right)=Y^{*}, \pi(Z)=Z, \pi \upharpoonright\left(Y^{*} \backslash Z\right)=$ identity, hence $\pi\left(b_{\ell}\right)=b_{\ell}$ for $\ell=1,2$ and $\pi\left(d_{1}(Z)\right)=d_{2}(Z)$; note that $d_{\ell}(Z) \in Z$, so this is possible; so without loss of generality, $d_{1}(Z)=d_{2}(Z)$.

As $\left|Y^{*} \backslash Z \backslash\left\{a_{2}^{*}, a_{2}^{*}\right\}\right| \geqslant 2$, using another $\pi \in \operatorname{Per}(X)$ and without loss of generality, $\left\{b_{1}, b_{2}\right\} \cap\left\{a_{1}^{*}, a_{2}^{*}\right\}=\emptyset$. So d_{1}, d_{2} gives a contradiction by our assumption "not Case 2."

Remark. This is enough for non-polynomial $|\mathfrak{C}|$ as $\left|\left\{Y:\left|Y \backslash Z^{*}\right| \leqslant 3\right\}\right| \leqslant|Y|^{6}$.

Subcase 3b. Not Subcase 3a.
So $Z \in \mathcal{P} \backslash\left\{Y^{*}\right\} \Rightarrow\left|Z \backslash Y^{*}\right| \leqslant 3$, hence (recalling $\left|Z \backslash Y^{*}\right|=\left|Y^{*} \backslash Z\right|$) we have $Z \in$ $\mathcal{P} \backslash\left\{Y^{*}\right\} \Rightarrow\left|Z \cap Y^{*}\right| \geqslant k-3 \geqslant 1$. Now
\boxtimes_{0} for $Z \in \mathcal{P} \backslash\left\{Y^{*}\right\}$ there is $c^{*} \in \mathfrak{C}$ such that $c^{*}\left(Y^{*}\right) \neq c^{*}(Z)$.
[Why? Otherwise "by \mathfrak{C} is symmetric" for any $Z \in \mathcal{P} \backslash\left\{Y^{*}\right\}$ we have:

$$
\circledast c \in \mathfrak{C} \wedge Y^{\prime}, Y^{\prime \prime} \in\binom{X}{k} \&\left|Y^{\prime} \cap Y^{\prime \prime}\right|=\left|Z \cap Y^{*}\right| \Rightarrow c\left(Y^{\prime}\right)=c\left(Y^{\prime \prime}\right)
$$

Define a graph $\mathfrak{G}=\mathfrak{G}_{Z}$: the set of nodes $\binom{X}{k}$, the set of edges $\left\{\left(Y^{\prime}, Y^{\prime \prime}\right):\left|Y^{\prime} \cap Y^{\prime \prime}\right|=\right.$ $\left.\left|Y^{*} \cap Z\right|\right\}$. This graph is connected: if $\mathcal{P}_{1}, \mathcal{P}_{2}$ are nonempty disjoint set of nodes with union $\binom{X}{k}$, then there is a cross edge by Claim 3.5 below (why? clause (α) there is impossible by $(*)_{1}$ and clause (β) is impossible by the first sentence of Subcase 3b). This gives contradiction to \circledast. So \boxtimes_{0} holds.]

We claim:
\boxtimes_{1} for $Z \in \mathcal{P}$ and $d \in \mathfrak{C}$ we have $d\left(Y^{*}\right) \in Z \cap Y^{*} \Rightarrow d(Z)=d\left(Y^{*}\right)$.
[Why? Assume d, Z forms a counterexample; recall that $\left|Y^{*} \backslash Z\right| \leqslant 3$ and $k \geqslant 7$ (see Lemma 3.1(e)) so if $k \geqslant 8$ then $\left|Y^{*} \cap Z\right| \geqslant k-3 \geqslant 5$ so $Y^{*} \cap Z \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ has $\geqslant 3$ members; looking again at Subcase 3a, this always holds. Now for some $\pi_{1}, \pi_{2} \in \operatorname{Per}(X)$ we have that $\pi_{1}\left(Y^{*}\right)=Y^{*}=\pi_{2}\left(Y^{*}\right), \pi_{1}(Z)=Z=\pi_{2}(Z), \pi_{1}(d(Z))=\pi_{2}(d(Z)), \pi_{1}\left(d\left(Y^{*}\right)\right) \neq$ $\pi_{2}\left(d\left(Y^{*}\right)\right)$ are from $Z \cap Y^{*} \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$; recall we are assuming that $d\left(Y^{*}\right) \in Z \cap Y^{*}$ and $d(Z) \neq d\left(Y^{*}\right)$. Let d_{1}, d_{2} be gotten from d by conjugating by π_{1}, π_{2}, so we get Case 2 , contradiction to the assumption of Case 3.]
\boxtimes_{2} if $d \in \mathfrak{C}, Y \in\binom{X}{k}$ and $d(Y)=a$ then $\left(\forall Y^{\prime}\right)\left(a \in Y^{\prime} \in\binom{X}{k} \Rightarrow d\left(Y^{\prime}\right)=a\right)$.
[Why? By $\boxtimes_{1}+$ " \mathfrak{C} closed under permutations of X," we get: if $k^{*} \in N:=\left\{\left|Z \cap Y^{*}\right|\right.$: $\left.Z \in \mathcal{P} \backslash\left\{Y^{*}\right\}\right\}$ (which is not empty) then from $Z_{1}, Z_{2} \in\binom{X}{k},\left|Z_{1} \cap Z_{2}\right|=k^{*}, d \in \mathfrak{C}$ and $d\left(Z_{1}\right) \in Z_{2}$ it follows $d\left(Z_{1}\right)=d\left(Z_{2}\right)$. Clearly, if $k^{*} \in N$ then $k^{*}<k$ (by $Z \neq Y^{*}$) and $2 k-k^{*} \leqslant|X|$. As in the beginning of the proof of \boxtimes_{1}, we can choose such $k^{*}>0$. So for the given $d \in \mathfrak{C}$ and $a \in X$, Claim 3.5 below applied to $k^{*}-1, k-1, X \backslash\{a\},\left(\left\{Y^{\prime} \backslash\{a\}\right.\right.$: $a \in Y^{\prime}$ and $\left.d(Y)=a\right\},\left\{Y^{\prime} \backslash\{a\}: a \in Y^{\prime}\right.$ and $\left.d\left(Y^{\prime}\right) \neq a\right\}$). By our assumption, the first family is $\neq \emptyset$. Now clause (α) there gives the desired conclusion (for Y, a as in \boxtimes_{2}). As we know, $k-k^{*} \leqslant 3, k \geqslant 7$, clause (β) is impossible, so we are done.]

Now we get a contradiction: as said above in \boxtimes_{0}, for some $c^{*} \in \mathfrak{C}$ and $Z \in \mathcal{P} \backslash\left\{Y^{*}\right\}$ we have $c^{*}\left(Y^{*}\right) \neq c^{*}(Z)$, choose $Y \in\binom{X}{k}$ such that $\left\{c^{*}\left(Y^{*}\right), c^{*}(Z)\right\} \subseteq Y$. So by \boxtimes_{2} we have $d(Y)=d\left(Y^{*}\right)$ and also $d(Y)=d(Z)$, contradiction.
3.3. Claim. In Lemma 3.1 we can replace (a) by
(a) ${ }^{*}$ (i) \mathcal{F} is as in Fact 2.2 (or just is a clone on $X, r=3$) and
(ii) $g^{*} \in \mathcal{F}_{[3]}$ where (note $g^{*}=g_{3 ; 1,2}$)

$$
g^{*}\left(x_{1}, x_{2}, x_{3}\right)= \begin{cases}x_{2}, & x_{2}=x_{3} \\ x_{1}, & \text { otherwise }\end{cases}
$$

or just
(ii) ${ }^{-}$for any $\bar{a}^{*} \in{ }^{r} X$ without repetitions, for some $g=g_{\bar{a}^{*},} g\left(\bar{a}^{*}\right)=a_{1}^{*}$ and if $\bar{a} \in{ }^{r} X$ has repetitions then $g_{\bar{a}}(\bar{a})=g^{*}(\bar{a})$.

Proof. Let $c_{1}^{*} \in \mathfrak{C}, Y^{*} \in\binom{X}{k}, a_{1}^{*}=c_{1}^{*}\left(Y^{*}\right), a_{2}^{*} \in Y^{*} \backslash\left\{a_{1}^{*}\right\}$; we choose c_{2}^{*} as in the proof of Lemma 3.1.

Let $\mathcal{P}=\left\{Y: Y \in\binom{X}{k}, Y \neq Y^{*}, c_{1}^{*}(Y) \neq c_{2}^{*}(Y)\right\}$; we assume $\mathcal{P} \neq \emptyset$ and shall get a contradiction (this suffices).
$(*)_{1}$ There are no $Z \in \mathcal{P}$ and $d \in \mathfrak{C}$ such that

$$
d\left(Y^{*}\right)=c_{2}^{*}\left(Y^{*}\right), \quad d(Z) \neq c_{2}^{*}(Z)
$$

[Why? If so, let $c=g\left(c_{1}^{*}, c_{2}^{*}, d\right)$ where g is g^{*} or just any $g_{\left\langle c_{1}^{*}(Z), c_{2}^{*}(Z), d(Z)\right\rangle}$ (from (a)* $(\text { ii })^{-}$ of the assumption).

So $c \in \mathfrak{C}$ and
(A) $c\left(Y^{*}\right)=g\left(c_{1}^{*}\left(Y^{*}\right), c_{2}^{*}\left(Y^{*}\right), d\left(Y^{*}\right)\right)=g\left(c_{1}^{*}(Y), c_{2}^{*}\left(Y^{*}\right), c_{2}^{*}\left(Y^{*}\right)\right)=c_{2}^{*}\left(Y^{*}\right)$;
(B) $c(Z)=g\left(c_{1}^{*}(Z), c_{2}^{*}(Z), d(Z)\right)=c_{1}^{*}(Z)$ as $d(Z) \neq c_{2}^{*}(Z)$ (just check two cases: if $\left\langle c_{1}^{*}(Z), c_{2}^{*}(Z), d(Z)\right\rangle$ is without repetitions-by the choice of g, otherwise it is equal to $\left.g^{*}\left(c_{1}^{*}(Z), c_{2}^{*}(Z), c_{1}^{*}(Z)\right)=c_{1}^{*}(Z)\right)$;
(C) $Y \in\binom{Y}{k}, Y \neq Y^{*}, Y \notin \mathcal{P} \Rightarrow c_{2}^{*}(Y)=c_{1}^{*}(Y) \Rightarrow c(Y)=g\left(c_{1}^{*}(Y), c_{2}^{*}(Y), d(Y)\right)=$ $g^{*}\left(c_{1}^{*}(Y), c_{1}^{*}(Y), d(Y)\right)=c_{1}^{*}(Y)$.

So $(*)_{1}$ holds by c_{2}^{*} 's choice.]
$(*)_{2}$ if $\pi \in \operatorname{Per}(X), \pi\left(Y^{*}\right)=Y^{*}$ and $\pi\left(c_{2}^{*}\left(Y^{*}\right)\right)=c_{2}^{*}\left(Y^{*}\right)$ then
$(\alpha) Y \in \mathcal{P} \& \pi(Y)=Y \Rightarrow \pi\left(c_{2}^{*}(Y)\right)=c_{2}^{*}(Y)$,
(β) $Y \in \mathcal{P} \Rightarrow c_{2}^{*}(\pi(Y))=\pi\left(c_{2}^{*}(Y)\right)$.
[Why? Otherwise may "conjugate" c_{2}^{*} by π^{-1} getting $d \in \mathfrak{C}$ which gives a contradiction to $(*)_{1}$.]
$(*)_{3}$ let $Z \in \mathcal{P}$ then there are no $d_{1}, d_{2} \in \mathfrak{C}$ such that $d_{1}(Z)=d_{2}(Z) \neq c_{2}^{*}(Z)$ and $d_{1}\left(Y^{*}\right) \neq d_{2}\left(Y^{*}\right)$.
[Why? By $(*)_{2}, d_{\ell}\left(Y^{*}\right) \neq c_{2}^{*}\left(Y^{*}\right)$. Let $g=g_{\left\langle c_{2}^{*}\left(Y^{*}\right), d_{1}\left(Y^{*}\right), d_{2}\left(Y^{*}\right)\right\rangle}$ be as in the proof of $(*)_{1}$. If the conclusion fails, we let $c=g\left(c_{2}^{*}, d_{1}, d_{2}\right)$ so $c\left(Y^{*}\right)=g\left(c_{2}^{*}\left(Y^{*}\right), d_{1}\left(Y^{*}\right), d_{2}\left(Y^{*}\right)\right)=$
$c_{2}^{*}\left(Y^{*}\right)$ as $d_{1}\left(Y^{*}\right) \neq d_{2}\left(Y^{*}\right)$ plus choice of g and $c(Z)=g\left(c_{2}^{*}(Z), d_{1}(Z), d_{2}(Z)\right)=$ $d_{1}(Z) \neq c_{2}^{*}(Z)$ as $d_{1}(Z)=d_{2}(Z) \neq c_{2}^{*}(Z)$. So c contradicts $(*)_{1}$.]
$(*)_{4}$ for $Z \in \mathcal{P}$, there are no $d_{1}, d_{2} \in \mathfrak{C}$ such that $d_{1}(Z)=d_{2}(Z), d_{1}\left(Y^{*}\right) \neq d_{2}\left(Y^{*}\right)$ except possibly when $\left\{d_{\ell}(Z)\right\}=\left\{c_{2}^{*}(Z)\right\} \in\left\{Z \cap Y^{*}, Z \backslash Y^{*}\right\}$ for some $\ell=1,2$.
[Why? If $d_{1}(Z) \neq c_{2}^{*}(Z)$ use $(*)_{3}$, so assume $d_{1}(Z)=c_{2}^{*}(Z)$. By the "except possibly" there is $\pi \in \operatorname{Per}(X)$ satisfying $\pi\left(Y^{*}\right)=Y^{*}, \pi(Z)=Z$ and $\pi\left(c_{2}^{*}(Z)\right) \neq c_{2}^{*}(Z)$; now we use it to conjugate d_{1}, d_{2}, getting the situation in $(*)_{3}$; contradiction.]

Let

$$
K=\left\{(m): \text { for some } Z \in \mathcal{P} \text { we have }\left|Z \cap Y^{*}\right|=m\right\}
$$

we are assuming $K \neq \emptyset$. By $(*)_{4}$ plus symmetry, we know
$(*)_{5}$ if $(m) \in K, 1 \neq m<k-1$, and $c_{1}, c_{2} \in \mathfrak{C}$ and $Z_{1}, Z_{2} \in\binom{X}{k}$ satisfies $c_{1}\left(Z_{1}\right)=c_{2}\left(Z_{1}\right)$ and $\left|Z_{1} \cap Z_{2}\right|=m$, then $c_{1}\left(Z_{2}\right)=c_{2}\left(Z_{2}\right)$.
[Why? Let $Z \in \mathcal{P},\left|Z \cap Y^{*}\right|=m$, some $\pi \in \operatorname{Per}(X)$ maps Z_{1}, Z_{2} to Z, Y^{*}, respectively.]
Case 1. There is $(m) \in K$ such that $1 \neq m<k-1$, let $\mathcal{P}^{\prime}=\mathcal{P} \cup\left\{Y^{*}\right\}$.
For any $c_{1}, c_{2} \in \mathfrak{C}$ let $\mathcal{P}_{c_{1}, c_{2}}=\left\{Y \in\binom{Y}{k}: c_{1}(Y)=c_{2}(Y)\right\}$.
By $(*)_{5}$ we have $\left[Y_{1}, Y_{2} \in\binom{X}{k} \wedge\left|Y_{1} \cap Y_{2}\right|=m \Rightarrow\left[Y_{1} \in \mathcal{P}_{c_{1}, c_{2}} \equiv Y_{2} \in \mathcal{P}_{c_{1}, c_{2}}\right]\right]$.
Let $Y_{1} \in\binom{X}{k}, c_{1} \in \mathfrak{C}$, and let $a=c_{1}\left(Y_{1}\right), Y_{2} \in\binom{X}{k}$ be such that $\{a, b\}=Y_{1} \backslash Y_{2}$ for some $b \neq a$. By conjugation, there is $c_{2} \in \mathfrak{C}$ such that $c_{2}\left(Y_{1}\right)=a=c_{1}\left(Y_{1}\right)$ and $c_{1}\left(Y_{2}\right) \neq c_{2}\left(Y_{2}\right)$. So $Y_{1} \in \mathcal{P}_{c_{1}, c_{2}}$ and $Y_{2} \notin \mathcal{P}_{c_{1}, c_{2}}$. To $\mathcal{P}_{c_{1}, c_{2}}$ apply Claim 3.5 below; so necessarily $|X|=2 k$, $m=0$. But as $m=0,(m) \in K$, there is $Y \in \mathcal{P}$ satisfying $\left|Y \cap Y^{*}\right|=m=0$; hence $Y=$ $X \backslash Y^{*}$, and by $(*)_{2}(\alpha)$ we get a contradiction, i.e. we can find π contradicting it.

Case 2. $(m) \in K, m=k-1$ and not Case 1 (i.e., for no m^{\prime}).
Let $Z \in \mathcal{P}$ be such that $\left|Z \cap Y^{*}\right|=k-1$, so by $(*)_{4}$ and \mathfrak{C} being symmetric we have:
$(*)_{6}$ if $Z_{1}, Z_{2} \in\binom{X}{k},\left|Z_{1} \cap Z_{2}\right|=k-1, d_{1}, d_{2} \in \mathfrak{C}, d_{1}\left(Z_{1}\right)=d_{2}\left(Z_{1}\right), d_{1}\left(Z_{2}\right) \neq d_{2}\left(Z_{2}\right)$ then $\left\{d_{1}\left(Z_{1}\right)\right\}=Z_{1} \backslash Z_{2}$.

Also,
$(*)_{7}$ if $Z_{1}, Z_{2} \in\binom{X}{k},\left|Z_{1} \cap Z_{2}\right|=k-1$ then for no $d \in \mathfrak{C}$ do we have $d\left(Z_{1}\right) \neq d\left(Z_{2}\right)$ and $\left\{d\left(Z_{1}\right), d\left(Z_{2}\right)\right\} \subseteq Z_{1} \cap Z_{2}$.
[Why? Applying appropriate $\pi \in \operatorname{Per}(X)$, we get a contradiction to $(*)_{6}$.] Case 2 is finished by the following claim (and then we shall continue).
3.4. Claim. Assume (a)* of Claim 3.3 and (b), (c) of Lemma 3.1 and $(*)_{7}$ above (on \mathfrak{C}). Then \mathfrak{C} is full.

Proof of Claim 3.4. Now we state:
$(*)_{8}$ for every $Z_{1}, Z_{2} \in\binom{X}{k},\left|Z_{1} \cap Z_{2}\right|=k-1$ and $a \in Z_{1} \cap Z_{2}$ there is no $d \in \mathfrak{C}$ such that $d\left(Z_{1}\right)=d\left(Z_{2}\right)=a$.

Why? Otherwise we can find Z_{1}, Z_{2} such that $\left|Z_{1} \cap Z_{2}\right|=k-1, d\left(Z_{1}\right)=d\left(Z_{2}\right)=a$, hence for every $Z_{1}, Z_{2} \in\binom{X}{k}$ such that $\left|Z_{1} \cap Z_{2}\right|=k-1$ and $a \in Z_{1} \cap Z_{2}$ there is such d (using appropriate $\pi \in \operatorname{Per}(X)$).

Let $Z_{1}, Z_{2} \in\binom{X}{k}$ such that $\left|Z_{1} \cap Z_{2}\right|=k-1$. Let $x \neq y \in Z_{1} \cap Z_{2}$. Choose $d_{1} \in \mathfrak{C}$ such that $d_{1}\left(Z_{1}\right)=d_{1}\left(Z_{2}\right)=x$. Choose $d_{2} \in \mathfrak{C}$ such that $d_{2}\left(Z_{1}\right)=d_{2}\left(Z_{2}\right)=y$. Choose $d_{3} \in \mathfrak{C}$ such that $d_{3}\left(Z_{1}\right)=y, d_{3}\left(Z_{2}\right) \in Z_{2} \backslash Z_{1}$.

Why is it possible to choose d_{3} ? Using $\pi \in \operatorname{Per}(X)$, otherwise (using $(*)_{7}$) we have
\otimes if $Y_{1}, Y_{2} \in\binom{X}{k},\left|Y_{1} \cap Y_{2}\right|=k-1, d \in \mathfrak{C}, d\left(Y_{1}\right) \in Y_{1} \cap Y_{2}$ then $d\left(Y_{2}\right) \in Y_{1} \cap Y_{2}$; hence by $(*)_{7}, d\left(Y_{2}\right)=d\left(Y_{1}\right)$; so for $d \in \mathfrak{C}$ we have (by a chain of Y 's):

$$
Y_{1}, Y_{2} \in\binom{X}{k}, \quad d\left(Y_{1}\right) \in Y_{1} \cap Y_{2} \quad \Rightarrow \quad d\left(Y_{2}\right)=d\left(Y_{1}\right)
$$

Let $c \in \mathfrak{C}, Y_{1} \in\binom{X}{k}, x_{1}=c\left(Y_{1}\right)$. Let $x_{2} \in X \backslash Y_{1}, Y_{2}=Y_{1} \cup\left\{x_{2}\right\} \backslash\left\{x_{1}\right\}$; so if $c\left(Y_{2}\right) \in Y_{1} \cap Y_{2}$, we get a contradiction, therefore $d\left(Y_{2}\right)=x_{2}$.

Let $x_{3} \in Y_{1} \cap Y_{2}, Y_{3}=Y_{1} \cup Y_{2} \backslash\left\{x_{3}\right\} ;$ so $Y_{3} \in\binom{X}{k},\left|Y_{3} \cap Y_{1}\right|=k-1=\left|Y_{3} \cap Y_{2}\right|$ and clearly $c\left(Y_{1}\right), c\left(Y_{2}\right) \in Y_{3}$.

If $c\left(Y_{3}\right) \notin Y_{1}$ then Y_{3}, Y_{1} contradict \otimes. If $c\left(Y_{3}\right) \notin Y_{2}$ then Y_{3}, Y_{2} contradict \otimes. But $c\left(Y_{3}\right) \in Y_{3} \subseteq Y_{1} \cup Y_{2}$, contradiction. So d_{3} exists.

We shall use $d_{1}, d_{2}, d_{3}, Z_{1}, Z_{2}$ to get a contradiction (thus proving $\left.(*)_{8}\right)$. Let $\{z\}=Z_{2} \backslash$ Z_{1}; so $\langle x, y, z\rangle$ is without repetitions. Let $d=g\left(d_{1}, d_{2}, d_{3}\right)$; so with $g=g^{*}$ or $g=g_{\langle x, y, z\rangle}$,

$$
\begin{gathered}
d\left(Z_{1}\right)=g\left(d_{1}\left(Z_{1}\right), d_{2}\left(Z_{1}\right), d_{3}\left(Z_{1}\right)\right)=g(x, y, y)=y \quad(\text { see Definition of } g) \\
d\left(Z_{2}\right)=g\left(d_{1}\left(Z_{2}\right), d_{2}\left(Z_{2}\right), d_{3}\left(Z_{2}\right)\right)=g(x, y, z)=x
\end{gathered}
$$

by Definition of g as $y \neq z$ because $y \in Z_{1}, z \notin Z_{1}$.
So Z_{1}, Z_{2}, d contradicts $(*)_{7}$ and we have proved $(*)_{8}$.
$(*)_{9}$ if $\left|Z_{1} \cap Z_{2}\right|=k-1, Z_{1}, Z_{2} \in\binom{X}{k}, d \in \mathfrak{C}, d\left(Z_{1}\right) \in Z_{1} \cap Z_{2}$, then $d\left(Z_{2}\right) \in Z_{2} \backslash Z_{1}$.
[Why? By $(*)_{7}, d\left(Z_{2}\right) \notin Z_{1} \cap Z_{2} \backslash\left\{d\left(Z_{1}\right)\right\}$ and by $(*)_{8}, d\left(Z_{2}\right) \notin\left\{d\left(Z_{1}\right)\right\}$.]
Let $c \in \mathfrak{C}$ and $x_{1}, x_{2} \in X$ be distinct and $Y \subseteq X \backslash\left\{x_{1}, x_{2}\right\},|Y|=k$. Let $x_{3}=c(Y)$, $x_{4} \in Y \backslash\left\{x_{3}\right\}$ and $x_{5} \in Y \backslash\left\{x_{3}, x_{4}\right\}$.

So $Y_{1}=Y \cup\left\{x_{1}\right\} \backslash\left\{x_{4}\right\}$ belongs to $\binom{X}{k}$, satisfies $\left|Y_{1} \cap Y\right|=k-1$ and $c(Y)=x_{3} \in Y_{1} \cap Y$; hence by $(*)_{9}$ we have $c\left(Y_{1}\right)=x_{1}$.

Let $Y_{2}=Y \cup\left\{x_{2}\right\} \backslash\left\{x_{4}\right\}$, so similarly $c\left(Y_{2}\right)=x_{2}$. Let $Y_{3}=Y \cup\left\{x_{1}, x_{2}\right\} \backslash\left\{x_{4}, x_{5}\right\}$, so $Y_{3} \in\binom{X}{k}, Y_{3} \backslash Y_{1}=\left\{x_{2}\right\}$ and $Y_{3} \backslash Y_{2}=\left\{x_{1}\right\}$. The proof now splits into three cases:

- If $c\left(Y_{3}\right) \in Y$, then $c\left(Y_{3}\right) \in Y_{3} \cap Y=Y \backslash\left\{x_{4}, x_{5}\right\} \subseteq Y_{1}$, hence $c\left(Y_{3}\right) \in Y_{3} \cap Y_{1}$. Recall that $c\left(Y_{1}\right)=x_{1} \in Y_{3} \cap Y_{1}$ and $c\left(Y_{3}\right) \neq x_{1}$ as $x_{1} \notin Y$, so $\left(Y_{3}, Y_{1}, c\right)$ contradicts $(*)_{7}$.
- If $c\left(Y_{3}\right)=x_{1}$, then recalling $c\left(Y_{1}\right)=x_{1}$ clearly c, Y_{3}, Y_{1} contradicts $(*)_{8}$.
- If $c\left(Y_{3}\right)=x_{2}$, then recalling $c\left(Y_{2}\right)=x_{2}$ clearly c, Y_{3}, Y_{2} contradicts $(*)_{8}$.

Together contradiction, so we have finished proving Claim 3.4 hence Case 2 in the proof of Claim 3.3.

Continuation of the proof of Claim 3.3.
Case 3. Neither Case 1 nor Case 2. As $\mathcal{P} \neq \emptyset$ (otherwise we are done), clearly $K=\{(1)\}$. So easily follows (clearly $2 k-1 \leqslant|X|$ as $(1) \in K$):
\boxtimes_{1} if $\left|Y_{1} \cap Y_{2}\right|=1, Y_{1} \in\binom{X}{k}, Y_{2} \in\binom{X}{k}$ and $d \in \mathfrak{C}$ then $d\left(Y_{1}\right) \in Y_{1} \cap Y_{2}$ or $d\left(Y_{2}\right) \in Y_{1} \cap Y_{2}$.
[Why? Otherwise by conjugation we can get a contradiction to $(*)_{4}$ above.]
$\boxtimes_{2} Y_{1}, Y_{2} \in\binom{X}{k},\left|Y_{1} \cap Y_{2}\right|=k-1, d \in \mathfrak{C}, d\left(Y_{1}\right), d\left(Y_{2}\right) \in Y_{1} \cap Y_{2}$ is impossible.
[Why? Assume this fails. Let $x \in Y_{1} \backslash Y_{2}$ and $y \in Y_{2} \backslash Y_{1}$; we can find $Y_{3} \in\binom{X}{k}$ such that $Y_{3} \cap\left(Y_{1} \cup Y_{2}\right)=\{x, y\}$, so $Y_{3} \cap Y_{1}=\{x\}, Y_{3} \cap Y_{2}=\{y\}$; this is possible as $|X| \geqslant 2 k-1$. Apply \boxtimes_{1} to Y_{3}, Y_{1}, d and as $d\left(Y_{1}\right) \neq x$ (as $\left.d\left(Y_{1}\right) \in Y_{2}\right)$, we have $c\left(Y_{3}\right)=x$.

Apply \boxtimes_{1} to Y_{3}, Y_{2}, d and as $d\left(Y_{2}\right) \neq y$ (as $\left.d\left(Y_{2}\right) \in Y_{1}\right)$, we get $d\left(Y_{3}\right)=y$. But $x \neq y$, contradiction.]

By \boxtimes_{2} we can use the proof of Case 2 from $(*)_{7}$, i.e. Claim 3.4 to get contradiction.

3.5. Claim. Assume:

(a) $k^{*}<k<|X|<\aleph_{0}$;
(b) $\mathcal{P} \subseteq\binom{X}{k}$;
(c) if $Z, Y \in\binom{X}{k},|Z \cap Y|=k^{*}$ then $Z \in \mathcal{P} \Leftrightarrow Y \in \mathcal{P}$;
(d) $2 k-k^{*} \leqslant|X|$ (this is equivalent to clause (c) being non-empty).

Then

(α) $\mathcal{P}=\emptyset \vee \mathcal{P}=\binom{X}{k}$ or
(β) $|X|=2 k, k^{*}=0$ and so $E=E_{X, k}:=\left\{\left(Y_{1}, Y_{2}\right): Y_{1} \in\binom{X}{k}, Y_{2} \in\binom{X}{k},\left(Y_{1} \cup Y_{2}=X\right)\right\}$ is an equivalence relation on X, with each equivalence class a doubleton and \mathcal{P} a union of a set of E-equivalence classes.

Proof. If not clause (α), then for some $Z_{1} \in \mathcal{P}, Z_{2} \in\binom{X}{k} \backslash \mathcal{P}$ we have $\left|Z_{1} \backslash Z_{2}\right|=1$. Let $Z_{1} \backslash Z_{2}=\left\{a^{*}\right\}, Z_{2} \backslash Z_{1}=\left\{b^{*}\right\}$.

Case 1. $2 k-k^{*}<|X|$.

We can find a set $Y^{+} \subseteq X \backslash\left(Z_{1} \cup Z_{1}\right)$ with $k-k^{*}$ members (use $\left|Z_{1} \cup Z_{2}\right|=k+1$, $\left.\left|X \backslash\left(Z_{1} \cup Z_{2}\right)\right|=|X|-(k+1) \geqslant\left(2 k-k^{*}+1\right)-(k+1)=k-k^{*}\right)$.

Let $Y^{-} \subseteq Z_{1} \cap Z_{2}$ be such that $\left|Y^{-}\right|=k^{*}$. Let $Z=Y^{-} \cup Y^{+}$; so $Z \in\binom{X}{k},\left|Z \cap Z_{1}\right|=$ $\left|Y^{-}\right|=k^{*},\left|Z \cap Z_{2}\right|=\left|Y^{-}\right|=k^{*}$; hence $Z_{1} \in \mathcal{P} \Leftrightarrow Z \in \mathcal{P} \Leftrightarrow Z_{2} \in \mathcal{P}$, contradiction.

Case 2. $2 k-k^{*}=|X|$ and $k^{*}>0$.
Let $Y^{+}=X \backslash\left(Z_{1} \cup Z_{2}\right)$, so

$$
\left|Y^{+}\right|=\left(2 k-k^{*}\right)-(k+1)=k-k^{*}-1 .
$$

Let $Y^{-} \subseteq Z_{1} \cap Z_{2}$ be such that $\left|Y^{-}\right|=k^{*}-1$ (OK, as $\left.\left|Z_{1} \cap Z_{2}\right|=k-1 \geqslant k^{*}\right)$.
Let $Z=Y^{+} \cup Y^{-} \cup\left\{a^{*}, b^{*}\right\}$. So $|Z|=\left(k-k^{*}-1\right)+\left(k^{*}-1\right)+2=k,\left|Z_{1} \cap Z\right|=$ $\left|Y^{-} \cup\left\{a^{*}\right\}\right|=k^{*},\left|Z_{2} \cap Z\right|=\left|Y^{-} \cup\left\{b^{*}\right\}\right|=k^{*}$ and as in Case 1 we are done.
3.6. Claim. Assume $k \geqslant 7,|X|-k \geqslant 5$. If $r(\mathcal{F})<\infty$ then Lemma 3.1 or Claim 3.3 apply, so \mathfrak{C} is full.

Remark. Recall $r(\mathcal{F})=\inf \left\{r:\right.$ some $f \in \mathcal{F}_{[r]}$ is not a monarchy $\}$, see Definition 2.4.
Proof. Case 1. $r(\mathcal{F}) \geqslant 4$. Let $f \in \mathcal{F}_{[r]}$ exemplify it, so by Claim 2.5 we have $k \geqslant r$ and for some $\ell(*)$:

$$
\bar{a} \in{ }^{r} X \text { with repetitions } \Rightarrow f(\bar{a})=a_{\ell(*)} .
$$

As f is not a monarchy for some $k(*) \in\{1, \ldots, r\}$ and $\bar{a}^{*} \in{ }^{r} X$, we have $f\left(\bar{a}^{*}\right)=a_{k(*)} \neq$ $a_{\ell(*)}$. Without loss of generality, $\ell(*)=1, k(*)=2$ and Lemma 3.1 applies.

Case 2. $r(\mathcal{F})=3$.
Let $f^{*} \in \mathcal{F}_{[r]}$ exemplify it. Now apply Lemma 2.11; if (a) there holds, apply Lemma 3.1, if (b) there holds, apply Claim 3.3.

Case 3. $r(\mathcal{F})=2$.
By Claim 4.7 below, clause (a) of Lemma 3.1 holds, so we are done.

4. The case $r=2$

This is revisited in Section 6 (non-simple case), and we can make presentation simpler (e.g. Fact 6.4).
4.1. Hypothesis. As in Hypothesis 2.1 and
(a) $r(\mathcal{F})=2$,
(b) $|X| \geqslant 5$ (have not looked at 4).
4.2. Claim. Choose $\bar{a}^{*}=\left\langle a_{1}^{*}, a_{2}^{*}\right\rangle, a_{1}^{*} \neq a_{2}^{*} \in X$.
4.3. Claim. For some $f \in \mathcal{F}_{[2]}$ and $\bar{b} \in{ }^{2} X$, we have
(a) $f\left(\bar{a}^{*}\right)=a_{2}^{*}$;
(b) $\bar{a}^{*} \wedge \bar{b}$ has no repetition;
(c) $f(\bar{b})=b_{1} \neq b_{2}$.

Proof. There is $f \in \mathcal{F}_{[2]}$ non-monarchical, so for some $\bar{b}, \bar{c} \in{ }^{2} X$,

$$
f(\bar{b})=b_{1} \neq b_{2}, \quad f(\bar{c})=c_{2} \neq c_{1} .
$$

If $\operatorname{Rang}(\bar{b}) \cap \operatorname{Rang}(\bar{c})=\emptyset$, we can conjugate \bar{c} to \bar{a}^{*}, f to f^{\prime}, which is as required. If not, find $\bar{d} \in{ }^{2} X, d_{1} \neq d_{2}$ satisfying $\operatorname{Rang}(\bar{d}) \cap(\operatorname{Rang}(\bar{a}) \cup \operatorname{Rang}(\bar{b}))=\emptyset$, so \bar{d}, \bar{b} or \bar{d}, \bar{c} are like \bar{c}, \bar{b} or \bar{b}, \bar{c}, respectively.
4.4. Claim. There is $f^{*} \in \mathcal{F}_{[2]}$ such that
(a) $f^{*}\left(\bar{a}^{*}\right)=\bar{a}_{2}^{*}$;
(b) $b_{1} \neq b_{2} \in X,\left\{b_{1}, b_{2}\right\} \subseteq\left\{a_{1}^{*}, a_{2}^{*}\right\} \Rightarrow f\left(b_{1}, b_{2}\right)=b_{2}$;
(c) $b_{1} \neq b_{2},\left\{b_{1}, b_{2}\right\} \nsubseteq\left\{a_{1}^{*}, a_{2}^{*}\right\} \Rightarrow f\left(b_{1}, b_{2}\right)=b_{1}$.

Proof. Choose f such that
(i) $f \in \mathcal{F}_{[2]}$;
(ii) $f\left(\bar{a}^{*}\right)=a_{2}^{*}$;
(iii) $n(f)=\left|\left\{\bar{b} \in{ }^{2} X: f(\bar{b})=b_{1}\right\}\right|$ is maximal under (i) + (ii).

Let $\mathcal{P}=\left\{\bar{b} \in{ }^{2} X: f(\bar{b})=b_{1}\right\}$. In each case we can assume that the previous cases do not hold for any f satisfying (i)-(iii).

Case 1. There is $\bar{b} \in^{2}\left(X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}\right)$ such that $f(\bar{b})=b_{2} \neq b_{1}$.
There is $g \in \mathcal{F}_{[2]}, g\left(\bar{a}^{*}\right)=a_{2}^{*}, g(\bar{b})=b_{1}$ (by Claim 4.3 plus conjugation). Let $f^{+}(x, y)=f(x, g(x, y))$. So
(A) $f^{+}\left(\bar{a}^{*}\right)=f\left(a_{1}^{*}, g\left(\bar{a}^{*}\right)\right)=f\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}$;
(B) $f^{+}(\bar{b})=f\left(b_{1}, g(\bar{b})\right)=f\left(b_{1}, b_{1}\right)=b_{1}$;
(C) if $\bar{c} \in \mathcal{P}$ then $f(\bar{c})=c_{1}$.
[Why does (C) hold? If $g(\bar{c})=c_{1}$ then $f^{+}(\bar{c})=f\left(c_{1}, g(\bar{c})\right)=f\left(c_{1}, c_{1}\right)=c_{1}$. If $g(\bar{c})=c_{2}$ then $f^{+}(\bar{c})=f\left(c_{1}, g(\bar{c})\right)=f\left(c_{1}, c_{2}\right)=f(\bar{c})=c_{1}$ (the last equality as $\bar{c} \in \mathcal{P}$).]

By the choice of f, the existence of f^{+}is impossible, so
(*) $\bar{b} \in{ }^{2}\left(X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}\right) \Rightarrow f(\bar{b})=b_{1} \Rightarrow \bar{b} \in \mathcal{P}$ (if $b_{1}=b_{2}$-trivial).

Case 2. There are $b_{1} \neq b_{2}$ such that $\left\{b_{1}, b_{2}\right\} \nsubseteq\left\{a_{1}^{*}, a_{2}^{*}\right\}, f\left(b_{1}, b_{2}\right)=b_{2}$ and $b_{1} \neq a_{1}^{*} \wedge b_{2} \neq$ a_{2}^{*}.

There is $g \in \mathcal{F}_{[2]}$ such that $g\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}, g\left(b_{1}, b_{2}\right)=b_{1}$.
[Why? There is $\pi \in \operatorname{Per}(X), \pi\left(b_{1}\right)=a_{1}^{*}, \pi\left(b_{2}\right)=a_{2}^{*}, \pi^{-1}\left(\left\{b_{1}, b_{2}\right\}\right)$ is disjoint to $\left\{a_{1}^{*}, a_{2}^{*}\right\}$. Conjugate f by π^{-1}, getting g, so $g\left(a_{1}^{*}, a_{2}^{*}\right)=g\left(\pi b_{1}, \pi b_{2}\right)=\pi\left(f\left(b_{1}, b_{2}\right)\right)=$ $\pi\left(b_{2}\right)=a_{2}^{*}$; let c_{1}, c_{2} be such that $\pi\left(c_{1}\right)=b_{1}, \pi\left(c_{2}\right)=b_{2}$, so

$$
g\left(b_{1}, b_{2}\right)=g\left(\pi c_{1}, \pi c_{2}\right)=\pi\left(f\left(c_{1}, c_{2}\right)\right)=\pi\left(c_{1}\right)=b_{1}
$$

(third equality as $c_{1}, c_{2} \notin\left\{a_{2}^{*}, a_{2}^{*}\right\}$ by not Case 1). So there is such $g \in \mathcal{F}$.]
Let $f^{+}(x, y)=f(x, g(x, y))$; as before, f^{+}contradicts the choice of f.
Case 3. For some $b^{\prime} \neq b^{\prime \prime} \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ we have $f\left(a_{1}^{*}, b^{\prime}\right)=b^{\prime} \wedge f\left(a_{1}^{*}, b^{\prime \prime}\right)=a_{1}^{*}$.
As in Case 2, using $\pi \in \operatorname{Per}(X)$ such that $\pi\left(a_{1}^{*}\right)=a_{1}^{*}, \pi\left(a_{2}^{*}\right)=a_{2}^{*}, \pi\left(b^{\prime}\right)=b^{\prime \prime}$.
Case 4. For some $b^{\prime} \neq b^{\prime \prime} \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ we have $f\left(b^{\prime}, a_{2}^{*}\right)=a_{2}^{*} \wedge f\left(b^{\prime \prime}, a_{2}^{*}\right)=b^{\prime \prime}$.
As in Case 3, recall that without loss of generality, Cases 1-4 fail.
Case 5. For some $b^{\prime}, b^{\prime \prime} \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$, we have $f\left(a_{1}^{*}, b^{\prime}\right)=b^{\prime} \wedge f\left(b^{\prime \prime}, a_{2}^{*}\right)=a_{2}^{*}$.
As Cases 1-4 fail, this holds for every such $b^{\prime}, b^{\prime \prime}$; so without loss of generality, $b^{\prime} \neq b^{\prime \prime}$ and prove as in Case 2 conjugating by $\pi \in \operatorname{Per}(X)$ such that $\pi\left(b^{\prime}\right)=a_{2}^{*}, \pi\left(a_{1}^{*}\right)=a_{1}^{*}$ and $\pi\left(b^{\prime \prime}\right)=b^{\prime \prime}$, getting g which satisfies $g\left(a_{1}^{*}, a_{2}^{*}\right)=g\left(\pi a_{1}^{*}, \pi b^{\prime}\right)=\pi\left(f\left(a_{1}^{*}, b^{\prime}\right)\right)=\pi\left(b^{\prime}\right)=$ a_{2}^{*} and $g\left(b^{\prime \prime}, a_{2}^{*}\right)=g\left(\pi b^{\prime \prime}, \pi b^{\prime}\right)=\pi\left(f\left(b^{\prime \prime}, b^{\prime}\right)\right)=\pi\left(b^{\prime \prime}\right)=b^{\prime \prime}$, whereas $f\left(b^{\prime}, a_{2}^{*}\right)=a_{2}^{*}$; so $f^{+}(x, y)=f(x, g(x, y))$ contradicts the choice of f.

Without loss of generality, Cases 1-5 fail.
Case 6. For some $b \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$ we have $f\left(a_{1}^{*}, b\right)=b$ and $f\left(a_{2}^{*}, b\right)=a_{2}^{*}$ follows.
Subcase 6A. $f\left(a_{2}^{*}, a_{1}^{*}\right)=a_{1}^{*}$. Let $\pi \in \operatorname{Per}(X), \pi\left(a_{1}^{*}\right)=a_{2}^{*}, \pi\left(a_{2}^{*}\right)=a_{1}^{*}($ and $\pi(a)=a$ for $\left.a \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}\right)$; then $g=\pi f \pi^{-1}$ satisfies $g\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}, g\left(a_{2}^{*}, a_{1}^{*}\right)=a_{1}^{*}$ but for $b \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}, g\left(a_{1}^{*}, b\right)=g\left(\pi a_{2}^{*}, \pi b\right)=\pi\left(f\left(a_{2}^{*}, b\right)\right)=\pi a_{2}^{*}=a_{1}^{*}$, easy contradiction (or as below)).

Subcase 6B. So as Cases 1-5 and 6A fail, we have

$$
\circledast\left(\forall b_{1}, b_{2} \in X\right)\left[f\left(b_{1}, b_{2}\right) \neq b_{1} \Leftrightarrow\left(b_{1}=a_{1}^{*} \& b_{2} \neq a_{1}^{*}\right)\right] .
$$

Hence for every $c \in X$ there is $f_{c} \in \mathcal{F}_{[2]}$ such that

$$
\circledast f_{c}\left(\forall b_{1}, b_{2} \in X\right)\left[f_{c}\left(b_{1}, b_{2}\right) \neq b_{1} \Leftrightarrow\left(b_{1}=c \& b_{2} \neq c\right)\right] .
$$

Let $a \neq c$ be from X and define $f_{a, c} \in \mathcal{F}_{[2]}$ by $f_{a, c}(x, y)=f_{a}\left(x, f_{c}(y, x)\right)$. Assume $b_{1} \neq b_{2}$, so $f_{a, c}^{*}\left(b_{1}, b_{2}\right)=b_{2} \neq b_{1}$ implies $f_{c}\left(b_{2}, b_{1}\right) \in\left\{b_{1}, b_{2}\right\}, f_{a, c}\left(b_{1}, b_{2}\right)=$ $f_{a}\left(b_{1}, f_{c}\left(b_{2}, b_{1}\right)\right)$ and so (by the choice of $\left.f_{a}\right) b_{1}=a$ and $f_{c}\left(b_{2}, b_{1}\right)=b_{2}$, which (by the choice of f_{c}) implies ($b_{1}=a$ and) $b_{2} \neq c$. But $b_{1}=a, b_{2} \neq c$ and $b_{1} \neq b_{2}$ imply
$f_{c}\left(b_{2}, b_{1}\right)=b_{2}, f_{a, c}\left(b_{1}, b_{2}\right)=f_{a}\left(b_{1}, b_{2}\right)=b_{2}$. So $f_{a, c}\left(b_{1}, b_{2}\right)=b_{2} \neq b_{1}$ iff $b_{1}=a$, $b_{2} \neq c$ and $b_{2} \neq b_{1}$.

Let $a=a_{1}^{*}$. Let $\left\langle c_{i}: i<i^{*}=\right| X|-2\rangle$ list $X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$. We define by induction on $i \leqslant i^{*}$ a function $f_{i} \in \mathcal{F}_{[2]}$ by

$$
f_{0}(x, y)=y, \quad f_{i+1}(x, y)=f_{i}\left(x, f_{a, c_{i}}(x, y)\right)
$$

and let $f^{\prime}=f_{i^{*}}$. Now by induction on i, we can show that $f_{i}\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}$ and $f^{\prime}\left(b_{1}, b_{2}\right)=$ $b_{2} \neq b_{1}$ imply $\left(\forall i<i^{*}\right)\left(f_{a, c_{i}}\left(b_{1}, b_{2}\right)=b_{2} \neq b_{1}\right)$.

So $f^{\prime} \in \mathcal{F}_{[2]}, f^{\prime}\left(a_{1}^{*}, a_{2}^{*}\right)=a_{2}^{*}$ and $b_{1} \neq b_{2} \wedge\left(b_{1}, b_{2}\right) \neq\left(a_{1}^{*}, a_{2}^{*}\right)$ imply $f^{\prime}\left(b_{1}, b_{2}\right)=b_{1}$. By the choice of f (minimal $n(f)$), we get a contradiction.

Case 7. For some $b \in X \backslash\left\{a_{1}^{*}, a_{2}^{*}\right\}$, we have $f\left(b, a_{2}^{*}\right)=a_{2}^{*}$ and $f\left(a_{1}^{*}, b\right)=a_{2}^{*}$ follows.
Similar to Case 6.
Subcase 7A. $f\left(a_{2}^{*}, a_{1}^{*}\right)=a_{1}^{*}$. Similar to 6A.
Subcase $7 B$. That is, as there, without loss of generality, for every $a \in X$ and for some $f_{a} \in \mathcal{F}_{[2]}$, we have
$\circledast\left(\forall b_{1}, b_{2} \in X\right)\left[\left(f_{a}\left(b_{1}, b_{2}\right)=b_{2} \neq b_{1} \Leftrightarrow b_{2}=a \neq b_{1}\right)\right]$.
Let $a \neq c \in X$ and $f_{a, c}(x, y)=f_{a}\left(f_{c}(y, x), x\right)$. So for $b_{1} \neq b_{2} \in X$,
(i) $f_{a, c}\left(b_{1}, b_{2}\right)=b_{2}\left(\neq b_{1}\right)$ implies $f_{a}\left(f_{c}\left(b_{2}, b_{1}\right), b_{1}\right)=b_{2}$, which implies $b_{2}=c$ and $f_{c}\left(b_{2}, b_{1}\right)=b_{2}$, which implies $b_{2}=c$ and $b_{1} \neq a$.

We continue as there.

Case 8. Not Cases 1-7; not the conclusion.
So for $\bar{a}=\left(a_{1}, a_{2}\right)={ }^{2} X, a_{1} \neq a_{2}$ there is $f_{\bar{a}} \in \mathcal{F}$ such that

$$
\begin{gathered}
\left\{b_{1}, b_{2}\right\} \nsubseteq\left\{a_{1}, a_{2}\right\} \quad \Rightarrow \quad f_{\bar{a}}\left(b_{1}, b_{2}\right)=b_{1}, \\
f_{\bar{a}}\left(a_{1}, a_{2}\right)=a_{2}
\end{gathered}
$$

and (as "not the conclusion")

$$
f_{\bar{a}}\left(a_{2}, a_{1}\right)=a_{2} .
$$

Let $\left.\left.\left\langle\bar{b}^{i}: i<i^{*}=\right| X\right|^{2}-|X|-2\right\rangle$ list the pairs $\bar{b}=\left(b_{1}, b_{2}\right) \in{ }^{2} X$ such that $b_{1} \neq b_{2}$, $\left\{b_{1}, b_{2}\right\} \neq\left\{a_{1}^{*}, a_{2}^{*}\right\}$.

Define $g_{i} \in \mathcal{F}_{[2]}$ by induction on i : let $g_{0}(x, y)=x$ and $g_{i+1}(x, y)=f_{\bar{b}^{i}}\left(g_{i}(x, y), y\right)$. We can prove by induction on $i \leqslant i^{*}$ that $g_{i}\left(a_{1}^{*}, a_{2}^{*}\right)=a_{1}^{*}, g_{i}\left(a_{2}^{*}, a_{1}^{*}\right)=a_{2}^{*}$, and for $j<i$, $g_{i}\left(\bar{b}^{j}\right)=b_{2}^{j}$. So $g_{i^{*}}$ is as required interchanging 1 and 2 , that is $g(x, y):=g_{i^{*}}(y, x)$ is as required.
4.5. Definition/choice. For $b \neq c \in X$, let $f_{b, c}$ be like f in Claim 4.4 with (b, c) instead of $\left(a_{1}^{*}, a_{2}^{*}\right)$, so $f_{c, b}(c, b)$ is $b, f(b, c)=c$ and $f\left(x_{1}, x_{2}\right)=x_{1}$ if $\left\{x_{1}, x_{2}\right\} \nsubseteq\{b, c\}$.
4.6. Claim. Let $a_{1}, a_{2}, a_{3} \in X$ be pairwise distinct. Then for some $g \in \mathcal{F}_{[3]}$:
(i) $\bar{b} \in{ }^{3} X$ with repetitions $\Rightarrow g(\bar{b})=b_{1}$,
(ii) $g\left(a_{1}, a_{2}, a_{3}\right)=a_{2}$.

Proof. Without loss of generality, we replace a_{2} by a_{3} in (ii). Let h_{ℓ} for $\ell=1,2,3,4$ be the three-place functions

$$
\begin{gathered}
h_{1}(\bar{x})=f_{a_{1}, a_{2}}\left(x_{1}, x_{2}\right), \quad h_{2}(\bar{x})=f_{a_{1}, a_{3}}\left(x_{1}, x_{3}\right), \\
h_{3}(\bar{x})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{x}), h_{2},(\bar{x})\right),
\end{gathered} h_{4}(\bar{x})=f_{a_{1}, a_{3}}\left(x, h_{3}(\bar{x})\right) .
$$

Clearly $h_{1}, h_{2}, h_{3}, h_{4} \in \mathcal{F}_{[3]}$. We shall show that h_{4} is as required.
To prove clause (ii), note that for $\bar{a}=\left(a_{1}, a_{2}, a_{3}\right)$ we have $h_{1}(\bar{a})=a_{2}, h_{2}(\bar{a})=a_{3}$, $h_{3}(\bar{a})=f_{a_{2}, a_{3}}\left(a_{2}, a_{3}\right)=a_{3}$ and $h_{4}(\bar{a})=f_{a_{1}, a_{3}}\left(a_{1}, a_{3}\right)=a_{3}$, as agreed above. To prove clause (i), let $\bar{b} \in^{3} X$ be such that $\bar{b} \neq \bar{a}$ and we show that by $(\bar{b})=b_{1}$.

Case 1. $b_{1} \neq a_{1}, a_{3}$, so

$$
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, h_{3}(\bar{b})\right)=b_{1} \quad \text { as } b_{1} \neq a_{1}, a_{3} .
$$

Case 2. $b_{1}=a_{1}, b_{2} \neq a_{2}$, hence $b_{1} \neq a_{2}, a_{3}$, so

$$
\begin{gathered}
h_{1}(\bar{b})=f_{a_{1}, a_{2}}\left(b_{1}, b_{2}\right)=f_{a_{1}, a_{2}}\left(a_{1}, b_{2}\right)=a_{1}=b_{1}, \quad \text { as } b_{2} \neq a_{2} \text { (if } b_{2}=a_{1} \text { also OK), } \\
h_{3}(\bar{b})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{b}), h_{2}(\bar{b})\right)=f_{a_{2}, a_{3}}\left(b_{1}, h_{2}(\bar{b})\right)=b_{1} \quad \text { as } b_{1} \neq a_{2}, a_{3}, \\
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, h_{3}(\bar{b})\right)=h_{a_{1}, a_{3}}\left(b_{1}, b_{1}\right)=b_{1} .
\end{gathered}
$$

Case 3. $b_{1}=a_{1}, b_{2}=a_{2}, b_{3} \neq a_{3}$, so

$$
\begin{gathered}
h_{1}(\bar{b})=f_{a_{1}, a_{2}}\left(b_{1}, b_{2}\right)=f_{a_{1}, a_{2}}\left(a_{1}, a_{2}\right)=a_{2}=b_{2}, \\
h_{2}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, b_{3}\right)=f_{a_{1}, a_{3}}\left(a_{1}, b_{3}\right)=a_{1}=b_{1} \quad \text { as } b_{3} \neq a_{3} \text { (if } b_{3}=a_{1}, \text { fine), } \\
h_{3}(\bar{b})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{b}), h_{2}(\bar{b})\right)=h_{a_{2}, a_{3}}\left(b_{2}, b_{1}\right)=b_{2} \quad \text { as } b_{1}=a_{1} \neq a_{2}, a_{3}, \\
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, h_{3}(\bar{b})\right)=f_{a_{1}, a_{3}}\left(b_{1}, b_{2}\right)=b_{1} \quad \text { as } b_{2}=a_{2} \neq a_{1}, a_{3} .
\end{gathered}
$$

Case 4. $b_{1}=a_{3}, b_{3} \neq a_{1}$. So

$$
h_{1}(\bar{b})=f_{a_{1}, a_{2}}\left(b_{1}, b_{2}\right)=b_{1} \quad \text { as } b_{1}=a_{3} \neq a_{1}, a_{2}
$$

$$
\begin{aligned}
& h_{2}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, b_{3}\right)=f_{a_{1}, a_{3}}\left(a_{3}, b_{3}\right)=a_{3}=b_{1} \\
& \quad \text { as } b_{3} \neq a_{1} \text { (if } b_{3}=a_{3} \text { then } b_{3}=b_{1}, \text { so OK too), } \\
& h_{3}(\bar{b})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{b}), h_{2}(\bar{b})\right)=f_{a_{2}, a_{3}}\left(b_{1}, b_{1}\right)=b_{1}, \\
& h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, f_{3}(\bar{b})\right)=f_{a_{1}, a_{3}}\left(b_{1}, b_{1}\right)=b_{1} .
\end{aligned}
$$

Case 5. $b_{1}=a_{3}, b_{3}=a_{1}$.

$$
\begin{gathered}
h_{1}(\bar{b})=f_{a_{1}, a_{2}}\left(b_{1}, b_{2}\right)=b_{1} \quad \text { as } b_{1}=a_{3} \neq a_{1}, a_{2}, \\
h_{2}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, b_{3}\right)=b_{3} \quad \text { as }\left\{b_{1}, b_{3}\right\}=\left\{a_{1}, a_{3}\right\}, \\
h_{3}(\bar{b})=f_{a_{2}, a_{3}}\left(h_{1}(\bar{b}), h_{2}(\bar{b})\right)=f_{a_{2}, a_{3}}\left(b_{1}, b_{3}\right) \equiv b_{1} \quad \text { as } b_{3}=a_{1} \neq a_{2}, a_{3}, \\
h_{4}(\bar{b})=f_{a_{1}, a_{3}}\left(b_{1}, f_{3}(\bar{b})\right)=f_{a_{1}, a_{3}}\left(b_{1}, b_{1}\right)=b_{1},
\end{gathered}
$$

as required.
4.7. Claim. Let $\bar{a}^{*}=\left(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}, a_{4}^{*}\right) \in{ }^{4} X$ be with no repetitions. Then for some $g \in \mathcal{F}_{[4]}$ we have:
(i) if $\bar{b} \in{ }^{4} X$ is with repetitions then $f(\bar{b})=b_{1}$,
(ii) $g\left(\bar{a}^{*}\right)=a_{2}^{*}$.

Proof. For any $\bar{a} \in{ }^{3} X$ without repetitions, let $f_{\bar{a}}$ be as in Claim 4.6 for the sequence \bar{a}. Let us define (with $\left.\bar{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right) g(\bar{x})=g_{0}\left(x_{1}, g_{2}\left(x_{1}, x_{2}, x_{4}\right), g_{3}\left(x_{1}, x_{3}, x_{4}\right)\right)$ with $g_{0}=f_{\left\langle a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right\rangle}, g_{2}=f_{\left\langle a_{1}^{*}, a_{2}^{*}, a_{4}^{*}\right\rangle}, g_{3}=f_{\left\langle a_{1}^{*}, a_{3}^{*}, a_{4}^{*}\right\rangle}$. So
(A) $g\left(\bar{a}^{*}\right)=g_{0}\left(a_{1}^{*}, g_{2}\left(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right), g_{3}\left(a_{1}^{*}, a_{3}^{*}, a_{4}^{*}\right)\right)=g_{0}\left(a_{1}^{*}, a_{2}^{*}, a_{3}^{*}\right)=a_{2}^{*}$;
(B) if $\bar{b} \in{ }^{4} X$ and $\left\langle b_{1}, b_{2}, b_{4}\right\rangle$ has repetitions then $g_{2}\left(b_{1}, b_{2}, b_{4}\right)=b_{1}$, hence $g(\bar{b})=$ $g_{0}\left(b_{1}, b_{1}, g_{3}\left(b_{1}, b_{3}, b_{4}\right)\right)=b_{1}$;
(C) if $\bar{b} \in{ }^{4} X$ and $\left\langle b_{1}, b_{3}, b_{4}\right\rangle$ has repetitions then $g_{3}\left(b_{1}, b_{3}, b_{4}\right)=b_{1}$, hence $g(\bar{b})=$ $g_{0}\left(b_{1}, g_{2}\left(b_{1}, b_{2}, b_{4}\right), b_{1}\right)=b_{1}$;
(D) $\bar{b} \in{ }^{4} X$ has repetitions, but neither (B) nor (C), then necessarily $b_{2}=b_{3}$, so $\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ has repetitions, so $g(\bar{b})=g_{0}\left(b_{1}, b_{2}, b_{3}\right)=b_{1}$.

Part B: Non-simple case

5. Fullness for the non-simple case

5.1. Context. As in Section 1: \mathfrak{C} is a $(X, k)-\mathrm{FCF}, \mathcal{F}=\bigcup\left\{\mathcal{F}_{[r]}: r<\infty\right\}$ and $\mathcal{F}=\{f$: $f \in \operatorname{AV}(\mathfrak{C})\}$, so
$\mathcal{F}_{[r]}=\left\{f: f\right.$ is (not necessarily simple) function written $f_{Y}\left(x_{1}, \ldots, x_{r}\right)$, for $Y \in\binom{X}{k}$,

$$
\begin{aligned}
& x_{1}, \ldots, x_{r} \in Y \text { such that } f_{Y}\left(x_{1}, \ldots, x_{r}\right) \in\left\{x_{1}, \ldots, x_{r}\right\} \text { and } \mathfrak{C} \text { is closed under } f \text {, } \\
& \text { i.e., if } c_{1}, \ldots, c_{r} \in \mathfrak{C} \text { and } c=f\left(c_{1}, \ldots, c_{r}\right) \text {, i.e. } c(Y)=f_{Y}\left(c_{1}(Y), \ldots, c_{r}(Y)\right) \text {, } \\
& \text { then } c \in \mathfrak{C}\}
\end{aligned}
$$

and we add (otherwise use Part A; alternatively combine the proofs):
5.2. Hypothesis. If $f \in \mathcal{F}$ is simple then it is a monarchy.
5.3. Definition. (1) $\mathcal{F}[Y]=\left\{f_{Y}: f \in \mathcal{F}\right\}$.
(2) $\mathcal{F}_{[r]}(Y)=\left\{f_{Y}: f \in \mathcal{F}_{[r]}\right\}$.
5.4. Observation. If $f \in \mathcal{F}_{[r]}, Y \in\binom{X}{k}$, then f_{Y} is an r-place function from Y to Y and
(*) $\mathcal{F}[Y]$ is as in Fact 2.2 on Y.
5.5. Definition. (1) $r(\mathcal{F})=\min \left\{r: r \geqslant 2\right.$, some $f \in \mathcal{F}_{[r]}$ is not a monarchy $\}$ where
(2) f is a monarchy if for some t we have $(\forall Y)\left(\forall x_{1}, \ldots, x_{r} \in Y\right)\left[f_{Y}\left(x_{1}, \ldots, x_{r}\right)=x_{t}\right]$.
5.6. Claim. (1) For proving that \mathfrak{C} is full, it is enough to prove, for some $r \in\{3, \ldots, k\}$:
(*) for every $Y \in\binom{X}{k}$ and $\bar{a} \in{ }^{r} Y$ which is one-to-one, there is $f=f^{\bar{a}, Y} \in \mathcal{F}$ such that
(i) $f_{Y}(\bar{a})=a_{2}$,
(ii) if $Z \in\binom{X}{k}, Z \neq Y, \bar{b} \in{ }^{r} Z$ then $f_{Z}(\bar{b})=b_{1}$.
(2) If $r \geqslant 4$, we can weaken $f_{Z}(\bar{b})=b_{1}$ in clause (ii) to [$b_{3}=b_{4} \vee b_{1}=b_{2} \vee b_{1}=$ $\left.b_{3} \vee b_{2}=b_{3}\right] \Rightarrow f_{Y}(\bar{b})=b_{1}$.

Proof. The proof is as in the proof of Claim 5.8 below, only we choose $c_{3}, c_{4}, \ldots, c_{r}$ such that $\bar{a}=\left\langle c_{\ell}(Y): \ell=1,2, \ldots, r\right\rangle$ is without repetitions and $f=f^{\bar{a}, Y}$ from $(*)$.
5.7. Claim. In Claim 5.6 we can replace (*) by: $r=3$ and
(*) if $Y \in\binom{X}{k}$ and $\bar{a} \in{ }^{3} Y$ is one-to-one (or just $a_{2} \neq a_{3}$), then for some $g \in \mathcal{F}_{[r]}$,
(i) $g_{Y}(\bar{a})=a_{1}$,
(ii) if $Z \in\binom{Y}{k}, Z \neq Y, \bar{b} \in{ }^{3} Z$ is not one-to-one then $g_{Z}(\bar{b})=b_{2}$ for $b_{2}=b_{3}$, and is b_{1} otherwise (i.e. $g_{3 ; 1,2}(\bar{b})$).

Proof. Like for Claim 3.3. Let $c_{1}^{*} \in \mathfrak{C}, Y^{*} \in\binom{X}{k}, a_{1}^{*}=c_{1}\left(Y^{*}\right), a_{2}^{*} \in Y^{*} \backslash\left\{a_{1}^{*}\right\}$; we choose c_{2}^{*} as in the proof of Claim 5.6, i.e. Lemma 3.1, that is $c_{2}^{*}\left(Y^{*}\right)=a_{2}^{*}$ and with $|\mathcal{P}|$ minimal where $\mathcal{P}=\left\{Y: Y \in\binom{X}{k}, Y \neq Y^{*}, c_{1}^{*}(Y) \neq c_{2}^{*}(Y)\right\}$. As there suffices to prove that $\mathcal{P}=\emptyset$. Now otherwise
\boxtimes there are no $Z \in \mathcal{P}$ and $d \in \mathfrak{C}$ such that

$$
d\left(Y^{*}\right)=c_{2}^{*}\left(Y^{*}\right), \quad d(Z) \neq c_{2}^{*}(Z)
$$

[Why? If so, let $c=g^{*}\left(c_{1}^{*}, c_{2}^{*}, d\right)$ where g is from $(*)$ for $Z, a_{1}=c_{1}^{*}(Z), a_{2}=c_{2}^{*}(Z)$, $a_{3}=d(Z)$.] Continue as there: the $g_{\bar{a}}$ depends also on Y, and we write $c(Y)=$ $f_{Y}\left(c_{1}(Y), \ldots, c_{r}(Y)\right)$.
5.8. Claim. Assume $r(\mathcal{F})=2(\mathfrak{C}, \mathcal{F}$ as usual) and
(*) for every $a_{1} \neq a_{2} \in Y \in\binom{X}{k}$, for some $f=f_{\left\langle a_{1}, a_{2}\right\rangle}^{Y} \in \mathcal{F}$, we have:
(i) $f_{Y}(\bar{a})=a_{2}$,
(ii) $Z \in\binom{Y}{k}, Z \neq Y, \bar{b} \in{ }^{2} Z \Rightarrow f_{Z}(\bar{b})=b_{1}$.

Then \mathfrak{C} is full.
Remark. \mathfrak{C} is full iff every choice function of $\binom{X}{k}$ belongs to it.
Proof. If \mathfrak{C} is not full, as $\mathfrak{C} \neq \emptyset$, there are $c_{1} \in \mathfrak{C}, c_{0} \notin \mathfrak{C}, c_{0}$ a choice function for $\binom{X}{k}$. Choose such a pair (c_{1}, c_{0}) with $|\mathcal{P}|$ minimal where $\mathcal{P}=\left\{Y \in\binom{X}{k}: c_{1}(Y) \neq c_{0}(Y)\right\}$. So clearly \mathcal{P} is a singleton, say $\{Y\}$. By symmetry, for some $c_{2} \in \mathfrak{C}$ we have $c_{2}(Y)=c_{0}(Y)$. Let f be $f_{c_{1}(Y), c_{0}(Y)}^{Y}=f_{c_{1}(Y), c_{2}(Y)}^{Y}$ from the assumption, so $f \in \mathcal{F}$ and let $c=f\left(c_{1}, c_{2}\right)$; so clearly $c \in \mathfrak{C}$ (as \mathfrak{C} is closed under every member of \mathcal{F}).

Now
(A) $c(Y)=f_{Y}\left(c_{1}(Y), c_{2}(Y)\right)=c_{2}(Y)=c_{0}(Y)$;
(B) if $Z \in\binom{X}{k} \backslash\{Y\}$ then $c(Z)=f_{Z}\left(c_{1}(Z), c_{2}(Z)\right)=c_{1}(Z)=c_{0}(Y)$.

So $c=c_{0}$, hence $c_{0} \in \mathfrak{C}$, contradiction.
5.9. Claim. Assume $r(\mathcal{F})=2$ and $\boxtimes\left(f^{*}\right)$ of Claim 6.9 (see Definitions 6.3, 6.6) below holds. Then \mathfrak{C} is full.

Proof. We use conventions from Definition 6.6 and Claims 6.7, 6.9 below. In $\boxtimes\left(f^{*}\right)$ there are two possibilities:
Possibility (i). This holds by Claim 5.8.
Possibility (ii). Similar to the proof of Claim 5.8. Again $\mathcal{P}=\{Y\}$ where $\mathcal{P}=\left\{Y \in\binom{X}{k}\right.$: $\left.c_{1}(Y) \neq c_{0}(Y)\right\}$. We choose $c_{2} \in \mathfrak{C}$ such that $c_{2}(Y)=c_{0}(Y)$ and $c_{2}(X \backslash Y)=c_{1}(X \backslash Y)$, continue as before. Why is this possible? Let $\pi \in \operatorname{Per}(X)$ be such that $\pi(Y)=Y$, $\pi\left(c_{1}(Y)\right)=c_{0}(Y), \pi\left(c_{1}(X \backslash Y)\right)=c_{1}(X \backslash Y)$ (and of course, $\left.\pi(X \backslash Y)=X \backslash Y\right)$. Now conjugating c_{1} by π gives c_{2} as required.
5.10. Claim. If $r(\mathcal{F})<\infty$ then \mathfrak{C} is full.

Proof. Let $r=r(\mathcal{F})$.
Case 1. $r=2$.
So Hypothesis 6.1 holds.
If $\boxtimes(f)$ of Claim 6.9 holds for some $f \in \mathcal{F}_{[r]}$, by Claim 5.9 we know that \mathfrak{C} is full. If $\boxtimes(f)$ of Claim 6.9 fails for every $f \in \mathcal{F}_{[r]}$ then Hypothesis 6.11 holds hence 6.12-6.18 holds. So by Claim 6.18 we know that $(*)$ of Claim 5.6 holds (and $\mathcal{P}_{ \pm}$is a singleton, see Conclusion 6.17(c) plus Claim 6.18(2)). So by Claim 5.6, \mathfrak{C} is full.

Case 2. $r \geqslant 4$.

So Hypothesis 7.1 holds. By Claim 7.5 clearly (*) of Claim 5.6 holds hence by Claim 5.6(2) we know that \mathfrak{C} is full.

Case 3. $r=3$.

Let $f^{*} \in \mathcal{F}_{[3]}$ be not a monarchy. So for $\bar{b} \in{ }^{3} Y$ not one-to-one, $Y \in\binom{X}{k}$, clearly $f_{Y}^{*}(\bar{b})$ does not depend on Y, so we write $f^{-}(\bar{b})$. If for some $\ell(*), f^{-}(\bar{b})=b_{\ell(*)}$ for every such \bar{b} then easily Claim 5.6(1) apply. If $f^{-}(\bar{b})=g_{r ; 1,2}(\bar{b})$, let $\bar{a} \in{ }^{3} Y, Y \in\binom{X}{k}, \bar{a}$ is one-to-one, so $f_{Y}(\bar{b})=a_{k}$ for some k; by permuting the variables, f^{-}does not change while we have $k=1$, so Claim 5.7 applies. If both fail, then by repeating the proof of Claim 2.8, for some $f^{\prime} \in \mathcal{F}_{[3]}$, for $\bar{b} \in{ }^{3} X$ not one-to-one, we have $\bar{b} \in{ }^{3} Y \Rightarrow f_{Y}^{\prime}(\bar{b})=f_{\langle 1,2,1\rangle}(\bar{b})$ or for \bar{b} not one-to-one $\bar{b} \in{ }^{3} Y \Rightarrow f_{Y}^{\prime}(\bar{b})=f_{\langle 1,2,2\rangle}(\bar{b})$. By the last paragraph of the proof of Claim 2.8 we can assume that Case 2 holds. In this case, repeat the proof of the case $\eta=\langle 1,2,2\rangle$ in the end of the proof of Claim 2.8.

6. The case $r(\mathcal{F})=2$

For this section

6.1. Hypothesis. $r=2$.

6.2. Discussion. So (α) or (β) holds where
(α) there are $Y \in\binom{X}{k}$ and $f \in \mathcal{F}_{[r]}(Y)$ which is not monarchy. Hence by Section 4, i.e. Claim 4.4 for $a \neq b \in Y$ there is $f=f_{a, b}^{Y} \in \mathcal{F}_{2}[Y]$,

$$
f_{Y}(x, y)= \begin{cases}y, & \text { if }\{x, y\}=\{a, b\} \\ x, & \text { otherwise }\end{cases}
$$

(β) every f_{Y} is a monarchy but some $f \in \mathcal{F}_{[r]}$ is not.
6.3. Definition/choice. Choose $f^{*} \in \mathcal{F}_{2}$ such that
(a) $\neg(\forall Y)(\forall x, y \in Y)\left(f_{Y}(x, y)=x\right)$;
(b) under (a), $n(f)=\left|\operatorname{dom}_{1}(f)\right|$ is maximal where $\operatorname{dom}_{1}(f)=\left\{(Z, a, b): f_{Z}(a, b)=\right.$ $a \neq b, Z \in\binom{X}{k}$ and $\{a, b\} \subseteq Z$ of course $\}$.
6.4. Fact. If $f_{1}, f_{2} \in \mathcal{F}_{[2]}$ and f is $f(x, y)=f_{1}\left(x, f_{2}(x, y)\right.$) (formally $f(Y, x, y)=$ $f_{1}\left(Y, x, f_{2}(Y, x, y)\right)$ but we shall be careless) then $\operatorname{dom}_{1}(f)=\operatorname{dom}_{1}\left(f_{1}\right) \cup \operatorname{dom}_{1}\left(f_{2}\right)$.

Proof is easy.
6.5. Claim. If $Z \in\binom{X}{k}, f_{Z}^{*}\left(a^{*}, b^{*}\right)=b^{*} \neq a$ then
(a) $(\forall x, y \in Z)\left[f_{Z}^{*}(x, y)=y\right]$ or
(b) $x, y \in Z \&\{x, y\} \nsubseteq\left\{a^{*}, b^{*}\right\} \Rightarrow f_{Z}^{*}(x, y)=x$.

Proof. As in Claim 4.4 (plus Definition/choice 6.3 and Fact 6.4), recalling 5.4, i.e., that $\mathcal{F}[Z]$ is a clone.
6.6. Definition. Let
(1) $\mathcal{P}_{1}=\mathcal{P}_{1}\left(f^{*}\right)=\left\{Z \in\binom{X}{k}:(\forall a, b \in Z)\left(f_{Z}^{*}(a, b)=a\right\}\right.$;
(2) $\mathcal{P}_{2}=\mathcal{P}_{2}\left(f^{*}\right)=\left\{Z \in\binom{X}{k}:(\forall a, b \in Z)\left(f_{Z}^{*}(a, b)=b\right\}\right.$;
(3) $\mathcal{P}_{ \pm}=\mathcal{P}_{ \pm}\left(f^{*}\right)=\binom{X}{k} \backslash \mathcal{P}_{1}\left(f^{*}\right) \backslash \mathcal{P}_{2}^{*}\left(f^{*}\right)$.
6.7. Claim. For $Y \in\binom{X}{k}$ we have:
(1) $Y \in \mathcal{P}_{ \pm}\left(f^{*}\right)$ iff $Y \in\binom{X}{k}$ and $(\exists a, b \in Y)\left(f_{Y}^{*}(a, b)=a \neq b\right)$ and also $(\exists a, b \in Y)$ $\left(f_{Y}^{*}(a, b)=b \neq a\right)$.
(2) If $Y \in \mathcal{P}_{ \pm}$, then there are $a_{Y} \neq b_{Y} \in Y$ such that $f_{Y}^{*}\left(a_{Y}, b_{Y}\right)=b_{Y}$ and

$$
\{a, b\} \subseteq Y, \quad\{a, b\} \nsubseteq\left\{a_{Y}, b_{Y}\right\} \quad \Rightarrow \quad f_{Y}^{*}(a, b)=a
$$

Proof. By Claim 6.5.

6.8. Claim. (1) $\left\langle\mathcal{P}_{1}, \mathcal{P}_{2}, \mathcal{P}_{ \pm}\right\rangle$is a partition of $\binom{X}{k}$.
(2) For $Y \in \mathcal{P}_{ \pm}$the pair $\left(a_{Y}, b_{Y}\right)$ is well defined (but maybe $\left(b_{Y}, a_{Y}\right)$ can serve as well).

Proof. (1) By Definition 6.6. (2) By Claim 6.7.
6.9. Claim. If $\mathcal{P}_{2}\left(f^{*}\right) \neq \emptyset$ then
$\boxtimes\left(f^{*}\right)$ (i) $\mathcal{P}_{2}=\mathcal{P}_{2}\left(f^{*}\right)$ is a singleton, $\mathcal{P}_{ \pm}=\emptyset$ or
(ii) $2 k=|X|, \mathcal{P}_{2}$ is $\left\{Y^{*}, Y^{* *}\right\} \subseteq\binom{X}{k}$ where $Y^{*} \cup Y^{* *}=X$ and $\mathcal{P}_{ \pm}=\emptyset$.

Proof. Assume $\mathcal{P}_{2} \neq \emptyset$, let $Y^{*} \in \mathcal{P}_{2}$. As f^{*} is not a monarchy
$(*)_{1} \mathcal{P}_{1} \cup \mathcal{P}_{ \pm} \neq \emptyset$.

By Definition 6.6 and Fact $6.4, f^{*} \in \mathcal{F}_{[r]}$ satisfies
$(*)_{2}$ (i) $f_{Y^{*}}^{*}(a, b)=b$ for $a, b \in Y^{*}$;
(ii) if $g \in \mathcal{F}_{[r]}, g_{Y^{*}}(a, b)=b$ for $a, b \in Y^{*}$ then $\operatorname{dom}_{1}\left(f^{*}\right) \supseteq \operatorname{dom}_{1}(g)$.

Hence

$(*)_{3}$ if $Y_{1} \in \mathcal{P}_{2}, Y_{2} \notin \mathcal{P}_{2}, k^{*}=\left|Y_{1} \cap Y_{2}\right|$ and $Y \in\binom{Y}{k},\left|Y \cap Y^{*}\right|=k^{*}$, then $Y \notin \mathcal{P}_{2}$ (even $\left.Y \in \mathcal{P}_{1} \Leftrightarrow Y_{2} \in \mathcal{P}_{1}\right)$.
[Why? By $(*)_{2}$ as we can conjugate f^{*} by $\pi \in \operatorname{Per}(X)$ which maps Y^{*} onto Y_{1} and Y onto Y_{2}.]

So by Claim 3.5 (applied to k^{*}) and $(*)_{1}$
(*) ${ }_{4}$ (i) \mathcal{P}_{2} is the singleton $\left\{Y^{*}\right\}$ or
(ii) \mathcal{P}_{2} is a $\left\{Y^{*}, Y^{* *}\right\}, 2 k=|X|$ and $Y^{* *}=X \backslash Y^{*}$;
$(*)_{5}$ if $Z \in \mathcal{P}_{ \pm}$, then (α) or (β) :
$(\alpha)\left\{a_{Z}, b_{Z}\right\}=Z \cap Y^{*}, f_{Z}^{*}\left(b_{Z}, a_{Z}\right)=a_{Z}$,
(β) $\left\{a_{Z}, b_{Z}\right\}=Z \backslash Y^{*}, f_{Z}^{*}\left(b_{Z}, a_{Z}\right)=a_{Z}$.
[Why? If $\left\{a_{Z}, b_{Z}\right\} \notin\left\{Z \cap Y^{*}, Z \backslash Y^{*}\right\}$ then, as $k \geqslant 3$, we can choose $\pi \in \operatorname{Per}(X)$, $\pi\left(Y^{*}\right)=Y^{*}, \pi(Z)=Z$ such that $\pi^{\prime \prime}\left\{a_{Z}, b_{Z}\right\} \nsubseteq\left\{a_{Z}, b_{Z}\right\}$ and use Definition 6.3 and Fact 6.4 on a conjugate of f^{*}. So $\left\{a_{Z}, b_{Z}\right\} \in\left\{Z \cap Y^{*}, Z \backslash Y^{*}\right\}$ and if $f_{Z}^{*}\left(b_{Z}, a_{Z}\right) \neq a_{Z}$, we use $\pi \in \operatorname{Per}(X)$ such that $\pi\left(Y^{*}\right)=Y^{*}, \pi(Z)=Z$ and $\pi\left(a_{Z}\right)=b_{Z}, \pi\left(b_{Z}\right)=a_{Z}$ and 6.4.]

It is enough by $(*)_{4}$ to prove $\mathcal{P}_{ \pm}=\emptyset$. So assume toward contradiction $\mathcal{P}_{ \pm} \neq \emptyset$. By $(*)_{5}$ one of the following two cases occurs.

Case 1. $Z^{*} \in \mathcal{P}_{ \pm},\left|Z^{*} \cap Y^{*}\right|=k-2$.
As we are allowed to assume $k+4<|X|$, there is $\mathrm{Y} \in\binom{X}{k}$ such that $\left|Y \cap Y^{*}\right|=k-1$ and $Y \cap Z^{*}=Y^{*} \cap Z^{*}$. Now (by $\left.(*)_{5}\right)$ we have $Y \notin \mathcal{P}_{ \pm}$and (by $\left.(*)_{4}\right)$ we have $Y \notin \mathcal{P}_{2}$ so $Y \in \mathcal{P}_{1}$. So there is $\pi \in \operatorname{Per}(X)$ such that $\pi\left(Y^{*}\right)=Y, \pi \upharpoonright Z^{*}=$ identity, let $f=\left(f^{*}\right)^{\pi}$ so by Fact 6.4 we get a contradiction to the choice of f^{*}.

Case 2. $Z^{*} \in \mathcal{P}_{ \pm},\left|Z^{*} \cap Y^{*}\right|=2$.
A proof similar to Case 1 works if $Z^{*} \cup Y^{*} \neq X$. Otherwise let $\pi \in \operatorname{Per}(X)$ be the identity on $Z^{*} \cap Y^{*}$ and interchange Z^{*}, Y^{*}. Apply Fact 6.4 on $f^{*},\left(f^{*}\right)^{\pi}$, so $\left(a_{Z^{*}}, b_{Z^{*}}\right) \notin$ $\operatorname{dom}_{1}\left(f^{*}\right) \cup \operatorname{dom}_{1}\left(\left(f^{*}\right)^{\pi}\right)$, etc., easy contradiction.
6.10. Remark. If $\boxtimes\left(f^{*}\right)$ of Claim 6.9 holds for some f^{*} then (in the context of Section 5) \mathfrak{C} is full by Claim 5.9.
6.11. Hypothesis. For no $f \in \mathcal{F}_{[r]}$ is $\boxtimes(f)$.
6.12. Conclusion. (1) $\mathcal{P}_{2}\left(f^{*}\right)=\emptyset$.
(2) $\mathcal{P}_{ \pm} \neq \emptyset$.
(3) $\mathcal{P}_{1} \neq \emptyset$.
(4) If $Y \in \mathcal{P}_{ \pm}$and $\left|Y \cap Z_{1}\right|=\left|Y \cap Z_{2}\right|$ and $a_{Y} \in Z_{1} \Leftrightarrow a_{Y} \in Z_{2}$ and $b_{Y} \in Z_{1} \Leftrightarrow b_{Y} \in Z_{2}$ where, of course, $Y, Z_{1}, Z_{1} \in\binom{X}{k}$, then $Z_{1} \in \mathcal{P}_{ \pm} \Leftrightarrow Z_{2} \in \mathcal{P}_{ \pm}$.

Proof. (1) By Hypothesis 6.11 and Claim 6.9.
(2) Otherwise f^{*} is a monarchy.
(3) Assume not, so $\mathcal{P}_{ \pm}=\binom{X}{k}$. Let $Y \in \mathcal{P}_{ \pm}, Z \in\binom{X}{k}, Z \cap\left\{a_{Y}, b_{Y}\right\}=\emptyset$ and $^{2}|Z \cap Y|>2$ and $|Z \backslash Y|>2$, we can get a contradiction to $n\left(f^{*}\right)$'s minimality.
(4) By Definition/choice 6.3 and Fact 6.4 as we can find $\pi \in \operatorname{Per}(X)$ such that $\pi(Y)=Y$, $\pi\left(Z_{1}\right)=Z_{2}, \pi\left(a_{Y}\right)=a_{Y}, \pi\left(b_{Y}\right)=b_{Y}$.
6.13. Claim. If $Y, Z \in \mathcal{P}_{ \pm}$and $Y \neq Z$, then there is no $\pi \in \operatorname{Per}(X)$ such that

$$
\begin{array}{ll}
\pi(Y)=Y, & \pi(Z)=Z, \\
\pi\left(a_{Y}\right)=a_{Y}, & \pi\left(b_{Y}\right)=b_{Y}, \quad\left\{\pi\left(a_{Z}\right), \pi\left(b_{Z}\right)\right\} \nsubseteq\left\{a_{Z}, b_{Z}\right\}
\end{array}
$$

Proof. By Definition/choice 6.3 and Fact 6.4.
6.14. Claim. If $Y \in \mathcal{P}_{ \pm}, Z \in \mathcal{P}_{ \pm}, 2<|Y \cap Z|<k-2$ then $\left\{a_{Z}, b_{Z}\right\}=\left\{a_{Y}, b_{Y}\right\}$.

Proof. By Claim 6.13. Except when $Y \cap Z=\left\{a_{Y}, b_{Y}, a_{Z}, b_{Z}\right\}$. Then choose $Z_{1}=Z$ and $Z_{2} \in\binom{X}{k} Z_{2} \cap(Y \cap Z)=\left\{a_{Y}, b_{Y}\right\},\left|Y \cap Z_{1}\right|=|Y \cap Z|, Z_{1} \backslash Y \cap Z=Y^{\prime} \backslash Y_{*}^{\prime} \backslash Y \cap Z$ where $Y_{*} \subseteq Y \backslash Z$ has $|Y \cap Z|_{-2}$ members.

By 6.12(2), $Z_{2} \in \mathcal{P}^{ \pm}$, so as in the original case $Y \cap Z_{2}=\left\{a_{Y}, b_{Y}, a_{Z_{2}}, b_{Z_{2}}\right\}$ and for Z_{1}, Z_{2} the original case suffices. (Alternatively as a lemma $4<|Y \cap Z|<k-4$, and in 6.12 replace 4 by 6 .)
6.15. Claim. If $Z_{0}, Z_{1} \in \mathcal{P}_{ \pm}$and $\left|Z_{1} \backslash Z_{0}\right|=1$ then $\left\{a_{Z_{0}}, b_{Z_{0}}\right\}=\left\{a_{Z_{1}}, b_{Z_{1}}\right\}$.

Proof. We shall choose by induction $i=0,1,2,3,4$ a set $Z_{i} \in \mathcal{P}_{ \pm}$such that $j<i \Rightarrow \mid Z_{i} \backslash$ $Z_{j} \mid=i-j$. By Claim 6.14 we have $i-j=3,4 \leqslant 4 \Rightarrow\left\{a_{Z_{i}}, b_{Z_{i}}\right\}=\left\{a_{Z_{j}}, b_{Z_{j}}\right\}$, as this applies to $(j, i)=(0,4)$ and $(j, i)=(1,4)$, we get the desired conclusion by transitivity of equality.

To choose Z_{i}, let $x_{i} \in X \backslash\left(Z_{0} \cup \cdots \cup Z_{i-1}\right)$; possible as we exclude $k+i-1$ elements and choose $y_{i} \in Z_{0} \cap \cdots \cap Z_{i-1} \backslash\left\{a_{Z_{i-1}}, b_{Z_{i-1}}\right\}$. Now let $Z_{i}=Z_{i-1} \cup\left\{y_{i}\right\} \backslash\left\{x_{i}\right\}$ easily $j<$ $i \Rightarrow\left|Z_{i} \backslash Z_{j}\right|=i-j$ and $Z_{i} \in \mathcal{P}_{ \pm}$by Conclusion 6.12(4) with Y, Z_{1}, Z_{2} there standing for Z_{i-1}, Z_{i-2}, Z_{i} here.
6.16. Choice. $Y^{*} \in \mathcal{P}_{ \pm}$.

[^1]
6.17. Conclusion.

(a) $Y^{*} \in \mathcal{P}_{ \pm}$.
(b) If $Y \in \mathcal{P}_{ \pm}$then $\left(\left\{a_{Y}, b_{Y}\right\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\}\right.$.
(c) One of the following possibilities holds.
(α) $\mathcal{P}_{ \pm}=\left\{Y^{*}\right\}$;
(β) $\mathcal{P}_{ \pm}=\left\{Y \in\binom{X}{k}:\left\{a_{Y^{*}}, b_{Y^{*}}\right\} \subseteq Y\right\} ;$
(γ) $\mathcal{P}_{ \pm}=\left\{Y^{*}, Y^{* *}\right\}$ where $Y^{* *}=\left(X \backslash Y^{*}\right) \cup\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$ and $|X|=2 k-2$ (hence $\left.\left\{a_{Y^{* *}}, b_{Y^{*}}\right\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\}\right)$.

Proof. Note that
(*) if $Y_{1}, Y_{2} \in \mathcal{P}_{ \pm},\left|Y_{1} \backslash Y_{2}\right|=1$ and $Y_{3} \in \mathcal{P}_{ \pm}, Y_{4} \in\binom{X}{k},\left|Y_{3} \backslash Y_{4}\right|=1$ and $\left\{a_{Y_{3}}, b_{Y_{3}}\right\}=$ $\left\{a_{Y_{1}}, b_{Y_{1}}\right\} \subseteq Y_{4}$ then $Y_{4} \in \mathcal{P}_{ \pm}$(hence $\left\{a_{Y_{4}}, b_{Y_{4}}\right\}=\left\{a_{Y_{3}}, b_{Y_{3}}\right\}=\left\{a_{Y_{1}}, b_{Y_{1}}\right\}$).
[Why? As there is a permutation π of X such that $\pi\left(a_{Y_{1}}\right)=a_{Y_{1}}, \pi\left(b_{Y_{1}}\right)=b_{Y_{1}}, \pi\left(Y_{3}\right)=Y_{1}$, $\pi\left(Y_{4}\right)=Y_{2}$. By Fact 6.4 we get a contradiction to the choice of f^{*}.] The hence of $(\mathrm{c})(\gamma)$ is by 6.13 .

By the choice of $Y^{*} \in \mathcal{P}_{ \pm}$, we have (a), now (b) follows from (c) so it is enough to prove (c). Assume $(\alpha),(\gamma)$ fail and we shall prove (β). So there is $Z_{1} \in \mathcal{P}_{ \pm}$such that $Z_{1} \notin\left\{Y^{*},\left(X \backslash Y^{*}\right) \cup\left\{a_{Y^{*}}, b_{Y *}\right\}\right\}$. We can find $c_{1}, c_{2} \in X \backslash\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$ such that $c_{1} \in Y^{*} \Leftrightarrow$ $c_{2} \in Y^{*}$ and $c_{1} \in Z_{1} \Leftrightarrow c_{2} \notin Z_{1}$.
[Why? if $Y^{*} \cup Z_{1} \neq X$ any $c_{1} \in X \backslash Y^{*} \backslash Z_{1}, c_{2} \in Z_{1} \backslash Y^{*}$ will do; so assume $Y^{*} \cup Z_{1}=$ X; so as $k+2<|X|$, clearly $\left|Y^{*} \cap Z\right|<k-2$; hence by Claim 6.14, $\left|Z_{1} \cap Y^{*}\right| \leqslant 2$. As not case (γ) of (c), that is by the choice of Z_{1}, necessarily $\left\{a_{Y^{*}}, b_{Y^{*}}\right\} \nsubseteq Y^{*} \cap Z_{1}$ and using $\pi \in \operatorname{Per}(X), \pi \upharpoonright Z_{1}=\mathrm{id}, \pi\left(Y^{*}\right)=Y^{*}, \pi$ the identity on Z_{1} and $\left\{\pi\left(a_{Y^{*}}\right), \pi\left(b_{Y^{*}}\right)\right\}=$ $\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$; now by Claim 6.13 we contradict Definition/choice 6.3 and Fact 6.4.]

Let $Z_{2}=Z_{1} \cup\left\{c_{1}, c_{2}\right\} \backslash\left(Z_{1} \cap\left\{c_{1}, c_{2}\right\}\right)$, so $Z_{1}, Z_{2} \in\binom{X}{k},\left|Z_{2} \cap Y^{*}\right|=\left|Z_{1} \cap Y^{*}\right|$ and $Z_{1} \cap\left\{a_{Y^{*}}, b_{Y^{*}}\right\}=Z_{2} \cap\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$; hence by Conclusion 6.12(4) we have $Z_{2} \in \mathcal{P}_{ \pm}$and clearly $\left|Z_{1} \backslash Z_{2}\right|=1$.

By Claim 6.15 we have $\left\{a_{Z_{1}}, b_{Z_{1}}\right\}=\left\{a_{Z_{2}}, b_{Z_{2}}\right\}$. Similarly by ($*$) we can prove by induction on $m=\left|Z \backslash Z_{1}\right|$ that $\left\{a_{Z_{1}}, b_{Z_{1}}\right\} \subseteq Z \in\binom{X}{k} \Rightarrow Z \in \mathcal{P}_{ \pm} \&\left\{a_{Z}, b_{Z}\right\}=\left\{a_{Z_{1}}, b_{Z_{1}}\right\}$. If (β) of (c) fails, then there is $Z_{3} \in \mathcal{P}_{ \pm}$satisfying $\left\{a_{Z_{1}}, b_{Z_{1}}\right\} \nsubseteq Z$. Easily $\left\{a_{Z_{3}}, b_{Z_{3}}\right\} \subseteq Z \in$ $\binom{X}{k} \Rightarrow Z \in \mathcal{P}_{ \pm} \&\left\{a_{Z}, b_{Z}\right\}=\left\{a_{Z_{3}}, b_{Z_{3}}\right\}$. As we are assuming $k \geqslant 4$, we can find $Y \in\binom{X}{k}$ such that $\left\{a_{Z_{1}}, b_{Z_{1}}, a_{Z_{3}}, b_{Z_{3}}\right\} \subseteq Y$; contradiction.
6.18. Claim. (1) The (*) of Claim 5.8 holds.
(2) In Conclusion 6.17 clause (c), clause (α) holds.

Proof. (1) Obvious by part (2) from (α).
(2) First assume (β), so by Conclusion 6.17(b), Definition/choice 6.3 and Fact 6.4, we have without loss of generality either $\{a, b\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\} \subseteq Y \in\binom{X}{k} \Rightarrow f_{Y}^{*}(a, b)=b$ or $\left\{a_{Y^{*}}, b_{Y^{*}}\right\} \subseteq Y \in\binom{X}{K} \Rightarrow f_{Y}^{*}\left(a_{Y^{*}}, b_{Y^{*}}\right)=b_{Y^{*}}=f\left(b_{Y^{*}}, a_{Y^{*}}\right)$. In both cases, f^{*} is simple and not a monarchy contradiction, to Hypothesis 5.2.

Second, assume (γ). Let $\left\langle\pi_{i}: i\left\langle i^{*}\right\rangle\right.$ be a list of the permutations π of X such that $\pi\left(a_{Y^{*}}, b_{Y^{*}}\right)=\left(a_{Y^{*}}, b_{Y^{*}}\right)$.

Let f_{i}^{*} be f^{*} conjugated by π_{i}. Now define g^{i} for $i \leqslant i^{*}$ by induction on $i: g_{Y}^{0}\left(x_{1}, x_{2}\right)=$ $x_{1}, g_{Y}^{i+1}\left(x_{1}, x_{2}\right)=f_{i}^{*}\left(g_{Y}^{i}\left(x_{1}, x_{2}\right), x_{2}\right)$. So $g^{i^{*}} \in \mathcal{F}_{[2]}$ and $\operatorname{dom}_{2}\left(g^{i^{*}}\right)=\bigcap_{i<i^{*}} \operatorname{dom}_{2}\left(f_{i}^{*}\right)$ where $\operatorname{dom}_{2}(g)=\left\{(Z, a, b): a, b \in Z \in\binom{X}{k}\right.$ and $\left.g_{Z}(a, b)=b \neq a\right\}$, so $\operatorname{dom}_{1}\left(g^{i^{*}}\right)=$ $\bigcup_{i<i^{*}} \operatorname{dom}_{1}\left(f_{i}^{*}\right)$ hence
$(*)_{1} g_{Y}^{i^{*}}\left(a_{1}, a_{2}\right)=a_{2}$ if $\left\{a_{1}, a_{2}\right\}=\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$,
$(*)_{2} g_{Y}^{i^{*}}\left(a_{1}, a_{2}\right)=a_{1}$ if $\left\{a_{1}, a_{2}\right\} \neq\left\{a_{Y^{*}}, b_{Y^{*}}\right\}$.
Now g is simple but non-monarchical contradiction to Hypothesis 5.2.

7. The case $r \geqslant 4$

7.1. Hypothesis. $r=r(\mathcal{F}) \geqslant 4$.
7.2. Claim. (1) For every $f \in \mathcal{F}_{r}$ there is $\ell(f) \in\{1, \ldots, r\}$ such that
\circledast if $Y \in\binom{X}{k}, \bar{a} \in{ }^{r} Y$ and $|\operatorname{Rang}(\bar{a})|<r$ (i.e. \bar{a} is not one-to-one) then $f_{Y}(\bar{a})=a_{\ell(f)}$.
(2) $r \leqslant k$.

Proof. (1) Clearly there is a two-place function h from $\{1, \ldots, r\}$ to $\{1, \ldots, r\}$ such that if $y_{1}, \ldots, y_{r} \in Y \in\binom{X}{k}, y_{\ell}=y_{k}$ and $\ell \neq k$ then $f_{Y}\left(y_{1}, \ldots, y_{r}\right)=y_{h(\ell, k)}$; we have some freedom, so let without loss of generality

$$
\boxtimes \ell \neq k \Rightarrow h(\ell, k) \neq k
$$

Assume toward contradiction that the conclusion fails, i.e., there is no $\ell(f)$ as required; i.e.
$\circledast^{\prime} h \upharpoonright\{(m, n): 1 \leqslant m<n \leqslant r\}$ is not constant.
Case 1. For some $\bar{x} \in{ }^{r} Y, Y \in\binom{X}{k}$ and $\ell_{1} \neq k_{1} \in\{1, \ldots, r\}$, we have

$$
|\operatorname{Rang}(\bar{x})|=r-1, \quad x_{\ell_{1}}=x_{k_{1}}, \quad f_{Y}(\bar{x}) \neq x_{\ell_{1}}
$$

equivalently: $h\left(\ell_{1}, k_{1}\right) \notin\{\ell, k\}$. Without loss of generality, $\ell_{1}=r-1, k_{1}=r, f_{Y}(\bar{x})=$ x_{1} (as by a permutation σ of $\{1, \ldots, r\}$, we can replace f by $f^{\sigma}: f_{Y}^{\sigma}\left(x_{1}, \ldots, x_{2}\right)=$ $\left.f_{Y}\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right)\right)$.

We can choose $Y \in\binom{X}{k}$ and $x \neq y$ in Y, so $h(x, y, \ldots, y)=x$; hence $\ell \neq k \in$ $\{2, \ldots, r\} \Rightarrow h(\ell, k)=1$.

Now for $\ell \in\{2, \ldots, r\}$ we have agreed $h(1, \ell) \neq \ell$ (see \boxtimes), as we can assume $h \upharpoonright$ $\{(m, n): 1 \leqslant m<n \leqslant r\}$ is not constantly 1 , by \circledast^{\prime} for some such $\ell, h(1, \ell) \neq 1$ so without
loss of generality, $\ell=2$; so $h(1,2) \neq 1,2$, so without loss of generality, $h(1,2)=3$, but as $r \geqslant 4$, we have that if $x \neq y \in Y \in\binom{X}{k}$ then $f_{Y}(x, x, y, y, \ldots, y)$ is y for $h(1,2)=3$ and is x for $h(3,4)=1$, contradiction. So
$\circledast h \upharpoonright\{(\ell, k): 1 \leqslant \ell<k \leqslant r\}$ is constantly 1.
hence

$$
\bar{x} \in^{r} X \text { has repetitions } \Rightarrow h(\bar{x})=x_{1},
$$

as required.

Case 2. Not Case 1.

So $h(\ell, k) \in\{\ell, k\}$ for $\ell \neq k \in\{1, \ldots, r\}$. Now let $Y \in\binom{X}{k}, x \neq y \in Y$ and look at $f_{Y}(x, x, y, y, \ldots)$ it is both x as $h(1,2) \in\{1,2\}$ and y as $h(3,4) \in\{3,4\}$, contradiction.
(2) This follows as if $f \in \mathcal{F}_{[r]}, k<r(\mathcal{F})$ and $\ell(*)$ is as in part (1) then $f_{Y}(\bar{x})=x_{\ell(*)}$ always, as $x_{\ell(*)}$ has repetitions by pigeon-hole.

Recall
7.3. Definition. $f=f_{r ; \ell, k}=f^{r ; \ell, k}$ is the r-place function

$$
f_{Y}(\bar{x})= \begin{cases}x_{\ell}, & \bar{x} \text { has repetitions } \\ x_{k}, & \text { otherwise }\end{cases}
$$

7.4. Claim. (1) If $f_{r ; 1,2} \in \mathcal{F}$ then $f_{r ; \ell, k} \in \mathcal{F}$ for $\ell \neq k$.
(2) If $f_{r ; 1,2} \in \mathcal{F}, r \geqslant 3$ then $f_{r+1 ; 1,2} \in \mathcal{F}$.

Proof. (1) Trivial.
(2) For $r \geqslant 5$ let $g\left(x_{1}, \ldots, x_{r+1}\right)=f_{r, 1,2}\left(x_{1}, x_{2}, \tau_{3}\left(x_{1}, \ldots\right), \ldots, \tau_{r}\left(x_{1}, \ldots\right)\right)$ where $\tau_{m} \equiv f_{r, 1, m}\left(x_{1}, \ldots, x_{m}, x_{m+2}, \ldots, x_{r+1}\right)$, that is x_{m+1} is omitted. Continue as in the proof of Claim 2.7.
7.5. Claim. Assume $Y \in\binom{X}{k}, \bar{a} \in{ }^{r} Y$ is one-to-one. There is $f=f^{Y, \bar{a}} \in \mathcal{F}_{r}$ such that $f_{Y}^{Y, \bar{a}}(\bar{a})=a_{2}$ and $f_{Z}^{Y, \bar{a}}(\bar{b})=b_{1}$ if $Z \in\binom{X}{k}$ and $\bar{b} \in{ }^{r} X$ is not one-to-one (so (*) of Claim 5.6(2) holds).

Proof. Let $f \in \mathcal{F}_{r}$ be non-monarchical, and without loss of generality, $\ell(*)=1$ in Claim 7.2. By being not a monarchy, for some Y, \bar{a} and some $k \in\{2, \ldots, r\}$, we have $f_{Y}(\bar{a})=a_{k} \neq a_{1}$; necessarily \bar{a} is one-to-one. Conjugating by $\pi \in \operatorname{Per}(X)$ and permuting [2,r], we get $f^{Y, \bar{a}}$ as required, in particular $f^{Y, \bar{a}}(\bar{a})=a_{2}$.

Acknowledgments

I thank Alice Leonhardt for the beautiful typing. Research supported by the United States-Israel Binational Science Foundation. This is paper 782 in the author's publication list.

References

[1] K. Arrow, A difficulty in the theory of social welfare, J. Polit. Econ. 58 (1950) 328-346.
[2] P. Fishburn, The Theory of Social Choice, Princeton University Press, 1973.
[3] G. Kalai, Learnability and rationality of choice, 2001.
[4] G. Kalai, A. Rubinstein, R. Spiegler, Comments on rationalizing choice functions which violate rationality, Preprint, 2001.
[5] B. Peleg, Game Theoretic Analysis of Voting in Committees, Econometric Society Monographs in Pure Theory, vol. 7, Cambridge University Press, Cambridge, 1984.
[6] A. Rubinstein, P. Fishburn, Algebraic aggregation theory, J. Econ. Theory 38 (1986).
[7] A. Sen, Social choice theory, in: Arrow, Intriligator (Eds.), in: Handbook of Mathematical Economics, vol. III, North-Holland, Amsterdam, 1986, pp. 1073-1182, Chapter 22.
[8] L. Szabó, Algebras that are simple with weak automorphisms, Algebra Univ. 42 (1999) 205-233.
[9] Á. Szendrei, Clones in Universal Algebra, in: Séminaire de Mathématiques Supérieures (Seminar on Higher Mathematics), vol. 99, Presses de l'Université de Montréal, Montreal, PQ, 1986.

[^0]: 1 This is the majority function for $r=3$.

[^1]: ${ }^{2}$ I am sure that after careful checking we can improve the bound.

