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STRONG NEGATIVE PARTITION RELATIONS
BELOW THE CONTINUUM

S. SHELAH (Jerusalem)!

0. Introduction

DerFINITION 1. If A is a cardinal, Prt()) means that there is a function
¢: [A]2 — X such that if 1 £ n < w and the sets {¢2,...,(" 1} are disjoint
for ¢ < A and C2_< ... < ("1 then for every h: n X n — X there are a < 8
such that c((f,,(f@) = h(i, ) for i,j < n.

DEeFINITION 2. Pr() is the same but only for every h: n X n — A with h
constant, i.e. h(¢,j) = v for ¢,j < n.

Lemma 1. If ) is regular, not strong limit, then Pr(\) implies Prt()).

Proor. We use the idea in the proof of the Engelking-Karlowitz the-
orem. Assume that £ < A and 2# 2 A. Let {A,: @ < A} be different
subsets of u. Assume that ¢~ witnesses Pr()). Put G = {{w, g) : w € [u]<¥,
g: P(w)? — A}. Clearly, |G| = ), so we can enumerate it as {{wa,ga) : @ <
< A}. Now put ¢(a, 8) = g,(As Nwy, Ag N w,), where ¥ = ¢~ (e, B).

Assume that {C}: i < n, @ < A} are given as in Definition 1, h: nxn — A.
Fora < A\, i< j < n,pick 7.’ € Ay DA, andlet w* = {ya’: i< j<n}.
As w* € p < A, we may assume that there exist w, B; € w (2 < n), such
that w® = w, A Nw = B; for @ < A. Let g: P(w)?> — X be a function
satisfying g(B,,B ) = h(3,7). Thereis a ¥ < A with (v, g) = (w,,g,), and
by Pr()) there are @ < § < A such that if ¢ < § < n, then c'(g;,(é) =5

But then ¢(Ci,(}) = g4(Agi N wy, A N wy) = g(B;, By) = h(3, ), and we
are done.

We now state the main result of this paper. We remind the reader that
S € A is a non-reflecting stationary set if it is stationary and § N o is non-
stationary in « for every limit o < A.

THEOREM. Pr(A) holds whenever there ezists a nonreflecting stationary
set S in A with cf(a) > wy for everya € S.

This work is continued in [10] (see also [11]).
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1. Construction of the coloring

For a < A limit let C, € o be a closed unbounded set of order type
cf(a) disjoint from §. Fora =+ 1welet Cy = {f}. For 0 < a < 8 < A
let v(8,0) = min(Cs — a). Obviously, a £ 7(8,a) < B. We now define

7€(ﬁa a) for £ g k(ﬂa a) as follows: 70(ﬂ9a) = :39 7l+1(ﬂ’a) = 7(7!(/6, a)s a)-
If 7/(8,2) = a then we terminate the definition and put k = k(8,a) =
= {. Clearly, @ = 7(8,a) < ... < 70(B,a) = B. The string o(8,a) =
= (y0(8, ), ... ,1k(B, a)) is the Todorcevic walk from 3 to a.

Fix a decomposition § = U{S” : v < A} into stationary sets (possible,
by Solovay’s theorem). Let H: A — w; be a mapping such that for every
i < wy the set §; = SN H~1({1})is stationary in A. Let w; = U{R,, : n < w}
be a partition into stationary sets. For 0 < a < § < A we let

wi(B,a) = {p > k/2: for every ¢ < k/2, H(7p) > H(7,)}

and p; = min(w;). Here and in several cases later, we omit (3, ) after
wy, p1, k ete. if it is obvious what we are speaking of. We now define

k k
wy = {q < 5: for every ) <p<k,p¢w implies H(yq) > H('yp)}.

Let p; be such that min{H(y,) : ¢ € w2} € R,,. Nowif 0 < py —p2 £ k and
Ypr—py (B, @) € §7 we put ¢(f,a) = v otherwise ¢(8, @) is chosen arbitrarily.

2. Preliminaries

DerFINITION 3. If 81 = ($1(0),...,81(t1)), s2 = (82(0),...,s2(t2)) are
strings, their concatenation sy A s3 is (51(0),...51(t1 — 1), 2(0),... ,s2(t2)).
The reason why we are removing the border element is that in our ap-
plications sq(¢;) = s2(0) holds, so we only remove an immediate repetition.

LEMMA 2. If 6 € S, B > & then there exists a x(B,6) < 6§ such that
for every a with x(8,6) £ a < §, o(8,8) is an initial segment of o(B,a).
Moreover, o(83,0) = p(8,6) A 0(8, ).

Proor. If a < § is large enough, v(B3,a) = v(B,6). Therefore, if a 2
> x(v(B,6),6) also holds, the statement is true. We get, therefore, a proof
by induction on 5.

LemMMa 3. If A, B € D, k < w, then there ezista € A, B€ B, a < f8
with k(8,a) > k.
Proor. We define Cy = A’, and by induction, C;y1 = (S N C;)'. Pick

7k € Ck N S, then 8 € B with 8 > vk, xk = x(B,7k)- If Yis1, Xi41 are
found, pick v; € § N C; with xi41 < 7 < Yip1 and x; with x; > x(Vig1, %),
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Xi+1 < Xi < 7. Given 7, xo let @ € A satisfy xo < a < 7o, then by
Lemma 2, for £ < k there exists an m < k(8, ) such that y,(8, @) = v, so
k(B,a) > k.

DEFINITION 4. op(8,a) = (H(7:(8,0)): L £ k(B,a)). If 6 € w¥, ie. is
a finite string of countable ordinals, then for ¢ < wy o' is the following string
|o*| = |o], and O io®

: o(f if o(f < 1:,

(8 = { wy ifo(f) 2.

DeriniTION 5. f T € A, 6§ < A, R € w; stationary, then U(6,T, R)
denotes the set of those g € (w1 +1)<¥ —w* such that for every ¢ < w; there
exists a 8 > 6, 8 € T with py(B3,6)" = o and min{oy(£) : ¢'(£) = w1} € R.
0 € U(6,T, R, x) denotes that 3 even satisfies x(3,6) < x.

LemMa 4. If T € [AP, then there is a §(T) < X such that for §(T) <
S 6 < A UT,R) # 0. If cf(6) > wy, then there is a x < § such that
U(6,T,R,x) # 0.

ProoF. For i < w; welet A; = {6 < A: if 8 > 6,8 € T, theni ¢
¢ QH(/Ba‘S)}'

CLaM. |A;| < A for i < wy.

PrRoOOF OF CLAIM. Suppose that |A;| = A for some 7 < w; and select a
6e S;NAL, B eT with 8> 6. Choose an a € A;, x(8,8) < a < §. Then
6 € p(B,0), and ¢ = H(8) € pu(B, @), a contradiction.

Now we define 6(T) with U{A; : i < w1} € 6(T). Assume that §(T) <
< § < A. For every i < wy, there is a 8; > §, 8; € T such that i € oy(8;, 6).

Consider {ou(0;,6) : ¢ € R}. There exist a stationary R; € R and a
k < w such that for ¢ € Ry, |oi| = k, where g; = op(0;,8). We even assume
that for every £ < k either for every ¢ € Ry 9;(£) < ¢ or for every i € Ry
0i(£) 2 i. Applying Fodor’s theorem we can find a stationary R, € R; and
an 7 € (wy + 1)< — wS¥ such that oy (B;,6)' = 7 (i € Ry). For i € R,
min{o*(€) : 7(¢) = w1} = i € R; C R, s0 n € U(4, T, R).

If cf(8) > w1, {x(Bi,6) : ¢+ € R,} is bounded below 6, s0 7 € U(6,T, R, \),
if A > X(8i,6) (i € Ry).

DeriNITION 6. If T € A, 6§ < A, then L(6,T) conmsists of those p €
€ (w1 + 1)< — Wi for which for every @ < 6, and large enough i < w
thereis a 8 € T, a < 8 < & such that pg(8,8)' = 9. For T € [A\]* we let
C(T)={(S:nT") :i<uw}.

Obviously, C(T) is closed unbounded in

Lemma 5. If 6 € C(T), cf(8) 2 w1, then L(6,T) # 0.

ProoF. Case I: cf(§) = wy. Let {§; : 7 < w1} converge to 4. For i < w
pick an o; € §;NT", 6; < a; < 6 (possible, as § € C(T)). Now choose 3; € T,
bi < Bi < o with x(6,04) < Bi. Then i = H(a;) € on(é, Bi).
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As in Lemma 4, there is a stationary X € wy and a g € (w1 +1)<% —w ¥

such that p5(6,8;)' = o (i € X), s0 o € L(6,T).

Case 2: cf(6) > wy. Let {6, : a < cf(6)} converge to §. For a < cf(é),
i < wi, pick ¥ € T with é, £ B < § as in Case 1. For a < cf(§), there
is a 0* € (w1 + 1)<¥ — wS¥ such that there exist an X* € [w]* with
or(6,8%) = o for i € X°. There is a p with p* = p for cf(§) many o’s.
Clearly, o € L(6,T).

3. Proof of the theorem

Assume that the sets {¢2,...,(? 1} are disjoint (¢ < A\,n < w). We
may assume that a < (% < ¢} < ... < ("1, There is a closed unbounded
set C C A such that if @ < §, 6§ € C, then ("1 < 6.

For 6§ € §NC, as cf(§) > wy, there are {vf : £ < n} such that sup{e <
< 6 :0m(6,¢%) = v§} = 6. For a stationary Ty € SNC, v§ = v, (6 € Ty).
By Lemma 5, for § € SN C(Ty), L(6,T1) # 0, so there is a stationary
T, € SNC(T1), and 7 € (wy + 1)<¥ —w¥ such that 7 € L(§,Ty) for é € Ty.
We put £* = min{{ : 7({) = w1 }. Again, by Lemma 5, for § € S n C(Tz),
L(6,T,) # 0, so there is a stationary T3 € STNC(T2), and ¢ with g € L(§,T3)
(6 € Ta).

Since A > w;, there is a stationary 7! € § and {¢¢ : £ < n} such that
ou(¢t,6) = v* (6 € T'). By Fodor’s theorem, there is a 72 C T, and
x? < A, with x(¢§,68) < x? for § € T?. By Lemma 4, if 6§ € § — §(T?), then
there is a x < 6 such that U(6, T2, Rpey), X) # 9, 50 there are 5, x> > X2,
and T3 C § — 6(T?) stationary with g € U(8,T2, Ry yyqp, X°) (6 € T3).

We now apply Lemma 2 with A = T35 — (x* + 1), B = T2 to get a
B3 € Ts — (x° + 1), and 82 € T2 such that 82 > 83 and

k(63,Bs) > max{|vg| : £ < n} + |7| + || + |n| + max{|v*| : £ < n}.

Choose ip < w; which is larger than every countable ordinal in gg(53, 83),
n,v*,ve (£ < n). Since o € L(f3,T), there is a B3 € Ty with x3 < f2 < fs,
x(8°,B3) < Bz such that gz (Bs,B2)" = . Pick a x2 with x° < x2 < s,

x(8°,Bs) < xa such that x(fs, B2) < Xa-
Next fix an 43 < w; which is larger than the ordinals in g (83, 5;) and

io. Then, as 83 € T® and n € U(ﬂ3,T2,Rl.+|‘,|,x3), there exists a 8 € T2,
B > B with og(B8,8%)" = n and x(8,6%) < x3. Since 8 € T? we have
eu(¢5, 8) = v* and x(¢f,8) < x* (£ < n).

Finally, choose i3 < wy which is larger than the countable ordinals in
ou(B,03) and ¢ and use 7 € L(B;,T}) to find By € Ty with x2 < 1 < B,

or (B2, $1)2 = . Also, fix x1 > X(82,61), Xz < X1 < PB1. Since B, € T,
there is an a, x; < a < B, such that for £ < n, og(81,¢%) = v.
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the the the
left middle right
mountain marsh mountain
wy wy
heaven i { -
sky 11 { -
@H atmo- N - -7
sphere{ - -
io : :
earth { e et - - - - - -
vt n ] T 7
5 8 8 Ba B2 B 4

Fig. 1. The sequence QH(CI‘S, ).

Now, by Lemma 2, as a < (T,

X(¢5,8) < x® < x2 < x1 < o implies
x(8, ,33) < X3 < « implies
x(8%,83) < x2 < a implies
x(B3,02) < x2 < a implies
X(B2,01) < x1 < a implies

o(Ch, &) = o(Ch, B) A o(B, (M)
o(8,C3) = o(B8, %) A o(B%, ¢™);
o(8%,C3) = o(8°, B3) A o(Bs, CT);
0(B3,(3) = 0(B3, B2) A 0(B2, ¢ );
0(B2, ) = o(B2, 1) A 0(B1,(T),

i.e.

(¢, ¢ = o(C5, B) A (8, 8%) A o(B°, B3) A 0(B3, B2) A 0(B2, B1) A 0(B1, C™).

A similar identity holds for gp.

Now it is obvious that the middle, i.e. the k((f,, ¢™)/2-th element of the
string lies in the p(83, 83) portion — selected to be so long for this purpose.
By the respective selections of iy, the largest o value of the first half of
the string is at least ¢; but less than 7,. It follows that wl(g’f,,(;") consists
of those indices p in the g(8;, 1) portion where pg (82, 51)(p) 2 42, so, in
particular, py = s + |g| 4 £* where s = [0((5, Ba)|. w2(C5,(T) then consists
of those indices ¢ in the p(8, %) portion where og(8,%)(¢) = i;. By the
choices of 77 and (83, 3%) we have that the minimum of {H(v,) : ¢ € w;}
is in Ryeppp, ie. p2 = £* + |p|. From this, vp,_p, = v, = f3 € 57, s0
c(Cf,,Cg‘) = 4, as required.
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4. Corollaries

CoROLLARY. If K > wy is regular, then

(2) Prt(k*) holds;

(b) k¥-c.c.-ness is not a productive property of Boolean algebras;
(c) there is a kt-separable not x*-Lindeldf Hausdorff-space;

(d) there is a k*-Lindelf not kt -separable Hausdorff-space.

ProoF. (a) From the Theorem and Lemma 1.
(b) See [6]-
(c)—(d) See [1].
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