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THE JOURNAL OF SYMBOLIC LoGic 

Volume 54, Number 4, Dec. 1989 

THE NUMBER OF PAIRWISE 
NON-ELEMENTARILY-EMBEDDABLE MODELS 

SAHARON SHELAH 1,2 

Abstract. We get consistency results on I(A, T1, T) under the assumption that D(T) has 
cardinality > I TI. We get positive results and consistency results on IE(A, T1, T). 

The interest is model-theoretic, but the content is mostly set-theoretic: in Theorems 1-3, 
combinatorial; in Theorems 4-7 and 11(2), to prove consistency of counterexamples we 
concentrate on forcing arguments; and in Theorems 8-10 and 11(1), combinatorics for 
counterexamples; the rest are discussion and problems. In particular: 

(A) By Theorems 1 and 2, if T c T1 are first order countable, T complete stable but No- 
unstable, A > No, and ID(T)I > No, then IE(A, T1, T) ? Min{2'A, 2}. 

(B) By Theorems 4, 5, 6 of this paper, if e.g. V = L, then in some generic extension of V not 
collapsing cardinals, for some first order T ( T1, IT = No, T1 I = N1, ID(T)I = N2 and 
IE(N2, T1, T) = 1. 

This paper (specifically the ZFC results) is continued in the very interesting work of Baldwin 
on diversity classes [Bl]. Some more advances can be found in the new version of [Sh300] (see 
Chapter III, mainly ?7); they confirm 0.1, 0.2 and 14(1), 14(2). 

Here we continue [ShAl, VIII, ?1], improving results and showing complemen- 
tary consistency results. We let T c T1 be complete first order theories. We want to 
know what we can say about I(L, T1, T) (see below) and IE(L, T1, T) under various 
assumptions on T and on the cardinals, where: 

I(L, T1, T) is the number of models of T, up to isomorphism, of cardinality . 

which are reducts of models of T1. 
IE(L, T1, T) = Max{IKI: K a family of L(T)-reducts of models of T1 of cardin- 

ality . no one elementarily embeddable into another}. 
IE(T1, T) is defined similarly. 
(If there is no maximal I K I, and the supremum is x, we write IE(L, T1, T) = -, and 

say D- < { and (VO < c )o < t-.) 
DJ(T)= {p: p a complete type in L(T) consistent with T in the variables 

X05 ... . x 
_n 1. . 
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1432 SAHARON SHELAH 

D(T) = Un < oDn(T). 
By Ehrenfeucht and Mostowski [EM], if ID(T)I > I T1 I then I(L, T1, T) ? ID(T)I. 

By Keisler [K], if ITI = 1T11 = and ID(T)I > N (hence = 2'0) then 
I(t, T1, T) ? Min{2 ,2" }. Trivially, 1 < IE(t, T1, T) < I(, T1, T) < 2. 

About the consistency results we were influenced by the related results on trees: 
Silver [Si], who proved the consistency of the Kurepa hypothesis, and Mitchell 
[M], who proved the consistency of "no N2-tree". 

Let us review the relevant results and the open questions from [ShAl, VIII, ?1], 
[Sh100], and [Sh135]. Our new results are mostly in Cases C and D. 

def Notation. We set K = I TI and I = I T1 , where T c T1 are complete first order 
theories. 

Case A: T unstable. By [ShAl, VIII, 3.3], I(L, T1, T) = 2- for i 2 IT1I + N, (see 
also [Sh300, Chapter III, ?3]). 

By [Sh100] it is consistent that there is an expansion T1 of the theory T= 
Th(Q, <) (= the theory of dense linear order with no extremal points), such that 
T1I = N, and IE(N1, T1, T) = 1 holds. 

def By [Sh175, ?1] and [Sh175a] (which replaces [Sh175, ?2]), for T = Tnd= the 
model completion of the theory of graphs, for many A it is consistent that for some 
T1, IT1, = 1, IE(15,T1,T)= 1. 

By [ShA1, VIII, Theorem 2.2], for . regular > IT1,I IE(, T1, T) = 2 , and for 
> I T1, IE(L, T1, T) 2 21 for every regular 0 < L 
If Yuo < i < 2M and I T1 I < ,, then, by [Sh136, Theorem 0.1], IE(L, T1, T)= 2A. 
0.1. Conjecture. For i > IT11, IE(L, T1, T) = 22. 
Case B: T stable unsuperstable. By [ShA1, VIII, ?2], for i > IT I we have 

1(, T1, T) = 2i, and IE(L, T1, T) 2 2' when ,u < . is regular. 
By [ShlOO] it is consistent that there are T, T1 such that I TI = No' IT1 I = N1, and 

I(N1,T1,T) = 1. 

By [Sh136], if IT1, < yK0 < i < 2' then IE(, T1, T) = 22. 
Here in Theorem 2, we prove that if K = o= and No < ? < 2`0, then 

IE(t, T, ,T) = 2A. 
0.2. Problem. Is IE(,,T1,T) = 2' when A > I T1 I? 
Case C: T superstable, ID(T)I = N05 K = Y = No. and T No-unstable. By 

Theorem 1 below, for A > No, IE(L, T1, T) ? Min{2i, 2}. (This improves results 
from [ShAl, VIII, ?1].) 

Remember that if T is superstable and ID(T)I 2 2'0, then T is stable in 0 iff 
0 I ID(T)I. 

Main Case D: ID(T)I > ITI+. By Ehrenfeucht and Mostowski, I(L, T1, T) > 
ID(T)I. By Fact 3, below (improving [ShAl, VIII, 1.2(2)]), IE(t, T1, T) ? ID(T)It'. 

We have a number of results which show the relative consistency of certain values 
for I(L, T, T) and IE(L, T1, T). The technical lemma underlying these results is 
Lemma 4. We prove there that in an appropriate forcing extension of the set- 
theoretic universe the category of members of PC(T1, T) and elementary embedding 
is described by the containment relation among subalgebras of an algebra No (for 
each cardinality). In the later results we force again to require this algebra to have the 
desired pattern of subalgebras. 

Now the following are consistent. 
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NON-ELEMENTARILY-EMBEDDABLE MODELS 1433 

1) By 8(2) and 4 it is consistent that K = No, Y = K+, ID(T)I = 2'0 > i, and for 
every 0 ? ji we have I(0, T1, T) = IE(0, T1, T) = 2'o. 

2) In D(1) above, we can by Lemma 7 replace K = No and i = N, by No < K = 

K<K, Y = K, and ID(T)I = 2K is an arbitrarily large cardinal. 
3) We then can change cardinal arithmetic with no change in the value of 

IE(L, T1, T) (see 5A). 
4) We can have K = K<K, 2K arbitrarily large, and, for every I TI = K and IT, I < 

2K, if ID(T)I > K+ then (ID(T)I = 2K and) I(L, T2, T) = IE(1, T1, T) = Min{2 , 22 }. 
[Just add many (i.e. ? (2K)V) (Cohen) subsets to K.] 

5) Previously cardinal arithmetic was bounded by the covering lemma. Starting 
with supercompacts, we get (see 11(2)) consistency of: K strong limit singular of 
uncountable cofinality, and, for some T and T1 with ITI = K and IT I = K', i = 

K+, ID(T)I = K++ and IE(L, T1, T) = 1. Also others. 
6) If K= TI = IT11 is strong limit of cofinality No, ID(T)I > ITI, under some 

set-theoretic assumptions (large filters on arbitrarily large x < K) we get (Ko, 0)- 
freedom (see [ShA1, Chapter VIII, ? 1]); hence IE(L, T1, T) ? Min{2', 221} for i ? K. 

Whether this can be proved in ZFC is open (see 13). 
Case E: I D(T) I = TI +. Note that by Case D (see 6) there), this is sometimes 

impossible. Now it is consistent that IE(N2, T1, T) = 1, I(N2, T1, T) = N2, I TI = 

SO, IT1I = N1, and 2NO = -2 = ID(T)I (see Conclusion 6 (based on Lemma 4, with 
K = No and i = 82)). Also for regular K > No it is consistent that IE(t, T1, T) = 1, 
I(Q, T1, T) = K+, ITI = K = K<K = IT11, and ID(T)I = K+ (by Lemma 7). 

In fact (by 11(1)), if Kc is strong limit singular of uncountable cofinality, there are 
always suitable T and T1 such that I TI = IT1, = K, ID(T)I = K+, and IE(K+, T1, T) 
= 1, i.e. we prove examples exist, rather than merely proving they may exist. Adding 
many Cohen subsets restrict our freedom for regulars (see (4) of Case D above). 

But results from Case C apply here. Also see D(5). 
Case F: There is a family of K independent formulas in T. See 10(2)(B). By 

[ShA1, VIII, 1.10], if K = I T, I = I TI and there is a K-tree with ju branches then we 
have (ii, T1, T)-freedom; hence for >? K 

IE(X, T1, T) ? Min{2x, 2A} 

(see also Remark 12). 
Notation. Standard; remember that JAl is the cardinality of A, but INI is the 

universe of a model N and IINII is its cardinality. 

* * * 

THEOREM 1. Suppose T C T1, T1 countable, and T complete, superstable but No- 
unstable. Then, for i > No, 

IE(R, T,, T) 2 Min 12 ,2 }- 

REMARK. 1) As this supersedes [ShAl, VIII, 1.8], we give a complete proof not 
based on it. 

2) We can replace "IT, I = SO" by "MAIT,15" or even "R is not the union of ITI 
nowhere-dense subsets", but then we should demand i > IT I and I S= IT I+. 

3) In Chapter VIII of [ShAl], we proved that for pairs of theories (T, T1) 
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1434 SAHARON SHELAH 

satisfying the hypothesis of Theorem 1 we have I (, T1, T) ? min{2', 2}. The proof 
proceeded by two different cases: VIII, 1.7(2) for A > 2'0 and VIII, 1.8 for A < 2'0. 
The second argument in fact yielded IE(L, T1, T) ? 2'0, while the first did not. To 
improve the result for IE, we have redesigned the proof from [ShAl, VII] and 
"souped up" the one from [ShAI, VIII]. The added energy comes from the trees UQ 
defined in Fact l.B. 

PROOF OF THEOREM 1. The assumption that the theory is superstable and not 
totally transcendental is used to obtain ma, mb < co and a countable set of definable 
(without parameters) equivalence relations {E,(x; yj): n < wc} c L(T) such that: 

(i) lg(x) = lg(y) = ma + mb, 
(ii) if M is a model of T and a rnaIMI, then the set {a b/E,: b EnbIMI} is finite, 

(iii) if, for e = 1, 2, lg(ae) = na, lg(be) = nb, and a1 bE, a2b2, then a1 = a2, 
(iv) E,+1 refines E, i.e., for every n < w, xE,+1 

- 
implies .EJ, and 

(v) there are (in some model M of T) c% for ti e `2 such that [lg(q) ? n and 
lg(v) ? n imply J E c n = v P n], J P ma = C P ma, and lg() =ma + mb 

The existence of this set of equivalence relations was proved in III, 5.1-5.3 of 
[ShA1]. 

Clearly without loss of generality we may expand the theory T1. Let {c: r e `>2} 

be new constants in T1, and suppose 

T {EEn(c 5CV): 1 [n = v [ n, lg(q), lg(v) ? n} 

u I -1En (Cr 5J): rl n =A v P n, lg(q), lg(v) 2 n}. 

Also without loss of generality suppose that T1 has Skolem functions (and the 
axioms saying it has Skolem functions belong to T1). 

We will use the following fact [for a sequence i let < = K?[I]: 1 < lg(-)> and 

a, 
= a-#[O]^ a,#[J] ̂a,[2, .. 

Fact l.A. There exists a model M F T1, and there exists {a-,,: q e W2} c IMI, 
a. [ma = av [ma, lg(1a) = ma + mb and 

lg(q) 
2 n & lg(v) 

2 n - -- [rq 
P n = v P n .# En(a- ? a-A) 

such that: for every sequence of terms Y(x) e L(T1), if m x (ma + mb) = lg(x), ma + 

mb = lg(-), x) [ ma = (t [ma)( [md), and md = me x (ma + mb) [i.e. for e m(0'2), 

T(a-) [ma = ( [ma)(a-I.me)], then there exists n, < w such that the following two 
requirements are met: 

(1) For n ? n. and 4, v-e m(W2) with no repetitions, 4[me = vir[me, if 1 = k - 

C[l] [ n = ij[k] r n and (Vl < m)[rj[l] [ n = v-[l] [ n], then, for every 
- 

e m(CO2), 
- 

r 
me = q [ me implies 

En(,r(a,)5 T (ap) En(T(av ) TOap)) 

(2) For n ? nf and rj, v e m(n2) each with no repetition, qj [ me = v- [ me, if there are 
k ? n and ij1, q1 V m(?02) such that nEk(-(d-1), )(d5)) for I < m, 

- 
1[l] [n = -[I 

v-1 [1] [ n = v-[l], and 

(VIt i < M) s E [1] [n -El] [l] n = V [i ] 

then fr every rq *, v-* e m(?02) satisfying r-*[1] r n = rl[1], v-*[l] r n = v-[l] (for each I 
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NON-ELEMENTARILY-EMBEDDABLE MODELS 1435 

1 < m), and 

(VIl,i < m)[4*[l] = v*[i] -[Il] = vi[i]] 

we have 

-- 
E. (T(a-,), 

T (a-,*)) 

REMARK. This is really the only place where we use countability. 
PROOF. Use Theorem [ShAl, VII, 3.7] to satisfy requirement (1) by letting 
X Z = )EX Z F(z z for I< < I* <wwhere the Fl are such that {Fl(z ): I < I*} 

is a complete set of representatives for {x A/E: x}, possibly with repetition. 
(Remember T1 has Skolem functions, and by compactness there is I* which does not 
depend on z.) Requirement (2) is fulfilled by trimming the perfect tree and renaming. 

We will use the following combinatorial fact, which is slightly stronger than 
Sierpinfski's lemma on almost disjoint sets of integers: 

Fact 1.B. There are W(*) c w, { W%, c wo: q e '2}, and { U,: q e W2} such that for all 
q e 02 the following requirements are met: 

(0) W(*) and W1, are infinite subsets of wo. 
(1) U, is a perfect tree' i.e. U,, c" `2 is downward closed, < > e U^,, and 

Vp e U] 3v e UJp = v lg(v) A v KO> e A v^ <> e U]. 

(2) p, v e UQ, p : v and lg(p) = I(v) => h(p, v) e1 W1,, where h(p, v) is the length of the 
largest common initial segment of p and v, i.e. 

def 
h(p,v) = Max{n < w(): p [ n = v [ n}. 

(3) For all q, = #2 c eC2 and every p e U^,1 and v e U,2 there are three possibilities: 

(a) h(p,v) e W,,, r- W2, or (b) h(p,v) e W(*), or (c) p < v or v < p. 
(4) W(*) r W, = 0. 
(5) For distinct q, v from w2, W1 n Wv is finite. 
Proof. By induction on n define k(n) = kn < wo and the set Wn(*) c k(n), and for q 

e n2 the sets U _ k(n)?2 and W1 c k(n), such that in the end (this imposes natural 
restrictions on them) 

[q , 2 => W7 rn kn = W, ,n 5 U7 nk(n) 2 2 = UU Irn W(*) 
- 

k(n) = Wn(*). 

For the induction step, choose k'(n) = k(n) + n, and for q e n2 let 

U1 = U u IvA (q P 1): v C U, r- k( 2, I < n}; 

thus 

(Vv e k(n )2 r 7 U)(]!p e kl(n)2 n U')[p > v]. 

Define Wn+1(*) = Wn(*) u [k(n),k'(n)]. Fix an enumeration {Jk: k < 2 } of n2. Let 

k(n + 1)d-fkl(n) + 2 1. For e 12, there are unique k < 2n and i < 2 such that 

= 1kA<i> Let 
U def U1 U IV: V e k(n+1)2 V , 

?~~~~~~~ ?lk ~~~~~~~~~~~~~?lk 
[k'(n) + I < lg(v) A (1 # 2k + 1) -: v(k'(n) + 1) = 0], 

[k'(n) + I < lg(v) A (I = 2k + 1) = v(k'(n) + 1) = i] } 
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1436 SAHARON SHELAH 

and W14 = W,7 u {k1(n) + 2k + 1}. It is easy to verify that this construction pro- 
vides a family of sets as required. 

Continuation of the Proof of Theorem 1. Assume i < 2'0, and fix an enumeration 
{q,: 4 < 2'0} = '2. Let the set 

S. c {p E '2: (Vn < w)[p P n e Uj,,} 

be of cardinality I T1I. Fix {p;: i < IT1I+} = S.: We call S c '2 large if for every 
n < aandv e Swehavel{p E S: p [ n = v [ n}I > 1T11.Notethat,foreveryS c @'2of 
cardinality > IT1 1, for some S1 c S we have that S11 < T1 I and S - S1 is large. 

For X c i let Ml be the Skolem hull of {la: r1- UCEXS5}, and put Mx 
Ml [ L(T). In order to prove the theorem it is enough to assume X, Y c i and 
X ! Y, and show there does not exist an elementary embedding f from Mx into My. 
Let 4 E X - Y. For the sake of contradiction suppose f: Mx -+ My is an elementary 
embedding. For v E S. let f(a-d) - T(-) So there are S* c S. which is large, and T, 

and an integer no such that [v E S* = T A lg(-v) = no] and, without loss of 
generality, 

Y(q1v) [ ma = f(av d Ma) = (T [ma)(i1rm) 

Notation. For q E U, yS,: let 4(Q) be the unique element of Y such that q E S e O 

(this element is unique by Fact 1.B, (1) and (2), and the choice of the S). 
Fact I.C. We can find a large S** c S*, ko < co, and -l0 E f0(''2) with the following 

properties: 
(0) =i v E S** =h(i, v) > ko. 
(1) For v e S**, (V < no)[i7v[l] [k0 = ij0[l1] ko] and {I- [l] [ko: I < no} are 

pairwise distinct. 
(2) ko > no. 
(3) For each 1 < no either {rjv[l]: v E S**} = {ij0[l]} or the elements {iv[l]I 

v E S**} are pairwise distinct. 
(4) WE r- (W(*) U U1,nO W;(#O[1])) cko. 
(5) For each I < no, either {I(ij [l]): v E S**j}- I{C(o[l])} or the elements 

C(- Efl]): v E S**} are pairwise distinct. 
Proof of I.C. Left to the reader. 
MAIN LEMMA LD. If v = p E S**, then there is an I (<no) such that h(v,p) 

=h( [1]5 
- 

[1]). 

This lemma was proved in the course of the proof of Theorem 1.8 of VIII of 
[ShA 1], but for the convenience of the reader we will prove it below. But first we use 
it to conclude the proof of Theorem 1. 

Since S** is large, clearly we can choose {v, E S**: a < (} such that for all n < w( 
we have vn, O v, and v,,, [ n = v,, [ n (fix first vy, and pick the other elements by 
largeness of the set). 

Applying Lemma I.D, for n < w let 4, < no be such that 

h(v. jv) = h(- JIJ 
5 

-IJ 

Since [v, c S** c S.:], clearly by 1.B(2) h(vy, vj) E WE, hence also 
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NON-ELEMENTARILY-EMBEDDABLE MODELS 1437 

and by 1.C(1) ko < h(- J[lJ], ijv[lj) From this it follows by 1.C(4) that 

h(-Vo JIn]qv,1n[I]) 0W(*) 

and that 

h(-qv,,[En]q, Elvn[I) W;(#0[ln0) 

By 1.B(2), as [ 6 Se = An q [ n e Uj we know {4.[Il] 4vn[ln]} 
is not a subset of 

S(0[1]) . Hence, by 1J.C(5), CjqjI]) # 4qVn [ln]). So by 1.B(3) (applied to (v [In]) 3 k 
and (q1j [ln]) k, k large enough) we have 

h(-qv,, En]5 qvn [In] ) E WW(O 5 

where n(ln) = 4qJ1n]) (as (b) there is discarded above, (c) is trivially false; so (a) 
there holds, and we get the statement above). 

Let A c w-) be unbounded and let l* < no be such that n e A=> In = I*; now for 
every n e A we have h(vo, vn) e W: n W,(1*) (combine three facts from the previous 
paragraph; remember that C(l*) = C(qvJIj*])). But, since 4 ? Y, W, ,r WI(l*) is finite, 
which contradicts the choice of {va: a < (} as satisfying h(v. , vn) > n. 

PROOF OF LEMMA 1.D. We have to show that for every p = v e S*(c S,) there 
exists I < no such that 

h(p, v) = h(-1] El]) 

Suppose n = h(p, v). Hence En(ap, av) A --E + E (ap, a-v). For didactic reasons we first 
suppose, for the sake of contradiction, that for every I < no we have 

qlV1I] = 
q-PEl] h(- [1]5 

- 
[1]) < n. 

Since f is elementary, - 
En+ I(T(aqP), z(a#,)); now we can deduce by Facts 1.A(2) and 

1.C(O), (2) that 

-- 
En(T(aqp)5 T00rv); 

again as f is elementary, - E (ad, a-), in contradiction to En(a, a-). Now we deal 
with the general case, i.e. we assume 

(*) ~~~~~~(VI < no)h(q1v~l,1~] q n. 

We shall derive a contradiction. 
Define q e fl(C02) 

r q[] {/[1] if /[1]: n 'A r/[1] 17n 

-V [PI otherwise. 

Clearly T(a,) ma = T(a- p) ma = T(ad) ma and % me = 4 % me = p [me, and also 
4 is with no repetition and <K[I] P n: I < no> are pairwise distinct. 

Since, by the definition of , for each I we have -[l] n = [l] n, using (*) we 
obtain q[1] P (n + 1) = r/p[l] P (n + 1). Let b = -(a-,). By reflexivity of the equiva- 
lence relation we have En+(T(aip), iT )); by Fact l.A(1), En+ (z(a),J(aP)), i.e. 

n+1(b, (dp)). Finally (as #P+ ( T a P),(dQ))), using transitivity of the equiva- 
lence relation, we have En+ 1(b, T(OO)). 

By the definition of 4, for every I < no we have -[l] = 4V[l] or h([l], vI[l ]) < n. 
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1438 SAHARON SHELAH 

But, since n > ko, 

I{4[l] Iko: I < no}l = no and I{t-[l] 
' 
ko: I < no}l = no. 

So, by Fact 1.A(2), as +En ,(b, -(a-#)) (see above) we have m En(bY(a-()). But 

En(b, -(a-d )) (see above) and En(z(d-~), (d-)), contradiction. 
So the proof of Theorem 1 for the case i < 2'0 is completed. How do we deal with 

the case i > 2'0? We just need to revise Fact L.A. Add to L(T,) countable many new 

constants {dn: n < w}. Now prove the following variation of Fact 1.A: 
Fact i.E. There exists a model M # T,, and there exists {a-11: i1 E '2} c IMI, such 

that, for iq, v E (02, 

a,,1'ma = av'ma, [In = v 'n Ejallav)], 

and <dn: n < w> is an indiscernible sequence over {a-11: q E ?2} of distinct elements 
such that for every sequence of terms (x-) e L(T, u {dn: n < w}), m = I(x) (with mc, 

md, me as in Fact 1A) there exists n, < o such that the following requirements are met: 
(1) For n ? n1 and 4-, V-im( (2) with no repetitions, if r[me = V- me, [1I k 

[I n # i[k] [ n] and (VI < m) -[I] n = V[l] 
' n, then, for ciE m(c02), ji me 

= 4 me implies En(T(a-d ), -(d-)) a.EQ(d-) T (ad)) 
(2) For n ? n, and 4, v e m(f2) each with no repetitions, if n me = V- me and there 

are k ? n and i,, v, e '(02) such that m Ek(z(a-dl), z(a-V)), for I < m 
- 

1[] I'n =t[] v[ n = v-[l], 

and (Vl, i < m)(4,[l] = V1{i] i [i] = v[i]), then for every 4-*, v * E m(W2) satisfying 

4-*[l] 
' n = iq[l] and V*[l] 

' n = v[l] (for each I < m) and 

(Vl, i < m)[i*[l] = v*[i] a 4[l] = vUi 

we have 

m- En(T(a#), r(av*#) 

The proof of the fact is done similarly to the proof of Fact 1.A, but in the place of 
Theorem VII.3.7, use Exercise VII.3.1 of [ShAl]. Now we can blow up the models 

by extending the sequence of indiscernibles {dn: n < w}. So we have 12 models in 

power i, as required. D Theorem 1 
THEOREM 2. Suppose T c T, are countable and complete, T is stable but not 

superstable, and i > IT,I1. Then IEo), TI, T) ? Min{2, -212}. 

REMARK 2.A. This gives new information only when i is singular < 2 ̀  and 2 O 

< 2' (see [ShAl, VIII, 2.2]). 
PROOF. We combine the proof of Theorem 1 and VIII, 1.11. 
For notational simplicity assume i < 2'0, and assume i > X, (see 2.A). Let P be 

as in VIII, 2.2 (or see VII, 3.6(2)), and let M = EM(@'X, 'k), p11 = tp(a-, Ul< a-dri) (for 

As in [ShAl, VII] we write M", EM', etc. for L(T')-structures, and M, EM, etc. 
for their reducts to L. 

Fact 2.B. Without loss of generality, the following conditions can be assumed to 
hold: 

(i) p,, is stationary. 
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NON-ELEMENTARILY-EMBEDDABLE MODELS 1439 

(ii) If iq e 'X, {ii 1: 1 < } c J c 'X and q 0 J, then 

tPL(T)(al,, U{av: v e J}) does notfork over U a,,t. 
1<C0 

(iii) di7 m c a-, for i1 e @>X and m < lg(q). 
(iv) If ij,..., q1n(1) and V1.. . I, Vn(2) are distinct members of '2" V,1..., Vn(2) e '), and 

T-r (X1 . * * * Xn(l) j1, *.. Yn(2)) is a sequence of terms from L(T1), then 

tPL(T)(T(al , ... aln(l) av",VI av,(2)), EMA(0) - IvI,.** Vn(2)} f) 

is finitely satisfiable in 

EM({qi [ 1: i = 1, ..., n(1), 1 < lg(q)} u {vi P 1: i 1,...,n(2), 1 < w},f). 

(v) For iq e X, tPL(T)(a%1, EM(0>'- {,}, q5)) does not fork over Uk<wdal k 

Proof of 2.B. By the unsuperstability of T there are formulas pn(X, n e L(T) and 

a,, e M, M a model of T, such that (lg(a-,,) = 1 if i e ')A and) the following conditions 

(o)(1)-(4) hold: 
(c) (1) If qie c and ve ,then M' k p [ada] if n= v 

(2) If q e 'A, then tp[ad1, U{av: v e a)>l}] does not fork over Un< a) dn 
(3) For all v e 'A, aV roAdvti A- A-dvrnAdv realize the same type in M. 

Without loss of generality we can add 
(4) da c a-,, for q e nA and I < n < wo 

(as T is not superstable but is stable: see [ShAl, III, 3.3]). 
Now we can find ' proper for ("A, T1) (see the definition in [ShAl, VIII]) such 

that: 
(/3) For any p(xi1,..., xn) L(T') and v,,... . Vn c `o, there are p1,...,Pn e CO?il 

such that 
(a) <V1,.. ., vn> and <P ., Pn> are similar, and 
(b) EM'(0`:o?,,)k V9[dvi... A.] if M' # 9[aP, ,aP.] 

This holds by the proof of [ShAl, VII, 3.6]. 
Let M' = EM1(c`!:, P), A > No. For n < w and q c "IX, let 

4 {v e IV c for every I < n, v(l) e {h il /(2) + j3: jl j2'j3 < lg(C)} 
and, for 1 ? n (but <o), v(l) 0 and lg(v) ? lg(q) or lg(v) = w} 

and for qe c (AletI,= {v e '): v r n , In n for n < , and for every large enough I 
< w, v(l) = 0* 

For notation simplicity let h be a one-to-one function from {( < A: ( limit} onto 
'O>L Let I = {e co`, and for every n < lg(iq), h(iq(n)) = q P n}. 

Let {ti(x'): I < w} list the L(M')-terms with 50 = <xm: m < i>. Let us define a- 
for q e IL 

If lg(q) < w, then d' is the concatenation of sequences l(dv1,.. . ., dv) for which: 
1 ? lg(q), i < lg(q) and for each m e .1,..., k}, vm e I,, (in some natural ordering). If 

lg(iq) = w, a,, = a,, 
Easily, <Kd: q e I> generates M2 -< M', and without loss of generality it is in- 

discernible in M', and for appropriate V', (i)-(iv) of 2.B hold; so without loss of 
generality they hold for '. 

Now by (fi), in EM(`'A, 4), for tj e 0O), tpL(T)(ald, U{iv: v e - j{i}}) does not 
fork over Un < co an n . Hence {a-,: r1 e wol is independent over U{av: v e (o}. Hence, 
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1440 SAHARON SHELAH 

for some countable S (- , Ua,,e ? - S} is independent over EM((wo, q); 

hence, by the indiscernibility of <a-,: tj e @'>, {da-: q e Wo} is independent over 
EM(wo>, 4P). Similarly tp(ad , EM(`X - {tq, P)) does not fork over EM(`>X, 4P), 
hence over {a-,1,: 1 < w}. So 2.B(i)-(v) all hold. 

Fact 2.C. If ')>2 c S* c (0`2, 4T(5t) is a finite sequence of terms of L(T1), 
- 

e o>(S*), and v e @ - S*), then tpL(T)[T(al, da), EM(S*, q5)] does not fork over 
EM('>2 u {-7[l]: 1 < lg(1)I, ) 

Proof of 2.C. By 2.B(iv), tPL(T)((a#, iav), EM(S*, 0)) is finitely satisfiable in 
EM( >2 u {1[1]: 1 < lg(-)}, ). Now apply [ShAl,III,0.1]. 

We continue the proof of Theorem 2. 
We can choose znl(n < ) such that the set L(T) of formulas of T, is Un<t lini Jn 

finite and increasing, and for q, v ec 

tp,(a7 , EM(`>X, q5)) = tpAn(Uv, EM( >A, 1P)) iff qr [n=v rn. 

[Why? Let {jI(xl-'): I < w} list the formulas of L(T) with y-' = <Yi: i < n,>. For 
each 1, for some k, < w, 

tp,1 aL, U aarn] and tp1 La-?, U am rm] 
n<co m<ki 

have the same R(-, f,, 2)-rank, k, minimal. (Remember that lg(ad) = 1 when qi c L.) 
Let /n ={I,: I < n,k, < n} u { ,}. For some infinite set W ( w0, OA: n e W> is 
strictly increasing, and by renaming, etc., we get the conclusion.] 

Next, by induction on n, define k(n), k1(n) and gn: n2 k(n)2, with k(n) < k1(n) 
< k(n + 1) < w, g( [(n - 1)) < gn(i9) (for 

q e n2), gn one-to-one, and [iq en 2 

gn+1(qA<0>) [ k1(n) = gn+1 (qA<1>) r k1(n)], and (like (*) (2) from the proof of 
VIII, 1.8) such that: 

(*) For a term z(xO, ... ., - J) there is m, such that (suppressing in r the sequences 
c- e `'2 viewed as part of -) if m ? ml, q a sequence of members of Range(gm) 

(without repetition) of length n - 1, n(*) < n, and similarly v and there are sequences 

q and -3 with -[I] < 
- 

[l] e ')2 and -[l] <iT[l] c-2 [4[l] - i[12] 1ll] = 

VI1E2]] and 

_ u {ak[1]: 1 < n(*)} u {Iv1[1]: 1 < 

#& tpdkO)(T(aVl),EM( n)k u {i1[l]: I < n(*)} u {I1[l]: 1 < n(*), 
then, for any such -1 and V`I, 

tpdk(n)(T(%l,), EMf(kl(n) 2 u {41[1], v1[l]: I < n(*)}, 5)) 

#& tpd~(((avl), EM(k (n)?2 u {i1[I], VI1[l]: I < n(*)} qP)) 

Now we define W(*), W14, U,,, and S, as in the proof of Theorem 1. Then for u A 
let MI be the Skolem hull of 

JU= {a-: E e '>2} u {a,,: E Ue S 

and Mu its L-reduct. It suffices to get a contradiction from the following: f is an 
elementary embedding of MU(,) into MU(2), where u(1), u(2) c A and 4 e u(1) -u(2), 

Iu(1)I = Iu(2)I = A. For i e S:, let f (d) = TY(ad- O) and 4v o >(J(2)) By the Z 

system lemma there are S' c S: of cardinality IT1 I + and n(O), w, T, such that 
(a) for v e S', TV = and lg(qv o) = n(0); 
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(b) for 1 e wand v e S', -,0[l] = -[l]; and 
(c) for 1 < n(O), 1 0 w, the set {I -o[l]: v e SV} has no repetitions and is disjoint to 

~V o[ ]: v e S', 1' < n(*), 1' # l}, 

[since, without loss of generality, 1vO can be taken to have no repetitions]. 
By renaming, we can assume that , C (v e Si) are pairwise disjoint sequences 

from Co'(JU(2)), and for v e S1 

f (av) = T(alv a# 
Let S* c O'~2 U4eu(2) S4 be a set of cardinality < IT11 such that '2 c S*, Ce >(S*) 
and f(M0) c EM(S*, q5). Now {ta: q e S1} is independent over M(0'2) in MU(2); 

hence {f(a-): i1 e S'} is independent over s S', 1S21 > IT11, and {f(a-): q e S2} is 
independent over (EM(S*, 05), f(M( >2))) in MU(2). Also, without loss of generality, 
for v e S2, qV is disjoint to S*. So by 2.B(v), {f(a,): e S2} is independent over 

(EM(S*, (D), EM(`>2 u {-[lI]: I < lg(1)},P)). 

As those sets are models: 
(**) For 'l, q2 e S2 and n < o we have ', 

' 
n= q2 

' n iff 

t~dn(T~a. a ), EM(w>2 u {ij[l]: 1 < lg(4)}, i)) 
= tpn(T(d~a,,), EM(` 2 u { -[I]: 1 < lg(-)I, 0)) 

The rest is as in the proof of Theorem 1 (using (*) instead of 1.A(2)). 
Fact 3. If T c T1, T complete, and ID(T)I > IT1K+, then, for every ) ? IT11, 

IE(A, T1, T) 2 I D(T)I NO. 
REMARK 3.A. Of course, if ID(T)I = ITI+, still I({, T1, T) ? ID(T)I for A ? ITI. 
Proof. Let M be a model of T,, let adi e MI (for i < ID(T)I) realize distinct types 

from D(T), and {zi: i < A} an indiscernible sequence over {ai: i < ID(T)I} that is not 
trivial (i.e. zo #A z,; and without loss of generality T, has Skolem functions, of 
course). For w c ID(T)I, let Ml be the Skolem hull of {ai: i e w} u {zi: i < Al. For 
w a subset of ID(T)I, let Dw be the set of types p e D(T) realized in M', i.e. Dw 
- {tPL(T)(b, 0): b e Mw}. So it suffices to find a family {wi: i < ID(T)I`O} of subsets 
of ID(T)I, IwiI < A, and Dw, Dwi for i :# j (equivalently, for some a e wi, tpL(a., 0) 
O Dm1). As IDwI < ITIJ + IwI, if ID(T)I o = ID(T)I this follows by Hajnal's free subset 
theorem. So we assume ID(T)I`O > ID(T)I. We can choose cardinals lin such that 

nln<c~n = ID(T)INO, ITI+ < ,n < In+l < ID(T)I, and each Yn is regular. [If 
ID(T)I < IT1 I let p = IT,+I+; as ID(T)I > IT1I+, clearlyln < ID(T)I, and the rest 
iseasy. If ID(T)I ? ITI`O(hence ID(T)I > ITI`),weletp = Min{K: K`O > ID(T)I}, 
so clearly ? = ID(T)I Oandu > IT, IOand(VK < Y)KO < i, andcf(i) = NO;now 
we can choose n < i as required.] 

Let En be the filter on Xln generated by the closed unbounded subsets of iin and 
def 

the set {3 < Yn: cf. > 1T11}- For a < o and Q C H n <H aYn let D,, = D{0(i) i < 1g()} and 

? = {(j): i < g101} I Let SO = U. < Hi<m <.pi By induction on n < o we now define 

Sn such that: 
(i) Sn+ 1 C Sn; 
(ii) < > e Sn; 

(iii) {Jq e Sn: lg(i1) < n} = eq c Sn+1: lg(i1) < n}; 
(iv) Sn is closed under initial segments; 
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(v) for q e S,., {t: q A <> e S} # 0modElg(,,); 
(vi) if q e Sn, lg(q) = n, eA<y> e Sn+, and cf(y) > IT11, then, for some Y < , 

(VveSn+l)[v[(n+ 1)=,A<y> A c ,y<f<y= tPL(ap,0) Dv]; 

(vii) if q A<yi > and q A <y2 > e Sn + 1, then a ?1 Y1 = 
'17, Y2 Iand hence Yi > Y2 

There is no problem in the definition. For n = 0, SO is given, (i), (iii), (vi), and (vii) 
require nothing, and (ii), (iv), and (v) are easily checked. 

For n + 1, first for each ,A <K> e Sn, lg(ij) = n, cf(y) > IT11, we choose S, c 
{V e Sn: V, qA <K> are comparable} satisfying: 

(a) Sy is closed under nonempty initial segments; 
(b) if v e S,, Y and lg(v) > n, then 

{f3: qA <f> C S1,yJ # 0 mod Elg(v); 

(c) for some ocl1 y < , for every v e S,, Y we have 

[ocl1,y < # < T ==> tPL(ag, 0) 0 DJ]- 

For each v there is such an oc, V (as I DV I IT 1, cf(y) > I T1 1), and any oc , a < Ott 
< , can serve. As cf(y) > IT11 No, by Rubin and Shelah [RSh117] (or see [ShA2, 
Chapter XI, Lemma 3.5, p. 362]) a', YS7 Y exists. 

Now as Eg(,) is normal, for some ox, and A c{y: A <K> e Sn } we have A, # 

0 mod Eg(Q) and (Vy e AN)CCN Y = c,. We let 

Sn+ I = U{S,7,Y: q e Sn, lg(q) = n, ye A} 

Clearly (i)-(vii) hold. 
So we have carried the induction on n. Let s, = nn<.Sn. Clearly Sc., satis- 

fies (i) (i.e. S,, c Sn), (ii), (iv), (v), (vi)', and (vii). 
(vi)'- If e S,, lg(q) = n, and qA<y> e S,, then cf(y) > IT,1 and, for some X Y < , 

(Vv - S.) [v I' (n + 1) 
= 

q 

A 

<T> A (XI Y < 
| 

< T y tPL(a#, 0) 
si 
DJ] 

Let Lim S,, = {t: lg(q) = w, q r n c S,O for n < }. Clearly 

Lim S. I = H n = ID(T)INO, 
n 

and {M q: c e Lim S,,} are as required. Alternatively: let FO be a one-to-one function 
from F = Unfm<n~m to ID(T)I, and for q e F let 

FM) = {o: a, belong to the Skolem hull of 

{Fo(i7 r1): 1 < lg(i1)} u {dn: n < (oi, 

F2(r) = {Fj(i1) - Fo(7 1): 1 < lg(q)}. 

By [RSh, Theorem 2] there is a F1 < F such that, for -c, q # v e F,, q s F2(v). So we 
can easily finish. 

M is called an algebra if L(M) has no predicates (only functions). 
REMARK 3.B. Also, if ID(T)I > (IT1I0)+ and 0 < IT11, then IE(A, T1, T) ? ID(T)I0. 
In fact, as above it suffices to prove (use with y = IT11 and ID(T)I = IIMII): 
(*) If M is an algebra with y functions, y ? 0 and IIMIJ > (y')+, then M has 

2 IIMI ' subalgebras, no one a subalgebra of another. 
Clearly(*)holds:let{Ka <: i < i_ < 0>: a < IIMII0} listthesequencesof length < 0 

from IMI, let Na be the subalgebra of M which {ai: i < ia} generates, and let F(oc) 
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- {1: / #& ~o, No c Nx}; then INxI < y + 0 = A, and now for each ar 

{If: Nfl (- NJIl < (po0)+ < JIMIJ, 

so by the Hajnal free subset theorem we finish. 

* * * 

Now we turn to consistency results. 
LEMMA 4. Let K = K<K, iA = AK N0 an algebra with universe A and < K+ functions, 

N' c No a subalgebra, and INO - N'I = A. Then for some K-complete forcing Q of 
power A, satisfying the K+-C.C. (hence not collapsing cardinals nor changing cofinalities) 
it is forced that: 

For some complete T C T1, ITI = K, ITI = = ID(T)I, T superstable, and for 
some algebra N* with universe A the following holds: 

(*) There is a function H from PC(T1, T) onto {M: M c N*} (in the universe after 
the forcing) such that, for Ml, M2 E PC(T,, T): 

(i) M1 _ M2 iff H(MJ) = H(M2) A IIM1II = IIM211; 
(ii) Ml is elementarily embeddable into M2 if H(MJ) c H(M2) A 

IIMXI1 < IIM211; 
(iii) (a) {INI: N c N*} c {INI: N c No} and 

(b) {INI: N c N* and INI C N'} = {INI: N c N'}; and 
(iv) Suppose for simplicity that there is no Erdos cardinal in K (the core model; 

this holds if m-i 0). Then any N c N *, NI 5 IN 'I (in VQ), is the union of No submodels 
of N' from V (and if No contains the functions definable in (K., e), this holds for 
N c N' too) [and if K > No the union of No models from V is from V]. 

REMARKS. 1) Part (iv) of (*) is usually not used, e.g. in Conclusion 6 (below); in 
this case one can discard part of the proof. 

2) Our aim is to show that I(X, T1, T) and IE(X, T1, T) may be small, even though 

ID(T)I > IT, 1. This lemma produces appropriate T and T, (in an appropriate 
extension of our universe V) such that we have a strong a priori control over the set 
of isomorphism types of models in PC(T,, T): they correspond to submodels of N* 
which necessarily are submodels of No. 

Note that (iii) of (*) gives, e.g. upper ((a)) and lower ((b)) bounds to I(X, T,, T), 
which in applications coincide. 

3) If we assume only "in the core model K there is no A, A (i)2", then in (iv) 
of (*) we should replace "N0-models" by "( < p)-models". 

PROOF. Let J = K> 2 in the sense of V and y = A (just to later simplify reading this 
proof as a proof of Lemma 7). So No (and N*) have universe y. For I c K>2 let 

Bra(I) = {J Ec 2: (V: < c) j A [E I} 

(so it depends on the universe of set theory). Let L(T) = {P,: q E J}, P', a monadic 
predicate, and define 

To = {(Vx)P< >(x)} U {(Vx)[JP(x) - PV(x)]: v < j E J} 

U {i(3x)[P,,(x) A Pv(x)]: q + v are <-incomparable} 

L) O(X) [P,(x) _P, 
- < 0>0x v P,7 

- < 1 >(x)]: C J} 

U {(3x)PI(x): C J}. 

To is a complete theory with elimination of quantifiers. 
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In the new universe V' = VQ we shall define a family Y; each f e 09 is a partial 
n(f)-place function from K2 to K2 such that: 

(*), for every f e _ (n(f)-place) and q, q1 77n(f) e K2 such that q = 

f (/ J... . .n(f ()) and every a < K there exists /B, c < , < K, such that if v, .., Vn(f ) e K2 

and for every 1 < 1 < n(f) we have v, / , = q, / , and f(v1, .. ., Vn(f)) is defined, then 

f (q7 ,... 1 /n(f)) X 0 = f (V, ,. . . Vn(df )) - 

We then let T, = To u T1u u T1,1 U T1,2, where: 

T0= {(Vxy) [P(x) _P(g(x,y))]: 1j e J} 

U {(Vx, Y1, Y2)[Y 1 #7g Y _+ -g(x, Y) XA 

Tl= {(vxl,, Xn)LA Pp,(xi),Pp(f(x. . .Xn))j 

Pi , p, p e J, f e 49, n = n(f) for some q1,. ., K2: 

P _< f(q11 *, qn), and 

(Vj. t * * 1n( f )L [ Ap pi < Ci E 2 p < f(.j,.. qn) (if defined)j}, 

T1 2 = {Prpf(c,): q a sequence of zeros and ones of 
length a limit ordinal < K, 

(Vot < lg(q))[q P a e J] and /3 < lg(qj)} 

(note that T,,2 can be waived now, but will be used in some later variations). 
Now L, is the vocabulary of T,, and T = T, r- L. Clearly T is equal to To, T 

superstable, and ID(T)I will be ? I U? < K Br(J)I (in fact, equality holds). 
In the forcing we shall also construct a function Ha, one-to-one, from BrK(J) (in 

V') onto X such that: 
(A) If j is in the subalgebra of N0 generated by { Ii,.. ., Jn ( A), then, for some 

feR, 
H)-(j) = f(H)-(jl), . . H- 10n# 

(B) If j] jj. -jn e N1 (note: N', not NO!) and 

(3f e Y)[H'-'(j) = f(H)-(j),...)], 

then j is in the subalgebra of N' generated by {Ijl, .,in 
(C) DEFINITION. Now for M e PC(T,, T) and a e M we can define 

Hb(a, M) = U{'i eJ: M # P(a)}, H,(M) = {Hb(a, M): a e M} 

H(M) = {Ha(Hb(a, M)): a e M, Hb(a, M) e BrK(J)}. 

Note that Hb(a, M) belongs to Br(J) = UI <K Br,(J) - J, HJ(M) c Br(J), and H(M) 
INI = y. 
We have to define the model N*. 
(D) DEFINITION. For f e gV we define F * as a complete n(f )-place function from 

,u to /1: 

F*(ji,. . JJn~f)) SHa(f(H-'(j),.. .,H-1(jn(f)))) if defined, f (J17***7Jn~f))-ly otherwise. 
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NON-ELEMENTARILY-EMBEDDABLE MODELS 1445 

Lastly, N* is N0 expanded by the functions F (f E Y) (or we could use N* with 
partial functions). 

Let us check that T, T1, N* will be as required. 
Note that 
(*)2 H(M) is a submodel of N* of power < ? MiI when M E PC(T,, T). [Why? By 

(D) and (*), and T1,, above.] 
(*)3 If N c N* is a submodel and i ?I N II, then for some M E PC(T,, T), IIMiI 

= i, H(M) = N. [Why? Check.] 
Note, however, that we shall use freely 

(0) H(M,)= H(M2) iff H(M,)= Hc(M2)- 

(This follows from (*),, (A), and (B), as 

H(M1) = {Ha(x): x E H(M1), x E K2} 

and if x E Ub<K Br,(J) - J then always x E HJ(M1) (using TI,2).) 
Now we check (*) of Lemma 4. 
Claim 4.A. If in VQ there are 0 and Ha satisfying (*),, (A), and (B), then (*) of 

Lemma 4 holds (N* is defined in (D) and H is defined in (C)) and T1 = K + 10?I. 
Proof of (i). Let Ml e PC(T,, T). The implication "Ml M2 :- H(MJ) = 

def 

H(M2) A IIM11 = 11M211" is totally trivial. Now suppose N = H(MJ) = H(M2) 
and IIMlII = IIM2 I. Hence, by (0) above, HJ(MJ) = HJ(M2); call it Y. Then, for each 1 
= 1,2, x e Y; as Y = HJ(M1), the set {a e Ml: Hb(a,Ml) = x} has cardinality IIMII 
(use T1,0 T,, i.e. the function g). As I I Ml I I M2 11, there is a one-to-one function Fx 

from A' = {a e Ml: Hb(a,Ml) = x} onto A2 = {a e M2: Hb(a,M2) = x}. 
defCU However, IM11 is the disjoint union of {A1: x e HJ(M1)}, so FUxCy Fx is a one- 

to-one function from Ml onto M2. It is easy to check that it is an isomorphism. 
Proof of (ii). Similar to (i) (remembering T has easy elimination of quantifiers). 
Proof of (iii)(a). Suppose N ' N* (in VQ). We want to prove that INI is closed 

under the functions of No. So suppose j is F(jl,... jn), F a function of No, and 
assume that i 1' . . . ,jin e I NI. By (A) above, for some f e 4, Ff (j . . Ijin) = j (see (A) 
and definition of Ff ). As Ff is one of the functions of N*, and N N *, clearly j IN I 
so we are finished. 

Proof of (iii)(b). Use (B) above and the choice of N*. 
Proof of (iv). NQte that (iv) is a direct consequence of Magidor's covering 

theorem (by [Mg2]; see the Appendix to the present paper for an explanation) 
provided that we expand No by partial functions (not changing the set of submodels 
of NO included in N') such that, for every c e NO - N', in (N 1, c) there are terms for 
all functions definable in (KA, e). (Remember, if 0" does not exist then K = L.) 

The only thing which remains to be done is to force, i.e. 
Claim 4.B. There is a forcing Q satisfying (*),, (A), (B), and 11 = K. 

Proof. Let A = Ui<K+ Ai, the Ai's being pairwise disjoint, with IAiJ = A for i ? 0, 
such that IN'I ' Ao (remember, we assume in Lemma 4 that IN0 - N'I = A). The 
forcing Q is PK+, where <Pi,Qj: i < K+,Jj < K+'> is a (< c)-support iteration. 

We let QO be {f:f a partial function from A to {0, 1}, IDomfI < }, ordered by 
inclusion. Clearly in VQ? the cardinality of BrK(J)VQo is A (remember that A M= AK), So 
let <Bi: i < A> be a partition of it into A pairwise disjoint sets each of cardinality A. 
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1446 SAHARON SHELAH 

Next we define (in VQO) Ho, a one-to-one function from Bo onto AO. 
We now define, by induction on i, a function Hi and Qj e VPi such that: 
(a) Hi e VP! is a one-to-one function such that 

RangeHi = U Aj, U BrK(J)Vp - U Bj = DomHi 
j<i j<i i<j<A 

and Hi extends Hy when 0 < y < i [in our present proof we can somewhat simplify]. 
Let N0 = (IN0 I, Ff)< (*,, where 3(*) < KJ. Let F, be an ne-place function, and let 

Fp i be the partial ne-place function from BrK(J)VPi into itself, defined by 
(*)4 FPJ(v1,. . ,v) = v iff 

v1, .,v, v e Dom Hi and Ff(Hi(vj),.., Hi(vn)) = Hi(v). 

Now we have 
(/3) For some fli = /3(i) < /(*), Qj is the family of pairs (f, -), where f is a partial 

function from 

{(V1, .,Vn(3), V): Fpi,(v1,. . ., Vn(fl)) = V} 

into K, g = <g4: C < C(0)>, C(0) < K, and g, is an n(fli)-place function from J to J 
(remember that J = (K>2)v) such that: 

(a) each of f, g4(j < C(0)) has domain of cardinality < K; 

(b) if f(v, Vn(P(M, v) = C, g4(P1,.- , = p, and f\'Pf ip <"v, then 
p < v, and 

(c) suppose g4(pl,.. . .,p ) = p' for 1 = 1, 2; then 
(i) lg(pl) = lg(pl ) = = lg(pn(p(j))) = lg(pl), and 
(ii) if Al!'j~p~' <ppi, then p' < p2. 

The order is natural. 
There is no problem to carrying out the definition, and each Qi is K-complete and 

satisfies theK +-c.c. in a strong sense, e.g. (*) of [Sh8O, p. 297] with K replacing N1 
Clearly for i < K+, Pi is K-complete; it also satisfies the K+-c.c. (prove directly, or 

quote [Sh8O] or the proof of Baumgartner's axiom). Hence 

BrK(JM) = U BrK(J)VP. 

i <K+ 

So Ha Ui<K+ Hi is a one-to-one function from BrK(J)VP+ onto A. 
By any reasonable bookkeeping we can choose the /3i (i < K+) such that, for every 

/3 < /3(*), for K+ ordinals i, A3i = /3. 
We now define for each i < K+ and C < K a partial n(fli)-place function F?'4, in VP, 

from Br(J)VPc to Br(J)vP': F?'4(vi,_, vn(p(i))) = v if o. . .v Vn(fi(i))V v e BrK(J) K and 
for every a < Kc for some /3 < K and (f,g) E GQ, v P a is an initial segment of 
gsU(V1 ... Vn(fl(i)) P MS) 

Let F; be a (complete) n(/3i)-function from Br(J)vP to Br(J)vP : 

F;(vl) JF'4(v1=.I , V (,(j))) if defined, 
I /()J 

VI otherwise. 

It is easy to see that F; is well defined, F?'4 satisfies the requirement (*)1 (on 
members of bY), and that (see (*)4 for the definition of Ffl i): 

(*)5 Ffi i(V*, Vn(fl(i))) = V =E V4<K FI(v1,. . . Vf(f(j))) = v and 
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(*)6 if F9'4(v,... , Vfl(p(())) = v and v,... ., Vn(v(i)) E BrK(J)VP' then 

Fpi#,( .., Vn(p(j))) = v and (v E BrK(J)VP') 

(by the genericity of GQi). 
We letYbP = {F?'4: i < K+, C < K}. So demand (A) holds by (*)5. It is easy to check 

condition (B) too (remember that IN'I c BO) (the values of F; not in Fi give as a 
result a new branch). 

So we finish the proof of Lemma 4. 
Claim 5. (1) If R is a forcing notion (in VQ) which does not increase BrK(J), and 

FR U Bra(J) < K+ 

then the conclusion of 4 still holds in VQ*R (and only T,,2 increases). 
(2) If, for example, R = Ro * R1, Ro is adding N, Cohen reals, and R, is N<- 

complete, the assumption of 5(1) holds. 
REMARK 5.A. This claim enables us to get various situations. For example, start 

with V = L; we choose K = N14 and A = N25, we force as in Lemma 4, and then we 
let (in VQ) Ro be adding N, Cohen reals, and R, be (in VQ*Ro) adding <32 subsets to 
N3: 

R = {f: f a partial function from <32 to {0, 1} of cardinality < N3}, 

ordered by inclusion. Now in V1 = ((VQ)Ro)RI no cardinal of L is collapsed, 2' - 

Na+ 1 if a < 3 or a 2 31, 2 N 32 if 3 < ? < 31 and for some complete first order T 
c TI, T is superstable, 

ITI = N14, IT1I = N15, ID(T)I = N25. 

Assume we have started with No equal to some (X7f, Ic)<<K+,<,II 
where { f,: n < o} 

is a list of the functions with finite arity, from A (= N25) to i, definable in (LA+, e), 
and N' is the closure of K+ under f, (n < co). Then N15 < A => I(X, TI, T) = <25 

(remember No in L is a Jonsson algebra, and the forcing adds no new subalgebra (see 
4(*)(iv) and its proof). 

Of course also IE(X, TI, T) = <25 (see Fact 3). If we had started with A = N16, we 
would have gotten IE(X, TI, T) = 1. 

Proof of Claim 5. (1) Look at the proof of 4 and notice that in our proof of 
(i)-(iv) of (*) of 4, all that we used holds in VQ*R; i.e. in the proof of (i)-(iv) of (*) 
of 4 we need only 3, which holds by our assumptions (using T,,2 C T1). 

2) Well known. 
Conclusion 6. If in Lemma 4 (or Claim 5) A = K++, we can get that I(X, TI, T) = A 

and IE(X, TI, T) = 1 (in fact {M/I-: M E PC(T,, T), IIMII = A} is linearly ordered by 
elementary embeddability, and has order type A). 

We shall return to the proof shortly. 
REMARK 6.A. Really the T and T, we got in Conclusion 6 satisfies IE(T,, T) 

- N-; i.e. there is any finite but no infinite family of models in PC(T,, T), no one 
elementarily embeddable into another. (In fact the order type of the class PC(T,, T) 
under elementary embeddability is A x cardinals, i.e. to {(i, 0): i an ordinal < A, 0 a 
cardinal}, with the partial order: (i , ,1) < (i2, 2) iff i, <? i2 & 01 < 2.) 

REMARK 6.B. ID(T)I > I -- IE(T,, T) ? N -. 
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Proof of 6.B. Let n < co. We choose by induction on m < n a model Mm E 
PC(T1, T) of cardinality IT,?(n m), realizing < ITI types from D(T), such that one 
of them, PM. is not realized in Mo,.. ., Mm_ 1; so IE(T,, T) > n for each n. Moreover, 
if ID(T)I > IT I and A < ID(T)I, then for y ? ID(T)I " there are MY E PC(T,, T), 
IIMlI = i for i < A, such that [i < j A y(1) < p(2) <*M ") can be elementarily 
embedded into Ml]. (Use Ehrenfeucht-Mostowski models.) 

Proof of 6. We shall apply Lemma 4 with NO = ({, F, i)i<,,+, F a two-place 
function from A to A such that, for each /3 < A', {o: a < /4 c {F(/), i): i < KJ}, and 
N1 is No restricted to KJ (without loss of generality, F maps K' to K'). So we get 
T c T1, complete first order theories, with ITI = K, IT I = K ', and T superstable. 

We want to see what is K = {M, L: IIMII = A, M, I= T,}. We really are 
interested in isomorphism types, i.e. K' = {M/l: M E K}; let M, <em M2 if M, is 
elementarily embeddable into M2. Now, by 4(*)(i), (ii), (K', <em) is isomorphic to 
({INI: N C N*}, C), and, by 4(*)(iii)(a), {INI: N ' N*} is a subset of {l: a < A}. 
However we know that it is closed under increasing unions (by the definition of N 
C N*); hence, for some closed subset C of A, {INI: N C N*} is C u {J}. By the 
"elementary submodels existence", C is unbounded in A. So K' is isomorphic to 
(C u {J}, <) (where C is a closed unbounded subset of A), which is isomorphic to 
(A + 1, <). So I(A, T1, T) = A, IE(A, T1, T) = 1, and we can prove the rest as well. 

LEMMA 7. If K > No and K < y < A, then in Lemma 4 (and Claim 5) [i.e. we assume 
K, A, and N1 satisfy the assumptions of 4], allowing Q to be only strategically K- 

complete, we can have N* = N1 = N0 have universe A, and ITI = K. 

REMARK 7.A. The main improvement in 7 is "ITI = K" rather than "ITI = K+" 
from 4. Also we can more easily control ITI, IT11, ID(T)I, and 2K (and cardinal 
arithmetic in general). 

However, the weakening of K-completeness means that e.g. preservation of 
supercompactness is more delicate. 

PROOF. First we shall force (by QO, defined below) a subtree of K'2 with ,u 
branches (in the well known way). For A C K'2, let us define 

) delU llg(q1): sA} 
and 

Qa= {(A,B, Y): A C K>2 Bc K>2, A r) B=0, IAI < K,IBI < K, 
A closed under initial segments, 
Y a partial two-place function from /u X Kc to A of power < K, 

Y(a, C) < Y(a, 4) when (both are defined and) C < X, 
Y(a, C) E 42, and if Y(a, C) is defined then Y(a, 4) is defined for 
every 4 < b(A), 

1 eA => A1=o, 1 C^<1> E A and (Vq E B)lg(q) < b(A), and 

Vq E A3v eAL <v A v G (A)2 AA v 1E A 
y < b(A) 

b(A) is a successor ordinal} 

and the order of Qo is 

(A,,B1,Yj) < (A2,B2,Y2) iff Al c A2,B, c B2, Y1 c Y2,Al = A2 n (A) 2 

Let Q' = {If: f a partial function from A to {0, 1}, IDomfI < K}, ordered by 
inclusion. 
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Q0def ,XQ It is easy to see that Q0=QO x Q0 is strategically K-complete of power i, and 
VQ "2 K = A". 

If Go ' QO is generic over V let 

J[GO] = U{A: (SB, Y)[(A,B, Y) E Go]}. 

For a < Mu and q E K2 (from V[G ]) let Ho(Q) = a if 

(V; < K)(3A, B, Y)[(A, B, Y) E Go A Y(O, C) = qj [s] 
Easily Dom Ho = BrK(J[G ]) in V[G a, and forcing with Qb adds no branch to 

J[G'], i.e. 

BrK(J [J])v[Go*G81 - Br(J[Go])V[GOI 

We proceed as in Lemma 4 with Ha = Ho. Now PK+/P1 is K-complete and satisfies the 
strongerK + -c.c. 

* * * 

The following trivial fact is contained in the proof of 4: 
Observation 8. 1) Suppose I is a tree (i.e., for x E I, {y: I # y < x} is well 

def 
ordered), b < ? a limit ordinal, II = K, B6 = Br(I) has power u,, /ut> A, and for every 
i < A, IBri(I)I < K. Then, for some complete first order T with I TI = K, ID(T)I = 
1D1(T)I = jut (in fact, if I is a tree with K nodes and mu branches, cf /u> K, then there is 
such a T). 

2) Suppose further that 4k is a family of partial functions from B 
f 
Be to B which 

are continuous, i.e., if F EmY is an n-place function, r ,., c,-, e B, a < 6 and 
q = F(q1,... ., ) then, for some /3 < A, 

n 

LV V,.. Vn e Bb, v = F(vl1... v vn), A v = 1,3 v P = q P a 

Then, for some first order complete T1, T c T1, IT11 = K + IcI, and for x 2 1T11: 
def C1 

a) I(x, T1, T) = Sb<x(B,f)f E,,whereSb<x(Bf)f Ad = the number of submodels 
of (B, f )f (i.e. subsets of B closed under each f E Y) of cardinality < X. 

"def 
b) IE(%, T1, T) = Sb E(B,f)fem, where Sb E(B, f )f = the maximal number 

of submodels of (B, f )f. A with no one a submodel of another. 
Proof. Read the proof of 4. 
Discussion 9. Using Lemmas 4, 5, and 7, we can get many examples contradicting 

conjectures of the forms, "if ID(T)I > IT, 1, then I({, T1, T) and IE(X, T1, T) are 
large". However they all can be obtained starting with L, hence cannot deal with 
cases in which cardinal arithmetic contradicts the covering theorem. 

Suppose we want ITI = K, K strong limit singular and IT1,1 is K or K+. By 10 below 
(together with 8) we can get some results; 

Fact 10. (1) Suppose 0 = cf K > No, (VU < K)[U< < K], 20 < K and K < X < K0. 

Then there is a tree I with I II= K, IBr,(I)I = X, and IBrJ(I)I < K for 0 < K. 

(2A) If X = K+ and VU < K[9f < K], then, for some Y as in 8(2), YI = K and 
SbE(Bf)fe = 1. 

(2B) Suppose that K < X < K0 X regular, <Ai: i < 0> is increasingly continuous with 
limit K, X = cf(fi<o0iXt)/D, D a normal filter on K, A+"' < K is regular (see [Shill] 
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and [Sh355] on existence: for each regular such x there are such D and At'('); and note 
that Magidor forcing for failure of 2K > KA gives this for x = K"' for ci = a), and, 
finally, VU < K[of < K]. Then there are T c T1, ITI = ITi = K, ID(T)I Xx and 
there is no w c D(T), Iw = a I K, and models M1 of T1 for u c w such that for p E w, 
M' realizes p iff p E u. 

(2C) If K, <Ai: i < 0>, D, x are as above, and x = +a and N < 0 = cf K, then, for 
some 0 as in 8(2), 11 = K and Sb(B,f)f c = X 

REMARK. These statements are in fact just variants of Galvin and Hajnal's results 
[GH]. See also [Shl 11], [Sh282], [Sh345, ?4] and [Sh355]. 

Proof. (1) Without loss of generality, cf X > K. For a filter E on 0 and h e 'Ord 
(i.e., a function from 0 to ordinals), let E(h) = {,A: 0? a family of functions from 0 to 
Ord such that (f e ')f <E h (i.e., {i < K: f(i) < h(i)} e E), and (Vfb, f2e 0 )(Va 
< 0)(f1(a) = f2(3)0 _f1 fO = f2 1 )}- 

Suppose E is 0-complete extending the filter of all cobounded subsets of 0. There 
is h E 'K and b? e FE(h) such that Igrl = K0. [If K = Ei ii < K, let h(i) = Hj ii 
and let Hi be a one-to-one function from Hi< ii onto IHi< iij . Now for s e i <0oi 
let fT: 0 -+ K be defined by f,(i) = Hi(q P i).] So there are h* E 'K and 49* E FE(h*), 
I4*1 ? X, such that h* is <E-minimal with this property, i.e., 

(Vh)[h<Eh* A 0 EE(h)--?II < X] 

(this holds since <E is well founded, because E is 0-complete hence 81-complete). 
As cf X > K> 2,0 there is A E E such that 09' = {fe A*: (Va e A)f3(a) < h*(a)} 

has power X. Let E9 be a maximal family satisfying (for our already chosen h* and A): 
(a) Ak' c 0 c' ; 

(b) (Vt e _0)(Voc E A)f (a) < h * (); 
(c) if fl,f2e 4, a < 0, andfp3x) = f2(a), then f[a = f2 a. 
As A' satisfies (a), (b), (c), and as the conditions are finitary, there is such a maxi- 

mal Y. 
Now 11I = X (by (a), 1012 ? ' II = X; if I I > X, for f e9 let 0f = {ge 9: 

g <Ef}. Now for f e E9 we have IfI I < X [otherwise f contradicts the choice of h*], 
so by Hajnal's free subset theorem there are distinct fi e 4 (for i < I11), with 
[i # j 13 A 0 0f J] i.e., [i = J => - (fi <E Ij)]. As 11I > (20)+ we get a contradiction 
easily (using the Erdbs-Rado theorem; see [Shl l l, 2.2])). 

Let I = {f [ i: f e a, i < 0}, ordered by inclusion. Then I is a tree with level i of 
power < Ih* (Min(A - i))I < K (use (b) and (c) for the first inequality and (b) for the 
second). Note that for limit 6 < 0, 

IBr,(I)I < I (1 + h*(j)) < K. 
deC 

Let us now define B 
f 
Br,(I); we claim it is exactly {bf: f e a}, where bf = 

{f P i: i < 0}. Clearly, for f E a, bf e BrK(i). Suppose b = {gi: i < 0} e Bro(I), gi in 
the level i of I, and [j < i => gi C gj]. Then gi=fi P i, fi 6eY Let g = Ui< gi. 
Clearly 49 u {g} satisfies (a), (b), and (c), contradicting 49's maximality except when 
g e 9'; so also Br,(I) c {byf: f e }. 

(2A) In the proof of (1) choose <Ai: i < 0> increasing and continuous 
[A = Ui<OJi, E any normal filter on 0. By induction on a < K+ we can choose 

fa H (V < X)ffl <Etfa 
i<0 
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So we could let h*(i) = A' [as, by the above, 

(10Y c FE(h*))[IYIl ? X = + 

h* is minimal by Galvin and Hajnal [GH] and really this is proved below]. Then 
choose bY and I as in the proof of 8(1) (without loss of generality we can take A = 0). 
Note: this O9 is not the one for 8(2)! Choose for every i < 0 and a < 4+ a sequence 
<gi(a,/3): / < a > such that gi(a,/3) < Ai and [I31 < /2 < 0( gK(,fl) ( gi (0,2)] 

Now for every set B ' 0, B = 0 mod E, ordinal j < 0 and ordinals yi < Ai for i E B 
(not yi < Ai!), letting j = <yi: i E B>, we define a function G = GBj.y. It is a partial 
one-place function from O to O (equivalently, from Br0(I) to Br0(I)) satisfying 

Qx) G(fa) = f b iff, for every i E B, fa(i) < fb(i) and gi[fa(i),fb(i)] = vi. 
[Note: in (/3) below we prove also that G is a function, i.e. single valued.] 
Now we note the following fact: 
(A3) G = GBjy is such that if G(fC) = fd, G(fa) =fb, C eB and fc (C + 1) 

- fa [ ( + 1), thenfd [ (C + 1) = fb [ (C + 1). 
[Why? By (c) in the proof of 10(1) it is enough to prove that fd(C) = fb(c). By the 

choice of gi it is enough to prove that for some a < A+ we have fd(C) < ot, fb(C) < 
and g (0t, f d(4)) = (0t, f b(Q)). As G(f C) = fd, we know that fd(C) < fC(Q) and 
gi[fC(t$),fd()] =yi. Similarly, as G(f ) = 

fb, we know that fb(C) <fa( ) and 
gi[fa(t),fb(Q)] = yi. So by a previous sentence it is enough to show that ft( ) 

fC(4), which holds by an assumption of (/3).] 
The next fact to notice is: 
(Y) If f a, fb E a then, for some B, j, Y (as above), 

GB, j,(fa) = fb or GB, j, (f b) = ft a 

[Why? We know by (c) of the proof of 2(1) that {i < G: fa(i) = fb(i)} = 0 

mod E. So, possibly interchanging fa and fb, we have 

B1 = {i < 0: fa(i) > fb(i)} =# 0 mod E. 

Let us define g*: B1 -+ 0: 

g*(i) = Min{j < 0: gi(fa(i),fb(i)) < A 

For every limit i E B1, g *(i) < i (as Ai = U < i Xj); so, by the normality of E, for some j 

B =f {i E B,: g*(i) =j} 0mod E. 

Lastly let yi = gi(fa(i), fb(i)) for i E B. Now B, j, y- are as required.] 
The last fact we need to note is 
(6) The number of functions in {GB, j, B, j, as above} is < K. 

[Proof: trivial.] 
By (f8), (y) and (6) we are finished. 
(2B) Similar. 
(2C) Use in addition the ideas in Baumgartner's proof for the existence of small 

clubs of 4<, (.. () (see in [Mg2]). 
Conclusion 11. (1) Suppose K is a strong limit of uncountable cofinality, or just as 

in 10(2A). Then, for some complete first order T = T1 of cardinality K, 

I(X, T1, T) = K+ - ID(T)I, IE(T1, T) = -0. 
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Also, if cf K> N for some T = T1, I T1I = K, then 

IE(K+c+, T1, T) = K++ = ID(T)I. 

(2) Suppose K is supercompact. Without loss of generality (by Laver [Lv]), K is still 

supercompact even if we force by any K-directed complete forcing notion (and slightly 
more; see Note (2) at the end of the paper) and still (Vx ? K)2X = K+. 

Let Qo be any K-directed complete forcing notion, and suppose that in V, = VQO: 
(*) so<0 = cf0 < K < <m < ? X /12, 2 = /12, and X=X(the most inter- 

esting case is K = HO). N is an algebra with universe y1 with Ho functions (each with 

finite number of places) and such that no (< K)-strategically-complete (see Note (3) at 
the end of the paper) forcing with the K+-c.c change the number of subalgebras, even if 
we further force by rg. 

Then, in some generic extension VQ of V1 = VQ?: 
(a) cardinals are not collapsed; the only change in the power set function is that 2K 

becomes A; 
(b) cf K becomes 0, and no larger regular cardinal changes its cofinality; and 

(c) there are first order complete T(- T1, ITI = K, IT11 = /1o, ID(T)I = 1at (T has 
only monadic predicates), with I(x, T1, T) = /12 for x < /il, and /13 < IE(y, T1, T) < 

(.1)VQO, where /3 = (Sb(N))vQO*Q2 for some (<K)-strategically complete forcing 
with K+-C.C. 

(3) In (2) we can allow 0 = NO if we demand K < /o and ITI = K+. 

REMARK 11 .A. We can use I TI larger-any regular cardinal < fuo. 
PROOF. (1) We have the first possibility by 8(2) and 10(2A) (so T has monadic 

predicates only). We have the second possibility by 8(2) and 10(2C). 
(2) Apply Lemma 7 (for N and K) and get Q, V2, VQ, T1, and T. We have to 

observe that Laver's argument [Lv] works (see Note (2) at the end of the paper). 
Then we can apply Magidor forcing Mg [Mg 1] to shoot a club to K of order 

type 0, with no cardinal collapse and the power set function preserved. Clearly Mg 
satisfies K+-C.C. 

So we just need: 
Observation II .B. Magidor forcing Mg from [Mg 1 (changing the cofinality of K 

to 0, where 0 = cf 0 > NO) adds no K branches to treesfrom VQ. 

For the proof, see Note (1) at the end of the paper. 
We finish by noting that in V2g any subalgebra of N is a limit of 0 old subalgebras. 

So the old T and T1 work. Thus we finish the proof of Conclusion 11. 
REMARK 12. In [ShA1, Chapter VIII, Theorem 1.10] we get results on I(X, T1, T) 

and IE(X, T1, T) under the following assumptions: 

(i)ITI=ITI =1. 
(ii) In T there is an independe it family of y formulas (i.e., fi(x) e L(T) for i < x, 

and 
(]x)(A A i(X) A A ' fr(x)) e T 

for any finite disjoint u, v). 
(iii) There is a u-Kurepa tree with at least x /1-branches (i.e. a tree of power /u, with 

/i levels, each level of power < /1, and x /1-branches), and i is regular or strong limit. 
Note that, by the previous independent results, we cannot prove a similar theorem if 
we assume just the following natural weakened version of (ii): 
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(*) , - 2<' and there are ,p(x) e L(T) for q e 2<' such that, for every q e 
"2, {q9a aw 

if 0(a)=?): a < It} is consistent. 
PROBLEM 12.A. Is the assumption on the Kurepa tree necessary? 
PROBLEM 13. Fact 9, particularly 9.2(2B), leaves the following question open: 
(*) If i is strong limit of cofinality No, T c T1, ITI = IT, = i, and ID(T)I > i 

(hence JD(T)l = 2k), is there a w c D(T), Jwl = ID(T)j, and, for u c i and ,u ? Jul 
+ i, a model Ml, of cardinality it such that, for p e w, Ml, realizes p if p e u? 

For this a partition theorem on trees suffices. 
(*)2 If X = n and, for i < X0, 

Ti= {,:,lew>X,,1(O)=i,,(l+ 1)<i1}, 

f an m-place function from 9ir< AO T7 into X0, then there are T' c Ti, closed under 
initial segments, and an infinite w c co and K k: k e w> increasing, i = k, 

(Vi < X0)Vi e TV[lg(0) E w -+I{: I ^aK> e T }I = 

such that for il < < im < X0, k < co, and qj, v E Ti, ijq and v, having length k, the 
following equality holds: 

f (?i **m) = f (VI, Vm). 

PROBLEM 14. Let Tc T1 be complete first order theories. 
(1) If i > ITj and T is not superstable, is IE(X, T1, T) = 2`- 

A weaker version: 
(2) If i > I TI I and T is stable but not unsuperstable, then IE(X, T1, T) = 2A. 
Note that by [Sh136] the open cases are when 

(a) i is singular, and 
(b) iT1o ?? >- or (]K < i < 2K) [K strong limit of cofinality NO]. 

On the case i - 2'O and the black box, see [Sh300, III, ??4, 5, 6]. 
PROBLEM 15. Can you have (X,M)-freedom, x = iu+ + I TI, and IE(X, T1, T) < 2X? 

Appendix. 
1. DEFINITION. We say (V, W, X, x% 0, M) is a Magidor witness if the following 

conditions hold: 
(a) W c V are universes of set theory, W a (transitive) class of V. (So they have the 

same ordinals.) 
(b) M E W is a model with universe i and x functions. 
(c) For every subalgebra M' e V of M, M' is the union of < 0 subalgebras of M 

which belong to W. 
REMARK. So if (ord<O)V c W (i.e. every set of ordinals of cardinality <0 in V 

belongs to W), then every subalgebra of M from V belongs to W. 
2. DEFINITION. 1) We say (W, V) satisfies (R, x% 0)-Magidor covering if, for some N, 

(V, W, i, X, 0, N) is a Magidor witness. 
2) If 0 = x% we omit it. 
3. MAGIDOR COVERING THEOREM. If in K there is no Erdbs cardinal (i.e. 

-i-/ ( <1)c for every A), then every submodel N (in V) of K, which is closed under all 
primitive recursive functions (N -< L, is more than enough) is the union of countably 
many such constructible models. 
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Final notes. 
Note (1). Proof of 11 .B. Straightforward from [Mg]. Let the tree be I. For every 

condition q let h I" be its a-pure part. For every pure condition q and finite function 
h let q[h] be the a-pure extension q' of q with hlq'I = h (maybe not defined). For 

simplicity, without loss of generality we let q be a Mg-name of a K-branch, and p 

a pure condition. For some pure extension q of p: 
(*) For every a < 0 and 5 < a, if q[{<x`a>}] is defined then: 

(i) q [5 depends, above the condition q[{<a a>}], only on the forcing "below 

<o, '>" (i.e. on the function restricted to ca). 
(ii) Moreover, for some finite w[o, 5] c a, it depends only on the function 

restricted to w[oE, fl. 
(iii) In fact, w[o, 5] = w[cL] when defined [this is straightforward by Magidor's 

proofs in [Mgl]]. 
So by Fodor's lemma, for some stationary S c 0, for every a E S, w[cE] = w. Let h 

be a function from w to A such that q < q[h] E Mg. So for every a E S (such that a 
> Max Dom h) for a set A_ ' K unbounded in K (really belongs to Da, the ath filter 

Magidor used) for every ,5 E Aa, q [h u j<Aa,>)] e Mg is ? q[h]; hence it forces a value q,,f 
to '1 [5. 

Now any a and 'l2 2 are comparable in the tree-as we can choose (3 < 0 
and 63 <K large enough so that 

q[hu{1<al,6l>,Q<a3,e3>M] E Mg, q[hu{< <a2,62 >, <a3.3>}] E Mg 

are well defined; so as 61, 62 < i3 and al, a2 < i3 necessarily a < ia3,3 and q12 2 

< 
qa3,63 

So q[h] already determines the branch. 
Note (2). On this see Baumgartner's work on squares above a supercompact. 
Let h: K--+ H(K) be a Laver diamond (see [Lv]) and define an iteration 

<Pi,Qj: i < K, j < K> with Easton support, [i < K =| Pi < K], and: if (e.g.) i is 

strongly inaccessible, Mahlo IPil < i, and h(i) is a Pi-name of a forcing which is a- 

strategically complete (see note (3), below) for every a < i, then Qi = h(i); if not, Qi is 

trivial. 
Now in V" = V[GK] for a forcing notion Q to preserve supercompactness it 

suffices that Q is aL-strategically complete for a < K, and ifj: V -+ M is an elementary 
embedding, (j(h))(K) = Q, Ma c M, where a > 21Q1 and G c Q is generic over 

V[GK], then {j(p): p E G} has an upper bound in j(Q) in the universe Mj(PK) (or at 

least there is G' C j(PK) generic over pu, extending GK u {j(p): p E G}). 

Note (3). Q is ac-strategically closed if for each r E Q in the following game player I 

wins: the play last a moves, and in the cth move I chooses Pa e Q such that 

r < Pa A <a qf < p, and then player II chooses qa E Q such that pa < qa . Player I 
wins if he always has a legal move. 
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