STRONG NEGATIVE PARTITION RELATIONS BELOW THE CONTINUUM

S. SHELAH (Jerusalem) ${ }^{1}$

0. Introduction

Definition 1. If λ is a cardinal, $\operatorname{Pr}^{+}(\lambda)$ means that there is a function $c:[\lambda]^{2} \rightarrow \lambda$ such that if $1 \leqq n<\omega$ and the sets $\left\{\zeta_{\alpha}^{0}, \ldots, \zeta_{\alpha}^{n-1}\right\}$ are disjoint for $\alpha<\lambda$ and $\zeta_{\alpha}^{0}<\ldots<\zeta_{\alpha}^{n-1}$ then for every $h: n \times n \rightarrow \lambda$ there are $\alpha<\beta$ such that $c\left(\zeta_{\alpha}^{i}, \zeta_{\beta}^{j}\right)=h(i, j)$ for $i, j<n$.

Definition 2. $\operatorname{Pr}(\lambda)$ is the same but only for every $h: n \times n \rightarrow \lambda$ with h constant, i.e. $h(i, j)=\gamma$ for $i, j<n$.

Lemma 1. If λ is regular, not strong limit, then $\operatorname{Pr}(\lambda)$ implies $\operatorname{Pr}^{+}(\lambda)$.
Proof. We use the idea in the proof of the Engelking-Karlowitz theorem. Assume that $\mu<\lambda$ and $2^{\mu} \geqq \lambda$. Let $\left\{A_{\alpha}: \alpha<\lambda\right\}$ be different subsets of μ. Assume that c^{-}witnesses $\operatorname{Pr}(\lambda)$. $\operatorname{Put} G=\left\{\langle w, g\rangle: w \in[\mu]^{<\omega}\right.$, $\left.g: P(w)^{2} \rightarrow \lambda\right\}$. Clearly, $|G|=\lambda$, so we can enumerate it as $\left\{\left\langle w_{\alpha}, g_{\alpha}\right\rangle: \alpha<\right.$ $<\lambda\}$. Now put $c(\alpha, \beta)=g_{\gamma}\left(A_{\alpha} \cap w_{\gamma}, A_{\beta} \cap w_{\gamma}\right)$, where $\gamma=c^{-}(\alpha, \beta)$.

Assume that $\left\{\zeta_{\alpha}^{i}: i<n, \alpha<\lambda\right\}$ are given as in Definition 1, $h: n \times n \rightarrow \lambda$. For $\alpha<\lambda, i<j<n$, pick $\gamma_{\alpha}^{i, j} \in A_{\zeta_{\alpha}^{i}} \Delta A_{\zeta_{\alpha}^{j}}$, and let $w^{\alpha}=\left\{\gamma_{\alpha}^{i, j}: i<j<n\right\}$. As $w^{\alpha} \subseteq \mu<\lambda$, we may assume that there exist $w, B_{i} \subseteq w(i<n)$, such that $w^{\alpha}=w, A_{\zeta_{\alpha}^{i}} \cap w=B_{i}$ for $\alpha<\lambda$. Let $g: P(w)^{2} \rightarrow \lambda$ be a function satisfying $g\left(B_{i}, B_{j}\right)=h(i, j)$. There is a $\gamma<\lambda$ with $\langle w, g\rangle=\left\langle w_{\gamma}, g_{\gamma}\right\rangle$, and by $\operatorname{Pr}(\lambda)$ there are $\alpha<\beta<\lambda$ such that if $i<j<n$, then $c^{-}\left(\zeta_{\alpha}^{i}, \zeta_{\beta}^{j}\right)=\gamma$. But then $c\left(\zeta_{\alpha}^{i}, \zeta_{\beta}^{j}\right)=g_{\gamma}\left(A_{\zeta_{\alpha}^{i}} \cap w_{\gamma}, A_{\zeta_{\beta}^{j}} \cap w_{\gamma}\right)=g\left(B_{i}, B_{j}\right)=h(i, j)$, and we are done.

We now state the main result of this paper. We remind the reader that $S \subseteq \lambda$ is a non-reflecting stationary set if it is stationary and $S \cap \alpha$ is nonstationary in α for every limit $\alpha<\lambda$.

Theorem. $\operatorname{Pr}(\lambda)$ holds whenever there exists a nonreflecting stationary set S in λ with $\operatorname{cf}(\alpha)>\omega_{1}$ for every $\alpha \in S$.

This work is continued in [10] (see also [11]).

[^0]
1. Construction of the coloring

For $\alpha<\lambda$ limit let $C_{\alpha} \cong \alpha$ be a closed unbounded set of order type $\operatorname{cf}(\alpha)$ disjoint from S. For $\alpha=\beta+1$ we let $C_{\alpha}=\{\beta\}$. For $0<\alpha<\beta<\lambda$ let $\gamma(\beta, \alpha)=\min \left(C_{\beta}-\alpha\right)$. Obviously, $\alpha \leqq \gamma(\beta, \alpha)<\beta$. We now define $\gamma_{\ell}(\beta, \alpha)$ for $\ell \leqq k(\beta, \alpha)$ as follows: $\gamma_{0}(\beta, \alpha)=\beta, \gamma_{\ell+1}(\beta, \alpha)=\gamma\left(\gamma_{\ell}(\beta, \alpha), \alpha\right)$. If $\gamma_{l}(\beta, \alpha)=\boldsymbol{\alpha}$ then we terminate the definition and put $k=k(\beta, \alpha)=$ $=\ell$. Clearly, $\alpha=\gamma_{k}(\beta, \alpha)<\ldots<\gamma_{0}(\beta, \alpha)=\beta$. The string $\varrho(\beta, \alpha)=$ $=\left\langle\gamma_{0}(\beta, \alpha), \ldots, \gamma_{k}(\beta, \alpha)\right\rangle$ is the Todorcevic walk from β to α.

Fix a decomposition $S=\cup\left\{S^{\gamma}: \gamma<\lambda\right\}$ into stationary sets (possible, by Solovay's theorem). Let $H: \lambda \rightarrow \omega_{1}$ be a mapping such that for every $i<\omega_{1}$ the set $S_{i}=S \cap H^{-1}(\{i\})$ is stationary in λ. Let $\omega_{1}=\cup\left\{R_{n}: n<\omega\right\}$ be a partition into stationary sets. For $0<\alpha<\beta<\lambda$ we let

$$
w_{1}(\beta, \alpha)=\left\{p>k / 2: \text { for every } q<k / 2, H\left(\gamma_{p}\right)>H\left(\gamma_{q}\right)\right\}
$$

and $p_{1}=\min \left(w_{1}\right)$. Here and in several cases later, we omit (β, α) after w_{1}, p_{1}, k etc. if it is obvious what we are speaking of. We now define

$$
w_{2}=\left\{q<\frac{k}{2}: \text { for every } \frac{k}{2}<p \leqq k, p \notin w_{1} \text { implies } H\left(\gamma_{q}\right)>H\left(\gamma_{p}\right)\right\}
$$

Let p_{2} be such that $\min \left\{H\left(\gamma_{q}\right): q \in w_{2}\right\} \in R_{p_{2}}$. Now if $0 \leqq p_{1}-p_{2} \leqq k$ and $\gamma_{p_{1}-p_{2}}(\beta, \alpha) \in S^{\gamma}$ we put $c(\beta, \alpha)=\gamma$ otherwise $c(\beta, \alpha)$ is chosen arbitrarily.

2. Preliminaries

Definition 3. If $s_{1}=\left\langle s_{1}(0), \ldots, s_{1}\left(t_{1}\right)\right\rangle, s_{2}=\left\langle s_{2}(0), \ldots, s_{2}\left(t_{2}\right)\right\rangle$ are strings, their concatenation $s_{1} \wedge s_{2}$ is $\left\langle s_{1}(0), \ldots s_{1}\left(t_{1}-1\right), s_{2}(0), \ldots, s_{2}\left(t_{2}\right)\right\rangle$.

The reason why we are removing the border element is that in our applications $s_{1}\left(t_{1}\right)=s_{2}(0)$ holds, so we only remove an immediate repetition.

Lemma 2. If $\delta \in S, \beta>\delta$ then there exists a $\chi(\beta, \delta)<\delta$ such that for every α with $\chi(\beta, \delta) \leqq \alpha<\delta, \varrho(\beta, \delta)$ is an initial segment of $\varrho(\beta, \alpha)$. Moreover, $\varrho(\beta, \alpha)=\varrho(\beta, \delta) \wedge \varrho(\delta, \alpha)$.

Proof. If $\alpha<\delta$ is large enough, $\gamma(\beta, \alpha)=\gamma(\beta, \delta)$. Therefore, if $\alpha \geqq$ $\geqq \chi(\gamma(\beta, \delta), \delta)$ also holds, the statement is true. We get, therefore, a proof by induction on β.

Lemma 3. If $A, B \in[\lambda]^{\lambda}, k<\omega$, then there exist $\alpha \in A, \beta \in B, \alpha<\beta$ with $k(\beta, \alpha)>k$.

Proof. We define $C_{0}=A^{\prime}$, and by induction, $C_{i+1}=\left(S \cap C_{i}\right)^{\prime}$. Pick $\gamma_{k} \in C_{k} \cap S$, then $\beta \in B$ with $\beta>\gamma_{k}, \chi_{k}=\chi\left(\beta, \gamma_{k}\right)$. If γ_{i+1}, χ_{i+1} are found, pick $\gamma_{i} \in S \cap C_{i}$ with $\chi_{i+1}<\gamma_{i}<\gamma_{i+1}$ and χ_{i} with $\chi_{i}>\chi\left(\gamma_{i+1}, \gamma_{i}\right)$,
$\chi_{i+1}<\chi_{i}<\gamma_{i}$. Given γ_{0}, χ_{0} let $\alpha \in A$ satisfy $\chi_{0}<\alpha<\gamma_{0}$, then by Lemma 2 , for $\ell \leqq k$ there exists an $m \leqq k(\beta, \alpha)$ such that $\gamma_{m}(\beta, \alpha)=\gamma_{\ell}$, so $k(\beta, \alpha)>k$.

Definition 4. $\varrho_{H}(\beta, \alpha)=\left\langle H\left(\gamma_{\ell}(\beta, \alpha)\right): \ell \leqq k(\beta, \alpha)\right\rangle$. If $\sigma \in \omega_{1}^{<\omega}$, i.e. is a finite string of countable ordinals, then for $i<\omega_{1} \sigma^{i}$ is the following string $\left|\sigma^{i}\right|=|\dot{\sigma}|$, and

$$
\sigma^{i}(\ell)= \begin{cases}\sigma(\ell) & \text { if } \sigma(\ell)<i \\ \omega_{1} & \text { if } \sigma(\ell) \geqq i\end{cases}
$$

Definition 5. If $T \subseteq \lambda, \delta<\lambda, R \subseteq \omega_{1}$ stationary, then $U(\delta, T, R)$ denotes the set of those $\varrho \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that for every $i<\omega_{1}$ there exists a $\beta>\delta, \beta \in T$ with $\varrho_{H}(\beta, \delta)^{i}=\varrho$ and $\min \left\{\varrho_{H}(\ell): \varrho^{i}(\ell)=\omega_{1}\right\} \in R$. $\varrho \in U(\delta, T, R, \chi)$ denotes that β even satisfies $\chi(\beta, \delta)<\chi$.

Lemma 4. If $T \in[\lambda]^{\lambda}$, then there is a $\delta(T)<\lambda$ such that for $\delta(T) \leqq$ $\leqq \delta<\lambda, U(\delta, T, R) \neq \emptyset$. If $\operatorname{cf}(\delta)>\omega_{1}$, then there is a $\chi<\delta$ such that $\overline{\bar{U}}(\delta, T, R, \chi) \neq \emptyset$.

Proof. For $i<\omega_{1}$ we let $A_{i}=\{\delta<\lambda$: if $\beta>\delta, \beta \in T$, then $i \notin$ $\left.\notin \varrho_{H}(\beta, \delta)\right\}$.

Claim. $\left|A_{i}\right|<\lambda$ for $i<\omega_{1}$.
Proof of Claim. Suppose that $\left|A_{i}\right|=\lambda$ for some $i<\omega_{1}$ and select a $\delta \in S_{i} \cap A_{i}^{\prime}, \beta \in T$ with $\beta>\delta$. Choose an $\alpha \in A_{i}, \chi(\beta, \delta)<\alpha<\delta$. Then $\delta \in \varrho(\beta, \alpha)$, and $i=H(\delta) \in \varrho_{H}(\beta, \alpha)$, a contradiction.

Now we define $\delta(T)$ with $\cup\left\{A_{i}: i<\omega_{1}\right\} \subseteq \delta(T)$. Assume that $\delta(T) \leqq$ $\leqq \delta<\lambda$. For every $i<\omega_{1}$, there is a $\beta_{i}>\delta, \beta_{i} \in T$ such that $i \in \varrho_{H}\left(\beta_{i}, \delta\right)$.

Consider $\left\{\varrho_{H}\left(\beta_{i}, \delta\right): i \in R\right\}$. There exist a stationary $R_{1} \subseteq R$ and a $k<\omega$ such that for $i \in R_{1},\left|\varrho_{i}\right|=k$, where $\varrho_{i}=\varrho_{H}\left(\beta_{i}, \delta\right)$. We even assume that for every $\ell<k$ either for every $i \in R_{1} \varrho_{i}(\ell)<i$ or for every $i \in R_{1}$ $\varrho_{i}(\ell) \geqq i$. Applying Fodor's theorem we can find a stationary $R_{2} \cong R_{1}$ and an $\eta \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that $\varrho_{H}\left(\beta_{i}, \delta\right)^{i}=\eta\left(i \in R_{2}\right)$. For $i \in R_{2}$, $\min \left\{\varrho^{i}(\ell): \eta(\ell)=\omega_{1}\right\}=i \in R_{2} \subseteq R$, so $\eta \in U(\delta, T, R)$.

If $\operatorname{cf}(\delta)>\omega_{1},\left\{\chi\left(\beta_{i}, \delta\right): i \in \overline{R_{2}}\right\}$ is bounded below δ, so $\eta \in U(\delta, T, R, \lambda)$, if $\lambda>\lambda\left(\beta_{i}, \delta\right)\left(i \in R_{2}\right)$.

Definition 6. If $T \subseteq \lambda, \delta<\lambda$, then $L(\delta, T)$ consists of those $\varrho \in$ $\in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ for which for every $\alpha<\delta$, and large enough $i<\omega_{1}$ there is a $\beta \in T, \alpha<\beta<\delta$ such that $\varrho_{H}(\delta, \beta)^{i}=\varrho$. For $T \in[\lambda]^{\lambda}$ we let $C(T)=\bigcap\left\{\left(S_{i} \cap T^{\prime}\right)^{\prime}: i<\omega_{1}\right\}$.

Obviously, $C(T)$ is closed unbounded in
Lemma 5. If $\delta \in C(T), \operatorname{cf}(\delta) \geqq \omega_{1}$, then $L(\delta, T) \neq \emptyset$.
Proof. Case 1: $\operatorname{cf}(\delta)=\omega_{1}$. Let $\left\{\delta_{i}: i<\omega_{1}\right\}$ converge to δ. For $i<\omega_{1}$ pick an $\alpha_{i} \in S_{i} \cap T^{\prime}, \delta_{i}<\alpha_{i}<\delta$ (possible, as $\delta \in C(T)$). Now choose $\beta_{i} \in T$, $\delta_{i}<\beta_{i}<\alpha_{i}$ with $\chi\left(\delta, \alpha_{i}\right)<\beta_{i}$. Then $i=H\left(\alpha_{i}\right) \in \varrho_{H}\left(\delta, \beta_{i}\right)$.

As in Lemma 4, there is a stationary $X \cong \omega_{1}$ and a $\varrho \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that $\varrho_{H}\left(\delta, \beta_{i}\right)^{i}=\varrho(i \in X)$, so $\varrho \in L(\delta, T)$.

Case 2: $\operatorname{cf}(\delta)>\omega_{1}$. Let $\left\{\delta_{\alpha}: \alpha<\operatorname{cf}(\delta)\right\}$ converge to δ. For $\alpha<\operatorname{cf}(\delta)$, $i<\omega_{1}$, pick $\beta_{i}^{\alpha} \in T$ with $\delta_{\alpha} \leqq \beta_{i}^{\alpha}<\delta$ as in Case 1. For $\alpha<\operatorname{cf}(\delta)$, there is a $\varrho^{\alpha} \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that there exist an $X^{\alpha} \in\left[\omega_{1}\right]^{\omega_{1}}$ with $\varrho_{H}\left(\delta, \beta_{i}^{\alpha}\right)^{i}=\varrho^{\alpha}$ for $i \in X^{\alpha}$. There is a ϱ with $\varrho^{\alpha}=\varrho$ for $\operatorname{cf}(\delta)$ many α 's. Clearly, $\varrho \in L(\delta, T)$.

3. Proof of the theorem

Assume that the sets $\left\{\zeta_{\alpha}^{0}, \ldots, \zeta_{\alpha}^{n-1}\right\}$ are disjoint $(\alpha<\lambda, n<\omega)$. We may assume that $\alpha<\zeta_{\alpha}^{0}<\zeta_{\alpha}^{1}<\ldots<\zeta_{\alpha}^{n-1}$. There is a closed unbounded set $C \cong \lambda$ such that if $\alpha<\delta, \delta \in C$, then $\zeta_{\alpha}^{n-1}<\delta$.

For $\delta \in S \cap C$, as $\operatorname{cf}(\delta)>\omega_{1}$, there are $\left\{\nu_{\ell}^{\delta}: \ell<n\right\}$ such that $\sup \{\alpha<$ $\left.<\delta: \varrho_{H}\left(\delta, \zeta_{\alpha}^{\ell}\right)=\nu_{\ell}^{\delta}\right\}=\delta$. For a stationary $T_{1} \subseteq S \cap C, \nu_{\ell}^{\delta}=\nu_{\ell}\left(\delta \in T_{1}\right)$. By Lemma 5 , for $\delta \in S \cap C\left(T_{1}\right), L\left(\delta, T_{1}\right) \neq \bar{\emptyset}$, so there is a stationary $T_{2} \cong S \cap C\left(T_{1}\right)$, and $\tau \in\left(\omega_{1}+1\right)^{<\omega}-\omega_{1}^{<\omega}$ such that $\tau \in L\left(\delta, T_{1}\right)$ for $\delta \in T_{2}$. We put $\ell^{*}=\min \left\{\ell: \tau(\ell)=\omega_{1}\right\}$. Again, by Lemma 5 , for $\delta \in S \cap C\left(T_{2}\right)$, $L\left(\delta, T_{2}\right) \neq \emptyset$, so there is a stationary $T_{3} \cong S^{\gamma} \cap C\left(T_{2}\right)$, and ϱ with $\varrho \in L\left(\delta, T_{2}\right)$ $\left(\delta \in T_{3}\right)$.

Since $\lambda>\omega_{1}$, there is a stationary $T^{1} \cong S$ and $\left\{\nu^{\ell}: \ell<n\right\}$ such that $\varrho_{H}\left(\zeta_{\delta}^{\ell}, \delta\right)=\nu^{\ell}\left(\delta \in T^{1}\right)$. By Fodor's theorem, there is a $T^{2} \cong T^{1}$, and $\chi^{2}<\lambda$, with $\chi\left(\zeta_{\delta}^{\ell}, \delta\right)<\chi^{2}$ for $\delta \in T^{2}$. By Lemma 4, if $\delta \in S-\delta\left(T^{2}\right)$, then there is a $\chi<\delta$ such that $U\left(\delta, T^{2}, R_{\ell^{*}+|e|}, \chi\right) \neq \emptyset$, so there are $\eta, \chi^{3}>\chi^{2}$, and $T^{3} \cong S-\delta\left(T^{2}\right)$ stationary with $\eta \in U\left(\delta, T^{2}, R_{\ell^{\bullet}+|e|}, \chi^{3}\right)\left(\delta \in T^{3}\right)$.

We now apply Lemma 2 with $A=T_{3}-\left(\chi^{3}+1\right), B=T^{3}$ to get a $\beta_{3} \in T_{3}-\left(\chi^{3}+1\right)$, and $\beta^{3} \in T^{3}$ such that $\beta^{3}>\beta_{3}$ and

$$
k\left(\beta^{3}, \beta_{3}\right)>\max \left\{\left|\nu_{\ell}\right|: \ell<n\right\}+|\tau|+|\varrho|+|\eta|+\max \left\{\left|\nu^{\ell}\right|: \ell<n\right\} .
$$

Choose $i_{0}<\omega_{1}$ which is larger than every countable ordinal in $\varrho_{H}\left(\beta^{3}, \beta_{3}\right)$, $\eta, \nu^{\ell}, \nu_{\ell}(\ell<n)$. Since $\varrho \in L\left(\beta_{3}, T_{2}\right)$, there is a $\beta_{2} \in T_{2}$ with $\chi^{3}<\beta_{2}<\beta_{3}$, $\chi\left(\beta^{3}, \beta_{3}\right)<\beta_{2}$ such that $\varrho_{H}\left(\beta_{3}, \beta_{2}\right)^{i_{0}}=\varrho$. Pick a χ_{2} with $\chi^{3}<\chi_{2}<\beta_{2}$, $\chi\left(\beta^{3}, \beta_{3}\right)<\chi_{2}$ such that $\chi\left(\beta_{3}, \beta_{2}\right)<\chi_{2}$.

Next fix an $i_{1}<\omega_{1}$ which is larger than the ordinals in $\varrho_{H}\left(\beta_{3}, \beta_{2}\right)$ and i_{0}. Then, as $\beta^{3} \in T^{3}$ and $\eta \in U\left(\beta^{3}, T^{2}, R_{\ell^{*}+|e|}, \chi^{3}\right)$, there exists a $\beta \in T^{2}$, $\beta>\beta^{3}$ with $\varrho_{H}\left(\beta, \beta^{3}\right)^{i_{1}}=\eta$ and $\chi\left(\beta, \beta^{3}\right)<\chi^{3}$. Since $\beta \in T^{2}$ we have $\varrho_{H}\left(\zeta_{\beta}^{\ell}, \beta\right)=\nu^{\ell}$ and $\chi\left(\zeta_{b}^{\ell}, \beta\right)<\chi^{3}(\ell<n)$.

Finally, choose $i_{2}<\omega_{1}$ which is larger than the countable ordinals in $\varrho_{H}\left(\beta, \beta^{3}\right)$ and i and use $\tau \in L\left(\beta_{2}, T_{1}\right)$ to find $\beta_{1} \in T_{1}$ with $\chi_{2}<\beta_{1}<\beta_{2}$, $\varrho_{H}\left(\beta_{2}, \beta_{1}\right)^{i_{2}}=\tau$. Also, fix $\chi_{1}>\chi\left(\beta_{2}, \beta_{1}\right), \chi_{2}<\chi_{1}<\beta_{1}$. Since $\beta_{1} \in T_{1}$, there is an $\alpha, \chi_{1}<\alpha<\beta_{1}$, such that for $\ell<n, \varrho_{H}\left(\beta_{1}, \zeta_{\alpha}^{\ell}\right)=\nu_{\ell}$.

Fig. 1. The sequence $\varrho_{H}\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)$.
Now, by Lemma 2, as $\alpha<\zeta_{\alpha}^{m}$,

$$
\begin{aligned}
& \chi\left(\zeta_{\beta}^{\ell}, \beta\right)<\chi^{3}<\chi_{2}<\chi_{1}<\alpha \text { implies } \varrho\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)=\varrho\left(\zeta_{\beta}^{\ell}, \beta\right) \wedge \varrho\left(\beta, \zeta_{\alpha}^{m}\right) ; \\
& \chi\left(\beta, \beta^{3}\right)<\chi^{3}<\alpha \text { implies } \varrho\left(\beta, \zeta_{\alpha}^{m}\right)=\varrho\left(\beta, \beta^{3}\right) \wedge \varrho\left(\beta^{3}, \zeta_{\alpha}^{m}\right) \text {; } \\
& \chi\left(\beta^{3}, \beta_{3}\right)<\chi_{2}<\alpha \text { implies } \varrho\left(\beta^{3}, \zeta_{\alpha}^{m}\right)=\varrho\left(\beta^{3}, \beta_{3}\right) \wedge \varrho\left(\beta_{3}, \zeta_{\alpha}^{m}\right) ; \\
& \chi\left(\beta_{3}, \beta_{2}\right)<\chi_{2}<\alpha \text { implies } \varrho\left(\beta_{3}, \zeta_{\alpha}^{m}\right)=\varrho\left(\beta_{3}, \beta_{2}\right) \wedge \varrho\left(\beta_{2}, \zeta_{\alpha}^{m}\right) ; \\
& \chi\left(\beta_{2}, \beta_{1}\right)<\chi_{1}<\alpha \text { implies } \varrho\left(\beta_{2}, \zeta_{\alpha}^{m}\right)=\varrho\left(\beta_{2}, \beta_{1}\right) \wedge \varrho\left(\beta_{1}, \zeta_{\alpha}^{m}\right),
\end{aligned}
$$

i.e.

$$
\varrho\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)=\varrho\left(\zeta_{0}^{\ell}, \beta\right) \wedge \varrho\left(\beta, \beta^{3}\right) \wedge \varrho\left(\beta^{3}, \beta_{3}\right) \wedge \varrho\left(\beta_{3}, \beta_{2}\right) \wedge \varrho\left(\beta_{2}, \beta_{1}\right) \wedge \varrho\left(\beta_{1}, \zeta_{\alpha}^{m}\right)
$$

A similar identity holds for ϱ_{H}.
Now it is obvious that the middle, i.e. the $k\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right) / 2$-th element of the string lies in the $\varrho\left(\beta^{3}, \beta_{3}\right)$ portion - selected to be so long for this purpose. By the respective selections of i_{1}, i_{2} the largest ϱ_{H} value of the first half of the string is at least i_{1} but less than i_{2}. It follows that $w_{1}\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)$ consists of those indices p in the $\varrho\left(\beta_{2}, \beta_{1}\right)$ portion where $\varrho_{H}\left(\beta_{2}, \beta_{1}\right)(p) \geqq i_{2}$, so, in particular, $p_{1}=s+|\varrho|+\ell^{*}$ where $s=\left|\varrho\left(\zeta_{\beta}^{\ell}, \beta_{3}\right)\right| . w_{2}\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)$ then consists of those indices q in the $\varrho\left(\beta, \beta^{3}\right)$ portion where $\varrho_{H}\left(\beta, \beta^{3}\right)(q) \geqq i_{1}$. By the choices of η and $\varrho\left(\beta, \beta^{3}\right)$ we have that the minimum of $\left\{H\left(\gamma_{q}\right): q \in w_{2}\right\}$ is in $R_{\ell^{*}+|e|}$, i.e. $p_{2}=\ell^{*}+|\varrho|$. From this, $\gamma_{p_{1}-p_{2}}=\gamma_{s}=\beta_{3} \in S^{\gamma}$, so $c\left(\zeta_{\beta}^{\ell}, \zeta_{\alpha}^{m}\right)=\gamma$, as required.

4. Corollaries

Corollary. If $\kappa>\omega_{1}$ is regular, then
(a) $\mathrm{Pr}^{+}\left(\kappa^{+}\right)$holds;
(b) κ^{+}-c.c.-ness is not a productive property of Boolean algebras;
(c) there is a κ^{+}-separable not κ^{+}-Lindelöf Hausdorff-space;
(d) there is a κ^{+}-Lindelöf not κ^{+}-separable Hausdorff-space.

Proof. (a) From the Theorem and Lemma 1.
(b) See [6].
(c)-(d) See [1].

Acknowledgement. The author is grateful to I. Juhász for his help in rewriting the paper.

References

[1] J. Roitman, Basic S and L, Handbook of set-theoretic topology (K. Kunen, J. E. Vaughan, ed.) North-Holland (1984).
[2] S. Shelah, Jonsson algebras in successor cardinals, Israel J. Math., 30 (1978), 70-74.
[3] S. Shelah, Proper forcing, Lecture Notes, 840, Springer (1982).
[4] S. Shelah, Was Sierpinski right? Israel J. Math., 62 (1988), 355-380.
[5] S. Shelah, A graph which embeds all small graphs on any large set of vertices, Annals of Pure and Applied Logic, 38 (1989), 171-183.
[6] S. Shelah, Strong negative partition above the continuum, J. of Symb. Logic, 55 (1990), 21-31.
[7] S. Todorcevic, Coloring pairs of countable ordinals, Acta Math., 159 (1987), 261-294.
[8] S. Todorcevic, Remarks on chain conditions on products, Comm. Math., 56 (1985), 295-302.
[9] S. Todorcevic, Remarks on cellularity on products, Comm. Math., 57 (1986), 357-372.
[10] S. Shelah, Cardinal Arithmetic, Oxford University Press (accepted).
[11] S. Shelah, Cardinal Arithmetic for Skeptics, Bull. Amer. Math. Soc. (accepted).
(Received February 9, 1988)
THE HEBREW UNIVERSITY INSTITUTE OF MATHEMATICS JERUSALEM, ISRAEL

RUTGERS UNIVERSITY
DEPARTMENT OF MATHEMATICS
NEW BRUNSWICK, NJ
U.S.A.

[^0]: ${ }^{1}$ Research partially supported by the United States-Israel Binational Science Foundation (BSF), Publ. 327.

