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JONSSON ALGEBRAS IN
SUCCESSOR CARDINALS

BY
S. SHELAH'

ABSTRACT

We shall show here that in many successor cardinals A, there is a Jonsson
algebra (in other words Jn(A), or A is not a Jonsson cardinal). In connection
with this we show that, e.g., for every ultrafilter D over w, in (w,, <)“/D there
is no increasing sequence of length N~ On Jonsson algebras see e.g. [1]; for
successor A* =2 there is a Jonsson algebra, Jn(A) > Jn(A*) (due to Chang,
Erdds and Hajnal) and even in 2" = R..., ([3]). We give here a method to
prove, e.g., Jn(N...,) when 2% =8_., and Jn(2") when 2 =N, ., @ < w;; and
similar results for higher cardinals.

Questions. (1) Does Jn(N....) always hold?
(2) Does Jn(A") always hold, or at least when (A")*=A"?
(3) Does always N...; € Pcf(N,: n < w)?

DeriNiTION 1. (A) A Jonsson algebra is an algebra M, with countably many
operations (finitary, of course), which has no proper subalgebra of the same
cardinality. A Jonsson model is a model with countably many relations and
operations which has no proper elementary submodel of the same cardinality.

(B) Jn(A), or A is not a Jonsson cardinal if there is a Jonsson algebra of
cardinality A. This is equivalent to the existence of a Jonsson model (expand by
Skolem functions).

ConvenTiON 2. (A) We do not distinguish between a model and its uni-
verse; and unless stated otherwise a model has only countably many operations
and relations.

(B) For simplicity we restrict ourselves to models of the form M,, where M,
will be (H(A*), €) for A*> A (e.g. (2")") (H(A*) is the family of sets whose
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transitive closure has cardinality < A*); let M3 be an elementary submodel of
M, of cardinality A, A + 1C M3, and M, = (M3, €, F) where F is a one-to-one
function from A onto M3:. So M will denote some M,.

Notice that Jn(A) implies that any M, is a Jonsson model (proof as for 4A). If
there is a Jonsson algebra % = (A, f )ic. then A € M}, thus M, “there is a
Jonsson algebra on A”’. By way of contradiction, assume there is a N <
M,,N# M,,|IN||= A. Clearly (since A is definable in M, as supDomF) A €N
and Nk “there is a Jonsson algebra on A”. Let B be such an algebra but
BNAN<B,BNN#AB (for AZN) and |BNN|=[|ANN|=A This is a
contradiction to % being Jonsson.

Derinion 3. (A) For sets S5, S; of cardinals, and a cardinal (or ordinal)
i, Si— S>[p ] means that for every M (as in 2B) and N <M, if

(i) m+1CN (for u = N, this is empty),

(i) for every A € Si,|]A NN|=4,

(iii) S;C N (if each A € S, is a successor, this follows by (ii)),

(iv) $i,$:€EN,
then for some AES,, |[ANN|=A and A €N. (The interesting case is
SupS,=SupS.+pu.)

(B) When S, = {\} we write A instead of S, and instead of S1U S7 we write
S, §3. Note that in 3(A) we can replace S; by a sequence, and nothing changes.

For Notational simplicity let SupS = U{A +1: A € S}

OBSERVATION 4. (A) S,— S,[p] iff (*) iff (#x), where
(*) There is a model No, Sup S, C No, Ny has =|u | operations and relations
and if N<No,,[NNA|=XAEN foreach A €S, then [NNA[=A,A EN for
some A € S,.
(**) There is a model N, as in (*) with universe Sup S;.

(B) In Definition 3A(i) we can demand only u C N or even |u |C N for p
ordinal.

(C) In Definition 3A we can demand M to vary only on M, < H(A*) where
A =Sup S, and A* > A is a constant, and demand some specific elements € M.

PrROOF. S,— S;[u]=> (*): take A =Sup S, No=(M,, S1, Sz, 1 )i=p-

(*) > (#): take Noasin (*). Since any N; < Nps.t. Sup S, C N, satisfies (*)
we can assume || No| = Sup S,. Add Skolem functions to N, and add a name to
each formula, getting a model N satisfying (*). Take N, = N, [ Sup S;. We show
N; satisfies (**). Let N3 < N such that (VA € S;) (A € Nia,A N N3 = A); take
N'—the Skolem closure of N3 in No. By (*) for N, there is A € S;s.t. A € Ngand
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[ANNy/=A Since |[NjNSupS,=|N;| we have A €S, st. A EN; and
[A N N3 = A

(**) > Si— S:[u]. Suppose N, is as in (*+), and with minimal u (for the given
$.,S:); hence u € M,. Suppose N <M,, as in 3(A). Now N, € M, but as
Mi< M} wlo.g. No€ M3 and even Ny € N. So N, the submodel of N, with
universe Ny N ={a: Nk “a € Ny}, has universe N N Sup S, and N§ < N,.

By the hypothesis of 3(A), the hypothesis of (*) holds, so for some A € $»,
ANN¥ =AEN}$ hence |A N N|=A EN, so we finish.

(B), (C) Easy from (A).

The basis of our proof is the following

OBSERVATION 5. (A) If A — u*[No] for every p < A, then Jn(A).

(B) If N, —>u*[un] for every u <N, and a CN<M,,[N|[=N, then
N = M,.,.

(C) If N<M,|N|=A, and for each p EN,u <AINNu*|=p" then
N = M,.

(D) If Jn(A), then A — x[No] for every « = A.

Proor. (A) By (C);let N<M,[N| = A, now u €N implies " € N,soby a
hypothesis [INNu™[=n".

(B) Like (C), as for u <A, u =N, for some B <a hence u €N.

(C) Because of the function F it suffices to prove A C N, and we know
INNA|=A

Let & be a maximal cardinality for which u C N. If 4 = A we finish, and if
4 €EN then by a hypothesis [INNu™|=pn", but then u*CN (there is
f = f* €N, such that for every B <u™,x » f(B,x) is a map from u onto 8; so
for each a < p”, there is BEN,a < B <u”, so for some vy < u,f(B,7)= a,
hence a € N). So w & N. Choose a minimal e, u =@ EN; as [a|EN,a is a
cardinal. Clearly « < A (as||N| = A, and by F)so |e|" € N, hence [N N{a|"|=
al',soforsome y EN,a <y <|al,INNy|=|a|>pu, using f*'(y, x) we get
a contradiction.

(D) By 4(x).

Lemma 6. (A) If So— Si[n], and for each «k €S8, So,k = S:[u] then
So— Sofu].

(B) If A, (i = a) is an increasing sequence of cardinals, and A, —{A;: j <i}[u]
then . — Ao[u | (we can replace the assumption by : for every i for some nonempty
S C{a:j<ih,h—Sfr)).

(C) The relation S,— S,{p] is preserved under increasing S,, S, and p.
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PrOOF. (A) By 4(*) there is a model on A =SupS, with =gy relations
demonstrating that S,— S[x]. Add fo this model u relations demonstrating for
every k € Si: So, k = S;[u]. The resulting model shows So— S;[u].

(B), (C) Similar proofs.

By 5 and 6(B), in order to prove the existence of Jonsson algebras it suffices to
prove enough cases of the form A — S[N,).

LEMMA 7. (A) A*— A[No] (hence by 6(A) Ru.n — N [No]).

(B) A = cfA[R,].

(C) 2* > A[No] when 2* <2 for every u < A.

D) A=>{A:i<8}8] if A<MAEPCHA:i<8) (see below). If
A € PScp{Ai: i < 8), we can strengthen the demand in 3(A) to {i: NN A |# D
mod D.

DEFINITION 8. (A) A € PScpA (A is a possible scale for A), where A =
(Ai: i <8),D afilter over §,D 2 D(8)={A C &: 6§ — A bounded}, if A, A, are
regular cardinals or 1 and there are functions f,(a < A) exemplifying it, i.e.

(@) fu(i)<A; for i <8, and Domf, = § (that is f, € [[,-;A),
(b) fu=pfs for @ < B (this means that {i: f.(i)= fs(i)} € D),
(c) we cannot define f, satisfying (a) and (b).

(B) A €E PcfA iff A € PScpA for some ultrafilter D over 8.

(C) A EPScA if A EPScpeyh

(D) A is D trivial if {i: A, = 1} € D; we always assume A is not D-trivial.

OBSERVATION 9. (A) If A € PScpA, A = (A, i <§),2°' < A, then A € PcfAX.

(B) A €EPScp (A1 i<8) is equivalent to A =cf[ll,c;A;/D], for D an
ultrafilter.

(C) Suppose h: 8'— 8% h,: 8> 8', D, a filter over &',

{i<é“"A=ZuwlED,AED, > {i: h(i)EA}E D,,
{i: bhi()=jiAny =} E D,
and 8°~AZD,=> 8 —{h(j):jEA}Z D,. Then u € PScp,{;: j <8 im-
plies u € PScplAi: i < 8%).
D) A= {A:i<8}8])if A € PScp{hiii <),
ProOF OF LEMMA 7. (A), (B), (C). Immediate.
(D) Let M, N be as in Definition 3 (so A,{A:: i <8}E N, 5+ 1C N). W.lo.g.

(Mi:i<8)EN,DEN (by 4C); so there is (f.: a <A)E N exemplifying
AEPScp{Ai:i<8). As6+1C N, A €N foreach i Ifforeachi [NN A< A,
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then A; ={f.(i): «a E NN A} is a subset of A\; of cardinality <A, so by A’s
regularity it has an upper bound < A; which we call f,(a). It follows that for
a ENf.<ps /i hence f,<pfi: as|NNA|=A, and <,, is transitive f, <pf, for
each a < A; a contradiction.

Now we shall prove some cases of A € PScA.

Lemma 10. (A) Let A; (i <) be increasing, 8 <A, =2i<sA;, each A\ a
successor (at least for i limit or for an unbounded set of i’s), then for any
fo €EMLicsAd (@ < A,) there is an upper bound in Il,<;A;/D(8). Hence A €
Pcfp (At i < 8) implies A > A .

(B) A € Pcfp (Ai: i <8) implies A =15\ (as cardinals).

(C) For every A, D, for some A, A € PScp (A;: i < 8).

(D) If |TlicsAi /D |= A, D D D(8) and the assumption of (A) holds then
A3 E PScpA.

Proor. Immediate (in (A) choose f such that [a |* < A; implies f, (i) < f(i)).

LemMma 11.  Suppose A=(A:i<k)k regular < A, = Zi.. A, A isincreasing.

(A) If AEPScoh, A, <p <A u regular, D Ni-complete or 2 <y then
pw EPScp(Aii i <k) for some Ai= A, (AL i <k) is not D-trivial.

(B) In (A), instead of A € P Scp A it suffices to assume: in i< A/D there is a
<p-increasing sequence of length (. (or even =p-increasing, if it is not eventually
constant by =p).

(C) Notethatin (A) and (B)if AT <A, =pu (foreveryi)then Z;c A=A ,.

(D) If « >Ro or 2= A, then u = A satisfies the requirement on pu in (A) for
D = D(8). (In the first case D is R,-complete and in the second 2* < u.)

Proor. (A) follows from (B).

(B) Let f. (a <p) be <p-increasing (in [l A;//D) s.t. Va<u) BB <u)
(¢ < B A fa=bfs). If they would exemplify u € P Scp A, we finish. Otherwise
we shall show that

(*) there is fEIl..A/D such that f,=pf, for a <pu, but for no g is
f-=pg<of for every a < pu.

Now (*) is sufficient, for let A;= cff(i), A; C f(i) a close unbounded set of
order-type cff(i), Ai ={a(i,j): j <A} (a(ij) increasing with j) (if f(i) is a
successor ordinal A;=1).

Let fo(i)=min{j: a(i,j)=f.(i)}, then f. (a<u) exemplify u€
PScp{Ai:i<k), (A1 i<k)isnot D-trivial, as otherwise we find g contradict-
ing (*).
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Let us prove (+).

Case (i). D is N,-complete.
In this case <, is well-founded, as we assume there is f € Il Ai/D, f. =, for
every a < u, there is one as required.

Case (ii). 2" <upu.

It is well known that there is no decreasing sequence of length (2)* in <p. So
define by induction on y f* €Il,.,A;, such that B <y > f*<pff, anda <pu >
fa=pf". Now f° exists by an assumption in the beginning of the proof. So there is
a first y, for which f* is not defined. We shall now prove vy, is a successor so f!
is as required. As mentioned above y,<(2")". Let P, ={f"(i); vy < ¥o} C A, so

P.|=2" Let (i< A/D, =,P)=1L(A;, =p, P)/D so |P|=1l., P.[|=2". Now
2" < p, p regular so for some ap, < p, foreverya €E P,and ap £ a < p, fuu=pa &
f-=pa. Now

(A =, P)E V)@ 2)(P(z)Ax =2)>@y)I(P(y)rx = y)a
Vz)P(z)rx=z—y=2)].

This is a Horn sentence, so (Ili<.A:/D, =p, P) satisfies it, so taking f,, for x the
antecedent holds {z = f°) so we get f for y. So f.,=pf hence for every a f.<pf
by the choice of f.,; also f=pf” as (Il;<.Ai /D, =p, P)=P(f*) A fuy=p f". Clearly
f is as required.

(C), (D) left to the reader.

ConcrusioN 12. For N, singular, D an ultrafilter over cf$§, in (ws, <)*%/D
there is no increasing sequence of length N, where y = (|8|*/D)".

Proor. Otherwise for every 8 < vy, 8 successor, 8 > 8 there are a(B,i)< 8
(i <cf8) such that cf[Il,cs(@aes.iyy <)/D] =8 (by 11A, 9A) but the number of
possible (@ (B, i): i <cfd) is =|8|“*/D, contradiction.

This has relation to Galvin and Hajnal [2], but 12 is applicable when ¢f8 = 8,
too. In fact

CrLaim 13. If N, is singular, cfd > No, u ENRY? regular,
(Va < 8)(Vk <cf8)R:E <N, then for some a(i)<8,p € PSc(N.y: i <8).

If B(i) (i <cf8) are increasing and continuous with limit §, for u = N;., we
can choose a(i)= B(i)+ 1 provided that II..; N.) = N ).

We can now apply our theorems.

Concrusions 14, (A) In(N....) if 2" =N, ...
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(B) If (VA) (ctA >N,— A" = 1) and there is no weakly inaccessible cardinal
then (VA) Jn(A7).

Proor. (A) First note that for any non-principal ultrafilter D over o,
N,..1 € PSco (R, k < w) (for some n(k)< o) (if 2" = 8., by 10(D), other-
wise for some A, A €E PScp(R.: n <w); by 10(A) A >N, by 11A R, E
PScp (R.«): k <w) for some n(k)). For a given m <ew, we can assume
nk)zm (as {k:n(k)<m}€D), by 7(D) R..i—{Nuuy k <w}[R]. As
N, — N, [No] for n = m (by 7A), by 6(A) N.... = K. [No]. So by 5(A) In(R....).

(B) Left to the reader.

CoNcLUSION 15. Jn(2%) if 2" =N..;, a < w,.

Proor. Let B < a and we shall prove R,.;—> Ng.i[No] (this is sufficient by
5A). We define increasing B(i)= a + 1,and S; C {Ns(y: j < i}, B(0)= B + 1, each
B(i) is a successor, to satisfy 6(B). For i=0,8(0)=B+1,B8(+1)=
B(i)+ 1,81 = {Rpq}. For i limit of cofinality w let i, < i be increasing with limit
i,Si = {Nau,) n <o}, and we choose a successor B(i)>U.B(i,), B(I)=a+1
such that Mg, — S:[No]; we can do it by 10C and 10A, B. By 6B N...—> 8g.1[No],
thus we finish.

LEMMA 16. IfA — u*[No] forevery u,Ad=p <A and N <M,,|N| = A then:
A) If vo=Ep=Athenp €ENand |[pu NN|=p (s0 A = u[No]).

(B) For every a € A there is b such that a € b € N, and |b| < Aq.

(C) If Ao= A then In(A).

Proor. (A) Like 5(A) (notice we can assume A, is minimal with such
properties, hence definable in M, ).

(B) Let x4 be a minimal cardinal such that for some b,,|b. |=yx,a € b, €EN.
Now u = A as we can choose b, = A.

Let us prove u < Ay; otherwise as b, € N alsou = |b, | € N, soin N there is a
function f from u onto b,. We know by 15(A) that [u NN |=u, so NNy is
unbounded in y, so there is @ < u,a € N such that a € {f(8); B <a}. Now
b'={f(B): B<a}€E€ N contradicts x’s minimality.

(C) It suffices to prove A C N, so let a € A. By 15(B) there is b E N, |b|=
Ao, a € b, and as A € N we can assume [b|= A,. As[NNA|= A there is a set
A CANN,/A|=Aq and necessarily A € M, but possibly AZ N. Let F*€ N
be a function from A onto {B C A:|B|= Ay}; so for some i,j <A F*(i)=
A,F*(j)=b. By 15(A) there is CEN,|C|=A, such that ijeC.
{F*(a): a € C}is a family of = A, sets each of power exactly A,. So there is a
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function g € N,Domg = U.ccF*(a), such that for every a €C, {g(x): x €
F*(a)}=Domg (clearly [Domg|= Ao).

This holds for a =i, but g EN,A = F*(i)CN; so DomgCN,buta€ b=
F*(j),j€C so a€EN.

ConcLusion 17.  Suppose 2"« = N..,.,, then Jn(2") if (A) or (B) or (C):
(A) vy <w,

(B) 2% — u[Ro] for every u =]y,

(©) B<a > 2" <2" and Jn(R.) and y < N..1.

Proor. Similar to 14.
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