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(Communicated by Carl G. Jockusch, Jr.)

Abstract. We introduce a large cardinal property which is consistent with L
and show that for every superatomic Boolean algebra B and every cardinal λ
with the large cardinal property, if tightness+(B) ≥ λ+, then depth(B) ≥ λ.
This improves a theorem of Dow and Monk.

In [DM, Theorem C], Dow and Monk have shown that if λ is a Ramsey cardinal
(see [J, p.328]), then every superatomic Boolean algebra with tightness at least
λ+ has depth at least λ. Recall that a Boolean algebra B is superatomic iff every
homomorphic image of B is atomic. The depth of B is the supremum of all cardinals
λ such that there is a sequence (bα : α < λ) in B with bβ < bα for all α < β < λ (a
well-ordered chain of length λ). Then depth+ of B is the first cardinal λ such that
there is no well-ordered chain of length λ in B. The tightness of B is the supremum
of all cardinals λ such that B has a free sequence of length λ, where a sequence
(bα : α < λ) is called free provided that if Γ and ∆ are finite subsets of λ such that
α < β for all α ∈ Γ and β ∈ ∆, then⋂

α∈Γ

−bα ∩
⋂

β∈∆

bβ 6= 0.

By tightness+(B) we denote the first cardinal λ for which there is no free sequence
of length λ in B.

For b ∈ B we sometimes write b0 for −b and b1 for b.
We improve Theorem C from [DM] in two directions. We introduce a large

cardinal property which is much weaker than Ramseyness and even consistent with
L (the constructible universe) and show that in Theorem C from [DM] it suffices
to assume that λ has this property. Moreover we show that it suffices to assume
tightness+(B) ≥ λ+ instead of tightness(B) ≥ λ+ to conclude that depth(B) ≥ λ.
In particular we get:

Theorem 1. Suppose that 0] exists. Let B be a superatomic Boolean algebra in
the constructible universe L, and let λ be an uncountable cardinal in V . Then in L
it is true that tightness+(B) ≥ λ+ implies that depth+(B) ≥ λ.
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3476 SAHARON SHELAH AND OTMAR SPINAS

For the theory of 0] see [J, §30]. Note that λ as in Theorem 1 is a limit cardinal
in L; hence it suffices to show that, in L, depth(B) ≥ κ for all cardinals κ < λ.
As was the case with the proof of Theorem C of [DM], we can’t show that, under
the assumptions of Theorem 1, depth(B) = λ is attained, i.e. that there is a
well-ordered chain of length λ.

For the proof we consider the following large cardinal property:

Definition 2. Let λ, κ, θ be infinite cardinals, and let γ be an ordinal. The rela-
tion Rγ(λ, κ, θ) is defined as follows:
For every c : [λ]<ω → θ there exists A ⊆ λ of order-type γ, such that for every
u ∈ [A]<ω there exists B ⊆ λ of order-type κ such that ∀w ∈ [B]|u| c(w) = c(u).

Lemma 3. Assume Rγ(λ, κ, θ), where γ is a limit ordinal. For every c : [λ]<ω → θ
there exists A ⊆ λ as in the definition of Rγ(λ, κ, θ) such that additionally c�[A]n

is constant for every n < ω.

Proof. Define c′ on [λ]<ω by

c′{β0, . . . , βn−1} = {(v, c{βi : i ∈ v}) : v ⊆ n}.
As θ is infinite we can easily code the values of c′ as ordinals in θ and therefore
apply Rγ(λ, κ, θ) to it. We get A ⊆ λ of order-type γ. We shall prove that c�[A]n

is constant, for every n < ω. Fix w1, w2 ∈ [A]n. Since γ is a limit, without loss
of generality we may assume that max(w1) < min(w2). Let w = w1 ∪ w2. By
Definition 2 there exists B ⊆ λ, o.t.B = κ, such that c′�[B]2n is constant with
value c′(w). Let (βν : ν < κ) be the increasing enumeration of B. We have

c′{β0, . . . , β2n−1} = c′{βn, . . . , β3n−1}.
By the definition of c′ we get

c{β0, . . . , βn−1} = c{βn, . . . , β2n−1} =: c0.

This information is coded in c′{β0, . . . , β2n−1}, i.e.

({0, . . . , n− 1}, c0), ({n, . . . , 2n− 1}, c0) ∈ c′{β0, . . . , β2n−1}.
As c′{β0, . . . , β2n−1} = c′(w), we conclude c(w1) = c(w2) = c0.

Theorem 4. Assume Rγ(λ, κ, ω), where γ is a limit ordinal. If B is a Boolean
algebra and (aν : ν < λ) is a sequence in B, then one of the following holds:

(a) there exists A ⊆ λ, o.t.(A) = γ, such that (aν : ν ∈ A) is independent;
(b) there exist n < ω and a strictly increasing sequence (βν : ν < κ) in λ such

that, letting

bν =
⋃
k<n

⋂
l<n

aβn2ν+nk+l
,(∗ )

we have that (bν : ν < κ) is constant;
(c) there exists a strictly decreasing sequence in B of length κ.

Corollary 5. Assume Rγ(λ, κ, ω), where γ is a limit ordinal. If B is a superatomic
Boolean algebra, then tightness+(B) > λ implies Depth+(B) > κ.
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TIGHTNESS AND DEPTH IN SUPERATOMIC BOOLEAN ALGEBRAS 3477

Proof of Corollary 5. Let (aν : ν < λ) be a free sequence in B. As a superatomic
Boolean algebra does not have an infinite independent subset, (a) is impossible.
Suppose (b) were true. Define bν as in (∗). Clearly we have

−bν ≥
⋂

k,l<n

a0
βn2ν+nk+l

, and

bν ≥
⋂

k,l<n

aβn2ν+nk+l
.

Hence if ν < µ and bν = bµ, we obtain

0 = −bν ∩ bµ ≥
⋂

k,l<n

a0
βn2ν+nk+l

∩
⋂

k,l<n

aβn2µ+nk+l
.

This contradicts freeness of (aν : ν < κ). We conclude that (c) must hold.

Proof of Theorem 4. Define c : [λ]<ω → [<ω2]<ω by

c{β0 < · · · < βn−1} = {η ∈ n2 :
⋂
i<n

a
η(i)
βi

= 0}.

Note that c{β0 < · · · < βn−1} = c{α0 < · · · < αn−1} implies that {aβ0 , . . . , aβn−1}
and {aα0 , . . . , aαn−1} have the same quantifier-free diagram, i.e. for every quantifier-
free formula φ(x0, . . . , xn−1) in the language of Boolean algebra,

B |= φ[aβ0 , . . . , aβn−1] ⇔ B |= φ[aα0 , . . . , aαn−1 ].

Let A ⊆ λ be as guaranteed for c by Rγ(λ, κ, ω). By Lemma 3 we may assume that
c�[A]n is constant, for every n < ω.

If (aα : α ∈ A) is independent, we are done. Therefore we may assume that this
is false. For m < ω define

Γm = {η ∈ m2 : ∃{β0 < · · · < βm−1} ⊆ A
⋂

i<m

a
η(i)
βi

= 0}.

By assumption, in the definition of Γm the existential quantifier can be replaced by
a universal one to give the same set. There exists m < ω such that Γm 6= ∅. Define

Γ′
m = {η ∈ Γm : no proper subsequence of η belongs to

⋃
k<m

Γk}.

By Kruscal’s Theorem [K], we have that
⋃

m<ω Γ′
m is finite. Let n∗ be minimal

such that
⋃

m<ω Γ′
m =

⋃
m<n∗ Γ′

m. Then clearly we have that, for every m < ω and
η ∈ Γm, η has a subsequence in

⋃
k<n∗ Γ′

k. Let m∗ = (n∗)2, and let

τ(x0, . . . , xm∗−1) =
⋃

l<n∗

⋂
k<n∗

xn∗l+k.

Claim 1. If η ∈ m∗
2, t ∈ {0, 1}, and τ [η(0), . . . , η(m∗ − 1)] = t in the Boolean

algebra {0, 1}, then |{i < m∗ : η(i) = t}| ≥ n∗.

Let (βν : ν < γ) be the strictly increasing enumeration of A, and define

bν = τ [aβm∗ν
, aβm∗ν+1 , . . . , aβm∗ν+m∗−1 ],

for every ν < γ, where the evaluation of τ takes place in B, of course. It is easy
to see that the sequence (bν : ν < γ) inherits from (aβν : ν < γ) the property that
any two finite subsequences of same length have the same quantifier-free diagram.
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Claim 2. If η ∈ Γn, then
⋂

i<n b
η(i)
i = 0.

Proof of Claim 2. Otherwise there exists an ultrafilter D on B such that
⋂

i<n b
η(i)
i

∈ D. Define ζ ∈ nm∗
2 by ζ(i) = 1 iff aβi ∈ D. Then

⋂
i<nm∗ a

ζ(i)
βi

∈ D, and hence
ζ 6∈ Γnm∗ . Let h : B → B/D = {0, 1} be the canonical homomorphism induced by
D. We calculate

1 = h(
⋂

i<n b
η(i)
i ) =

⋂
i<n h(bi)η(i) =

⋂
i<n τ [h(aβm∗i

), . . . , h(aβm∗(i+1)−1)]
η(i)

=
⋂

i<n τ [ζ(m∗i), . . . , ζ(m∗i + k), . . . , ζ(m∗(i + 1)− 1)]η(i).
We conclude that τ [ζ(m∗i), . . . , ζ(m∗i + k), . . . , ζ(m∗(i + 1) − 1)] = η(i), for

all i < n, and hence by Claim 1 we can choose ji ∈ [m∗i, m∗(i + 1)) such that
ζ(ji) = η(i). Clearly i0 < i1 implies that ji0 < ji1 . But this implies ζ ∈ Γnm∗ , a
contradiction.

Claim 3. If t < ω, η ∈ Γn, 0 = k0 < k1 < · · · < kt = n, and η�[ki, ki+1) is constant
for all i < t, and if ρ ∈ t2 is defined by ρ(i) = η(ki), then

⋂
i<t b

ρ(i)
i = 0.

Proof of Claim 3. Wlog we may assume that η ∈ Γ′
n for some n < n∗. Indeed,

otherwise we can find m < n∗, η′ ∈ Γ′
m and some increasing h : m → n such that

η′(i) = η(h(i)), for all i < m. Then {h−1[ki, ki+1) : i < t} equals {[li, li+1) : i < s}
for some l0 = 0 < l1 < · · · < ls−1 = m. Note that η′�[li, li+1) is constant, and letting
ρ′ ∈ s2 be defined by ρ′(i) = η′(li), we have ρ′(i) = ρ(h(i)). Hence

⋂
i<s b

ρ′(i)
i = 0

implies
⋂

i<t b
ρ(i)
i = 0.

Therefore we assume η ∈ Γ′
n, for some n < n∗. Suppose we had

⋂
i<t b

ρ(i)
i > 0.

Let D be an ultrafilter on B containing
⋂

i<t b
ρ(i)
i . Let h : B → B/D be the

canonical homomorphism. Define ζ ∈ tm∗
2 such that ζ(i) = 1 iff ai ∈ D. Hence

ζ 6∈ Γtm∗ . We get

h(
⋂
i<t

b
ρ(i)
i ) =

⋂
i<t

τ [ζ(im∗), . . . , ζ((i + 1)m∗ − 1)]ρ(i) = 1.

Hence by Claim 1,

∀i < t∃ai ∈ [{im∗, . . . , (i + 1)m∗ − 1}]n∗∀j ∈ ai ζ(j) = ρ(i).

Define µ ∈ tn∗2 by µ(j) = ρ(i) iff j ∈ [in∗, (i + 1)n∗). Then µ is a subsequence of
ζ and therefore µ 6∈ Γtn∗ . But also η is a subsequence of µ, and hence η 6∈ Γn, a
contradiction.

Claim 4. Suppose ρ ∈ t2 and
⋂

i<t b
ρ(i)
i = 0. Let ζ ∈ m∗t2 be defined such that

ζ(m∗i) = ρ(i) and ζ�[m∗i, m∗(i + 1)) is constant for every i < t. Then ζ ∈ Γm∗t.

Proof of Claim 4. Otherwise,
⋂

i<m∗t a
ζ(i)
i > 0. Let D be an ultrafilter containing⋂

i<m∗t a
ζ(i)
i . Let h : B → B/D be the canonical homomorphism. We have

h(
⋂
i<t

b
ρ(i)
i ) =

⋂
i<t

τ [ζ(m∗i), . . . , ζ(m∗(i + 1)− 1)]ρ(i) =
⋂
i<t

τ [ρ(i), . . . , ρ(i)]ρ(i) = 1.

This is a contradiction.

Since we assume that (aα : α ∈ A) is not independent, by Claim 2 we can
find k∗ < ω minimal such that for some ρ∗ ∈ k∗2,

⋂
i<k∗ b

ρ∗(i)
i = 0. Note that

ρ∗(i + 1) 6= ρ∗(i) for every i < k∗ − 1. Indeed, otherwise let ζ ∈ m∗k∗2 be defined
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TIGHTNESS AND DEPTH IN SUPERATOMIC BOOLEAN ALGEBRAS 3479

as in Claim 4. So ζ ∈ Γm∗k∗ . By Claim 3 we can find ρ′ of shorter length than ρ∗

such that
⋂

i<|ρ′| b
ρ′(i)
i = 0, contradicting the minimal choice of k∗.

Suppose first that k∗ = 1. We conclude that (bν : ν < γ) either is constantly 1
or 0. The main part of the definition of Rγ(λ, κ, ω) then gives a sequence of length
κ as desired in (b) of Theorem 4.

Second suppose k∗ > 1. If
⋂

i<k∗−2 b
ρ∗(i)
i ∩bk∗−2∩b0

k∗−1 = 0 and
⋂

i<k∗−2 b
ρ∗(i)
i ∩

b0
k∗−2 ∩ bk∗−1 = 0, then

⋂
i<k∗−2 b

ρ∗(i)
i ∩ bk∗−2 =

⋂
i<k∗−2 b

ρ∗(i)
i ∩ bk∗−1, and an

application of the main part of the definition of Rγ(λ, κ, ω) gives a sequence as
desired in (b).

Otherwise, if ρ∗(k∗ − 2) = 1 and ρ∗(k∗ − 1) = 0, then⋂
i<k∗−2

b
ρ∗(i)
i ∩ bk∗−2 <

⋂
i<k∗−2

b
ρ∗(i)
i ∩ bk∗−1,

and applying the definition gives (c). A similar argument applies if ρ∗(k∗ − 2) = 0
and ρ∗(k∗ − 1) = 1.

Theorem 6. Assume the following:
(1) 0] exists,
(2) V |= λ is an uncountable cardinal,
(3) κ, θ < λ, and L |= κ is a regular cardinal.
Then L |= Rω(λ, κ, θ).

Proof. Let c : [λ]<ω → θ, c ∈ L, be arbitrary.
Let Y be the set of all w ∈ [λ]<ω such that for every n ≤ |w| and u ∈ [w]n

there exists B ⊆ λ of order-type κ in L such that ∀v ∈ [B]n c(u) = c(v). Clearly
Y ∈ L.

Claim 1. If in V there exists A ∈ [λ]ω with [A]<ω ⊆ Y , then L |= Rω(λ, κ, θ).

Proof of Claim 1. Let T be the set of all one-to-one sequences ρ ∈ <ωλ with
ran(ρ) ∈ Y , ordered by extension. Then T is a tree and by assumption, T has
an ω-branch in V . By absoluteness, T has an ω-branch b in L. Then ran(b) (or
some subset) witnesses L |= Rω(λ, κ, θ).

Let (iν : ν < λ+) be the increasing enumeration of the club of indiscernibles of
Lλ+ . Then (iν : ν < λ) is the club of indiscernibles of Lλ. As c ∈ Lλ+ there exist
ordinals ξ0 < · · · < ξp−1 < λ ≤ ξp < · · · < ξq−1 < λ+ and a Skolem term tc such
that

Lλ+ |= c = tc[iξ0 , . . . , iξq−1 ].

By indiscernibility and remarkability (see [J, p.345]) it easily follows that if α∗ =
max{ξp−1, θ} + 1, then c�[{iν : α∗ ≤ ν < λ}]n is constant for every n < ω, say
with value cn. Let n < ω be arbitrary. Let δ0 = iα∗+κ, δ1 = iα∗+κ+1, . . . , δn−1 =
iα∗+κ+n−1.

Claim 2. For every α < δ0 there exists a limit δ, α < δ < δ0, such that for all
β0 < · · · < βn−2 < δ the following hold:
(∗)0 c{δ, δ1, . . . , δn−1} = c{δ0, . . . , δn−1}(= cn),
(∗)1 c{β0, δ, δ2, . . . , δn−1} = c{β0, δ1, . . . , δn−1},
(∗)2 c{β0, β1, δ, δ3, . . . , δn−1} = c{β0, β1, δ2, . . . , δn−1},
. . .
(∗)n−1 c{β0, . . . , βn−2, δ} = c{β0, . . . , βn−2, δn−1}.
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Proof of Claim 2. Let α < δ0 be arbitrary. Choose γ < κ such that γ is a limit and
iα∗+γ > α, and let δ = iα∗+γ .

Then clearly (∗)0 holds.
In order to prove (∗)1, let β < δ be arbitrary. There exist ordinals ν0 < · · · <

νk−1 < α∗ + γ and a Skolem term tβ such that

tLλ

β [iν0 , . . . , iνk−1 ] = β.

Moreover there exist ordinals µ0 < · · · < µl−1 < α∗ and a Skolem term t such that

Lλ+ |= t[iµ0 , . . . , iµl−1 ] = tc[iξ0 , . . . , iξq−1 ]{tβ[iν0 , . . . , iνk−1 ], δ1, . . . , δn−1}.(+)

Note that all indices of occurring indiscernibles, except for δ1, . . . , δn−1, either are
at least λ or else below α∗ + γ. We conclude that, in (+), δ1 can be replaced by δ.
The resulting statement is

c{β, δ1, . . . , δn−1} = c{β, δ, δ2, . . . , δn−1},
as desired.

The proof of (∗)2–(∗)n−1 is similar.

It is clear that the statement of Claim 2 is absolute. Hence it is also true in
L. Using this we shall prove that [{iν : α∗ ≤ ν < λ}]<ω ⊆ Y . By Claim 1, this
will suffice. We only have to prove that for every n < ω there exists B ⊆ λ of
order-type κ such that B ∈ L and ∀v ∈ [B]n c(v) = cn. Fix n < ω. Working in
L, we construct B inductively as {γν : ν < κ}.

Fix δ0 < δ1 < · · · < δn−2 < λ as above. Apply Claim 2 in L with α = 0 and
obtain γ0 ∈ (0, δ0). Suppose we have gotten (γν : ν < µ) for some µ < κ. Let
γ∗ = supν<µ γν + 1. Since cfL(δ0) ≥ κ and (γν : ν < µ) ∈ L, we have that γ∗ < δ0.
Apply Claim 2 with α = γ∗ and get γµ ∈ (γ∗, δ0).

We claim that (γν : ν < κ) is as desired. Indeed, let {γν0 < γν1 < · · · < γνn−1}
be arbitrary. We have

c{γν0 , . . . , γνn−1} =(∗)n−1 c{γν0 , . . . , γνn−2 , δn−1}
=(∗)n−2 c{γν0 , . . . , γνn−3 , δn−2, δn−1}
= . . .

=(∗)1 c{γν0 , δ1, . . . , δn−1}
=(∗)0 cn.
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