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RANDOMNESS AND SEMIGENERICITY

JOHN T. BALDWIN AND SAHARON SHELAH

Abstract. Let L contain only the equality symbol and let L+ be an arbitrary
finite symmetric relational language containing L. Suppose probabilities are
defined on finite L+ structures with ‘edge probability’ n−α. By Tα, the almost
sure theory of random L+-structures we mean the collection of L+-sentences
which have limit probability 1. Tα denotes the theory of the generic structures
for Kα (the collection of finite graphs G with δα(G) = |G| − α · | edges of G |
hereditarily nonnegative).

0.1. Theorem. Tα, the almost sure theory of random L+-structures, is the
same as the theory Tα of the Kα-generic model. This theory is complete,
stable, and nearly model complete. Moreover, it has the finite model property

and has only infinite models so is not finitely axiomatizable.

This paper unites two apparently disparate lines of research. In [8], Shelah and
Spencer proved a 0-1-law for first order sentences about random graphs with edge
probability n−α where α is an irrational number between 0 and 1. Answering a
question raised by Lynch [5], we extend this result from graphs to hypergraphs
(i.e. to arbitrary finite symmetric relational languages). Let Tα denote the set of
sentences with limit probability 1. The Spencer-Shelah proof proceeded by a process
of quantifier elimination which implicitly showed the theories Tα were nearly model
complete (see below) and complete.

Hrushovski in [3] refuted a conjecture of Lachlan by constructing an ℵ0-categor-
ical strictly stable pseudoplane. Baldwin and Shi [1] considered a variant on his
methods to construct strictly stable (but not ℵ0-categorical) theories Tα indexed
by irrational α. In this paper we show that for each irrational α, Tα = Tα and thus
deduce that Tα is not finitely axiomatizable and that Tα is stable.

Each Tα is the theory of a ‘generic’ model Mα of an amalgamation class Kα of
finite structures. Although the Hrushovski examples are easily seen to be nearly
model complete this is less clear for the Tα since they are not ℵ0-categorical. We
show that each Tα is nearly model complete.

In the first, purely model theoretic, section of the paper we describe our basic
framework and prove a sufficient condition for certain theories, including the Tα,
to be nearly model complete. These conditions depend upon a generalization of
the notion of genericity of a structure: semigenericity, which is introduced in this
paper. In the second section we consider the addition of random relations and
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1360 JOHN T. BALDWIN AND SAHARON SHELAH

deduce the main results for this case: The almost-sure theory and the theory of the
generic model are equal, complete, stable, nearly model complete, and not finitely
axiomatizable. From the model theoretic standpoint the extension from graphs to
an arbitrary finite relational language is not a big step; it was spelled out in [9].
The distance is larger from the probability standpoint and the problem of making
such an extension had been raised by Lynch [5].

The first author greatly benefited from discussions on this paper with M. Albert,
G. Cherlin, M. Itai, A.H. Lachlan, C. Laskowski, D. Kueker and D. Marker. We
want to thank Shmuel Lifsches for a careful reading of Section 1.

1. Near model completeness

After Hrushovski’s construction of counterexamples to the conjectures of Lach-
lan and Zil′ber a number of authors explored generalizations of the variation he
had introduced on the Fraissé-Jonsson construction. Hrushovski had noted that in
his situation, where the generic model was ω-saturated, the theory of the generic
admitted the level of quantifier elimination which we christen ‘nearly model com-
plete’ in this paper. We reprise one general setting for this study here and in the
next section connect it with certain random models. Baldwin and Shi [1] studied
a situation where the homogeneous-universal model, renamed generic by Kueker
and Laskowski [4], is not ω-saturated. Kueker and Laskowski investigated the con-
ditions in which the theory constructed from a generic admitted various levels of
quantifier elimination. After the first author noticed the connection between [3]
and [8], we began to consider the quantifier complexity of the theory Tα. There
is no explicit elimination of quantifiers result in [8] but a lemma similar to our
Lemma 1.30 is the crucial technical step. The second author had already begun
notes generalizing [8]; the 0-1-law in Section 2 contains a more concrete version of
his approach. Shelah has continued this approach to the probability aspect in more
generality in [6]. A close look at the quantifier elimination results in [3, 8] suggests
the following definition.

1.1. Definition. A theory T is said to be nearly model complete if every formula
is equivalent in T to a Boolean combination of Σ1-formulas.

Thus, T is nearly model complete if the type of any finite sequence is determined
by exactly the family of Σ1-formulas it satisfies. Near model completeness lies
strictly in strength between model completeness and 1-model completeness (every
formula is equivalent to a Σ2-formula).

1.2. Notation. Fix a finite relational language L. For any class K of structures,
S(K) denotes the class of all substructures of members of K. Let K0 be a collection
of finite L-structures and K be a class of models whose finite substructures are in
S(K0). We always assume that the empty structure is in K0. We will consider
several different choices for K0 in this paper. In the following, A, B, C vary over
K0; M , N over K. If A, B are subsets of N , we write AB for the L-structure
contained in N with universe A ∪B.

If B ∩ C = A we write B ⊗A C for the structure with universe B ∪ C and no
relations other than those on B or C. If A,B,C are substructures of N such that
the structure imposed by N on BC is isomorphic to B ⊗A C we say B and C are
freely joined over A in N . In general we do not assume K0 is closed under ⊗ but
this assertion will turn out to be an important property of some classes we consider.
We write X ⊆ω Y to indicate X is a finite subset of Y .
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RANDOMNESS AND SEMIGENERICITY 1361

We will first discuss a class of finite structures equipped with a dimension func-
tion satisfying certain natural properties. Then we define from this dimension func-
tion a notion of strong submodel. The main quantifier elimination result is proved
in terms of the strong submodel concept. But, the connection with random models
is obtained by exploiting an appropriate dimension function. The fact that this
dimension function (in Example 1.6) is the same as that employed by Hrushovski
to construct a strictly stable ℵ0-categorical pseudoplane is the key to the argument
for the stability of the almost sure theory of random graphs with edge probability
n−α when α is irrational.

1.3. Definition. Let δ be an arbitrary function assigning a real number to each
isomorphism type of finite L-structure with δ(∅) = 0. δ(A/B) equals by definition
δ(AB)− δ(B). This yields immediately:

δ(AB/C) = δ(A/BC) + δ(B/C).

Note that the structure with universe AB (and thus δ(A/B)) is not determined
by the separate structures on A and B but by some embedding of both into an
element of K0.

1.4. Notation. We deal only with structures on which the relations of L are sym-
metric (i.e R(a) holds just if it holds for any permutation of a) and irreflexive (i.e.
hold only for sequences of distinct elements). Thus the relations are on sets rather
than sequences.

We require the following conditions on δ.

1.5. Axiom. K0 and δ satisfy for A,B,C . . . ∈ S(K0) and N,M,∈ K:

i) δ : S(K0) 7→ <+ (the nonnegative reals) and δ(∅) = 0.
ii) If A, B, and C are disjoint subsets of N then δ(A/B) ≥ δ(A/BC).
iii) For every n ∈ ω there is an εn > 0 such that if |C| < n and A,C are disjoint

subsets of M with δ(CA/A) < 0 then δ(CA/A) ≤ −εn.
iv) There is a real number ε > 0 such that if A,B,B′ are disjoint subsets of a

model N and δ(A/B) − δ(A/BB′) < ε then R(A,B,B′) = ∅ and δ(A/B) =
δ(A/BB′).

v) If f is a 1-1 homomorphism fromA to B then for everyX ⊆ Y ⊆ A, δ(Y/X) ≥
δ(f(Y )/f(X)).

Axioms iii) and iv) play no explicit role in the argument presented here. But
they are important in establishing the stability of Tα in [1] so are used in the proof
of Theorem 1.34. Note that Axiom 1.5 iv) is stronger than the assertion that if f
is a 1-1 homomorphism, δ(X) ≥ δ(f(X)).

Axiom 1.5 i) requires that the range of δ be the nonnegative reals. This allows us
to obtain an important monotonicity property by modifying δ to d : K× S(K0) 7→
<+ by defining for each N ∈ K,

d(N,A) = inf{δ(B) : A ⊆ B ⊆ω N}.
We usually write d(N,A) as dN (A). We will omit the subscript N if it is clear
from context. This operator serves only as a notational convenience within this
paper but plays an essential role in establishing the stability of Tα in [1]. The
nonnegativity requirement on δ|K0 not only justifies the definition of dN (A) but is
necessary for the important Lemma 1.17.
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1362 JOHN T. BALDWIN AND SAHARON SHELAH

The classes (Kα, δα), which are defined as follows, are important examples of
this situation.

1.6. Example. Let the relation symbols of L be 〈Ri : i < p〉. Let wi(A) be the
number of realizations of Ri in A. Fix a sequence α with 0 < αi ≤ 1 for i < p. Then
for each A, let e(A) =

∑
wiαi. Let Kα denote the class of all finite L-structures A

such that for all substructures A′ of A,

δα(A′) = |A′| − e(A′) ≥ 0.

See [1] for the straightforward verification of the axioms in this example.

From the dimension function we define certain special notions of submodel which
make it easier to formulate our argument.

1.7. Definition. For finite A, B contained in N , define the relative dimension
of A over B, dN (A/B), as dN (A/B) = dN (AB) − dN (B). If B ⊆ A ⊆ω N this
simplifies to dN (A/B) = dN (A) − dN (B)

1.8. Definition. For M ⊆ N ∈ S(K), define M ≤s N if for each finite X ⊆ M ,
dM (X) = dN (X). We say M is a strong submodel of N . We say f : M 7→ N is a
strong embedding if fM ≤s N . We write M <s N if M ≤s N but M 6= N .

We introduce a second kind of distinguished substructure by defining ≤i from
≤s as follows. Note that the definition yields that A ≤i A.

1.9. Definition. For A,B ∈ S(K0), A ≤i B if A ⊆ B but there is no A′ with
A ⊆ A′ <s B. If A ≤i B, we say B is an intrinsic extension of A.

In terms of the dimension function A ≤i B means A = B or δ(B/A) < 0 and
δ(B/A) < δ(B′/A) for any intermediate B′.

1.10. Lemma. Consider the situation described in Definition 1.3. If δ is a di-
mension function satisfying the properties of Axiom 1.5 and ≤s is defined as in
Definition 1.8 then (K,≤s) satisfies the following conditions for M,N,N ′ ∈ S(K).

A1. M ≤s M .
A2. If M ≤s N then M ⊆ N .
A3. If M ≤s N ≤s N then M ≤s N ′.
A4. If M ≤s N , N ′ ⊆ N then M ∩N ′ ≤s N ′.
A5. ≤i is preserved under 1-1 homomorphism.
A6. For all M ∈ S(K), ∅ ≤s M .

1.11. Remark. Note that A4 implies that if M,N,N ′ ∈ S(K) and M ≤s N ,
N ′ ⊆ N and M ⊆ N ′ then M ≤s N ′.

The quantifier elimination results of this section could be obtained by taking as
primitive a class K0 equipped with a notion of strong submodel, and regarding the
results of Lemma 1.10 and Lemma 1.17 below as axioms. Naturally, we would then
require that K0 and ≤s be closed under isomorphism. The dimension function is
needed for the calculations in Section 2.

1.12. Remark. In earlier formulations, the relation≤s was defined just on K0 rather
than on S(K0). This leads to difficulties in phrasing Axiom A4. Our current
formulation extends the ideas of [1] to encompass the Baudisch construction of
a new ℵ1-categorical group [2]. For our purposes in this paper, we could have
identified K0 with S(K0) and we make that restriction in Section 2.
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RANDOMNESS AND SEMIGENERICITY 1363

1.13. Remark. Axiom A6 holds in the examples at hand because the range of δ is
nonnegative as specified in Axiom 1.5. In Section 2 we will begin with a δ mapping
all finite L- structures into the reals. The requirement that δ is nonnegative requires
revising the choice of K0 (and thus K) to guarantee that if M ∈ K, then for every
A ⊆ω M , δ(A) ≥ 0. We show it is harmless to make this assumption in Lemma 2.19.

1.14. Lemma. i) For any A ⊆ C ∈ K0, we can choose B with A ≤i B ≤s C.
ii) ≤i is transitive.

Proof. For i), let B have minimal cardinality among the subsets X of C that contain
A with X ≤s C. Use A4 for ii).

1.15. Definition. For any L-structure M , let A,B be finite substructures of M
with A ⊆ B. Then

1. By a copy of B over A in M we mean the image of an extension f̂ to B of an
embedding f from A into M .

2. χM (B/A) is the number of distinct copies of B over A in M .
3. χ∗M (B/A) is the supremum of the cardinalities of maximal families of disjoint

(over A) copies of B over A in M .

1.16. Lemma. If B and B′ are maximal families of disjoint over A copies of B
over A then |B| ≤ |B −A||B′|.
Proof. Define a map from B to B′ by mapping each element of B to an element of
B′ that it intersects off A. This map is at most |B −A|-to-one since the members
of B are disjoint over A.

In particular, this shows that the supremum in the definition of χ∗M is achieved.
As one varies over the entire family of examples of structures constructed in this
manner (e.g. in [3], [1], etc.) the dimension function produces an important tri-
chotomy concerning pairs A ⊂ B. Consider an infinite (K0,≤s)-generic (Defini-
tion 1.23) model M . χ∗M (B/A) will be bounded if A ≤i B, infinite if δ(B/A) > 0,
and will vary with the choice of (K0,≤s) if δ(B/A) = 0. The key to the 0− 1 law
in Section 2 is that when α denotes a sequence, which is linearly independent with
1, the third case cannot occur. The uniform bound on χ∗M (B/A) follows from our
restricting K0 so δ is nonnegative. In [7], Shelah considers a different probabil-
ity measure which does not permit the nonnegativity restriction; in that situation
χ∗M (B/A) is a slow growing function. In our situation we have the following.

1.17. Lemma. There is a binary function t : ω × ω 7→ ω which is monotone
increasing in both arguments such that if A ≤i B then for any M ∈ K with A ⊆M ,
χM (B/A) ≤ t(|A|, |B|).
1.18. Remark. This follows easily from Lemma 3.19 of [1]. One must note that
A ≤i B if and only if there is a sequence A = A0, A1, . . . , An = B such that
(Ai, Ai+1) is a minimal pair in the sense of [1].

1.19. Definition. For any M ∈ K, any m ∈ ω, and any A ⊆M ,

clmM (A) =
⋃
{B : A ≤i B ⊆M & |B −A| < m}.

The following are immediate from Lemma 1.17 and the definitions.

1.20. Lemma. There is a function f mapping ω × ω into ω such that for any
A ⊆ω M ∈ K and m, clmM (A) is finite and its cardinality is uniformly bounded by
f(|A|,m).
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1364 JOHN T. BALDWIN AND SAHARON SHELAH

1.21. Lemma. For any M,A,m, n there exists a p depending on |A|,m, n but not
on the embedding of A into M with clmM (clnM (A)) ⊆ clpM (A).

Proof. Let p = m+ f(|A|, n) and check.

The next result is immediate noting that A ≤i X does not depend on any
ambient model containing X .

1.22. Lemma. If A ⊆ B ⊆ C and clmC (A) ⊆ B, then clmC (A) = clmB (A).

1.23. Definition. The countable model M ∈ K is (K0,≤s)-generic if

1. If A ≤s M,A ≤s B ∈ K0, then there exists B′ ≤s M with B ∼=A B
′; and

2. M is the union of 〈Ai : i < ω〉 where each Ai ∈ K0 and Ai ≤s Ai+1.

1.24. Definition. A class (K,≤s) has the amalgamation property if for any three
structures A,B,C ∈ K with strong embeddings f, g from A into B, C there exist
D ∈ K and strong embeddings f ′ : B 7→ D, g′ : C 7→ D with f ′f = g′g.

Following the Fraissé-Jonsson construction, it is easy to show the following result.

1.25. Fact. If (K0,≤s) satisfies A0 through A6 and has the amalgamation prop-
erty then there is a unique countable (K0,≤s)-generic model.

We need a more local notion. This is the key new idea of this paper; it arose
from the notion of a full model in [1] and from considering the role of clmM (A) in [8].

1.26. Definition. The countable model M is (K0,≤s)-semigeneric, or just semi-
generic, if

1. M ∈ K.
2. If A ≤s B ∈ K0 and g : A 7→ M , then for each finite m there exists an

embedding ĝ of B into M which extends g such that
(a) clmM (ĝB) = ĝB ∪ clm(gA),
(b) M | clmM (gA)ĝB is the free join over gA of clmM (gA) and ĝB.

In our applications any generic model is semigeneric (Lemma 1.35), so Fact 1.25
provides us with a semigeneric model. But while generic models are unique there
are many semigeneric models in the situations that we deal with here.

We describe below an infinite set of first order formulas φmA,B,C which allow us
to axiomatize the class of semigeneric models by the following lemma, which is
immediate once we have made the definitions. Note that these are Π3-formulas as
there is a universal quantifier hidden in the last clause.

1.27. Lemma. The structure N ∈ K is semigeneric, if and only if for each A ≤s
B, each m < ω, and C ∈ DmA , N |= φmA,B,C

In establishing the following notation we are suppressing a fixed correspondence
between enumerations of the structures A, B, C, D and the variables x, z, y, w.
This correspondence is chosen to preserve natural inclusions among the structures
and the variables. Intuitively, DmA is the set of possible isomorphism types for
clmM (A). The structure M satisfies φmA,B,C just if the definition of semigenericity

holds for the finite structures A ⊆ C and A ≤s B when C ≈ clmM (A).

1.28. Notation. 1. Write A ≤mi D if for each d ∈ D − A, there is a B with
Ad ⊆ B, A ≤i B, and |B −A| < m.
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RANDOMNESS AND SEMIGENERICITY 1365

2. Let A ∈ K0.
DmA = {D ∈ K0 : A ≤mi D}.

Note that by Lemma 1.20 if D ∈ DmA , |D| < f(|A|,m).
3. For C ∈ DmA let DmA,C be the set of D ∈ DmA which cannot be embedded in C.

4. For any finite A, δA(x) denotes the atomic diagram of A.
5. For C ∈ DmA , θmA,C(x, y) is the formula

δA(x) ∧ δC(x, y) ∧ (∀wD)
∧

D∈DmA,C
¬δD(x,wD).

Then for ac an enumeration of C, A ⊆ C ⊆ N , N |= θmA,C(a, c) if and only if

C = clmN (A).
6. For A ≤s B and C ∈ DmA , let φmA,B,C be the sentence

(∀x)(∀y)(∃z)[δA(x) ∧ θmA,C(x, y) → (δC⊗AB(x, y, z) ∧ θmB,C⊗AB(x, y, z))].

1.29. Theorem. If (K0,≤s) satisfies A1–A6 of Lemma 1.10 and Lemma 1.17,
then for every formula φ(x) there is a Boolean combination of existential formulas
ψφ(x) such that if M is (K0,≤s)-semigeneric then ψφ(x) is equivalent to φ(x) on
M .

Proof. We first show:

1.30. Lemma. For any formula φ(x1 . . . xr) there is an integer ` = `φ, such that
for any pair of semigenerics M,M ′ ∈ K and any r-tuples a ∈ M and a′ ∈ M ′ if

cl
`φ
M (a) ≈ cl

`φ
M ′(a′) by an isomorphism taking a to a′, then M |= φ(a) if and only if

M ′ |= φ(a′).

Proof. The proof is by induction on formula complexity; the cases involving Boolean
connectives are easy. So suppose φ(x) is of the form (∃y)ψ(x, y). Suppose M |=
φ(a), so there is a b such that M |= ψ(a, b).

Choose p1 large enough so that for any N ∈ K, any r-tuple c from N and any

d ∈ N , | cl`ψN (c, d)| < p1. Set p = max(p1, `ψ). For i ≤ p, for any N ∈ K, for
any a ∈ N define by induction AN0 = AN0 (a) = a and ANi+1 = ANi+1(a) = clpN (Ai).
Now applying Lemma 1.21, choose `φ so that for every a of length r, and every

semigeneric N , ANp (a) ⊆ cl
`φ
N (a).

We want to show that for any semigenericsM and M ′, for any a ∈M r, a′ ∈M ′r,
and b ∈M if cl

`φ
M (a) ≈ cl

`φ
M ′(a′) then there is a b′ ∈M ′ with cl

`ψ
M (a, b) ≈ cl

`ψ
M ′(a′, b′)

by an isomorphism taking a to a′. Let H0 be the substructure of M with universe

(a, b) and H1 = cl
`ψ
M (H0).

Fix g which maps a to a′ and cl
`φ
M (a) isomorphically onto cl

`φ
M (a′). By the choice

of `φ, for each i ≤ p, g maps AMi (a) isomorphically onto AM
′

i (a′). (Use Lemma 1.22
and induct.) To avoid superscripts, for each i, let A′i denote the image of Ai = AMi
under g. Notice that for some j ≤ p,

(AMj+1 −AMj ) ∩ (H1 −H0) = ∅.
Since p > |H1 −AMj | this implies AMj ≤s AMj H1.

Since M ′ is semigeneric, M ′ |= φpAj ,H1,Aj+1
. Thus, there is an isomorphism ĝ

extending g and mapping H1 into M with clpM ′(A′j ĝH1) = clpM ′(A′j) ∪ ĝH1 and so

that M ′|(clpM ′(A′j)ĝH1) is a free join of clpM ′(A′j) and ĝH1 over A′j . Let H ′
1 = ĝH1

and b′ = ĝ(b). We need to show cl
`ψ
M (a, b) ≈ cl

`ψ
M ′(a′, b′).
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1366 JOHN T. BALDWIN AND SAHARON SHELAH

By the choice of ĝ and H ′
1, A

′
jH

′
1
∼= AjH1 which contains cl

`ψ
M (a, b), so it suf-

fices (by Lemma 1.22) to show A′jH
′
1 contains cl

`ψ
M ′(a′, b′). Note cl

`ψ
M ′ (a′, b′) ⊆

clpM ′(a′, b′) ⊆ clpM ′(A′j ĝH1) = A′j+1H
′
1. By Lemma 1.22, we have cl

`ψ
m′(a′, b′) =

cl
`ψ
A′
j+1H

′
1
(a′, b′). Since A′j+1 and H ′

1 are freely joined over A′j , ĝ
−1 is a 1-1 homo-

morphism from A′j+1H
′
1 onto Aj+1H1. Applying A5 from Lemma 1.10, we see

cl
`ψ
A′
j+1H

′
1
(a′, b′) ⊆ A′jH

′
1 whence cl

`ψ
A′
j+1H

′
1
(a′, b′) = cl

`ψ
A′
jH

′
1
(a′, b′).

The proof of the following corollary encompasses the derivation of Theorem 1.29
from Lemma 1.30.

1.31. Corollary. Suppose there is a (K0,≤s)-semigeneric L-structure. The theory
of the class of (K0,≤s)-semigeneric L-structures is nearly model complete.

Proof. We have shown that in each semigeneric model the truth of φ(a) is deter-

mined by the isomorphism type of cl
`φ
M (a) and does not depend on the particular

embedding of cl
`φ
M (a) in M . There are only finitely many possibilities for this clo-

sure and each is determined by a conjunction of existential and universal sentences
(specifying which B with |B| < `φ and with a enumerating an intrinsic substructure
of B occur).

1.32. Corollary. The theory of the semigeneric models is complete.

Proof. If N is semigeneric, N ∈ K so, by A6, N does not contain any substructure
A, with δ(A) < 0. Thus, clN (∅) = ∅; completeness follows from Lemma 1.30.

Recall from [1]:

1.33. Definition. K0 has the full amalgamation property if B∩C = A and A ≤s B
implies D = B ⊗A C ∈ K0 and C ≤s D.

The following result is proved in [1]

1.34. Theorem. (Kα,≤s) has the full amalgamation property. There is a generic
model Mα and the theory Tα of this generic model is stable.

Using the full amalgamation property, it is easy to see

1.35. Lemma. The generic model Mα for Kα is semigeneric.

Combining the above results we have

1.36. Theorem. Tα is nearly model complete.

The strength of this remark is emphasized by the following observation.

1.37. Theorem. The theory Tα is not model complete.

Proof. If T is model complete with generic M , the type of any finite subset X is
determined by positive assertions of the substructures that contain X . Fix A <i
B <i C ∈ K0. Suppose A1, A2 ⊂ M with f : A ≈ A1 and f : A ≈ A2 and

suppose A1 <i B1 ≤s M , A2 <i C2 ≤s M with f and g extending to f̂ , ĝ such that
ĝ : B ≈ B1 and ĝ : C ≈ C2. Then every existential formula true of A1 is true of
A2 but the converse is obviously false. To see the nonobvious assertion, let D be
arbitrary with A1 ⊆ D ⊂M andD not contained in B1. Then, B1 ≤s B1D. Pulling
back to A,B,C, by full amalgamation, there is a D′ ⊃ D such that BD′⊗BC ∈ K0

and C ≤s CD′. Extending ĝ from C to CD′ provides the required witness.
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RANDOMNESS AND SEMIGENERICITY 1367

1.38. Remark. Let L contain a single binary relation and restrict to the class of
graphs. Baldwin and Shi noted [1] that full amalgamation holds for the class K′

α

consisting of those graphs in Kα which omit squares. Laskowski observed that this
argument applies as well to the class Kn

α of graphs which omit cliques of size n.
Thus the theory of the generic model associated with each of these classes is stable
and nearly model complete.

2. Adding random relations

In this section we begin with the collection of finite models for a language L with
only the equality symbol (i.e. n-element sets for arbitrary n) and add additional
‘random’ relations with respect to probability measures described below.

We show that a 0-1-law holds for the set of first order sentences in the expanded
language and that the almost sure theory (the sentences with limit probability 1)
is stable. Adding a single symmetric irreflexive binary relation gives the family of
theories investigated independently by Shelah-Spencer and Baldwin-Shi. Viewing
this situation as an expansion of the language of equality may seem eccentric but we
expect to exploit this viewpoint for more interesting base languages in the future.
This project is well-advanced in [6].

2.1. Context. Let L contain only the equality symbol. The L-structure Mn is a
set with n elements. K0 is the class of all finite sets and K the class of all sets. On
K, ≤s is just ⊆ and A ≤i B just if A = B.

2.2. Remark. The properties A1–A6 and the conclusion of Lemma 1.17 hold for
K in Context 2.1. Moreover, K0 has the full amalgamation property.

2.3. Definition. We say that B is a primitive extension of A if A ≤s B and for
every B′ with B′ properly contained between A and B, B′ is not a strong submodel
of B.

Now, we show how to define the notion of independent random relations (with
edge probability ‘n−α’) for an arbitrary finite relational language L+. Then we
define the notions of dimension and strong submodel in the extended language L+

and show that the properties A1–A5 hold for the extended language and A6 holds
with probability 1.

2.4. Notation. We write [X ]m for the collection of m-element subsets of a set
X . We will write either C ∈ [X ]m or (surreptitiously fixing an enumeration of C)
c ∈ [X ]m to indicate a member of this set.

2.5. Adding random relations. Fix an enumeration 〈Ri : i < p〉 of the relation
symbols in L+ − L and let ki denote the arity of Ri. Let Li contain only Ri.
Let t denote the largest arity of the Ri. Fix also a sequence of numbers αi with
0 < αi ≤ 1 and γi with 0 ≤ γi ≤ 1 for i < p. (We will require later that the αi and
1 be linearly independent over the rationals.)

We will define, for each isomorphism type of an L+ structure of size n, the
probability of a random structure of size n having that isomorphism type.

We assume that each new relation in the expanded structure is symmetric and
irreflexive in the sense of Paragraph 1.4. Note that this formalism does not describe
what one should mean by a random directed graph.
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1368 JOHN T. BALDWIN AND SAHARON SHELAH

Let N be an L+ structure of cardinality n. Let C, enumerated as c, be a subset
of N with size ki. Let

qi,n(C|Li) =

{
γin

−αi if N |= Ri(c),
1− γin

−αi if N |= ¬Ri(c),
and

Pn(N) =
∏
i<p

∏
{qi,n(C) : C ∈ [N ]ki}.

2.6. Remark. Let wj(N) = |{C ∈ [N ]kj : N |= Rj(c)}| and
wj(N) = |{C ∈ [N ]kj : N |= ¬Rj(c)}|. Then

Pn(N) =
∏
j<p

(γjn
−αj )wj(N)(1 − γjn

−αj )wj(N).

If L+ has a single binary edge relation and the probability of a two element
structure is n−α when the points are related and 1 − n−α if not, we return to the
situation of [8].

Recall from Lemma 1.27 the sentences axiomatizing the class of semigeneric
models. We want to show that the almost sure theory exists and is exactly the
theory of the semigenerics. To this end, we will show

lim
n→∞Pn(φmA,B,C) = 1

for each m,A,B,C.

2.7. Notation. Henceforth, A,B, . . .M,N . . . range over L-structures. A+, B+

etc. denote an expansion of A, respectively B to L+. We refer to the universe of A+

or A by either of these terms rather than the more accurate |A+| or |A| and reserve
| | for cardinality. Thus A+|L = A and we use these notations interchangeably.

We now translate our probability asssignment into a class (K, δ) as in Exam-
ple 1.6.

2.8. Notation. Let K∗
0 be the collection of all finite L+ structures.

1. For A+ ∈ K∗
0, define δ(A+) = δα(A+) as in Example 1.6, using only the

relation symbols in L+−L and using the parameters αi from Paragraph 2.5.
2. e(B+/A+) denotes e(A+B+)− e(A+).
3. K+

0 denotes the collection of A+ ∈ K∗
0 such that for each A′ ⊆ A, δ(A′) ≥ 0.

4. γ(A+, B+) =
∏
i<p{γi : |C| = ki, C ⊆ B,C 6⊆ A&B |= Ri(c)}.

2.9. Remark. The link between the function δ and the probabilistic situation is
provided in Remark 2.18 where we show that the expectation of the existence of a
copy over A+ of a structure B+ is determined by δ(B+/A+). Lemma 2.19 implies
that replacing K∗

0 by K+
0 does not change the almost sure theory. But it does make

the model theory conform with the framework of Section 1. The major calculations
of this section were carried out in K∗

0 in [8].

2.10. Assumption (Irrationality Hypothesis). The coefficients αi and 1 are lin-
early independent over the rationals. This generalizes for an arbitrary finite lan-
guage the assumption in the case of random graphs with p = n−α that α is ir-
rational. This hypothesis easily implies that for any L-structures A ≤s B and
expansions A+ ⊆ B+, δ(B+/A+) 6= 0. This is a key property (see Remark 2.27).
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RANDOMNESS AND SEMIGENERICITY 1369

We have the notions of ≤s and ≤i as a relation on members of K0. The definition
of δ on K+

0 induces corresponding relations on K+
0 . Since we work directly with δ

it is worthwhile recording the translation.

2.11. Definition. For A+ ⊆ B+ ∈ K+
0 ,

1. A+ ≤s B+ if δ(B+
1 /A

+) > 0 for every B+
1 with A+ ⊂ B+

1 ⊆ B+.
2. A+ ≤i B+ if δ(B+/B+

1 ) < 0 for every B+
1 with A+ ⊆ B+

1 ⊂ B+.
3. B+ is a primitive extension of A+, if δ(B+/A+) > 0 and δ(B+/A+

1 ) ≤ 0 for
each A+

1 with A+ ⊂ A+
1 ⊆ B+.

Note that:

2.12. Remark. K+
0 satisfies axioms A0–A6. We will be using the following mono-

tonicity properties which follow formally as in Section 1.

2.13. Lemma. 1. If A+ ≤i B+ and A+ ⊆ B+
1 ⊆ B+ then B+

1 ≤i B+.
2. If A+ ≤s B+ and A+ ⊆ B+

1 ⊆ B+ then A+ ≤s B+
1 .

2.14. Remark. The exact phrasing of the following notions is extremely delicate.
We consider a fixed pair of finite L+-structures, A+ ≤s B+. The L-structures
〈Mn : n < ω〉 naturally form a chain so an embedding f of A into Mn can naturally
be regarded as a map of A into Mm for m > n. We are concerned with the
properties of extensions of f . Thus, the immediately following definition of an L+-
homomorphism extending f is agnostic concerning the preservation of relations on
A.

2.15. Definition. Let A+ ⊆ B+. Let f be a 1-1 map from A into Mn, and let
G+ be an L+ structure expanding Mn. Let T denote the range of f .

1. We say an injective map g : B+ 7→ G+ which extends f is an L+-homomor-
phism overA if for any L+-relationR, and any b ∈ B but not in A, B+ |= R(b)
implies G+ |= R(gb).

2. For any G+ expanding Mn, and W ⊆Mn with |W | ≤ n we say

N(f,A+, B+,W ) = k in G+,

if

k = |{g : B+ 7→W ⊆Mn is an L+-homomorphism over A and g ⊇ f}|.
If W = Mn we omit it.

3. We say G+ is in the event Yf , which depends on a constant c1, if

nδ(B
+/A+)(logn)−(v(B/A)+1) < N(f,A+, B+) < c1n

δ(B+/A+).

4. Let U denote the range of f . For each S ⊆ Mn with S ∩ U = ∅ and |S| =
|B − A|, fix (if possible) an L-isomorphism gS between B and US which
extends f . (Since L-isomorphism just means 1-1 map, such S and gS exist
whenever n ≥ |B|.)

5. For each such S with fixed L-isomorphism gS of B into Mn, let Xf,S be a
random variable such that Xf,S(G+) is{
1 if gS maps B onto US and is an L+-homomorphism over A into G+,
0 otherwise.

For W ⊆Mn with |W | ≤ n, let

Xf,W =
∑

{Xf,S : gS : B 7→Mn and gS ⊇ f and S ⊆W}.
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1370 JOHN T. BALDWIN AND SAHARON SHELAH

If W = Mn, we write Xf for Xf,W .

2.16. Notation. 1. For any property P of structures, in particular a first or-
der property, the assertion, ‘for almost all sufficiently large M , M |= P ’
(abbreviated a.a.) means ‘for every ε > 0 there is an N such that if n > N ,
Pn({G+|L = Mn : G+ |= P}) > 1− ε’.

2. By an indicator random variable we mean one which takes values 0 or 1 and
thus indicates a set.

3. We write f ≈ g if f = O(g) and g = O(f).

The next lemma expresses the key observation linking the probability with the
dimension function δ.

2.17. Lemma. For all sufficiently large n and all f : A 7→Mn, and any W ⊆Mn

with |W | ≤ n, the expectation

E(Xf,W ) ≈ |W |v(B/A)n−e(B
+/A+).

Proof. The probability of an L-embedding of B+|L into M+ actually being an

L+ homomorphism is γ(A+, B+)n−e(B
+/A+). The number of such embeddings has

order of magnitude |W |v(B/A). Since expectation is additive this yields

E(Xf,W ) ≈ |W |v(B/A)γ(A+, B+)n−e(B
+/A+).

The constant is absorbed by the approximation ≈. In particular, we have:

2.18. Remark. If W = Mn this simplifies to

E(Xf ) ≈ nδ(B
+/A+).

In Theorem 2.30 we guarantee that our extensions are L+-isomorphisms (no new
relations) rather than just L+-homomorphisms. Now we justify the restriction from
K∗

0 to K+
0 .

2.19. Lemma. If δ(B+) < 0 then a.a. there is no embedding of B+ into G+.

Proof. The expected number of copies of B+ is nδ(B
+). If δ(B+) < 0, this tends to

0.

2.20. Theorem. Fix A+ ⊆ B+ with A+ ≤s B+.
Let V be the event: for all f : A 7→Mn, the event Yf holds.
Then, for some choice of c1 (recall Yf depends on c1),

lim
n→∞Pn(V ) = 1.

Proof. By a straightforward induction, we can reduce to the case that B+ is a
primitive extension of A+. The proof of this case proceeds through several defini-
tions and lemmas. Considering the definition of Yf , one can see that we need to
establish both lower and upper bounds. The lower bound argument proceeds as
follows. Roughly speaking, for f : A 7→ Mn and W ⊆ Mn, we say (f,W ) is bad if
there is no extension of f to an L+-homomorphism (in the sense of Definition 2.15)
of B+ into W . In Lemma 2.22 we show that if W meets a cardinality requirement
specified in Definition 2.21 then the probability that (f,W ) is bad is less than 1/2.
By strengthening the requirements on W as in Definition 2.23 we improve the upper
bound on the probability that (f,W ) is bad in Lemma 2.24. Finally, taking into
account the number of possible W ’s, we complete the proof of the lower bound in
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RANDOMNESS AND SEMIGENERICITY 1371

Paragraph 2.25. After several preliminary definitions and lemmas we complete the
proof of the upper bound in Paragraph 2.29.

2.21. Definition. We have fixed A+ ⊆ B+ with B+ a primitive extension of A+.
For G+ an L+-expansion of Mn and W ⊆ Mn and f an L-isomorphism of A into
Mn, (f,W ) is bad in G+ if there is no g defined on B −A into W such that f ∪ g
defines an L+-homomorphism from B+ into G+.

2.22. Lemma. There is a constant s such that for all sufficiently large n and any

L-isomorphism f : A 7→ Mn, if |W | is the integer m = ms = [sne(B
+/A+)/v(B/A)]

then

Pn((f,W ) is bad ) < 1/2.

Proof. Without serious loss of precision, W ∩ rng f = ∅. We use the notation from
Definition 2.15.

Now

Pn((f,W ) bad ) = Pn(Xf,W = 0)

so we want to show that for all sufficiently large n,

Pn(Xf,W = 0) < 1/2.

By Chebyshev’s inequality,

Pn(X = 0) ≤ Var(X)

E(X)2
.

By Lemma 2.17,

E(X) = E(Xf,W ) ≈ |W |v(B/A)n−e(B
+/A+).

Using the fact that |W | = ms this shows E(X) is a polynomial of degree v in s,
as the powers of n cancel. We will obtain the required result by showing Var(X)
is a polynomial of degree 2v − 1 in s which implies that for sufficiently large s,
Var(X)
E(X)2 < 1/2.

Now,

Var(X) =
∑
S

Var(XS) +
∑
S 6=T

Cov(XS , XT )

where S, T range over subsets of Mn disjoint from the image of f .
An easy calculation shows that for any set of indicator random variables

E(
∑
S

XS) ≥
∑
S

Var(XS);

so we have

Var(X) ≤ E(X) +

v∑
j=0

∑
|(S∩T )−A|=j

Cov(XS , XT ).

If |(S ∩ T ) − A| = 0 then S ∩ T = ∅ and Cov(XS , XT ) is zero. Always,
Cov(XS , XT ) ≤ E(XSXT ) which, since these are indicator random variables, is just
Pn(XSXT ). Recall the definition of the probability measure from Definition 2.5; t
is largest arity in the language.
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1372 JOHN T. BALDWIN AND SAHARON SHELAH

Pn(XSXT ) =
∏
m≤t

∏
A∈[ST ]m

qm((M |L≤m)|A)

≤
∏
m≤t

(

∏
A∈[S]m qm((M |L≤m)|A)

∏
A∈[T ]m qm((M |L≤m)|A)∏

A∈[S∩T ]m qm((M |L≤m)|A)
.

Let B′ be g−1
s (S∩T ). So |B′| = j. Abbreviating the notations from 2.8, let cS =

cT = γ(A+, B+) and cB′ = γ(A+, B′). Similarly, let e = eS = eT = e(B+/A+) and
u′ = e(B′/A+). With this notation we can rewrite the last inequality as

Pn(XSXT ) ≤ cScT
cB′

n−(2e−u′).

(The key to the inequality is that 2e−u′ may undercount the number of relations on
ST but this undercount can only overestimate the probability.) |(S ∩ T )−A| = j,
|ST −A| = 2v − j so χW (ST/A) ≈ m2v−j .

If u′
j > e

v then e
v > e−u′

v−j which contradicts the fact that B+ is a primitive

extension of A+. So u′ ≤ je
v . Thus,∑

|(S∩T )−A|=j
Cov(XS , XT ) ≤ m2v−jnu

′−2e ≤ (sne/v)2v−jnje/v−2e = (sv)
2−j/v

.

(We can drop the constants in the last computation as cScT
c′B

< 1.) So,

Var(X) ≤ E(X) +

v∑
j=1

(sv)2−j/v ≤ E(X) + vs2v−1.

Since E(X) has degree v in s, this implies Var(X) ≤ E2(X)/2 for sufficiently large
s and so

Pn((f,W ) is bad ) < 1/2.

Now we want to modify the choice of W to get a better upper bound on the
probability that (f,W ) is bad.

2.23. Definition. Choose s by Lemma 2.22. Again, let ms = [sne(B
+/A+)/v(B/A)].

We say that W ⊆Mn is k-appropriate if |W | = [1 + kms lnn].

2.24. Lemma. For all sufficiently large n and any L-isomorphism f : A 7→ Mn,
for sufficently large k, if W ⊆ n is k-appropriate,

Pn((f,W ) is bad ) <
n−|A|−1

2
.

Proof. Again, assume without loss of generality that W ∩ A = ∅. Suppose W
contains k lnn disjoint subsets Wi each with cardinality ms. For (f,W ) to be
bad, each of the k lnn independent events that (f,Wi) is bad must occur and by
Lemma 2.22 Pn((f,W ) is bad ) < 1/2. Thus,

Pn((f,W ) is bad ) < 2−k lnn.

But for all sufficiently large n and k,

2−k lnn <
n−|A|−1

2

so we have the result.
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RANDOMNESS AND SEMIGENERICITY 1373

We have shown that for each f , a.a. there is a W such that (f,W ) is not bad.
The next paragraph strengthens this assertion.

2.25. Proof of Lower Bound in Theorem 2.20. Fix k satisfying the conclu-
sion of Lemma 2.24. For an L-isomorphism f of A into Mn, let the random variable
Zf(G

+) be the number of k-appropriate W ⊆ Mn (i.e. |W | = w = [1 + kms lnn]
with m from Definition 2.23) such that (f,W ) is bad. Let γ denote the number
of possible k-appropriate W . (The value of γ is not used in the first stage of the
argument.) Then, E(Zf ) < γn−|A|−1. So, by Markov’s inequality,

Pn(Zf ≥ γ/2) ≤ 2E(Zf )/γ < 2n−|A|−1.

But then, since there are only n|A| choices for A, a.a. for each f at most half of the
W are bad for f .

Let v denote |B − A| = v(B/A). Each extension g of f to B is contained in at
most

(
n−v
w−v
)
k-appropriate W , since there are approximately

(
n−v
w−v
)

choices for the

elements which comprise W −rng g. So at most |N(f,A+, B+)|(n−vw−v
)
k-appropriate

W contain an extension of f but at least γ/2 do. Now note that γ =
(
n
w

)
.

Thus, a.a. for all f ,

|N(f,A+, B+)|
(
n− v

w − v

)
≥ 1

2

(
n

w

)
.

Noting that
(
n−v
w−v
)

is approximately
(
n
w

)
(wn )v, we have

|N(f,A+, B+)| ≥ n−e(B
+/A+)(n/w)v/2.

Recalling that w = [1 + kms lnn], this implies for every f , a.a.

|N(f,A+, B+)| > nδ(B
+/A+)(2ks lnn)−v

which establishes the lower bound nδ(B
+/A+)(lnn)−c by taking c = v + 1.

2.26. Remark. The statement and proofs of of the probability analysis are based on
the argument in [8]. The first author acknowledges discussions with Albert, Cherlin,
Lachlan, and Laskowski on the details of the current argument, and supplemental
remarks to the original paper by Spencer.

2.27. Remark. The irrationality hypothesis is necessary to make fruitful application
of this result. If there exist A ≤s B with δ(B/A) = 0 then the lower bound we have
established is less than one rather than tending to infinity as n does. This destroys
the argument of Theorem 2.30.

2.28. Remark. From Lemma 1.17 we have: Let A+ ≤i C+. There exists a K such
that a.a. for every embedding f of A+ into an expansion G+ of Mn, there are fewer
than K L+-homomorphisms extending f from C+ into G+.

2.29. Proof of upper bound in Theorem 2.20. Since B+ is a primitive ex-
tension of A+, (Ab)+ ≤i B+ for any b ∈ B − A. Thus, by Remark 2.28 there are
fewer than K extensions gi with any fixed image of b. The range of each extension gi
can intersect at most K|B|2 other extensions so if N(f,A+, B+) = s′, there is a set
of s = s′/(K|B|2 + 1) disjoint extensions. Let p = |A|, v = v(B/A) = |B −A| and
e = e(B+/A+). For an appropriate constant c < 1, there are less than cnp(nvs/s!)
pairs of a function f taking A into Mn and a set of s extensions (disjoint over
rng f) 〈g1, . . . gs〉. The probability that each of the gi is an L+-homomorphism
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1374 JOHN T. BALDWIN AND SAHARON SHELAH

is n−e so the probability of such a pair of a function and s homomorphisms is at

most np(nvsn−es)/s! By Stirling’s formula, this is less than
np(2.72nv)sn−es

(2π)1/2ss+1/2(2.72)1/(12s+1)

which is much less than 1 if s ≥ 3nδ(B
+/A+). (Observe that np(2.72

3 )s tends to 0 as

n tends to infinity.) Thus, a.a. s ≤ 3nδ(B
+/A+). A.a. for each f ,

N(f,A+, B+) = s′ ≤ 3(K|B|2 + 1)nδ(B
+/A+)

proving Theorem 2.20.

We now want to show that each of the axioms for semigenericity has limit prob-
ability 1. Roughly, the program is to show that for A+ ≤s B+ and f : A 7→ Mn,
the number of extensions of f to 1-1 homomorphisms of B+ is much greater than
the number of such extensions which fail to witness the definition of semigenericity.
Since there are a bounded number of types of failure, it suffices to check each type
separately as we do in the following argument.

In general, embeddings f : A+ 7→ Mn and f̂ : B+ 7→ Mn fail to witness semi-
genericity of G+ if

1. clmG+(f̂B) 6= f̂B ∪ clmG+(fA) or

2. clmG+(fA) and f̂B are not freely joined over fA in G+.

In considering φmA+,B+,C+ , we are fixing on C+ as a specific candidate for the

isomorphism type of clmG+(fA).

2.30. Theorem. If A+ ≤s B+ and A+ ≤i C+ with |C+| < m then

lim
n→∞Pn(φmA+,B+,C+) = 1.

Proof. For any f mapping C into Mn, and a 1-1 homomorphism f ′ extending f to
E, (G+, f ′) fails as a witness for C and f if

i) f ′ is not an L+-isomorphism or
ii) clmG+(f ′B) 6= f ′B ∪ fC or
iii) fC and f ′B are not freely joined over fA in G+.

Note that C+ ≤s C+⊗A+B+ and, letting E+ denote C+⊗A+ B+, δ(B+/A+) =
δ(E+/C+). By Theorem 2.20, more specifically Paragraph 2.25, a.a. for each f ,

|N(f, C+, E+)| > nδ(B
+/A+)(logn)−c

where c = v(B+/A+) + 1. For conditions i) and iii) consider any F+ which is
an expansion of E+ by adding additional relations. Then δ(F+/A+) = v(E/A) −
e(F+/A+) and e(F+/A+) > e(E+/A+). By Theorem 2.20

N(f, C+, F+) < c1n
δ(F+/A+) < nδ(E

+/A+)(logn)−c.

For condition ii) for any D+ ∈ DmB+,C+ ,

δ(D+B+/C+) < δ(B+C+/C+) = δ(B+/A+).

If C+ is not strong in D+B+ then by Lemma 2.28, N(f ′, C+, D+B+) < K. If
C+ ≤s D+B+ then by Theorem 2.20, more specifically Paragraph 2.29, a.a.

N(f, C+, D+B+) < c1n
δ(D+B+/C+) < nδ(B

+C+/C+)(log n)−c.

Now the number of isomorphism types of extensions C that have failures f ′

is bounded in terms of the cardinality of A+, B+, and m; it does not depend
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RANDOMNESS AND SEMIGENERICITY 1375

on n. If this number is L, the total number of failures of any sort is less than

Lnδ(E
+/A+)(log n)−c. Thus, the probability that for each f , one of the extensions

of f witnesses φmA+,B+,C+ tends to one as required.

2.31. Lemma. For every m, a.a. clmL+(∅) = ∅.
Proof. A+ ⊆ clmL+(∅) just if δ(A+) < 0. But in passing from K∗

0 to K+
0 (cf.

Lemma 2.19), we have forbidden such A.

We collect our results in the following theorem which requires the definition of
two theories.

2.32. Notation. Let L contain only the equality symbol and let L+ be an arbi-
trary finite relational language containing L. Suppose probabilities are defined on
finite L+ structures as in Definition 2.5 with the αi and 1 linearly independent
over the rationals. By Tα, the almost sure theory of random L+-structures we
mean the collection of L+-sentences which have limit probability 1. Recall that Tα
is the theory of the generic structures for Kα (Definition 1.6) whose existence is
guaranteed by Theorem 1.34.

A theory T has the finite model property if every theorem of T has a finite model.

2.33. Theorem. Under the hypotheses in Notation 2.32, Tα, the almost sure the-
ory of random L+-structures is the same as the theory Tα of the Kα-generic model.
This theory is complete, stable, and nearly model complete. Moreover, it has the
finite model property and has only infinite models so is not finitely axiomatizable.

Proof. By Theorem 2.30 and the choice of K+
0 , every model of Tα is (Kα,≤α)-

semigeneric. By Corollary 1.31, Tα is nearly model complete. By Corollary 1.32
and Lemma 2.31, Tα is complete. Since the generic model for Kα is semigeneric,
Tα = Tα. [1] shows that Tα is stable.

Since each theorem of Tα has limit probability 1, for arbitrarily large n, there is
nonzero probability that there is a model of size n. Thus, Tα has the finite model
property.

2.34. Remark. The major novelty of this result is the identification of the two
theories, thereby obtaining the stability of Tα and the non-finite axiomatizability of
Tα. The notion of near model completeness specifies the precise degree of quantifier
elimination in Tα. In addition, we have extended the 0-1-law from a language with
a single binary relation to an arbitrary finite relational language.
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