MORE ON THE WEAK DIAMOND

Saharon SHELAH

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

Communicated by A. Nerode Received 5 June 1983

We prove that e.g., $2^{\aleph_1} < 2^{\aleph_2}$ does not imply the weak diamond for $\{\delta < \aleph_2 : \text{cf } \delta = \aleph_0\}$ (even if CH holds).

Let us define

Definition. For a regular λ and μ let $I_{\lambda,\mu}^{sm} = \{S \subseteq \lambda : \text{ for some function } F \text{ for every } \eta \in {}^{\lambda}\mu \text{ for some } g : \lambda \to \lambda \text{ and closed unbounded subset } C \text{ of } \lambda, \ (\forall \sigma \in S \cap C) [\eta(\delta) = F(g \upharpoonright \delta)] \}.$ If $\mu = 2$ we omit it; if $S \subseteq \lambda$, $S \in I_{\lambda}^{sm}$ we call S small.

Essentially by Devlin and Shelah [1], if $\mu = \mu^{<\lambda} < 2^{\lambda}$, then $I_{\lambda,\mu}^{sm}$ is a proper normal ideal, and $I_{\lambda}^{sm} = I_{\lambda,(2^{\kappa})}^{sm}$ (when $2^{\kappa} < 2^{\lambda}$). See also Shelah [5, Ch. XIV].

Notation. $S^{\alpha}_{\beta} = \{ \delta < \aleph_{\alpha} : \text{cf } \delta = \text{cf } \aleph_{\beta} \}.$

So if $2^{\aleph_{\alpha}} < 2^{\aleph_{\alpha+1}}$, then $\aleph_{\alpha+1}$ is not small (as a subset of itself). Naturally the problem arises whether we can say for some β that $S_{\beta}^{\alpha+1}$ is not small. If we assume GCH, and cf $\aleph_{\alpha} \neq$ cf \aleph_{β} then by Gregory [2] and Shelah [3] even the diamond holds for $S_{\beta}^{\alpha+1}$ (regarding $S_{\alpha}^{\alpha+1}$ in the case that \aleph_{α} is singular see [4]). What if \aleph_{α} is regular? The author proves (see Steinhorn and King [6]) that ZFC+GCH+" $S_{\alpha}^{\alpha+1}$ is small" is consistent.

It was still natural to hope that e.g., $2^{\aleph_1} < 2^{\aleph_2}$ implies S_0^2 is not small, and this would have been helpful under some circumstances. Unfortunately we shall prove a consistency result contradicting this (and in fact much more).

Theorem. Suppose in $V, \lambda = \lambda^{<\lambda}, \mu = 2^{\lambda} = \lambda^{+}, \chi = 2^{\lambda^{+}}, S \subseteq \lambda^{+}$ stationary costationary; $(\forall \delta \in S)(\lambda \text{ divides } \delta)$. Then we can find a forcing notion P such that:

- (a) P is λ -complete.
- (b) P satisfies the λ^{++} -chain condition.
- (c) P does not collapse λ^+ (so no cardinalities or cofinalities are changed; use (a), (b), (c)).
- (d) In V^P : for some F, for every $\eta \in {}^{(\lambda^+)}\mu$, for some $g \in {}^{(\lambda^+)}2$, for every $\delta \in S$, $\eta(\delta) = F(g \upharpoonright \delta)$.
 - (e) In $V^{P}: 2^{\lambda} = \lambda^{++}$

0168-0072/85/\$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

Sh:208

316 S. Shelah

Remark. (1) The interesting case is $\chi > \lambda^{++}$.

(2) By Stage D, P has a dense subset of power λ^{++} .

Proof.

Stage A: The forcing. We define iterated forcing

$$\langle P_i, \mathbf{Q}_i : i \leq \lambda^{++}, j < \lambda^{++} \rangle$$

such that

- (1) Q_{α} is a forcing in $V^{P_{\alpha}}, |P_{\alpha}| \leq \chi$.
- (2) $P_{\alpha} = \{f : f \text{ is a function from a subset of } \alpha, \text{ for } i \in \text{Dom } f f(i) \text{ is a } P_i\text{-name of a member of } \mathbf{Q}_i, \{\alpha \in \text{Dom } f : \alpha \text{ even}\} \text{ has power } <\lambda, \{\alpha \in \text{Dom } f : \alpha \text{ odd}\} \text{ has power } \leq \lambda\}.$ The order on P_{α} is the natural one.
 - (3) For α even, \mathbf{Q}_{α} is $\{f:f \text{ is a function from some ordinal } \gamma < \lambda \text{ to } \{0, 1\}\}.$
- (4) For α odd, let $\langle \eta_{\xi}^{\alpha} : \xi < \chi \rangle \in V^{P_{\alpha}}$ be a list of $\eta \in ({}^{(\lambda^{+})}\mu)^{V^{P_{\alpha}}}$. The aim of $\mathbf{Q}_{\alpha} \in V^{P_{\alpha}}$ is to force $\langle g_{\xi}^{\alpha} : \xi < \chi \rangle$ such that
 - (4a) $g_{\varepsilon}^{\alpha} \in {}^{\lambda^{+}}2$,
 - (4b) $g_{\xi}^{\alpha} \upharpoonright \delta \notin V^{P_{\alpha-1}}$ for every $\delta \in S$,
 - (4c) for $\delta \in S$, $\xi < \zeta < \chi$, $g_{\xi}^{\alpha} \upharpoonright \delta = g_{\zeta}^{\alpha} \upharpoonright \delta \Rightarrow \eta_{\xi}^{\alpha}(\delta) = \eta_{\zeta}^{\alpha}(\delta)$. So we let

$$Q_{\alpha} = \{p : p = \langle p_{\xi}^{\alpha} : \xi \in A_{p} \rangle, |A_{p}| \leq \lambda \text{ and for some } \delta = \delta_{p} < \lambda^{+}, \\ p_{\xi}^{\alpha} \text{ is a function from } \delta \text{ to } \{0, 1\} \text{ and for every } \alpha \in S, \alpha \leq \delta, \\ p_{\xi}^{\alpha} \mid \delta \notin V^{P_{\alpha-1}} \text{ and } [p_{\xi}^{\alpha} \mid \alpha = p_{\xi}^{\alpha} \mid \alpha \Rightarrow \eta_{\xi}^{\alpha}(\alpha) = \eta_{\ell}^{\alpha}(\alpha)] \}.$$

The order is: $p \leq q$ iff $A_p \subseteq A_q$, for $\xi \in A_p$, $p_{\xi}^{\alpha} \subseteq q_{\xi}^{\alpha}$, and for $\xi \neq \zeta$ in A_p , $q_{\xi}^{\alpha} \neq q_{\zeta}^{\alpha}$. (The last phrase is in order to ensure λ^+ -completeness.) When $\xi \notin A_p$, let $p_{\xi}^{\alpha} = \emptyset$. Let $P = P_{\lambda^{++}}$, and we define:

$$p \le q$$
 iff $p \le q$ and for α even $p(\alpha) = q(\alpha)$.

Stage B: For α odd \mathbf{Q}_{α} is as required. We define \mathbf{Q}_{α} -names $\mathbf{g}_{\xi}^{\alpha}$ (or $P_{\alpha+1}$ -names if you want): $\mathbf{g}_{\xi}^{\alpha}(i) = n$ iff for some p in the generic set \mathbf{G}_{α} of \mathbf{Q}_{α} , $p_{\xi}^{\alpha}(i) = n$. So we have to prove that $Q_{\alpha} \neq \emptyset$ and that $\mathfrak{D}_{\xi}^{\alpha,i} = \{ p \in \mathbf{Q}_{\alpha} : i \in \text{Dom } p_{\xi}^{\alpha} \}$ is dense.

Now Q_{α} is not empty as in $V^{P_{\alpha}}$ there is a member of $^{\lambda}2$ which is not in $V^{P_{\alpha-1}}$ (by the definition of $Q_{\alpha-1}$). The density of $\mathcal{D}_{\xi}^{\alpha,i}$ is easy too.

Stage C: $Q_{2\alpha}$ is λ -complete, $Q_{2\alpha+1}$ is λ^+ -complete, P_{α} and P are λ -complete. For α even, \mathbf{Q}_{α} is trivially λ -complete. For α odd, \mathbf{Q}_{α} is λ^+ -complete as the order (see third demand in its definition) was defined this way. By the definition of the iteration P (and every P_{α}) are λ -complete too.

Stage D: P does not collapse λ^+ . Moreover for any regular κ such that $P_{\alpha} \in H(\kappa)$, and elementary submodel N of $(H(\kappa), \in)$, to which P_{α} belongs, if every subset of N of power $<\lambda$ belongs to N and $p \in P_{\alpha} \cap N$ ($\alpha \le \lambda^{++}$), then there is $q, p \le q \in P$, which is (N, P_{α}) -generic, (i.e., for every predense $I \subseteq P_{\alpha}$, $I \in N$, the set $I \cap N$ is predense above q). Also, for every $2\alpha + 1 \in \text{Dom } q$, $\text{Dom}[q(2\alpha + 1)] = N \cap \lambda^+$ and for $2\alpha \in \text{Dom } q$, $q(2\alpha) = p(2\alpha)$.

This is by the proof of [5, VIII 1.1]. (There $\lambda = \aleph_1$, but this makes no difference. Condition (4) there holds as $|Q_{2\beta}| = \lambda$, so $h_{2\beta}$ can be chosen one-to-one.)

By the same proof (which, appropriately phrased, could be proven there too).

Stage E: (1) $\mathcal{D}_0 = \{ p \in P : \text{ for } \beta \text{ even } p(\beta) \text{ is a real function (not a } P_{\beta} - \text{name}) \}$ is a dense subset of P_{α} .

- (2) For ξ a P_{α} -name of an ordinal, and $p_0 \in P_{\alpha}$ there is $p \in P_{\alpha}$, $p_0 \leq^* p$, and above p, ξ depends on the generic subsets of $Q_{2\beta}$ only for some λ β 's. In fact, there is $B \subseteq \{2\beta : 2\beta < \alpha\}$, $|B| = \lambda$, and a maximal antichain of conditions in $P_B = \{p \in P_{\alpha} : \text{Dom } p \subseteq B, \ p(2\beta) \in V \text{ for } \beta \in B\}$ (i.e., is not a name but a real function), and a function $F \in V$ with domain P_B into the ordinals such that $p \Vdash ``\xi = \zeta \text{ iff } \zeta = F(r) \text{ for some } r \in G_{P_{\alpha}} \cap P_{B}$ ".
- (3) $\mathfrak{D}^* = \{p \in P_\alpha \cap \mathfrak{D}_0 : \text{ for some } \delta \in \lambda^+ S, \text{ for every odd } \alpha \in \text{Dom } p, \delta(p(\alpha)) = \delta, \text{ and for some } B_p \subseteq \{2\beta : 2\beta < \alpha\}, \text{ every } p(2\beta + 1) \text{ depends on the generic subsets of } \mathbf{Q}_{2\gamma} \ (2\gamma \le 2\beta, \ 2\gamma \in B_\beta) \text{ only, and } |B_p| \le \lambda \text{ (in fact the dependence is as above), and for } \beta \text{ odd, } p(\beta)_{\varepsilon}^{\beta} \ (\xi \in A_{p(\beta)}) \text{ are distinct} \text{ is a dense subset of } P.$

Stage F: P satisfies the λ^{++} -chain condition. Let $p_i \in P$ for $i < \lambda^{++}$. By E(3), w.l.o.g. $p_i \in \mathcal{D}^*$, and $\delta(p_i(\alpha)) = \delta^*$ for every $i < \lambda^{++}$, $\alpha \in \text{Dom } p_i$, α odd, and so $\delta^* \in \lambda - S$. By use of Fodor's Lemma on $\{i < \lambda^{++}: \text{cf } i = \lambda^+\}$, w.l.o.g. for some $\alpha(*) < \lambda^{++}$, Dom $p_i \cup B_{p_i} \setminus \alpha(*)$ (for $i < \lambda^{++}$) are pairwise disjoint; hence w.l.o.g. $p_i \in P_{\alpha(*)}$ for every i. Also w.l.o.g. for every odd $\beta < \alpha(*)$, and $\xi < \chi$ either at most for one i, \Vdash_{P_B} " $(p_i(\beta))_{\xi}^{\beta} \neq 0$ " or for all i, j, \Vdash_{P_B} " $(p_i(\beta))_{\xi}^{\beta} = (p_j(\beta))_{\xi}^{\beta}$ ". Now any two p_i 's are compatible: the main problem is (4c) of Stage A, but $\delta^* \notin S$ so it is vacuous.

Stage G: \Vdash_P " $2^{\lambda} = \lambda^{++}$ ". Clearly the subsets $\mathbf{Q}_{2\beta}$ ($\beta < \lambda^{++}$) add to λ are distinct, hence \Vdash_P " $2^{\lambda} \ge \lambda^{++}$ ".

Now for each name \mathbf{g} of a function from λ to $\{0, 1\}$, and $p \in P$ we can find p_i $(i \leq \lambda)$, $p \leq^* p_i \leq^* p_j$ for $i \leq j \leq \lambda$, such that above p_{i+1} , $\mathbf{g}(i)$ depends on the generic subsets of the $Q_{2\beta}$'s only, as in E(2). So above p_{λ} , $\mathbf{g}(i)$ depends on the generic subsets of the $Q_{2\beta}$'s only. As in E(2) this shows that there are $\leq (\lambda^{++}) = \lambda^{++}$ subsets of λ in V^p .

Stage H: We prove (d) from the theorem. For $g \in {}^{\delta}2$, $\delta \in S$ we define F(g) as follows: if for some β , ξ , $g = g_{\xi}^{\beta} \upharpoonright \delta$, then $F(g) = \eta_{\xi}^{\beta}(\delta)$, otherwise it is zero. By the definition of the forcing, F is well defined (see (4b), (4c) of Stage A) and as required (see (4c)).

Further results

(1) We can start with $\mu = 2^{\lambda} > \lambda^{+}$, but then, in the iteration, for every α there is a subset E_{α} of α ,

$$|E_{\alpha}| \leq \lambda^+, \beta \in E_{\alpha} \rightarrow [E_{\beta} \subseteq E_{\alpha}(\beta, \beta + \lambda^+) \subseteq E_{\alpha}],$$

and $P_{\alpha}^* = \{f: f \text{ satisfies the demands in A(2) above and } p(i) \text{ is a name depending } p(i) \}$

318 S. Shelah

- on $\langle \mathbf{G}_i : j < i, j \in E_i \rangle$ and for α odd in the definition of \mathbf{Q}_{α} , we work inside $V[\mathbf{G}_i : j < i, j \in E_i]$ instead $V[\mathbf{G}_i : j < i]$ (equivalently, V^{P_i}).
- (2) The conclusion on V^p , still holds in $(V^p)^R$ if R is a forcing notion satisfying the λ^+ -chain condition of power $\leq \mu$.

References

- K. Devlin and S. Shelah, A weak form of the diamond which follows from 2^{κ₀}<2^{κ₁}, Israel J. Math. 29 (1978) 239–247.
- [2] J. Gregory, Higher Souslin trees and the generalized continuum hypothesis, J. Symbolic Logic 41 (1976) 663-671.
- [3] S. Shelah, On successor of singular cardinals, Proc. A.S.L. Meeting in Mons, August 1978, in: M. Boffa, D. Van Dalen and K. McAloon, eds., Logic Colloquium 78 (North-Holland, Amsterdam, 1978) 357–380.
- [4] S. Shelah, Diamonds and uniformization, J. Symbolic Logic, to appear.
- [5] S. Shelah, Proper Forcing, Lecture Notes in Math. 940 (Springer, Berlin, 1982).
- [6] C. Steinhorn and J. King, The uniformization property for \aleph_2 , Israel J. Math. 36 (1980) 248-256.