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STRONG NEGATIVE PARTITION RELATIONS 
BELOW THE CONTINUUM 

S. SHELAH (Jerusalem) 1 

0.  I n t r o d u c t i o n  

DEFINITION 1. If ~ is a cardinal, P r+(~)  means tha t  there is a funct ion 
C-" [)~]2 .._> )t such tha t  if 1 =< n < w and the sets {C~ ,~n--1} a r e  disjoint 
for a < ), and C ~ < . . .  < (~-1 then  for every h:  n x n ~ )~ there are a < /3  
such t ha t  c ( ~ ,  r  h( i , j )  for i , j  < n. 

DEFINITION 2. Pr()~) is the same but  only for every h:  n • n --* ,~ with h 
constant ,  i.e. h( i , j )  = 3' for i , j  < n. 

LEMMA 1. I f  )~ iS regular, not strong limit, then Pr()~) implies Pr+(~) .  

PROOF. We use the  idea in the  proof  of the  Engelking-Karlowitz  the- 
orem. Assume tha t  p < A and 2" > A. Let { A a : a  < A} be different 
subsets of p.  Assume tha t  c -  witnesses Pr(~) .  Pu t  G = {(w,g)  :w  e [p]<o,, 
g: P(w)  2 --. )~}. Clearly, ]V I = )~, so we can enumera te  it as {(wa, g ~ } : a  < 
< ~}. Now put  c(a,/3) = gx(Ao fqwx, A~f3w~),  where 7 = c - (a , /3 ) .  

Assume tha t  { ~ / : i  < n, ~ .<  ~} are given as in Definition 1 , h :  n x n  ~ ,~. 
For a < ~, i < j < n,  pick 7~ a e Ack/k  A ~ ,  and let w ~ = { 7 ~ :  i < j < n}. 

As w ~ c= p < ~, we may  assume tha t  there exist w, Bi c= w (i < n), such 
tha t  w a = w, A;k n w = Bi for a < ,~. Let g:  P(w)  2 --+ ~ be a funct ion 
satisfying g(Bi, Bj)  = h( i , j ) .  There  is a 7 < ~ with {w,g) = {w.y, gT} , and 

by Pr()~) there are ~ < / 3  < ~ such tha t  if i < j < n, t hen  c - ( ( / , ~ )  = 7- 

But  then  c ( ( / , ~ )  = g.y(A~i fl w.~,Ai~ N w~) = g(Bi, Bj)  = h( i , j ) ,  and we 

are done. 

We now sta te  the  main  result of this paper.  We remind the  reader tha t  
S c= ,~ is a non-reflecting s ta t ionary set if it is s ta t ionary  and S N a is non- 
s ta t ionary  in a for every limit a < )~. 

THEOREM. Pr()~) holds whenever there e~ists a nonreflecting stationary 
set S in ,~ with cf(a) > Wl for every ~ E S. 

This work is continued in [10] (see also [11]). 

1 Research partially supported by the United States-Israel Binational Science Foun- 
dation (BSF), Publ. 327. 
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96 s. SHELAH 

1. C o n s t r u c t i o n  o f  t h e  coloring 

For a < A limit let Ca c_ a be a closed unbounded  set of order type 
cf(a) disjoint f rom S. For a = / 5  + 1 we let Ca = {fl}. For 0 < a < ~ < ,~ 
let 7(~,  a )  = min(C# - a) .  Obviously, a =< 7(/5, a)  < ~. We now define 
7~(fl, a)  for I _<_ k(/5, a)  as follows: 70(/5, a )  = fl, 7,+1(~, ix) = 7(7~(fl, a) ,  ct). 
If 7~(/5, a)  = (x then  we te rminate  the definition and put  k = k(~, (x) = 
= l.  Clearly, a = 7k(~, (~) < . . .  < 7o(/5, (x) = /5. The  string 0(/5, (x) = 
= (70(fl, a ) , . . .  ,7k(/5, a ) ) i s  the Todorcevic walk from fl to  a.  

Fix a decomposi t ion S = U{S ~ : 7 < "~} into s ta t ionary sets (possible, 
by Solovay's theorem).  Let H :  A --+ Wl be a mapping  such tha t  for every 
i < wl the  set & = S f l H - l ( { i } ) i s  s ta t ionary in A. Let Wl = O{Rn : n < w} 
be a par t i t ion into s ta t ionary sets. For 0 < a < ~ < A we let 

wl(/5, a) = {p > k/2: for every q < k/2, tI(Tv) > H(Tq)} 

and Pl = min(wl) .  Here and in several cases later,  we omit  (B ,a )  after 
wl,px, k etc. if it is obvious what  we are speaking of. We now define 

k k )} 
w 2 =  q < ~ :  f o r e v e r y - ~ < p < k , p ~ w l  implies H ( T q ) > H ( 7  p . 

Let P2 be such tha t  min{H(Tq) : q E w2} e R w. Now if 0 __< Pl - P2 _-< k and 
%,l_w(B, ix) e S 7 we put  c(/5,a) = 3' otherwise c(/5,a) is chosen arbitrarily. 

2. Preliminaries 

DEFINITION 3. If  Sl : ( S l ( 0 ) , . . . , a l ( t l ) ) ,  82 = <S2(0) , . . . , s2 ( t2 ) )  are 
strings, their  concatenation Sl ^ s2 is ( s l ( O ) , . . . s l ( t l -  1) , s2 (0 ) , . . .  ,s2(t2)). 

The  reason why we are removing the border  element is tha t  in our ap- 
plications s l ( t l )  = s2(0) holds, so we only remove an immedia te  repeti t ion.  

LEMMA 2. I f  6 E S, fl > 6 then there ezists a X(/5,6) < 6 such that 
for every a with X(/5,6) <= (~ < 6, e(15,6) is an initial segment of 0(/5,a).  
Moreover, 0(/5,a) = 0(/5,6) ^ e(6 ,a ) .  

PROOF. If  a < 6 is large enough,  7(/5, or) = 7(/5, 6). Therefore,  if a > 
> X(7(~, 6), 6) also holds, the s ta tement  is true.  We get, therefore, a proof  
by induct ion on/5.  

LEMMA 3. I f  A, B E [A]A, k < w, then there ezist a E A, /5 E B, a < 
with k(/5, a) > k. 

PROOF. We define Co = A', and by induction,  Ci+l = (S fl Ci) ~. Pick 
7k E Ck fl S, then  /5 E B with /5 > 7k, Xk = X(/5, Tk). If 7i+1, Xi+l are 
found, pick 7i E S f3 Ci with Xi+l < 7i < 7i+1 and Xi with Xi > X(Ti+l,Ti), 
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STRONG NEGATIVE PARTITION RELATIONS BELOW THE CONTINUUM 97 

Xi+l < Xi < 7i. Given 70, X0 let a E A satisfy X0 < a < 70, then by 
Lemma 2, for I __< k there exists an m _<_ k(~, a)  such that  7m(~, a)  = 7~, so 

> k. 

DEFINITION 4. ~H(j3, a ) =  (H(7e(fl, a ) ) :  ~ < k (~ ,a ) ) .  If a e w<~', i.e. is 
a finite string of countable ordinals, then for i < wx a i is the following string 
[o'i[ = [a[, and 

ai(~ ) = {  a ( l )  i f a ( ~ ) < i ,  
wl if a ( l )  => i. 

DEFINITION 5. If T C__ A, 6 < A, R c_ _ ~,'l stationary, then U(6, T ,R)  
denotes the set of those 8 E (0.,1 + 1) <~' - w l  <~' such that  for every i < wl there 
exists a Z > 6, Z �9 T with el l (Z,  6) = e and m i n { e H ( l )  : e (l) = �9 R. 

�9 U(6, T, R, X) denotes that /3  even satisfies X(/~, 6) < X. 

LEMMA 4. I f  T �9 [A] .~, then there is a 6(T) < A such that for 6(T) <= 
< 6 <)~, U(6, T ,R)  # 0. I fcf(6) > w ~ ,  then there i s a x  < 6 such that 
U ( 6 , T , R , x ) # O .  

PROOF. For i < Wx we let A/ = {6 < )~: i f f l  > 6,fl �9 T, t h e n i  

CLAIM. [Ai[< A for i < Wl. 

PROOF OF CLAIM. Suppose that  [Ai[ = A for some i < Wl and select a 
6 � 9  S / n A ~ , f l � 9  Choose a n a e A i ,  x ( ~ , 6 ) <  a <  6. Then 
6 �9 ~(fl, a ) ,  and i = H(6)  �9 ~H(/~,a), a contradiction. 

Now we define 6(T) with U{Ai : i < wl} c__ 6(T). Assume that  6(T) <__ 
< 6 < A. For every i < Wl, there is a 8 / >  6, ~i �9 T such that  i �9 ~H(~i,6). 

Consider {~H(~/, 6) : i �9 R}. There exist a stationary R1 c= R and a 
k < w such that  for i �9 R1, [~i[ = k, where ~i = ~H(~i,6). We even assume 
that  for every I < k either for every i �9 R1 ~i(l) < i or for every i �9 R1 
~/(l) => i. Applying Fodor's theorem we can find a stat ionary R2 c= R1 and 
an  ~/ �9 (wx + 1) <~' - w <'~ such that  ~H(]~i, 6) i -- ?7 (i �9 R2). For i �9 R2, 
min{~i(~) : ~/(~) = Wl} = i �9 R2 c__ R, so ~/ �9 U(6,T,R).  

If cf(6) > Wx, {X(fli, 6) : i �9 R2} is bounded below 6, so ~/ �9 U ( 6, T, R, )O, 
if A > A(fli,6) (i �9 R2). 

DEFINITION 6. If T C= A, 6 < A, then L(6,T) consists of those ~ �9 
�9 (Wl + 1) <~ - w <~' for which for every a < 6, and large enough i < wl 
there is a fl �9 T, a < /3 < 6 such that  ~H(6,fl)i = 8. For T �9 [A] ~ we let 
C(T) = f ' ]{(Si~T') '  : i < Wl). 

Obviously, C(T) is closed unbounded in 

LEMMA 5. I f  6 �9 C(T),  cf(6) > Wl, then L(6, T) # 0. 

PROOF. Case 1: cf(6) = w~. Let {6i : i < Wl) converge to 6. For i < w~ 
pick an ai �9 S inT ' ,  6i < ai < 6 (possible, as 6 �9 C(T)). Now choose fli �9 T, 
6i </~i < ai with X(6, a i )  </~i. Then i = H ( a i )  �9 ~H(6,/~i).  
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98 s. SHELAH 

As in Lemma 4, there is a stationary X c__ w~ and a ~ E (w~ + 1) <~ -Wl  <~ 
such that  ~H(~,/3~)~ = ~ (i �9 X) ,  so ~ E L(~, T). 

Case 2: c f ($ )>  Wl. Let { $ a : a  < cf($)} converge to 6. For a < cf($), 
i < wz, pick fl~ �9 T with $~ </3~ < $ as in Case 1. For a < cf($), there 
is a t~ ~ e (wx + 1) <w - w <~ such that  there exist an X ~ e [wl] ~'~ with 
t~H($,/3~)i = t ~ for i �9 X %  There is a ~ with t~ ~ = t~ for cf($) many a 's .  
Clearly, ~ e L($, T). 

3. Proo f  of  the theorem 

Assume that  the sets {~o, . . .  ,~n-x} are disjoint (a  < A,n < w). We 
n--1 may assume that  a < ~o < ~ < . . .  < ~ . There is a closed unbounded 

set C c__ A such that  if a < 6, ~ E C, then ~ - 1  < 6. 
For ~ e S V1 C, as cf($) > wl, there are {v~: g < n} such that  sup{a < 

< 6 :  ~H(~ ,~ )  -- v~} = 6. For a stationary T1 c__ S n C ,  v~ = ue (6 �9 T1). 
By Lemma 5, for $ q S N C(T1), L(6,T1) ~t 0, so there is a stat ionary 
T2 ~ S n C(T1), and r q (wx + 1) <w - Wl <w such that  r q L($, T1) for 6 �9 T2. 
We put g* = min{g : r ( / )  = wz}. Again, by Lemma 5, for $ e S n C(T2), 
L(~, T2) r 0, so there is a stationary T3 ~ S w n C(T2), and ~ with ~ e L($, :/'2) 

�9 T3). 
Since ~ > wz, there is a stationary T 1 c= S and {v t : g < n} such that  

t~H(~,6) = v t (6 e T1). By Fodor's theorem, there is a T 2 c__ T 1, and 
X 2 < ,~, with X(~ ,  $) < X 2 for ~ e T 2. By Lemma 4, if $ e S - 6(T2), then 
there is a X < ~ such that  U(~,T2, Rt.+IQI,X) ~ 0, so there are y ,X 3 > X 2, 
and T 3 c__ S - ~(T 2) stationary with y �9 U(~, T 2, Rt.+l~l, X 3) (6 q T3). 

We now apply Lemma 2 with A = T3 - (X 3 + 1), B = T 3 to get a 
/33 e T3 - (X 3 + 1), and/33 �9 T 3 such that/33 >/33 and 

k(/33,/33) > maz{l ,zl : g < + I 1 + + + ma {luZl : l < 

Choose io < wz which is larger than every countable ordinal in t~H(/33,/33), 
~], v t, vt ( l  < n). Since t~ e L(/33, T2), there is a/32 �9 T2 with X 3 </32 < f13, 
X(/33,/33) < /32 such that  t~H(/33,/32) i~ = ~. Pick a X2 with X 3 < X~ < /3~, 
X(/33,/33) < X2 such that  X(/33, ~2) <~ X2" 

Next fix an il < wz which is larger than the ordinals in ~H(/33,/32) and 
i0. Then,  as/33 �9 T 3 and y E U(/33,T2,Rt.+Id,X3 ), there exists a/3 �9 T 2, 
/3 > /33 with #H(/3,/33) q = ~1 and X(/3,/33) < X 3. Since/3 E T 2 we have 
~H(r = ve and X(r < X 3 (g < n). 

Finally, choose i2 < wl which is larger than the countable ordinals in 
~)H(/3,/33) and i and use r �9 L(/32, T1) to find/31 �9 T1 with X2 < /31 <~ /32, 
#H(/32,/3X) i~ = r. Also, fix Xa > X(/32,/3z), X2 < X1 < /3z- Since /31 E T1, 
there is an a,  Xz < a </31, such that  for s < n, #//(/3a, (~) = yr. 
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the the the 
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- - ~  

yt  ~ Q 1" t6n 

Fig.  1. The sequence t m eH(r r ). 

Now, by Lemma 2, as c~ < ~ ,  

X(~'~,/~) < X a < X2 < X1 < ~ implies ~)(~'~, ff~) = ~ ( ~ , ~ )  A #( f l , (~) ;  

X(fl, f~ a) < X a < c~ implies p(fl,~-m) = p(/~,f13)A #(fla, ff~); 

X(~3,~3) < X2 < (~ implies Q ( ~ 3 , ~ ) =  ~(fla, f13)^ ~)(~3, ff~); 

X(/~a,f~2) < Xz < c~ implies P(~z, ff~) = ~(/~3,~2) A ~ ( ~ 2 , ~ ) ;  
X(~2,~1) < X1 < ~ implies L)(~2,~'~) = ~(~2,~1) ^ #(~l,(am), 

i .e .  

~((~, r = e(g,  ~) ^ e(~,~3) ^ e(~3, ~3) ^ e(~3, ~2) ^ e(~2,~l) ^ e(~l, r 

A similar identity holds for ~)H. 
Now it is obvious that the middle, i.e. the k(~'~, ~ ) / 2 - t h  element of the 

string lies in the #(f13, ~a) portion - -  selected to be so long for this purpose. 
By the respective selections of i l ,  i2 the largest PH value of the first half of 
the string is at least il but less than i2. It follows that wx(ff~, ff~) consists 
of those indices p in the #(f~2,~)  portion where #n(f~2,~x)(P) > i2, so, in 
particular, Pl = s + lel + e* where s = le(r w2(r162 then consists 
of those indices q in the ~(f~,fl3) portion where PH(~,~3)(q) > i1. By the 
choices of r /and ~(~,1~3) we have that the minimum of {H(7q) : q ~ w2} 
is in Rt*+ ld ,  i.e. p2 = ~* + I~1, From this, 7 m - p :  = % = /~3 ~ S "~, so 
c(~'~, ~'~) = 7, as required. 

Acta Mathematica Hungarica 58, 1991 

Sh:327



100 S. SHELAH: STRONG NEGATIVE PARTITION RELATIONS 

4. Corollaries  

COROLLARY. If I~ ~> W 1 i8 regular, then 
(a) Pr+(n +) holds; 
(b) g+-c.c.-ness is not a productive property of Boolean algebras; 
(c) there is a x~ +-separable not x~+-Lindel6f Hausdorff-space; 
(d) there is a ~;+-Lindel6f not ~;+-separable Hausdorff-space. 

PROOF. (a) From the Theorem and Lemma 1. 
(b) See [6]. 
(c)-(d) See [1]. 

Acknowledgement. The author is grateful to I. Juhs for his help in 
rewriting the paper. 
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