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JONSSON A L G E B R A S  IN 
SUCCESSOR CARDINALS 

BY 

S. SHELAH* 

ABSTRACT 

We  shall show here  that in many  successor cardinals A, there is a Jonsson 
algebra (in o ther  words Jn ()t), or  A is not  a Jonsson cardinal). In connection 
with this we show that,  e.g., for every ultrafilter D over to, in (to.. < )'/D there  
is no increasing sequence  of length N~e'0r. On  Jonsson algebras see e.g. [1]; for 
successor A § = 2 ~ there is a Jonsson algebra, Jn()t)  ::), Jn(A +) (due to Chang,  
Erd6s and Hajnal)  and even in 2"* = X~§ ([3]). We  give here  a method  to 
prove, e.g., Jn(X,~l)  when 2"0_--< X.+~ and Jn(2 "~ when 2 "~ = M~§ a < tog and 
similar results for higher  cardinals. 

QUESTIONS. (1) Does Jn(tt,+,) always hold? 

(2) Does Jn(A § always hold, or at least when (A§ "~ = A+? 

(3) Does always H,~+, • P cf(N, : n < to)? 

DEFINITION 1. (A) A Jonsson algebra is an algebra M, with countably many 

operations (finitary, of course), which has no proper subalgebra of the same 

cardinality. A Jonsson model is a model with countably many relations and 

operations which has no proper elementary submodel of the same cardinality. 
(B) Jn(A), or a is not a Jonsson cardinal if there is a Jonsson algebra of 

cardinality A. This is equivalent to the existence of a Jonsson model (expand by 

Skolem functions). 

CONVENTION 2. (A) We do not distinguish between a model and its uni- 

verse; and unless stated otherwise a model has only countably many operations 

and relations. 

(B) For simplicity we restrict ourselves to models of the form M~, where M~ 

will be (H(A*), E )  for A* >A (e.g. (2~) +) (H(A*) is the family of sets whose 
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transitive closure has cardinality < A*); let M] be an elementary submodel of 

M] of cardinality A, A + 1 C_ M], and MA = (M], E ,  F)  where F is a one-to-one 

function from A onto M]. So M will denote some M,. 

Notice that Jn (A) implies that any M, is a Jonsson model (proof as for 4A). If 

there is a Jonsson algebra ~ = (A,~)~,o then 9~ ~ M], thus M t ~  "there is a 

Jonsson algebra on A". By way of contradiction, assume there is a N < 

M~,N# M~,I}NI} = A. Clearly (since A is definable in M~ as s u p D o m F )  A E X 

and N ~  "there is a Jonsson algebra on A". Let ~ be such an algebra but 

~ N N < ~ , ~ N N # ~  (for A ~ N )  and I1~ nNII=I[,X NNI]=,~. This is a 

contradiction to ~ being Jonsson. 

DEFINITION 3. (A) For sets Sl, $2 of cardinals, and a cardinal (or ordinal) 

/x, St ~ S2[/z] means that for every M (as in 2B) and N < M, if 
(i) /, + 1 C_ N (for/* = No this is empty), 

(ii) for every A E S t ,  I A N N  I=A, 
(iii) St _C N (if each a E St is a successor, this follows by (ii)), 

(iv) st, s2 e N, 
then for some AES2,  t A A N [ = A  and A E N ,  (The interesting case is 

Sup St --> Sup $2 +/z.) 
(B) When St = {A} we write Z instead of St, and instead of S~ U S~ we write 

S~, S]. Note that in 3(A) we can replace St by a sequence, and nothing changes. 

For Notational simplicity let Sup S = U {A + 1: A E S}. 

OBSERVATION 4. (A) St---> S2[/z] iff (*) iff (**), where 
(*)  There is a model No, Sup St C_ No, No has _-< I/z I operations and relations 

and if N < No, IN n A t = h ,h  ~ N for each A E St then IN n h I = h,h E N for 

some A E $2. 
(**) There is a model No as in (*) with universe Sup $1. 

(B) In Definition 3A(i) we can demand only /~ _C N or even t/x I C_ N for /z  

ordinal. 
(C) In Definition 3A we can demand M to vary only on Mx < H(A*) where 

A = Sup St and A * > A is a constant, and demand some specific elements E Mx. 

PROOF. S1 '''~ $2[/~] =)' (*): take Z = Sup $1, No = (M,, St, $2, i),~,. 
( * ) ~ ( ** ): take No as in ( * ). Since any Nt < No s.t. Sup St _C Nt satisfies ( * ) 

we can assume I[Noll = Sup St. Add Skolem functions to No and add a name to 

each formula, getting a model N, satisfying (*). Take N2 = Nt t  Sup St. We show 

Nz satisfies (**). Let N ; <  N2 such that (VA E S 0 (A E N~'^ ~A n N~' I = A); take 

N~--the Skolem closure of N~' in No. By (*) for No there is A ~ $2 s.t. A E N~ and 
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N t  I ; t n N ; / = ~ .  Since I N ~ ! n S u p S l = l  zl we have A ~ S 2  s.t. A E N ~  and 

Ix n N~' I = A. 

(**) @ S, ---, S:[it ]. Suppose No is as in (**), and with minimal It (for the given 

S1,$2); hence It E M,. Suppose N < M~, as in 3(A). Now No E M], but as 

M ] <  M], w.l.o.g. NoE M 2, and even NoE N. So N*, the submodel of No with 

universe No n N = {a: N ~ " a  E No"}, has universe N n SupS~ and N~ < No. 
By the hypothesis of 3(A), the hypothesis of (*) holds, so for some h E $2, 

x n N*! = h E N* hence I h n N I = h E N, so we finish. 

(B), (C) Easy from (A). 

The basis of our  proof is the following 

OBSERVATION 5. (A) If A--> It +[No] for every It < h, then Jn()t). 

(B) If ~L --* it +[it ] for every I t < ~ L  and a_CN<MM~,I INII=~L then 

N = MMo. 

(C) If N < M , , [ [ N t I = A ,  and for each I t E N ,  it < h ,  I N n i t  + l = I t  § then 

N = M~. 

(D) If Jn(h) ,  then h ~ K[N0] for every K < h. 

PROOF. (A) By (C); let N < M ,  IINll = A, now It E N implies I t + ~  N, so by a 

hypothesis I N n It +l = tz +. 

(B) Like (C), as for It < h, it = N~ for some /3 < a hence /z E N. 

(C) Because of the function F it suffices to prove h _CN, and we know 

IN rl,~ I = A. 
Let It be a maximal cardinality for which It C N. If/~ = A we finish, and if 

It @ N then by a hypothesis IN n It+l = It+, but then /~+C N (there is 

f = f~ @ N, such that for every fl < It+,x ~ f(fl, x)  is a map from/~ onto fl; so 

for each a < It +, there is fl ~ N, a < fl < It +, so for some y < It, f(/3, 7) = a, 

hence a E N ) .  So I t ~ N .  Choose a minimal a, i t _ - < a E N ;  as l a l E N ,  a is a 

cardinal. Clearly a < h (as [[N[[ = A, and by F)  so ta  [+ ~ N, hence IN n la I§ = 

a [§ so for some y @ N, a < Y < l a 1 § 1N n y 1 = I a I > It, using fl~'(3, , x)  we get 

a contradiction. 

(D) By 4(*). 

LEMMA 6. (A) I f  S o ~  Sl[i t] ,  and for each K ~ S, So, K ---, S2[it] then 

So ~ S2[it ]. 

(B) IrA, (i < or) is an increasing sequence of cardinals, and h~--~ {hi: j < i}[it ] 

then A~ --~ Ao[/~ ] (we can replace the assumption by" for every i for some nonempty 

S, _c {X,: j < i}, A, ~ S,[it]).  
(C) The relation St--* S2[it] is preserved under increasing St, Sz and It. 
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PROOF. (A) By 4(*) there is a model on )t = S u p S o  with <-/z relations 

demonstrating that So--* Sl[/z ]. Add io this model/z relations demonstrating for 

every K E $1: So, r --* S~[g]. The resulting model shows S 0 ~  S2[/.t ]. 
(B), (C) Similar proofs. 

By 5 and 6(B), in order to prove the existence of Jonsson algebras it suffices to 
prove enough cases of the form A --~ S[No]. 

LEMMA 7. (A) A+---~A[~Io] (hence by 6(A)  N.+,---~N,[No]). 

(B) X --, cf X ['o1. 

(C) 2 ~ ~ A [No] when 2" < 2" for every tz < h. 

(D) A---~{A,:i<6}[8] if A,<A, A E P c f ( A , : i < 8 )  (see below). If  

A E P SCD (A, : i < 8), we can strengthen the demand in 3(A) to {i: IN fq A, [ ~ O 
mod D. 

DEFInmON 8. (A) A E P SCDA- (A is a possible scale for A), where A = 

(A, : i < 6), D a filter over 6, D 3 D(6) = {A C_ 8 :6  - A bounded}, if A, A, are 

regular cardinals or 1 and there are functions f, (a < A) exemplifying it, i.e. 

(a) [ . ( i ) <  A, for i < 6 ,  and Domf~ = 8 (that is f. E l'I,<sA,), 
(b) [.<--o[~ for t~ </3 (this means that {i: [,(i)<=[~(i)}E D), 
(c) we cannot define [~ satisfying (a) and (b). 

(B) ) t  E Pcf)~ iff )t E PScoA for some ultrafilter D over 6. 
(C) a E P Sc)~ if it E P SCD<~) ,~ 

(D) ,~ is D trivial if {i: Ai = 1} E D ; we always assume s is not D-trivial. 

OBSERVATION 9. (A) IrA ~ PScoA, A ={Ai: i < 6),21~l<A, then A E Pcf,~. 

(B) A E P S c D ( A ~ : i < 8 )  is equivalent to A=cf[II~<~A,/D], for D an 
ultrafilter. 

(C) Suppose h: 81~8:,h1: 6 2 ~ 8 1 ,  Dt a filter over 6', 

{i <81:  A, >= txh~o}E D~,A E Dz ~ {i: h( i )E  A }E D1, 

{j: hh~(j)= fi Ah,O) = Ixi}E D2 

and 62 - A ~ D2 f f  8 ~ - {h~(j): j E A } ~ D~. Then /z E P SCD~(/Zj : j < 85) im- 

plies /z E PSCD,(Ai: i < 61). 

(D) A ---> {A~: i < 8}[8] if A E PScD(A,:i < 8). 

PROOF OF LEMMA 7. (A), (B), (C). Immediate. 

(D) Let M, N be as in Definition 3 (so A, {A~ : i < 6} E N, 8 + 1 C N). W.l.o.g. 

( A , : i < 8 ) E N ,  D E N  (by 4C); so there is ( / ~ : a < A ) E N  exemplifying 

A E P Sco CA,: i < 8). As 8 + 1 _C N, A, E N for each i. If for each i IN tq A, I < A,, 
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then At = {f~(i): a E N fq A} is a subset of A, of cardinality < hl, so by A~'s 

regularity it has an upper bound < A~ which we call f~(a). It follows that for 

a E Nf,,<o<s)fx hence f , ,<of , :  as IN fq A I = A, and <o  is transitive f~<of ,  for 

each a < A ; a contradiction. 

Now we shall prove some cases of A ~ P ScX. 

LEMMA 10. (A) Let A, (i < 6) be increasing, 6 < A, = E~<~A~, each A, a 

successor (at least for i limit or for an unbounded set of i 's),  then for any 

)r EII~<~A~ (a < A , )  there is an upper bound in I]~<~A~/D(6). Hence A E 

P cfo ( A~ : i < 6) implies A > A ,. 

(B) A ~ Pcfo (A~ : i < 6) implies A _-< l-I~<nA~ (as cardinals). 

(C) For every A,D, for some A, A E PSco(A~: i < 6 ) .  

(D) If  11]~<sA~/DI = A, ,  D D_D(6) and the assumption of (A) holds then 
+ 

A, E P ScoA. 

PROOF. Immediate (in (A) choose f such that let I + < A, implies f~ (i) < f(i)) .  

LEMMA 11. SupposeA =(A,: i <K) ,rregular  < A , =  E~<.A,A~isincreasing. 

(A) If A E P Sco)t', A, < IX < A,/z regular, D l~l-complete or 2* < IX then 

IX E PSco (A'~: i < K) for some h'~_--< h~,(h'~: i < K) is not D-trivial. 

(B) In (A), instead of h E P Sco J( it suffices to assume : in IL <. A,/D there is a 

<o-increasing sequence of length tz (or even <=o-increasing, if it is not eventually 

constant by =o ). 

(C) Note that in (A) and (B) ira 7 < h , <- Ix ([or every i) then E~<,A'~ = h ,.  

(D) If  K > no or 2 '̀ 0 _--< A, then tx = h ,  satisfies the requirement on Ix in (A) J:or 

D = D(6) .  (In the first case D is N~-complete and in the second 2 ~ < I~.) 

PROOF. (A) follows from (B). 

(B) Let L (a <IX) be do-increasing (in FI,<,A,/D) s.t. (Vot < / z )  (=1/3 < ~ )  

(a < ~ ^ --af,~ =ofo). If they would exemplify ~ E PScoA, we finish. Otherwise 
we shall show that 

(*) there is fE I I ,< ,A , /D  such that f~<=of, for a </z,  but for no g is 

f , , < o g < o f  for every a <IX. 

Now (*) is sufficient, for let A'i = c f f ( i ) , A ,  C_f(i) a close unbounded set of 

order-type cff( i) ,A~ ={a( i , j ) :  j <A]} (a( i , j )  increasing with j)  (if f ( i )  is a 

successor ordinal A'~= 1). 

Let f ' ( i ) =  min{j: a( i , j )>- f , ( i )} ,  then f "  (a <IX) exemplify IX E 

P Sco (A ',: i < K ), (A'~: i < K ) is not D-trivial, as otherwise we find g contradict- 
ing (*). 
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Let us prove (*). 

Case (i). D is N1-complete. 

In this case < o  is well-founded, as we assume there is f E IL<KA,/D, f~ <=of for 

every a </z ,  there is one as required. 

Case (ii). 2" </z .  

It is well known that there is no decreasing sequence of length (2K) * in <D. So 

define by induction on y f"  E 1-I,<,A~, such that/3 < y => f ~ < o f  ~, and a < ~  

f .  <of ' .  NOW fo exists by an assumption in the beginning of the proof. So there is 

a first 3'o for which f'o is not defined. We shall now prove 3~o is a successor so f "o-~ 
is as required. As mentioned above 3'0 < (2")+. Let P~ = {f ' ( i ) ;  3~ < 3/o} _C hl, so 

P,I_-<2 ". Let (IL<.A,/D, <-,P)=ll,(A,,<-o,P,)/D so IV/<=II,<.~e,l<=2". Now 

2" < /z ,  p. regular so for some ao < p., for every a E P, and ao <-- a < ~,f~o<o a r 
f.<--oa. Now 

(x,, -<, P , )  ~ ( v  x ) [ ( 3  z)(P(z) ^ x _-< z ) - - ,  (a  y ) l ( P ( y )  ^ x -< y )  ^ 

(Vz)(e(z)^x _-< z ~ y _-< z ) ] ] .  

This is a Horn sentence, so (II,<.X,/D,--<D. P) satisfies it, so taking f.o for x the 

antecedent  holds (z = [o) so we get f for y. So f,o<=of hence for every a f~<=of 
by the choice of f~; also ]:<of" as (II,<. A,/D, <=o, P )~P( f ' )  ^ f~o~-<--Df7 Clearly 

.if is as required. 

(C), (D) left to the reader. 

CONCLUSION 12. For N~ singular, D an ultrafilter over cf& in (tos, <)~'~/D 

there is no increasing sequence of length N, where y = (18 I"~/D) +. 

PROOf. Otherwise for every /3 < y,/3 successor, /3 > B there are a (/3, i) < 8 

(i < cfS) such that cf[II,<~(to.t~, o, < )/D] = ~t~ (by l l A ,  9A) but the number of 

possible (a(/3, i): i < cfS) is =< IS I'll~D, contradiction. 

This has relation to Galvin and Hajnal [2], but 12 is applicable when cf8 -- No 

too. In fact 

CLAIM 13. If N, is singular, cf/~ >No,/Z --<N~'* regular, 

(Vtx < cS)(Vk <cfS)N~ <N~ then for some a ( i ) <  &/.t E PSc(N.o~: i < 8). 

I f /3( i )  (i < cfS) are increasing and continuous with limit & for ~ = N,+~ we 

can choose a(i)=/3( i )+ 1 provided that II,<jN.0)_--< N~0). 

We can now apply our theorems. 

CONCLUSIONS 14. (A) Jn(N~+t) if 2"~ 
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(B) If (VA) (cfA > N,,---~ )t '~ = )t) and there  is no weakly inaccessible cardinal  

then (VA) Jn(A+). 

PROOF. (A) First no te  that for  any non-principal  ultrafil ter D over  to, 

No+, E PSco  (N.~k~: k < to) (for some n ( k ) <  to) (if 2 -o= No., ,  by 10(D), other-  

wise for  some )t, A E P S c o ( N . : n < ~ o ) ;  by 10(A) )t >No,  by l l A  No+IE 

PSco(N.ck~: k < t o )  for  some n(k) ) .  For  a given m <to ,  we can assume 

n ( k ) > m  (as {k: n ( k ) < m } a e  D),  by 7(D) No+l--->{N.~k~:k<to}[No]. As 

N. --, N .  [No] for n -> m (by 7A), by 6(A) N~+t ~ N~ [N0]. So by 5(A) Jn (N..~). 

(B) Left  to the reader .  

CONCLUSION 15. Jn (2 "~ if 2 -0 = N.+~, a < to~. 

PROOF. Let  /3 < a and we shall p rove  N..1--* N~+~[No] (this is sufficient by 

5A). We  define increas ing/3( i )  _-< a + 1, and S~ _C {N~(i~: j < i},/3(0) = /3  + 1, each 

/3(i) is a successor, to satisfy 6(B). For  i=O,  f l ( O ) = / 3 + l ,  f l ( i + l ) =  
f l( i )  + 1, S~+~ = {N~to}. For  i limit of cofinality to let i. < i be increasing with limit 

i,S, = {N~o.~: n < to}, and we choose a successor / 3 ( 0 >  U./3(i.),/3(i)<=e~ + 1 

such that  N~,~---> S,[No]; we can do it by 10C and 10A, B. By 6B N~+I--~ N~+I[NO], 

thus we finish. 

LEMMA 16. I[)t ~ tz *[no] for every tz, )to --</z < h and N < M,, II N 11 = )t then : 

(A)  I f  )to =</z _-< )t then/x E N and I~ n N I = ~ (so)t  --, g [No]). 

(B) For every a E )t there is b such that a ~ b E N, and I bl < )to. 

(C) I f  h ~o = )t then Jn ()t). 

PROOF. (A) Like 5(A) (notice we can assume ;to is minimal with such 

proper t ies ,  hence  definable in M~). 

(B) L e t / z  be a minimal cardinal  such that for  some b,,, I b,, I --</.t, a E b,, ~ N. 

Now /.t _-< )t as we can choose  b~ = )t. 

Let  us prove/ . t  < )to; o therwise  as b~, ~ N also/x = I b,, I ~ N, so in N there  is a 

function f f rom /z on to  b,,. We  know by 15(A) that I/x O N I = /z ,  so N n / x  is 

u n b o u n d e d  in /~, so there  is a </~,  o~ E N such that a E {f(fl); fl < or}. Now 

b '  = {f(/3):/3 < a}  E N c o n t r a d i c t s / z ' s  minimality.  

(C) It suffices to p rove  )t _C N, so let a E A. By I5(B) there  is b E N, tb t <= 

)to, a E b, and as )t0E N we can assume Ibl =)t0. As IN  n A I = A there  is a set 

A C_ 3, n N, !A / = A0 and necessarily A E M 1 but  possibly A ~ N. Le t  F*  E N 

be a funct ion from )t on to  { B _ C A : I B I = A o } ;  so for  some i , ] < A , F * ( i ) =  

A , F * ( I ) = b .  By 15(A) there  is C ~ N ,  ICI<=)to such that i, j E C .  

{F*(ct): a E C} is a family of -< )to sets each of power  exactly )to. So there  is a 
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function g ~ N ,  D o m g  = U ~ c F * ( a ) ,  such that for every a E C, {g(x): x E 

F*(a)}  = D o m g  (clearly I D o m g / =  ;to). 

This holds for a = i, but g EN,  A = F*(i)C_N; so Doing  _CN, but a E b = 

F* ( j ) , j  E C so a E N. 

CONCLUSION 17. Suppose 2"- = N.+,§ then Jn(2"~) if (A) or (B) or (C): 

(A) y < a~, 

(B) 2"- ~ / z  [No] for every ~ =< t Y I, 

(C) /3 < a ~ 2"~' < 2"-, and Jn (I,1,,) and 3' < N,,+,. 

PROOF. Similar to 14. 
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