The Journal of Symbolic Logic
 THE JOURNAL OF SYMBOLIC LOGIC
 Additional services for The Journal of Symbolic Logic:
 Email alerts: Click here
 Subscriptions: Click here
 Commercial reprints: Click here
 Terms of use : Click here

α

If there is an exactly λ-free abelian group then there is an exactly λ-separable one in λ

Saharon Shelah

The Journal of Symbolic Logic / Volume 61 / Issue 04 / December 1996, pp 1261-1278
DOI: 10.2307/2275815, Published online: 12 March 2014
Link to this article: http://journals.cambridge.org/abstract_S0022481200016881

How to cite this article:

Saharon Shelah (1996). If there is an exactly λ-free abelian group then there is an exactly λ separable one in Λ. The Journal of Symbolic Logic, 61, pp 1261-1278 doi:10.2307/2275815

Request Permissions: $\underline{\text { Click here }}$

IF THERE IS AN EXACTLY λ-FREE ABELIAN GROUP THEN THERE IS AN EXACTLY λ-SEPARABLE ONE IN λ

SAHARON SHELAH

Abstract

We give a solution stated in the title to problem 3 of part 1 of the problems listed in the book of Eklof and Mekler [2], p. 453. There, in pp. 241-242, this is discussed and proved in some cases. The existence of strongly λ-free ones was proved earlier by the criteria in [5] and [3]. We can apply a similar proof to a large class of other varieties in particular to the variety of (non-commutative) groups.

§0. Introduction.

Convention. In $\S 0$ and $\S 1$, "group" here means "abelian group", and "free" means in this variety.

We assume there is a λ-free, non-free (abelian) group of cardinality λ. We shall prove that there is a λ-separable non-free abelian group of cardinality λ, a priori a stronger statement. We rely on the characterization of λ as in the hypothesis, from [5]: the existence of

$$
S, \quad\left\langle\left\langle s_{\eta}^{\ell}: \ell<n\right\rangle: \eta \in S_{f}\right\rangle, \quad\langle\ell(k): k\rangle
$$

as there (see appendix; i.e., $\S 3$ here). Mekler and Shelah [3] dealt with a similar weaker problem in a parallel way: if there is a λ-free not free abelian group of cardinality λ then there is a strongly λ-free one. In Eklof and Mekler [2], the present problem was raised, discussed and sufficient conditions were given, depending on the form of S, see [2], p. 242, the problem in [2], p. 453. The direct sufficient condition is that for every $S^{\prime} \subseteq S_{f}$ of cardinality λ there is a well ordering $<^{*}$ such that for each $\eta \in S_{f}, \bigcup_{\ell<n} s_{\eta}^{\ell}$ is almost disjoint to

$$
\bigcup\left\{\bigcup_{\ell<n} s_{v}^{\ell}: v<^{*} \eta \text { and } v \in S\right\} .
$$

In particular from the assumption for λ, the conclusion for λ^{+}(i.e., the existence of such S) was gotten. However, not all cases were covered by this. Our approach is more algebraic. In $\S 2$ we deal with generalizations to other varieties and in $\S 3$ we present relevant material from [5] (on λ-systems) to make the paper self-contained. typing.

Explanation of the proof of the main theorem. It may be helpful to read this explanation if you are lost or stuck during the proof but it assumes some notations from the proof. We construct G that is freely generated by $x[a]$ (for $a \in \bigcup_{\eta \in S_{c}} B_{\eta}$) and $y_{\eta, m}$ (for $\eta \in S_{f}$ and $m<\omega$) except the equations

$$
(*)_{\eta, m} \quad 2 y_{\eta, m+1}=y_{\eta, m}+\sum\left\{x\left[a_{\eta, m}^{\ell}\right]: \ell<n\right\} .
$$

Let $G=G_{I_{0}}, I_{0}=I_{(\rangle, \lambda}$.
Let $\alpha<\lambda$ and we want to show that if $\alpha<\lambda$ and $\langle\alpha\rangle \notin S$ then $G_{(\rangle, \alpha}$ (which is essentially the subgroup generated by the $y_{\eta, m}$ and $x\left[a_{\eta, m}^{\ell}\right]$ satisfying $\left.\eta(0)<\alpha\right)$ is a free direct summand of $G=G_{\langle \rangle, \lambda}$.

We do not see combinatorially why this holds, so we find $I_{1} \supseteq I_{\langle \rangle, \alpha}, I_{1} \in K^{+}$ such that

$$
\begin{equation*}
\eta \in S_{f} \backslash S_{f}\left[I_{1}\right] \Longrightarrow \bigcup_{\ell<n} s_{\eta}^{\ell} \text { is almost disjoint to } Y\left[I_{1}\right] . \tag{**}
\end{equation*}
$$

So let $g_{I_{0}, I_{1}}$ be the natural homomorphism from $G_{I_{0}}$ to $G_{I_{1}}$; well, why does it work? by ($* *$).
Also $g_{I_{0}, I_{1}}$ is the identity on $G_{\langle \rangle, \alpha}$ and $G_{I_{1}} / G_{\langle \rangle, \alpha}$ is $\cong G_{I_{2}}$ where $I_{2}=I_{1} \backslash I_{\langle \rangle, \alpha}$, but $I_{2} \in K^{+}$so $G_{I_{1}} / G_{\langle \rangle, \alpha}$ is free hence $G_{\langle \rangle, \alpha}$ is a direct summand of $G_{I_{1}}$, so there is a projection f from $G_{I_{1}}$ onto $G_{I_{\langle \rangle, \alpha}}$ so $f \circ g_{I_{0}, \alpha}$ is a projection from G onto $G_{I_{(\rangle, \alpha}}$ and we can complete the proof.
To accomplish (**) we need good control over how, e.g., $s_{\eta}^{\ell}(\eta(0)>\alpha)$ intersect $B_{\langle\alpha\rangle}$, and this is the information we put in the appendix on the λ-system (really old [5] is okay, but we retain the appendix to ease reading).

Definition 0.1 . For Ξ a set of variables, Γ a set of equations in some variables (maybe outside Ξ) let $G(\Xi, \Gamma)$ be the (abelian) group freely generated by Ξ, except the equations in $\Gamma\lceil\Xi$, i.e., the equations from Γ mentioning only variables from Ξ.

Observation 0.2.
(1) A sufficient condition (assuming $\Xi \subseteq \Xi^{\prime}$ sets of variables) for
(*) $\quad G\left(\Xi^{\prime}, \Gamma\right)$ is a free extension of $G(\Xi, \Gamma)$ (i.e., the mapping induced by id_{Ξ} from $G(\Xi, \Gamma)$ into $G\left(\Xi^{\prime}, \Gamma\right)$, which is always a homomorphism, is an embedding, and $G\left(\Xi^{\prime}, \Gamma\right)$ divided by the range of this mapping is a free group),
is
(**) there is an increasing continuous sequence $\left\langle\boldsymbol{\Xi}_{\zeta}: \zeta \leq \zeta^{*}\right\rangle$, $\Xi_{0}=\Xi, \Xi_{\zeta^{*}}=\Xi^{\prime}$, and $G\left(\Xi_{\zeta+1}, \Gamma\right)$ is a free extension of $G\left(\Xi_{\zeta}, \Gamma\right)$.
(2) Another sufficient condition for (*) of 0.2 , is that by change of the variables in $\Xi^{\prime} \backslash \Xi$, the set of equations $\Gamma\left\lceil\Xi^{\prime}\right.$ is only $\Gamma\lceil\Xi$.
§1. Proving λ-separability. Here we prove the main theorem; the reader is advised to look at 3.6 and 3.7 at least during reading the beginning of the proof, and also to look again at the explanation in $\S 0$ of the proof when arriving to read the middle of the proof.

Definition 1.1. A group G is λ-separable if:
$H \subseteq G, \operatorname{Rk}(H)<\lambda \Longrightarrow H$ is included in a free direct summand of G.
(Remember: for an uncountable group H, its rank, $\mathrm{Rk}(H)$, is equal to its cardinality, $|H|$.)

Main Theorem 1.2. If there is a λ-free non λ^{+}-free (abelian) group ($\lambda>\aleph_{0}$, λ necessarily regular) then there is a λ-free, λ-separable, not λ^{+}-free group.

Proof. The hypothesis of the theorem on the existence of such groups is analyzed in detail in [5] (most relevant are [5], 3.6 and 3.7), and in particular, it implies the existence of

$$
n, \quad S, \quad \lambda(\eta, S), \quad\left\langle B_{\eta}: \eta \in S_{c}\right\rangle, \quad\left\langle s_{\eta}^{\ell}: \eta \in S_{f}, \ell<n\right\rangle
$$

with the properties as in [5], 3.6 and 3.7 presented in 3.6 and 3.7 of the appendix here, and let $\left\langle a_{\eta, m}^{\ell}: m<\omega\right\rangle$ list s_{η}^{ℓ} in increasing order for the order of $B_{(\eta \mid \ell)^{\prime}\langle\lambda(\eta \mid \ell)\rangle}$ (see clause (i) of 3.7) and without loss of generality we have in addition
(*) for $\eta \in S_{f}, \ell<n$, we have $\alpha_{\eta, \ell, m}=: \min \left\{\beta: a_{\eta, m}^{\ell} \in B_{(\eta \mid \ell)^{\prime}<\beta>}\right\}<$ $\lambda(\eta \mid \ell, S)$ is non-decreasing in m,
and we call its limit $\beta^{*}\{\eta, \ell)$ (so $s_{\eta}^{\ell} \subseteq B_{(\eta \mid \ell)^{*}\left\langle\beta^{*}(\eta, \ell)\right\rangle}$ and $\beta^{*}(\eta, \ell) \leq \eta(\ell)$).
$(* *) \quad$ if $\rho \in S_{i}, v \triangleleft \rho, k=\ell g(v)$ and $\operatorname{cf}(\rho(k))=\lambda(\rho, S)$ then
(a) for $\beta<\lambda(\rho, S)$ we have $\sup \left\{\beta^{*}(\eta, k): \rho^{\wedge}\langle\beta\rangle \unlhd \eta \in S_{f}\right\}$ is $<\rho(k)$
(b) the sequence $\left\langle\min \left\{\beta^{*}(\eta, k): \rho^{\wedge}\langle\beta\rangle \unlhd \eta \in S_{f}\right\}: \beta<\right.$ $\lambda(\rho, S))$ is strictly increasing with limit $\rho(k)$.
(See appendix, clauses $(f)(\alpha),(f)(\beta)$ and (g) of 3.6.) Let

$$
\begin{array}{r}
K=\left\{I: I \subseteq S_{c} \text { and }[\eta \neq v \& \eta \in I \& v \in I \Longrightarrow \neg(\eta \unlhd v)]\right. \\
\text { and } \left.\left[\eta^{\wedge}\langle\beta\rangle \in I \& \alpha<\beta \Longrightarrow \eta^{\wedge}\langle\alpha\rangle \in I\right]\right\}, \\
K^{+}=\left\{I \in K: I \neq \emptyset \text { and } \eta^{\wedge}\langle\alpha\rangle \in I \Longrightarrow \bigvee_{\beta<\lambda(\eta, I)}\left[\eta^{\wedge}\langle\beta\rangle \notin I\right]\right\} .
\end{array}
$$

For $I \in K$ let

$$
J[I]=:\left\{\eta \in S_{i}: \text { for some } \alpha, \eta^{\wedge}\langle\alpha\rangle \in I\right\},
$$

so for $\eta \in J[I]$ there is a unique $\alpha_{I}[\eta] \leq \lambda(\eta, S)$ such that $\left[\eta^{\wedge}\langle\alpha\rangle \in I \Longleftrightarrow \alpha<\right.$ $\left.\alpha_{I}[\eta]\right]$, note:

$$
I \in K^{+}, \eta \in J[I] \Longrightarrow \alpha_{I}[\eta]<\lambda(\eta, S)
$$

For $I \in K$ let

$$
S_{f}[I]=:\left\{\eta \in S_{f}: \text { for some } k, \eta \upharpoonright k \in I\right\} ;
$$

note that the k is unique and if $I \neq\{\langle \rangle\}$, then $k>0$, so we choose to write $k=k_{I}(\eta)+1$ (so for $\left.I=\{\langle \rangle\}, k_{I}(\eta)=-1\right)$. Also let

$$
Y[I]=: \bigcup\left\{B_{v}: \text { for some } \eta \in I \text { we have } \eta \unlhd v \in S_{c}\right\}
$$

For $\eta \in S_{f}$ let $w_{I}(\eta)=\left\{\ell<n:\right.$ for every $\left.m<\omega, a_{\eta, m}^{\ell} \in Y[I]\right\}$ (equivalently: for infinitely many $\left.m<\omega, a_{\eta, m}^{\ell} \in Y[I]\right)$.

For every $I \in K$ we define a group G_{I}, it is freely generated by

$$
\Xi_{I}=:\left\{y_{\eta, m}: m<\omega \text { and } \eta \in S_{f}[I]\right\} \cup\{x[a]: a \in Y[I]\}
$$

except the equations (we call this set Γ_{I}):
$(*)_{I} \quad$ for $\eta \in S_{f}[I]$ and $m<\omega$, the equation $\varphi_{I, \eta}^{m}$ defined as:
$(*)_{I, \eta}^{m}$

$$
2 y_{\eta, m+1}=y_{\eta, m}+\sum\left\{x\left[a_{\eta, m}^{\ell}\right]: \ell<n \text { and } a_{\eta, m}^{\ell} \in Y[I]\right\} .
$$

Note that ${ }^{1} \lambda \in K$, and let $G=G_{\left({ }^{1} \lambda\right)}$; this abelian group is the example as in [5], Lemma 5.3, in particular G is not free. Let $<_{\ell x}$ be lexicographic order of S; clearly it is a well ordering.

Fact A. If $I \in K^{+}$then G_{I} is free.
Proof. We can find functions ℓ and m, where for $\eta \in S_{f}[I]$ we have $\ell(\eta) \in$ $\left\{k_{I}(\eta), \ldots, n-1\right\}$ and $m(\eta)<\omega$ and we can find a list $\left\langle\eta_{\zeta}: \zeta<\zeta^{*}\right\rangle$ of $S_{f}[I]$ such that:
(*) $\quad\left\{a_{\eta_{\zeta}, m}^{\ell\left(\eta_{\zeta}\right)}: m \in\left[m\left(\eta_{\zeta}\right), \omega\right)\right\}$ is disjoint to $\left\{a_{\eta_{\epsilon}, m}^{\ell}: a_{\eta_{e}, m}^{\ell} \in Y[I], m<\right.$ $\omega, \varepsilon<\zeta, \ell<n\}$ and $\left\{\eta \in S_{f}[I]: \eta<\ell x v\right\}$ is an initial segment of $\left\langle\eta_{\zeta}: \zeta<\zeta^{*}\right\rangle$ for each $v \in J[I]$.
[Why? for each $v \in J[I]$ well order $\left\{\eta \in S_{f}[I]: \nu \triangleleft \eta\right\}$ by [5], 3.10 (and 3.6 clause (c) and the definition of K^{+}), say by $<_{v}^{*}$, then order the blocks by $<_{\ell_{x}}$.] Without loss of generality $m(\eta)$ is minimal such that (*) holds.

For $\zeta \leq \zeta^{*}$ let H_{ζ} be the subgroup of G_{I} generated by

$$
\Xi_{\zeta}=\left\{x\left[a_{\eta_{\varepsilon}, m}^{\ell}\right]: \varepsilon<\zeta, m<\omega, \ell \in[k(\eta), n)\right\} \cup\left\{y_{\eta_{\varepsilon}, m}: \varepsilon<\zeta, m<\omega\right\} .
$$

Let $H_{\zeta^{*}+1}=G_{I}$.
Now $\left\langle H_{\zeta}: \zeta \leq \zeta^{*}+1\right\rangle$ is increasing continuous, $H_{0}=\{0\}, H_{\zeta^{*}+1}=G_{I}$ and $H_{\zeta+1} / H_{\zeta}$ is free. Why? we use $0.2(1)$, so it is enough to prove $G\left(\Xi_{\zeta+1}, \Gamma_{I}\right)$ is a free extension of $G\left(\Xi_{\zeta}, \Gamma_{I}\right)$ for each $\zeta \leq \zeta^{*}$. For $\zeta=\zeta^{*}$, we just add variables ($\left\{x[a]: a \in \Xi_{I} \backslash \Xi_{\zeta^{*}}\right\}$) but no equations. For $\zeta<\zeta^{*}$, we can "forget" $y_{n_{5}, m}$ for $m<m\left(\eta_{\zeta}\right)$ and replace/omit $x\left[a_{\eta_{\zeta}, m}^{\ell\left(\eta_{\zeta}\right)}\right]$ for $m \in\left[m\left(\eta_{\zeta}\right), \omega\right)$, so $G\left(\Xi_{\zeta+1}, \Gamma_{I}\right)$ is freely generated over $G\left(\Xi_{\zeta}, \Gamma_{I}\right)$ by

$$
\left\{y_{\eta_{\zeta}, m}: m \geq m\left(\eta_{\zeta}\right)\right\} \cup\left\{x[a]: x[a] \in \Xi_{\zeta+1} \backslash \Xi_{\zeta} \backslash\left\{x\left[a_{\eta_{\zeta}, m}^{\ell\left(\eta_{\zeta}\right)}\right]: m \geq m\left(\eta_{\zeta}\right)\right\}\right\} . \dashv
$$

Notation B. Let $I_{\eta, \alpha}=:\left\{\eta^{\wedge}\langle\beta\rangle: \beta<\alpha\right\}$ (for $\eta \in S_{i}$). Let $G_{\eta, \alpha}=: G_{I_{\eta, \alpha}}$ so: $G_{\langle \rangle, \lambda}$ is the group G (which we shall prove exemplifies the conclusion of 1.2) and $J\left[I_{(\rangle, \lambda}\right]=\{\langle \rangle\}$.

Definition C.
(1) $I_{1} \leq I_{2}($ from $K)$ if $S_{f}\left[I_{1}\right] \subseteq S_{f}\left[I_{2}\right]$ and $\left(\forall \eta \in S_{f}\left(I_{1}\right)\right)\left[k_{I_{1}}(\eta) \geq k_{I_{2}}(\eta)\right]$. This implies $Y\left[I_{1}\right] \subseteq Y\left[I_{2}\right]$ and there is a clear relation between $\Gamma_{I_{1}}$ and $\Gamma_{I_{2}}$: each equation $\varphi=\varphi_{I_{1}, \eta}^{m}$ in $\Gamma_{I_{1}}$ "appears" in $\Gamma_{I_{2}}$ as $\psi=\varphi_{I_{2}, \eta}^{m}$, but ψ is with more $x\left[a_{\eta, m}^{\ell}\right]$'s (for same old η but new ℓ 's which appear "because" of some $v \in S_{f}\left[I_{2}\right] \backslash S_{f}\left[I_{1}\right]$) and $\Gamma_{I_{2}}$ has members (not related to any equation from $\Gamma_{I_{1}}$) involving a new η. Another way to state this relation is

$$
\left(\forall \eta \in I_{1}\right)\left(\exists v \in I_{2}\right)[v \unlhd \eta] .
$$

(2) $I_{1} \leq^{d} I_{2}$ if $I_{1} \leq I_{2}$ and $J\left[I_{1}\right]$ is a $<_{\ell x}$-initial segment of $J\left[I_{2}\right]$.

FACT D.
(1) \leq and \leq^{d} are partial orders (of K).
(2) If $I \in K \backslash\left\{\{\rangle\}\}\right.$ then $I=\bigcup_{\eta \in J_{[I]}} I_{\eta, \alpha_{I}(\eta)}$.
(3) If $I_{1} \leq J_{2}$ then $Y\left[I_{1}\right]$ is a subset of $Y\left[I_{2}\right]$.

Proof. Check.
Definition E. Assume $I_{1} \leq^{d} I_{2}$ (both in K), let $h_{I_{1}, I_{2}}$ be the homomorphism from $G_{I_{1}}$ into $G_{l_{2}}$ defined by $h(x[a])=x[a], h\left(y_{\eta, m}\right)=y_{\eta, m}$ for $x[a] \in Y\left[I_{1}\right]$, $\eta \in S_{f}\left[I_{1}\right]$.

FACT F. $h_{I_{1}, I_{2}}$ is really a homomorphism.
Proof. Look at the relevant equations.
FACT G. If $I_{1} \leq^{d} I_{2}$ are from K^{+}and $(\forall \eta)\left[\eta \in J\left[I_{1}\right] \Longrightarrow \eta^{\wedge}\left\langle\alpha_{I_{1}}(\eta)\right\rangle \notin S\right]$ then
($\alpha) G_{I_{2}} / h_{I_{1}, I_{2}}\left(G_{I_{1}}\right)$ is free and
(β) $h_{I_{1}, I_{2}}$ is one-to-one.
$(\gamma) \operatorname{rang}\left(h_{I_{1}, I_{2}}\right)=\left\langle y_{\eta, m}, x[a]: a \in Y\left[I_{1}\right], \eta \in S_{f}\left[I_{1}\right] \text { and } m<\omega\right\rangle_{G_{I_{2}}}$ (i.e., the subgroup generated by this set)
so we look at $h_{I_{1}, I_{2}}$ as the identity.
Proof. Like the proof of Fact A.
Conclusion H. If $I_{1} \leq^{d} I_{2}$ (so are from K) then $h_{I_{1}, I_{2}}$ is an embedding.
Proof. As a direct limit of ones satisfying the assumptions of Fact G.

Fact I.

(α) $G=G_{(1 \lambda)}=G_{\langle \rangle, \lambda}=\bigcup_{\alpha<\lambda} G_{(\rangle, \alpha}$ (increasing continuous)
(β) for $\alpha<\lambda$ the group $G_{\langle \rangle, \alpha}$ is free.
Proof. For clause (α) as

$$
\Gamma_{(1 \lambda)}=\bigcup_{\alpha<\lambda}\left(\Gamma \upharpoonright\left\{y_{\eta, m}, x\left[a_{\eta, m}^{\ell}\right]: \eta(0)<\alpha\right\}\right)
$$

using Fact H (see Fact G last line). For clause (β) see Fact A.

Definition J. For $I_{1} \leq I_{2}$ (in K), satisfying $\otimes_{I_{1}, I_{2}}$ below, let $g_{I_{2}, I_{1}}$ be the homomorphism from $G_{I_{2}}$ into $G_{I_{1}}$ defined by:
(i) if $a \in Y\left[I_{1}\right]$ then $g_{l_{2}, I_{1}}(x[a])=x[a]$
(ii) if $a \in Y\left[I_{2}\right] \backslash Y\left[I_{1}\right]$ then $g_{I_{2}, I_{1}}(x[a])=0$
(iii) if $\eta \in S_{f}\left[I_{1}\right]$ then $g_{I_{2}, I_{1}}\left(y_{\eta, m}\right)=y_{\eta, m}$
(iv) if $\eta \in S_{f}\left[I_{2}\right] \backslash S_{f}\left[I_{1}\right]$ and $\left\{a_{\eta, k}^{\ell}: k \in[m, \omega)\right.$ and $\ell \geq k_{I_{2}}[\eta]$ (equivalently $\left.\left.a_{\eta, k}^{\ell} \in Y\left[I_{2}\right]\right)\right\}$ is disjoint to $Y\left[I_{1}\right]$ then $g_{I_{2}, I_{1}}\left(y_{\eta, m}\right)=0$
(this is enough for defining $g_{I_{2}, I_{1}}$) where
$\otimes_{I_{1}, I_{2}} \quad$ for $\eta \in S_{f}\left[I_{2}\right] \backslash S_{f}\left[I_{1}\right], \quad \bigcup_{\ell \in\left[k_{L_{2}}(\eta), n\right)} s_{\eta}^{\ell}$ is almost disjoint to $Y\left[I_{1}\right]$ (i.e., has finite intersection).
Fact K. Assume $I_{1} \leq I_{2}$ are in K. Then
(α) $g_{I_{2}, I_{1}}$ really defines a homomorphism which is onto (when $I_{1} \leq I_{2}$ and $\otimes_{I_{1}, I_{2}}$ holds)
(β) Kernel $\left(g_{I_{2}, I_{1}}\right)$ is the subgroup of $G_{I_{2}}$ generated by the set of $x[a]$'s and $y_{\eta, m}$'s which by Definition J are sent by $g_{I_{2}, I_{1}}$ to 0 .
Proof. Check the equations.
Main Fact L. If $\alpha<\lambda$ and $\langle\alpha\rangle \notin S$ then $G_{\langle \rangle, \alpha}$ is a direct summand of $G=G_{\{\langle \rangle\}}$.
Proof. We can define by induction on k a number $\ell_{k} \leq n: \ell_{0}=0$, if ℓ_{k} is defined and $<n$, let ℓ_{k+1} be the unique ℓ such that $\ell_{k}<\ell \leq n$ and $\eta \in S_{f} \Longrightarrow \operatorname{cf}\left(\eta\left(\ell_{k}\right)\right)=$ $\lambda(\eta \upharpoonright \ell, S)$ (exists by 3.3(f), all $\eta \in S_{f}$ behave the same by 3.6(a) (and see 3.2(6)(d)), note: if $\eta \in S_{f} \Longrightarrow \operatorname{cf}\left(\eta\left(\ell_{k}\right)\right)=\aleph_{0}$ then $\ell_{k+1}=n$. Clearly if ℓ_{k} is defined and $<n$ then $\ell_{k}<\ell_{k+1} \leq n$. So for some $k^{*}, \ell_{k^{*}}=n$.

We shall define by induction on $k \leq k^{*}$ the following J_{k} and, when $k<k^{*}$, $\left\langle\alpha_{\eta}: \eta \in J_{k}\right\rangle$ such that:
(0) $J_{k} \subseteq S \cap^{\ell_{k}} \lambda$
(1) $\alpha_{\eta}<\lambda(\eta, S)$ and $\eta^{\wedge}\left\langle\alpha_{\eta}\right\rangle \notin S$ for $\eta \in J_{k}$
(2) $J_{k+1}=\left\{\eta: \eta \in S \cap^{\ell_{k+1}} \lambda\right.$ and $\eta \mid \ell_{k} \in J_{k}$ but $\left.\eta\left(\ell_{k}\right)>\alpha_{\eta \mid \ell_{k}}\right\}$
(3) if $\eta \in J_{k+1}, k+1<k(*), \alpha \in\left[\alpha_{\eta}, \lambda(\eta, S)\right)$ and $\eta^{\wedge}\langle\alpha\rangle \unlhd v \in S_{f}$ then $s_{v}^{\ell_{k}} \cap B_{\eta \mid \ell_{k} \wedge\left\langle\alpha_{\eta} \mid \ell_{k}\right\rangle}$ is finite
(4) $J_{0}=\{\langle \rangle\}, \alpha_{\langle \rangle}=\alpha$.

For $k=0$ use clause (4). For $k+1$ we define J_{k+1} by clause (2), now if $k+1<k^{*}$ for $\eta \in J_{k+1}$ we have to find α_{η} to satisfy clauses (1) and (3), this is possible by $(*)$ and ($* *$) in the beginning of the proof of theorem 1.2.

Let

$$
\begin{aligned}
& I_{0}=\{\langle\beta\rangle: \beta<\lambda\}, \\
& I_{1}=\left\{\eta^{\wedge}\langle\beta\rangle: \text { for some } k<k^{*} \text { we have } \eta \in J_{k} \text { and } \beta<\alpha_{\eta}\right\}, \\
& I_{2}=I_{1} \backslash\left\{\langle\beta\rangle: \beta<\alpha_{\langle \rangle}\right\}, \\
& I_{3}=\left\{\langle\beta\rangle: \beta<\alpha=\alpha_{\ell}\right\} .
\end{aligned} .
$$

Note that by the inductive choice of the J_{k} 's:
$(\otimes) \quad$ if $\eta \in S_{f} \backslash S_{f}\left[I_{1}\right]$ then $\left\{a_{\eta, m}^{\ell}: \ell<n\right.$ and $\left.m<\omega\right\}$ has a finite intersection with $Y\left[I_{1}\right]$.
(Use (3) noting that if $\eta \in S_{f} \backslash S_{f}\left[I_{1}\right]$ then $\eta\left(\ell_{k}\right)>\alpha_{\eta \ell_{k}}$ for every $k<k^{*}$ such that $\eta \ell_{k} \in J_{k}$.)
Note also that: $I_{0} \in K, I_{1} \in K^{+}, I_{2} \in K^{+}, I_{3} \in K^{+}$. Also $I_{3} \leq^{d} I_{1}$ and $I_{3} \leq^{d} I_{0}$ and $I_{2} \leq I_{1} \leq I_{0}$ (see Definition C(1)) and $G_{I_{0}}=G$.

Note that $g_{I_{0}, I_{1}}$ is well defined (see Definition J and Fact K). [Why? We have to check $\otimes_{I_{1}, I_{0}}$ as defined there, but \otimes above says this.] Note also that $g_{I_{1}, I_{2}}$ is well defined (again we have to check $\otimes_{I_{2}, I_{1}}$ as defined in Definition J, but for $\eta \in$ $S_{f}\left(I_{1}\right) \backslash S_{f}\left(I_{2}\right)$ by their definitions, $\eta(0)<\alpha_{\langle }$so easily $\bigcup_{\ell<n} s_{\eta}^{\ell}$ is disjoint to the required set). Look at the sequence $G=G_{I_{0}} \xrightarrow{g_{I_{0}, I_{1}}} G_{I_{1}} \xrightarrow{g_{I_{1}, I_{2}}} G_{I_{2}}$.

We know that $G_{I_{2}}$ is free (by Fact A as $I_{2} \in K^{+}$), $g_{I_{1}, I_{2}}$ is a homomorphism from $G_{I_{1}}$ onto $G_{I_{2}}$ (see above, by Fact K, clause (α) and \otimes above) hence $\operatorname{Ker}\left(g_{I_{1}, l_{2}}\right)$ is a direct summand of $G_{I_{1}}$, so there is a projection g^{*} of $G_{I_{1}}$ onto $\operatorname{Ker}\left(g_{I_{1}, I_{2}}\right)$. Also $h_{I_{3}, I_{1}}, h_{I_{3}, I_{0}}$ are embeddings (by conclusion H) as $I_{3}<{ }^{d} I_{1}, I_{3}<{ }^{d} I_{0}$, (check or see above). Also $h_{I_{3}, I_{1}}\left(G_{I_{3}}\right)=\operatorname{Ker}\left(g_{I_{1}, I_{2}}\right)$ (compare Fact G clause (γ) and Fact K clause $(\beta))$. Hence $h_{I_{3}, I_{0}} \circ h_{I_{3}, I_{1}}^{-1} \circ g^{*} \circ g_{I_{0}, I_{1}}$ is a projection from $G=G_{\langle \rangle}=G_{I_{0}}$ onto rang $\left(h_{I_{3}, I_{0}}\right)$; i.e., essentially $G_{\langle \rangle, \alpha}$. This finishes the proof of the main fact, hence the proof of Theorem 1.2.
[Question: here we can increase α_{η}; can we make it exact? (See appendix 3.6).]
Claim 1.3. We can strengthen the conclusion of 1.2 to: for any given stationary $W \subseteq \lambda$ we can demand: there is a λ-free non-free group G with set of elements λ such that
$\{\delta \in W: G\lceil\delta$ is a subgroup of G and is a free direct summand of $G\}$
is a stationary subset of λ.
Proof. In the proof of 1.2 ;
(A) for any $W_{0} \subseteq\{\alpha<\lambda:\langle\alpha\rangle \in S\}$ stationary subset of λ, we can replace S by $\left\{\eta: \eta \in S\right.$ and $\left.\ell g(\eta)>0 \Longrightarrow \eta(0) \in W_{0}\right\}$
(B) assuming that the set of members of G is λ then $\{\delta<\lambda: \delta$ is the set of elements of $G_{(), \delta}$ \} is a club of λ.
Together with Main Fact L and Fact I , we are done.
Discussion 1.4. We can rephrase the proof of 1.1 combinatorially; i.e., explicitly write a set of generators X such that $G=G_{\alpha} \oplus\langle X\rangle_{G}$, but we do not think it is clearer. To some extent this is done in Fact A of the proof of 2.2.
§2. The general case: for a variety. We note here that a parallel theorem holds for any suitable variety considering two variants of λ-separable (see Definition 2.1(2) and Definition 2.4). We do the general case in less detail.

Defintion 2.1.
(1) T is a variety if T is a theory (in a vocabulary τ) all of whose axioms are equations or just have the form $\forall x_{1}, \ldots, x_{n} \varphi, \varphi$ an atomic formula. Without loss of generality every member of τ (function symbol or predicate) appears in some axiom of T.
(2) A model M of T is called λ-separable if for every $A \subseteq M,|A|<\lambda$, we can represent M as a free product $M_{1} * M_{2}$ such that $A \subseteq M_{1}$ and M_{1} is free.
(3) T has the nth h-construction principle if we can find $N, b_{\ell, m}$ (for $\ell<n$, $m<\omega$) and $N_{\bar{m}}$ (for $\bar{m} \in{ }^{n} \omega$) such that:
(i) N a model of T of cardinality $\leq|T|+\aleph_{0}$
(ii) N is free, moreover, for each $\ell^{*}<n$ and $m^{*}<\omega$ we can complete

$$
\left\{b_{\ell, n}: \ell<n, m<\omega \text { and }\left[\ell=\ell^{*} \Longrightarrow m<m^{*}\right]\right\}
$$

to a free basis of N, call the set of additional elements $C_{\ell, m}$
(iii) (α) if $\bar{m}^{i}=\left\langle m_{\ell}^{i}: \ell<n\right\rangle \in{ }^{n} \omega$ (for $i=1,2$) and $\bar{m}^{1} \leq \bar{m}^{2}$ (i.e., $\left.(\forall \ell<n)\left(m_{\ell}^{1} \leq m_{\ell}^{2}\right)\right)$ then $N_{\bar{m}^{2}} \subseteq N_{\bar{m}^{1}} \subseteq N$,
(β) $b_{\ell, m} \in N_{\left\langle m_{k}: k<n\right\rangle} \Longleftrightarrow m \geq m_{\ell}$ and
$(\gamma) N$ is the free product $N_{\bar{m}} *\left\langle\left\{b_{\ell, m}: \ell<n, m<m_{\ell}\right\}\right\rangle_{N}$.
(iv) for no free model F of T, is $N * F /\left\langle b_{\ell, m}: \ell<n, m<\omega\right\rangle_{N}$ free (equivalently $N * F$ has a free basis extending $\left\{b_{\ell, m}: \ell<n, m<\right.$ $\omega\}$).
Remark 2.1A. On the nth construction principle see Eklof and Mekler [1] and then Mekler and Shelah [4]. The difference (between the nth construction principle and the nth h-construction principle) is clause (iii), it is not clarified here if it adds anything. In all cases the hope is that the analysis of [5], §3, and $\S 4$ exhausts the reasons of the existence of the desired complicated object in λ, and the crucial parameter of the system S (see beginning of the proof of 1.2 or $\S 3$) is $n=n(S)$. So the hope is that for each T, the class of cardinals λ where we have an example is, for some $\alpha^{*} \leq \omega$

$$
\begin{aligned}
& \mathfrak{C}_{\alpha^{*}}=\left\{\lambda: \text { there are } n, S,\left\langle\lambda(\eta, S): \eta \in S_{i}\right\rangle,\left\langle B_{\eta}: \eta \in S_{c}\right\rangle\right. \\
& \left.\qquad\left\langle s_{\eta}^{\ell}: \eta \in S_{f}, \ell<n\right\rangle \text { as in } 3.6,3.7 \text { and } n<\alpha^{*}\right\} .
\end{aligned}
$$

Usually we deal with varieties with countable vocabulary.
Theorem 2.2. Assume there is a λ-free not λ^{+}-free abelian group exemplified by $n, S,\left\langle s_{\eta}^{\ell}: \ell<n\right.$ and $\left.\eta \in S_{f}\right\rangle$ as in the proof of 1.2 and the variety T has the nth h construction principle and $|T|<\lambda$. Then T has a λ-separable model of cardinality λ which is not free.

CONCLUSION 2.2A. If there is a λ-free not λ^{+}-free abelian group then for the variety of groups (not the abelian one) there is a λ-free, λ-separable group G of cardinality λ which is not free. (I.e., G is a non-free group of cardinality λ, G can be represented as $\bigcup_{\alpha<\lambda} G_{\alpha}, G_{\alpha}$ increasing continuously of cardinality $<\lambda$, each G_{α} free and G is the free product (for the variety of groups) of $G_{\alpha+1}$ and some $H_{\alpha+1}$ for each $\alpha<\lambda$.)

Proof of 2.2A. We should just check the condition of $2.1(3)$ which is straight as in [5]. [I.e., let N be the group freely generated by

$$
\left\{b_{\ell, m}: \ell \in[1, n) \text { and } m<\omega\right\} \cup\left\{y_{m}: m<\omega\right\}
$$

let:
(a) $b_{0,0}=: y_{0}$
(b) $b_{0, m+1}$ is the product $b_{1, m+1} b_{2, m+1} \ldots b_{n-1, m+1} y_{m}\left(y_{0, m+1}\right)^{2}$
(c) $C_{\ell, m}=\left\{y_{k}: k \in[m, \omega)\right\}$
(d) for $\bar{m} \in{ }^{n} \omega$ clearly

$$
\left\{b_{\ell, m}: \ell \in[1, n) \text { and } m<\omega\right\} \cup\left\{b_{0, n}: n<m_{0}\right\} \cup C_{0, m_{0}}
$$

is a free basis of N and let $N_{\bar{m}}$ be the subgroup of N generated by

$$
\left\{b_{\ell, m}: 1 \leq \ell<n \text { and } m \in\left[m_{\ell}, \omega\right)\right\} \cup\left\{y_{m}: m \in\left[m_{0}, \omega\right)\right\} .
$$

Now check.]
Proof of 2.2. Let $\left\langle N, b_{\ell, m}, N_{\bar{m}}: \ell<n, m<\omega\right.$ and $\left.\bar{m} \in{ }^{n} \omega\right\rangle$ exemplify the nth h-construction principle. We choose n, S, \ldots as in the proof of 1.2.

Let M be freely generated by $x[a]$ (for $a \in \bigcup_{\eta \in S_{c}} B_{\eta}$) and $y_{\eta, c}$ (for $\eta \in S_{f}$ and $c \in N$) except that:
(i) $y_{\eta, c}=x[a]$ if $c=b_{\ell, m}$ and $a=a_{\eta, m}^{\ell}$
(ii) $\varphi\left(y_{\eta, c_{1}}, \ldots, y_{n, c_{k}}\right)$ whenever $N \vDash$ " $\varphi\left(c_{1}, \ldots, c_{k}\right)$ " and φ is a τ-atomic formula.

Fact A. For $\alpha<\lambda$ such that $\langle\alpha\rangle \notin S$ we can find $Y_{0}, Y_{1}, Y_{2}, S_{0}, S_{1}, S_{2}$ such that:
(a) $S_{2}=S_{f}, \quad Y_{2}=\bigcup_{\eta \in S_{c}} B_{\eta}$
(b) $S_{0}=\left\{\eta \in S_{f}: \eta(0)<\alpha\right\}$ and $Y_{0}=\bigcup\left\{B_{\eta}: \eta \in S_{c}\right.$ and $\left.\eta(0)<\alpha\right\}$
(c) $S_{0} \subseteq S_{1} \subseteq S_{2}$ and $Y_{0} \subseteq Y_{1} \subseteq Y_{2}$ and Y_{1} is downward closed (remember Y_{2} is a tree, see 3.6) so $a_{\eta, m}^{\ell} \in Y_{1} \& m_{1}<m \Longrightarrow a_{\eta, m_{1}}^{\ell} \in Y_{1}$
(d) for $\eta \in S_{2} \backslash S_{1}$ the set $\left\{a_{n, m}^{\ell}: \ell<n, m<\omega\right\} \cap Y_{1}$ is finite
(e) there is a list $\left\langle\eta_{\zeta}: \zeta<\zeta^{*}\right\rangle$ of $S_{1} \backslash S_{0}$ without repetitions and $\left\langle\ell(\zeta): \zeta<\zeta^{*}\right\rangle$ such that $0 \leq \ell(\zeta)<n$ and $\left\langle m(\zeta): \zeta<\zeta^{*}\right\rangle, m(\zeta)<\omega$ such that:
$(\alpha)\left\{a_{\eta, m}^{\ell(\zeta)}: m \in[m(\zeta), \omega)\right\}$ is disjoint to

$$
Y_{0} \cup\left\{a_{\eta_{s}, m}^{\ell}: \ell<n, \varepsilon<\zeta, m<\omega\right\}
$$

(β) $\left\{a_{\eta_{\zeta}, m}^{\ell(\zeta)}: m<\omega\right\} \subseteq Y_{1}$.
Proof. Included in the proof of Theorem 1.2.
Remark B. We can add
(f) S_{1} is $S_{f}\left[I_{1}\right]$ from the proof of Theorem 1.2 so for some function k from $S_{1} \backslash S_{0}$ to $n=\{0, \ldots, n-1\}$ we have

$$
Y_{1}=Y_{0} \cup\left\{a_{\eta_{6}, m}^{\ell}: \eta \in S_{1}, m<\omega \text { and } \ell \in[k(\eta), n)\right\} .
$$

Fact C. Under the conclusion of Fact A, letting

$$
M_{0}=:\left\langle\left\{x[a]: a \in Y_{0}\right\} \cup\left\{y_{\eta, c}: \eta \in S_{0}, c \in N\right\}\right\rangle_{M}
$$

we have: M_{0} is free and for some $M_{2}, M=M_{0} * M_{2}$.
Proof. Clearly M_{0} is free (for T) as in the proof of Fact A in the proof of 1.2. The new point is to find M_{2}.

For each $\ell<n, m<\omega$, let $C_{\ell, m} \subseteq N$ be such that $C_{\ell, m} \cup\left\{b_{\ell_{1}, m_{1}}: \ell_{1} \neq \ell, m_{1}<\right.$ ω or $\left.\ell_{1}=\ell, m_{1}<m\right\}$ is a free basis of N with no repetitions.

We let M_{2} be the submodel of M generated by:
(A) $y_{\eta_{\zeta}, c}$ if $\zeta<\zeta^{*}$ and $c \in C_{\ell(\zeta), m(\zeta)}$
(B) $x\left[a_{\eta_{5}, m}^{\ell}\right]$ if $\zeta<\zeta^{*}, a_{\eta_{5}, m}^{\ell} \in Y_{1} \backslash Y_{0}$ and for no $\varepsilon<\zeta^{*}$ do we have

$$
a_{\eta_{5}, m}^{\ell} \in\left\{a_{\eta_{\varepsilon}, k}^{\ell(\varepsilon)}: k \in[m(\varepsilon), \omega)\right\}
$$

(C) $x[a]$ if $a \in Y_{2} \backslash Y_{1}$
(D) $y_{\eta, c}$ if $\eta \in S_{2} \backslash S_{1}, c \in N_{\left\langle m_{\ell}(\eta): \ell<n\right\rangle}$ where $m_{\ell}(\eta)=\min \left\{m: a_{\eta, m}^{\ell} \notin Y_{1}\right\}$.

Now

$$
\begin{equation*}
M=\left\langle M_{0}, M_{2}\right\rangle \tag{*}
\end{equation*}
$$

First we prove by induction on $\zeta<\zeta^{*}$ that $\left\{x\left[a_{n, m}^{\ell}\right]: \ell<n\right.$ and $\left.m<\omega\right\} \subseteq$ $\left\langle M_{0}, M_{2}\right\rangle$ and $\left\{y_{\eta_{,}, c}: c \in N\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle$. Arriving to ζ we split the proof to cases.

CASE 1. $a_{\eta_{5}, m}^{\ell} \in Y_{0}$.
Then $x\left[a_{\eta_{5}, m}^{\ell}\right] \in Y_{0} \subseteq M_{0} \subseteq\left\langle M_{0}, M_{2}\right\rangle$.
CASE 2. $a_{\eta_{5}, m}^{\ell} \in Y_{1} \backslash Y_{0}$ and for some $\varepsilon<\zeta, a_{\eta_{5}, m}^{\ell} \in\left\{a_{\eta_{e}, k}^{\ell(\varepsilon)}: k \in[m(\varepsilon), \omega)\right\}$.
We use the induction hypothesis on ε.
CASE 3. $a_{\eta_{5}, m}^{\ell} \in Y_{1} \backslash Y_{0}$ and $\ell \neq \ell(\zeta) \vee[\ell=\ell(\zeta) \& m<m(\zeta)]$ and for no $\varepsilon<\zeta$, do we have $a_{\eta_{\zeta}, m}^{\ell} \in\left\{a_{\eta_{c}, k}^{\ell(\varepsilon)}: k \in[m(\varepsilon), \omega)\right\}$.

Now $\varepsilon<\zeta^{*}$ implies $a_{\eta}^{\ell} \notin\left\{a_{\eta_{e}, k}^{\ell(\varepsilon)}: k \in[m(\varepsilon), \omega)\right\}$. [Why? If $\varepsilon<\zeta$ this is assumed in the case, if $\varepsilon=\zeta$ this followed by $\ell \neq \ell(\zeta)$, and if $\varepsilon \in\left(\zeta, \zeta^{*}\right)$ this follows by clause $(e)(\alpha)$ (with ε 's here standing for ζ, ε there). Hence the assumption of clause (B) holds.]

By clause (B), $x\left[a_{\eta_{b}, m}^{\ell}\right] \in M_{2} \subseteq\left\langle M_{0}, M_{2}\right\rangle$.
Case 4. $a_{\eta_{\xi}, m}^{\ell} \in Y_{2} \backslash Y_{1}$.
By clause (C), $x\left[a_{\eta_{5}, m}^{\ell}\right] \in M_{2} \subseteq\left\langle M_{0}, M_{2}\right\rangle$.
Case 5. No previous cases.
By the earlier cases $\ell=\ell(\zeta)$ and

$$
\left\{x\left[a_{\eta_{3}, m_{1}^{*}}^{\ell_{1}^{*}}\right]: \ell_{1}^{*}<n, m_{1}^{*}<\omega \text { and }\left[\ell_{1}^{*}=\ell(\zeta) \Longrightarrow m_{1}^{*}<m(\zeta)\right]\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle
$$

Let $N^{\prime}=:\left\{c \in N: y_{\eta_{5}, c} \in\left\langle M_{0}, M_{2}\right\rangle\right\}$, so by the previous sentence

$$
\left\{b_{\ell_{1}, m_{1}}: \ell_{1}<n, m_{1}<\omega \text { and } \ell_{1}=\ell(\zeta) \Longrightarrow m_{1}<m(\zeta)\right\} \subseteq N^{\prime}
$$

and by clause (A) also $C_{\ell(\zeta), m(\zeta)} \subseteq N^{\prime}$ hence (see clause (ii) in Definition 2.1) clearly $N^{\prime}=N$, so $x\left[a_{\eta_{\zeta}, m}^{\ell_{1}}\right] \in\left\langle M_{0}, M_{2}\right\rangle$ and $y_{\eta_{\zeta}, c} \in\left\langle M_{0}, M_{2}\right\rangle$.

We have proved $\left\{x[a]: a \in Y_{1} \backslash Y_{0}\right\} \subseteq\left\{x\left[a_{\eta_{\zeta}, m}^{\ell}\right]: \ell<n, m<\omega, \zeta<\zeta^{*}\right\} \subseteq$ $\left\langle M_{0}, M_{2}\right\rangle$. As $\left\{x[a]: a \in Y_{0}\right\} \subseteq M_{0} \subseteq\left\langle M_{0}, M_{2}\right\rangle$ and by clause (C) we have $\left\{x[a]: a \in Y_{2} \backslash Y_{1}\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle$ we conclude $\left\{x[a]: a \in Y_{2}\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle$.

Also we have proved $\left\{y_{\eta_{\zeta}, c}: c \in N, \zeta<\zeta^{*}\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle$ (this was done during the proof of case 5) so $\left\{y_{\eta, c}: \eta \in S_{1} \backslash S_{0}\right.$ and $\left.c \in N\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle$. Also for $\eta \in$ $S_{2} \backslash S_{1}$, letting $N^{\eta}=\left\{c \in N: y_{\eta, c} \in\left\langle M_{0}, M_{2}\right\rangle\right\}, m_{\ell}=\min \left\{m: a_{\eta, m}^{\ell} \notin Y_{1}\right\}$ we have: by clause (D), $N_{\left\langle m_{\ell}: \ell<n\right\rangle} \subseteq N^{\eta}$, and $\left\{a_{\eta, m}^{\ell}: \ell<n, m<\omega\right\} \subseteq Y_{2}$ so $b_{\ell, m} \in N^{\eta}$ hence $N^{\eta}=N$ so $\left\{y_{\eta, c}: \eta \in S_{2} \backslash S_{1}, c \in N\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle$. Lastly if $\eta \in S_{0}$ we have $\left\{y_{\eta, c}: c \in N\right\} \subseteq M_{0} \subseteq\left\langle M_{0}, M_{2}\right\rangle$.

Together $\left\{y_{\eta, c}: \eta \in S_{2}\right.$ and $\left.c \in N\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle$; and also we note above $\left\{x[a]: a \in Y_{2}\right\} \subseteq\left\langle M_{0}, M_{2}\right\rangle$; we can conclude $M=\left\langle M_{0}, M_{2}\right\rangle$, i.e., $(*)_{1}$.
So to finish the proof we need

$$
\begin{equation*}
M=M_{0} * M_{2} \tag{*}
\end{equation*}
$$

(i.e., they generate M freely).

Look at the equations in the definition of M and together with the proof of $(*)_{1}$ rewrite them in terms of the generators of M_{0} and of M_{2}. The equations either trivialized or "speak" on generators of M_{0} only or "speak" on generators of M_{2} only.

Note that as the variety of abelian groups is very nice, e.g., a subgroup of a free abelian group is free, distinct definitions for general varieties become identified for it; so Theorem 1.2 has various generalizations and Theorem 2.2 is not the unique one. Another generalization is presented below.
Theorem 2.3. Assume λ is as in 1.2 with $n, S,\left\langle s_{\eta}^{\ell}: \ell<n, \eta \in S_{f}\right\rangle$ such that T has the nth construction principle (i.e., in Definition 2.1 we omit clause (iii), but demanding each $C_{\ell, n}$ is infinite; this holds without loss of generality by clause (iv) of Definition 2.1). Then there is a model M of T, not free of cardinality λ, but is λ-proj-separable, where:

Definition 2.4. For a variety T and a model M of T and cardinality λ we say M is λ-proj-separable, if for every $A \subseteq M,|A|<\lambda$, there is a free $M^{\prime} \subseteq M$ including A and a projection h from M onto M^{\prime}.

Proof of 2.3. We define $M, x[a], y_{\eta, c}$ as in the proof of 2.2. For every $\ell(*)<n$ and $m(*)<\omega, m(*)>0$ there is a homomorphism $g_{\ell(*), m(*)}$ from N onto $\left\langle b_{\ell, n}\right.$: $\ell<n, m<\omega$ and $[\ell=\ell(*) \Longrightarrow m<m(*)]\rangle_{N}$ which is the identity on $\left\langle b_{\ell, m}\right.$: $\ell<n, m<\omega$ and $[\ell=\ell(*) \Longrightarrow m<m(*)]\rangle_{N}$ (maps the members of $C_{\ell(*), m(*)}$ onto $\left\{b_{\ell(*), 0}\right\}$.) Let Γ be the set of equations which we make the generators satisfy. We choose $Y_{0}, Y_{1}, Y_{2}, S_{0}, S_{1}, S_{2}$ as in Fact A from the proof of 2.2 and without loss of generality $\zeta<\zeta^{*} \Longrightarrow m(\zeta)>0$. Let $\left\{\eta_{\zeta}: \zeta \in\left[\zeta^{*}, \zeta^{* *}\right)\right\}$ list $S_{2} \backslash S_{1}$.

For each $\eta_{\zeta} \in S_{2} \backslash S_{1}$ we can choose (remember clause (c) of Fact A from 2.1)

$$
\ell(\zeta)=\ell_{k^{*}-1}, \quad m(\zeta)=\min \left\{m: 0<m<\omega \text { and } a_{\eta, m}^{\ell(\zeta)} \notin Y_{1}\right\} .
$$

Let M_{1} be the model of T generated by

$$
\Xi_{1}=\left\{x\left[a_{\eta, m}^{\ell}\right]: \ell<n, \eta \in S_{1}, m<\omega\right\} \cup\left\{y_{\eta, c}: c \in N, \eta \in S_{1}\right\}
$$

freely except

$$
\begin{aligned}
& \Gamma_{1}=\left\{y_{\eta, c}=x[a]: c=b_{\ell, m}, a=a_{\eta, m}^{\ell} \text { and } \eta \in S_{1}\right\} \\
& \cup\left.\cup \varphi\left(y_{\eta, c_{1}}, \ldots, y_{\eta, c_{k}}\right): N \models \varphi\left(c_{1}, \ldots, c_{k}\right), \varphi \text { a } T \text {-atomic formula }\right\} .
\end{aligned}
$$

Let M_{2}^{-}be the model of T generated by (note: I_{1}, J_{k} are from the proof of 1.2)

$$
\begin{aligned}
& \Xi_{2}^{-}=:\left\{x[a]: a \in Y_{2} \text { but if } a \in B_{\eta^{*}\langle\lambda(\eta, S)\rangle}, \lg (\eta)=\ell_{k^{*}-1}\right. \\
& \text { and } \eta \in J_{k^{*}-1} \subseteq J\left[I_{1}\right] \text { then } a \text { is in the first level } \\
& \text { (i.e., like } \left.\left.a_{\eta, 0}^{\ell_{k^{*}}}\right) \text { or } a \in B_{\eta^{*}\left\langle\alpha_{\eta}\right\rangle}\left(\alpha_{\eta} \text { from the choice of } I_{1}\right)\right\}
\end{aligned}
$$

freely except the equations

$$
\begin{gathered}
\Gamma_{2}^{-}=\Gamma_{1}=\left\{y_{\eta, c}=x[a]: c=b_{\ell, m}, a=a_{\eta, m}^{\ell}, \eta \in S_{1}, \ell<n,\right. \\
\left.m<\omega \text { and } x[a] \in \Xi_{2}^{-}\right\} \\
\cup\left\{\varphi\left(y_{\eta, c_{1}}, \ldots, y_{\eta, c_{k}}\right): N \models \varphi\left[c_{1}, \ldots, c_{k}\right]\right. \\
\left.\varphi \text { a } T \text {-atomic formula, } \eta \in S_{1}\right\} .
\end{gathered}
$$

(Note that if $\eta \in J_{k-1}$ and $\eta \triangleleft v \in S_{f}$ then $\left.\operatorname{cf}\left(v\left(\ell_{k^{*}-1}\right)\right)=\aleph_{0}\right)$.
Clearly $M_{0} \subseteq M_{1} \subseteq M_{2}^{-} \subseteq M$.
We define a homomorphism h_{2} from M into $M_{2}^{-}: h_{2} \upharpoonright M_{2}^{-}$is the identity, and for $\eta=\eta_{\zeta} \in S_{2} \backslash S_{1}$ and $c \in N$ we let:

$$
h_{2}\left(y_{\eta, c}\right)=y_{\eta, \varepsilon_{\ell(\xi), m(3)}(c)}
$$

Note: $h_{2}\left(x\left[a_{\eta_{5}, m}^{\ell}\right]\right)=x\left[a_{\eta_{5}, m}^{\ell}\right]$ when $\ell \neq \ell(\zeta) \vee m<m(\zeta)$ by the tree structure of $\bigcup_{\eta \in S_{c}} B_{\eta}$, the cases of the definition of h_{2} are compatible and the equations are preserved. So h_{2} is a homomorphism and even a projection from M onto M_{2}^{-}.
Trivially, we can find a projection h_{1} from M_{2}^{-}onto M_{1}.
Next note that M_{1} is a free extension of M_{0} (a free basis is

$$
\begin{aligned}
& \left\{y_{\eta_{\zeta}, c}: c \in C_{\ell(\zeta), m(\zeta)} \text { and } \zeta<\zeta^{*}\right\} \\
& \cup\left\{x[a]: a \in Y_{1} \backslash Y_{0} \text { and for no } \zeta<\zeta^{*}\right. \text { is } \\
& \left.\left.\qquad a \in\left\{a_{\eta_{\zeta}, m}^{\ell(\varepsilon)}: m \in[m(\varepsilon), \omega)\right\}\right\} .\right)
\end{aligned}
$$

So we can find a projection h_{0} from M_{1} onto M_{0}. So $h_{0} \circ h_{1} \circ h_{2}$ is a projection as required.

Claim 2.5. Theorems 2.2 and 2.3 can be strengthened as in 1.3 .
DISCUSSION 2.6. Implicit in the proof of 2.3 is an alternative criterion sufficient for the conclusion of 2.2.
§3. Appendix: characterizing the existence in λ of an almost free abelian group. To make the main theorem 1.2 more easily read we present part of [5], more exactly a variant to [5], 3.6 and 3.7, p. 212. Numbers are as in [5].

Definition 3.1.

(1) For a regular uncountable cardinal $\lambda\left(>\aleph_{0}\right)$ we call S a λ-set if:
(a) S is a set of strictly decreasing sequences of ordinals $<\lambda$.
(b) S is closed under initial segments and is nonempty.
(c) For $\eta \in S$ if we let $W(\eta, S)=:\left\{i: \eta^{\wedge}\langle i\rangle \in S\right\}$ and $\lambda(\eta, S)=$: $\sup W(\eta, S)$ then whenever $W(\eta, S)$ is not empty, $\lambda(\eta, S)$ is a regular uncountable cardinal and $W(\eta, S)$ is a stationary subset of $\lambda(\eta, S)$. Also $\lambda\left(\rangle, S)=\lambda\right.$ (and by clause (a) we know $\left.\lambda\left(\eta^{\wedge}\langle\alpha\rangle, S\right) \leq|\alpha|\right)$.
(2) For a λ-set S, let S_{f} (= set of final elements of S) be $\left\{\eta \in S:(\forall i) \eta^{\wedge}\langle i\rangle \notin\right.$ $S\}$ and $S_{i}(=$ set of initial elements of $S)$ be $S \backslash S_{f}$ so $\left(S_{f}=\{\eta \in S\right.$: $\lambda(\eta, S)=0\}$).

We sometimes allow $\lambda=0$. Then the only λ-set is $\{\rangle\}$.
(3) For λ-sets S^{1}, S^{2} we say $S^{1} \leq S^{2}\left(S^{1}\right.$ a sub- λ-set of $\left.S^{2}\right)$ if $S^{1} \subseteq S^{2}$ and $\lambda\left(\eta, S^{1}\right)=\lambda\left(\eta, S^{2}\right)$ for every $\eta \in S^{1}$ (so $S_{i}^{1}=S^{1} \cap S_{i}^{2}$). Clearly \leq is transitive.

Notation. In this section S will be used to denote λ-sets.
Remark 3.1A. Many of the properties below hold also if we waive the "decreasing" demand in clause (a) (usually still ask $\lambda\left(\eta^{\wedge}\langle i\rangle, S\right)<\lambda(\eta, S)$) but not all, and for what we want to analyze we can get such S, so we have concentrated on this family of sets.

Claim 3.2.
(1) If S is a λ-set, $\lambda(\eta, S)>\kappa$ for every $\eta \in S_{i}$ (holds always for $\kappa=\aleph_{0}$) and G is a function from S_{f} to κ then for some $S^{1} \leq S$ we have: G is constant on S_{f}^{1}.
(2) If S is a λ-set and $\eta \in S_{i}$, then $S^{[\eta]}=\left\{v: \eta^{\wedge} v \in S\right\}$ is a $\lambda(\eta, S)$-set, and $\lambda\left(v, S^{[\eta]}\right)=\lambda\left(\eta^{\wedge} v, S\right)$ for every $v \in S^{[\eta]}$.
(3) If S is a λ-set, κ a regular cardinal, $(\forall \eta \in S)(\lambda(\eta, S) \neq \kappa)$ and G is a function from S to κ then for some $S^{1} \leq S$ and $\gamma<\kappa$ for every $\eta \in S^{1}$ we have $G(\eta)<\gamma$.
(4) If $\lambda>\aleph_{0}$ is regular, $W \subseteq \lambda$ stationary, for $\delta \in W, S^{\delta}$ is a λ_{δ}-set for some $\lambda_{\delta} \leq \delta$ or $S^{\delta}=\{\langle \rangle\}$ then $S=:\{\langle \rangle\} \cup\left\{\langle\delta\rangle^{\wedge} \eta: \eta \in S^{\delta}, \delta \in W\right\}$ is a λ set and $\lambda\left(\langle\delta\rangle^{\wedge} \eta, S\right)=\lambda\left(\eta, S^{\delta}\right)$ for $\delta \in W, \eta \in S^{\delta}$ and $S_{i}=\{\langle \rangle\} \cup \bigcup_{\delta \in W} S_{i}^{\delta}$.
(5) If S is a λ-set, F a function with domain $S \backslash\left\{\rangle\}, F\left(\eta^{\wedge}\langle\alpha\rangle\right)<1+\alpha\right.$ then F is essentially constant for some $S^{1} \leq S$ which means $F \upharpoonright\left\{\eta \in S^{1}: \ell g(\eta)=\right.$ $m\}$ is constant for each m.
(6) For any λ-set S there is a λ-set $S^{1} \leq S$ such that:
(a) all $\eta \in S_{f}$ have the same length n
(b) for each $\ell<n$ either
(i) every $\eta(\ell)\left(\eta \in S_{f}\right)$ is an inaccessible cardinal (not necessarily strong limit), or
(ii) every $\eta(\ell)\left(\eta \in S_{f}\right)$ is a singular limit ordinal,
(c) for each $\ell<n$, either
(i) $\lambda(\eta \upharpoonright(\ell+1), S)=\eta(\ell)$ for every $\eta \in S_{f}$ or
(ii) $\lambda(\eta \upharpoonright(\ell+1), S)=\lambda_{S}^{\ell+1}$ for every $\eta \in S_{f}$ (for a fixed $\left.\lambda_{S}^{\ell+1}\right)$.
(d) The truth value of " $\mathrm{cf}(\eta(\ell))=\lambda(\eta \upharpoonright m, S)$ " is the same for all $\eta \in S_{f}$ (for constant $\ell, m<n$).

Proof. Straightforward, e.g., for (5). At first glance we get only: if $\rho \in S_{i}$ then $F \mid\left\{\rho^{\wedge}\langle\alpha\rangle: \alpha \in W(\rho, S)\right\}$ is constant (by Fodor's lemma and the demand " $W(\rho, S)$ is a stationary subset of $\lambda(\rho, S)$ "). However, as every $\eta \in S$ is (strictly) decreasing sequence of ordinals we can iterate this (simpler if we first apply part (6) clause (a)).

Claim 3.3. Suppose P is a family of sets which exemplify the failure of $P T\left(\lambda, \kappa^{+}\right)$ (where $\lambda>\kappa$), i.e., $a \in P=|a| \leq \kappa, P$ has no transversal ($=$ one-to-one choice function) but every $P^{\prime} \subseteq P$ of cardinality $<\lambda$ has a transversal. Then there is a λ-set S and function F with domain S_{f} such that:
(a) For each $\eta \in S_{f}, F(\eta)$ is a subfamily of P of power $\leq \kappa$.
(b) For $\eta \in S_{i}$ we have $\lambda(\eta, S)>\kappa$.
(c) For $\eta \in{ }^{\omega>}(\lambda+1)$, let $F^{0}(\eta)=: \bigcup\left\{F(\tau): \tau<_{\ell x} \eta\right.$ and $\left.\tau \in S_{f}\right\}$, where $<_{\ell x}$ is the lexicographic order, $F^{1}(\eta)=: \bigcup\left\{F(\tau): \eta \unlhd \tau \in S_{f}\right\}$ and

$$
F^{2}(\eta)=: \bigcup\left\{A: A \in F^{0}\left(\eta^{\wedge}\langle\lambda(\eta, S)\rangle\right)\right\} \backslash \bigcup\left\{A: A \in F^{0}(\eta)\right\}
$$

Note that for $\eta \in S$ we have $F^{0}\left(\eta^{\wedge}\langle\lambda(\eta, S)\rangle\right)=F^{0}(\eta) \cup F^{1}(\eta)$.
(d) (α) For $\eta \in S_{f}, F^{1}(\eta) / F^{0}(\eta)$ is not free, (that is $F^{1}(\eta)$ has no one-to-one choice function with range disjoint to $\left.\bigcup\left\{A: A \in F^{0}(\eta)\right\}\right)$.
(β) For $\eta \in S_{i}, \quad F^{1}(\eta) / F^{0}(\eta)$ is $\lambda(\eta, S)$-free not free and $\left|F^{1}(\eta)\right|=$ $\lambda(\eta, S)($ this follows as $|\{\tau: \eta \unlhd \tau \in S\}|=\lambda(\eta, S))$.
(e) If $\eta^{\wedge}\langle\alpha\rangle \in S$ then α is a limit ordinal, $\operatorname{cf}(\alpha) \leq \lambda\left(\eta^{\wedge}\langle\alpha\rangle, S\right)+\kappa \leq|\alpha|$ and if $\beta<\lambda(\eta, S)$ is an inaccessible cardinal $\left(>\aleph_{0}\right)$ then $\beta \cap W(\eta, S)$ is not a stationary subset of β.
(f) If $\eta^{\wedge}\langle\alpha\rangle \triangleleft v \in S_{f}$ and $\operatorname{cf}(\alpha)>\kappa$ then for some natural number k we have $\eta^{\wedge}\langle\alpha\rangle \unlhd v \upharpoonright k$ and $\lambda(v \upharpoonright k, S)=\operatorname{cf}(\alpha)$ (so if α is an inaccessible cardinal then $k=\ell g(\eta))$.

Proof. See [5].
Remark. Note clause (f), it is crucial; without it we won't be able to prove the desired conclusion.

Definition 3.4.
(1) A λ-system is $\left\langle B_{\eta}: \eta \in S_{c}\right\rangle$ where:
(a) S is a λ-set, and we let $S_{c}=:\left\{\eta^{\wedge}\langle i\rangle: \eta \in S_{i}\right.$ and $\left.i<\lambda(\eta, S)\right\}$
(b) $B_{\eta^{\wedge}\langle i\rangle} \subseteq B_{\eta^{\imath}\langle j\rangle}$ when $\eta \in S_{i}$ and $i<j<\lambda(\eta, S)$
(c) If δ is a limit ordinal $<\lambda(\eta, S)$ then $B_{\eta^{\wedge}\langle\delta\rangle}=\bigcup\left\{B_{\eta^{*}\langle i\rangle}: i<\delta\right\}$
(d) $\left|B_{\eta}\langle i\rangle\right|<\lambda(\eta, S)$ for $i<\lambda(\eta, S)$.
(2) The λ-system $\left\langle B_{\eta}: \eta \in S_{c}\right\rangle$ is called disjoint if the sets $\left\{B_{\eta^{\sim}\langle\lambda(\eta, S)\rangle}: \eta \in S_{i}\right\}$ (see (3) below) are pairwise disjoint.
(3) We let $S_{m}=: S \backslash\{\langle \rangle\}, B_{\eta^{\wedge}\langle\lambda(\eta, S)\rangle}=: B_{\eta}^{*}=: \bigcup\left\{B_{\eta^{\wedge}\langle i\rangle}: i<\lambda(\eta, S)\right\}$ for $\eta \in S_{i}$.

Claim 3.5. Suppose λ is a regular uncountable cardinal, $\left\langle B_{\eta}: \eta \in S_{c}\right\rangle$ a λ-system, and for $\eta \in S_{f}, s_{\eta} \subseteq \bigcup_{\ell<\ell g(\eta)} B_{\eta \dagger(\ell+1)}$. Then $\left\{s_{\eta}: \eta \in S_{f}\right\}$ has no transversal.
Proof. Straightforward (or see [5]).
Claim 3.6. Suppose $P T\left(\lambda, \kappa^{+}\right)$fails (see 3.3). ${ }^{1}$ Then there is a disjoint λ-system $\left\langle B_{\eta}: \eta \in S_{c}\right\rangle$ and sets $s_{\eta}^{\ell}\left(\right.$ for $\eta \in S_{f}$ and $\ell<\ell g(\eta)$), and C_{δ} (for $\delta<\lambda$ a limit ordinal) and $\varepsilon_{\eta, \ell}($ for $\eta \in S$ and $\ell<\ell g(\eta))$ such that:
(a) S satisfies the conclusion of Claims 3.2(6), 3.3(e) and 3.3(f), in particular $\eta \in S_{f} \Longrightarrow \ell g(\eta)=n$.
(b) $s_{\eta}^{\ell} \subseteq B_{\eta \mid(\ell+1)}, \quad 0<\left|s_{\eta}^{\ell}\right| \leq \kappa$.
(c) For every $I \subseteq S_{f}$: if $|I|<\lambda$ then $\left\{\bigcup_{\ell} s_{\eta}^{\ell}: \eta \in I\right\}$ has a transversal (as an indexed set). Moreover, for every $\rho \in S_{i}$ if $I \subseteq\left\{v: \rho \unlhd v \in S_{f}\right\}$ and $|I|<\lambda(\rho, S)$ then the family $\left\{\bigcup_{\ell \geq \ell g(\rho)} s_{\eta}^{\ell}: \eta \in I\right\}$ has a transversal.
(d) If $s_{\eta}^{\ell} \cap s_{\nu}^{m} \neq \emptyset$ then
$(\alpha) \ell=m$ and the sequences η, v are different only at the $\ell t h$ place, i.e., $\rho=: \eta \upharpoonright \ell=\nu\lceil\ell$ and $\eta\lceil[\ell+1, n)=\nu\lceil[\ell+1, n)$ and
(β) $\lambda(\eta \upharpoonright i, S)=\lambda(v\lceil i, S)$ when $\ell+1<i<n$ and
(γ) either $\lambda(\eta \upharpoonright(\ell+1), S)=\eta(\ell)$ and $\lambda(v \upharpoonright(\ell+1), S)=v(\ell)$ are both inaccessible cardinals or $\lambda(\eta \upharpoonright(\ell+1), S)=\lambda(v \upharpoonright(\ell+1), S)$.
(e) For $\eta^{\wedge}\langle\delta\rangle \in S$ we have
$(\alpha) C_{\delta}$ is a closed unbounded subset of $\delta, \quad C_{\delta}=\{\zeta(\delta, i): i<\operatorname{cf}(\delta)\}$, $\zeta(\delta, i)$ increasing continuously with i.
(β) In addition if $v=\eta \upharpoonright \ell, v \in S_{i}, \eta \in S_{i}, \lambda(\eta, S)=\operatorname{cf}[\eta(\ell)]>\aleph_{0}$ then $\varepsilon_{\eta, \ell}$ is a strictly increasing function from $\lambda(\nu, S)$ to $\lambda(\nu, S)$.
(γ) in clause (β) if $\delta=: \eta(\ell)$ is an inaccessible cardinal (hence necessarily $\ell g(\eta)=\ell+1)$ then $\emptyset=W(\nu, S) \cap\{\zeta(\delta, i)$: i belong to the range of $\left.\varepsilon_{\eta, \ell}\right\}$.
(f) (α) If $\ell<m<n, \eta \in S_{f}, \operatorname{cf}[\eta(\ell)]=\lambda(\eta \upharpoonright m, S)>\kappa$ then $s_{\eta}^{\ell} \subseteq$ $\boldsymbol{B}_{(\eta \mid \ell)^{\prime}\langle\zeta+1\rangle} \backslash \boldsymbol{B}_{(\eta \mid \ell)^{\prime}(\zeta\rangle}$ where $\zeta=\zeta\left(\eta(\ell), \varepsilon_{\eta, \ell}(\eta(m))+2\right)$; i.e., ζ is the $\left(\varepsilon_{\eta}(\eta(m))+2\right)$ th member of $C_{\eta(\ell)}$. Moreover if $s_{\eta}^{\ell} \cap s_{v}^{\ell} \neq \emptyset, \eta \neq v$ then $\zeta(\eta(\ell), \eta(m))=\zeta(\nu(\ell), \nu(m))$.
(β) If $\ell<m<n=\ell g(\eta), \eta \in S_{f}$, cf $[\eta(\ell)]=\lambda(\eta \upharpoonright m, S) \leq \kappa$ then $s_{\eta}^{\ell} \subseteq B_{\eta \mid(\ell+1)} \backslash B_{\eta \mid \ell^{\prime}(\zeta)}$ where $\zeta=\zeta(\eta(\ell), \eta(m))$; i.e., ζ is the $(\eta(m)+1)$ th member of $C_{\eta(\ell+1)}$ and $\xi<\eta(\ell) \Longrightarrow\left|s_{\eta}^{\ell} \backslash B_{(\eta \mid \ell)^{\prime}(\xi)}\right|=\kappa$. Moreover if $s_{\eta}^{\ell} \cap s_{v}^{\ell} \neq \emptyset, \eta \neq v$ then $\zeta(\eta(\ell), \eta(m))=\zeta(v(\ell), v(m))$.
(g) If $\ell<\ell g(\eta), \eta \in S_{f}, \operatorname{cf}[\eta(\ell)] \leq \kappa$ then for no $\zeta<\eta(\ell)$ is $s_{\eta}^{\ell} \subseteq B_{\eta \mid \ell^{2}\langle\zeta\rangle}$.
(h) For some well ordering $<_{\eta}^{*}$ of $B_{\eta}^{*}\left(\eta \in S_{i}\right)$ if $\eta^{\wedge}\langle i\rangle \unlhd v \in S_{f}$, then $[\operatorname{cf}(i) \geq$ $\kappa \Longrightarrow s_{v}^{\ell g(\eta)}$ has order type $\left.\kappa\right]$ and $\left[\operatorname{cf}(i)<\kappa \Longrightarrow s_{v}^{\ell(\eta)}\right.$ has order type $\kappa \times$ (cf $\left.\left.\left|s_{\eta}^{\ell}\right|\right)\right]$. (This is not really used.)
Proof. Straightforward and in the most important case see 3.7 's proof.
Remark. In the proof we get that each s_{v}^{ℓ} has order type ω.
Claim 3.7. Suppose in Claim 3.6 that $\kappa=\aleph_{0}$. Then we can add

[^0](i) for $\eta \in S_{i}, B_{\eta}$ has the structure of a tree with ω levels (e.g., is a family of finite sequences, closed under initial segments except that $\left\rangle \notin B_{\eta}\right)$, and $\eta \triangleleft v \in S_{f}$ implies $s_{\eta}^{\ell}=\left\{a_{\eta, m}^{\ell}: m<\omega\right\}$ is a branch (of order type $\leq \omega$) (a branch is a maximal linearly ordered subset), and for $m<\ell$, and $k<\omega$, the kth element of s_{v}^{m}, together with $v\left\lceil\ell\right.$ determines the k th element of s_{v}^{ℓ}. Also if $\ell<m<n=\ell g(\eta), \eta \in S_{f}, \operatorname{cf}[\eta(\ell)]=\lambda(\eta \mid m)=\aleph_{0}$ then $\left\langle\min \left\{\xi:\right.\right.$ in $s_{\eta}^{\ell} \cap B_{(\eta \mid \ell)^{\wedge}(\xi\rangle}$ there are at least k elements $\left.\}: k<\omega\right\rangle$ is strictly increasing with limit $\eta(\ell)$.

Proof of 3.7. Without loss of generality let P exemplify $P T(\lambda, \kappa)$ fails, so there are S, (a λ-set) and F, F^{0}, F^{1}, F^{2} as in Claim 3.3. As we can shrink S, we can assume that it satisfies the conclusion of 3.2(6). Without loss of generality $\eta \in S_{f} \Longrightarrow \ell g(\eta)=n$. Choose $C_{\delta}, \zeta(\delta, i)$ as required in clause (e) (for subclauses (c), (α) and (β) totally straight and for subclause $(c)(\gamma)$ we use clause (e) of 3.3). For $\eta \in S_{i}, \alpha<\lambda(\eta, S)$, we let

$$
D_{\eta^{\wedge}\langle\alpha\rangle}=: \bigcup\left\{F^{2}\left(\eta^{\wedge}\langle\beta\rangle: \beta<\alpha, \eta^{\wedge}\langle\beta\rangle \in S\right\}\right.
$$

so $\left\langle D_{\eta}: \eta \in S_{c}\right\rangle$ is a disjoint λ-system, without loss of generality disjoint to S. For $\eta \in S_{f}$ and $\ell=0, \ldots, n-1$, we define

$$
t_{\eta}^{\ell}=: D_{\eta \upharpoonright(\ell+1)} \cap \bigcup\{A: A \in F(\eta)\}
$$

For $\eta \in S_{i}$ and $\alpha \leq \lambda(\eta, S)$ we let

$$
\begin{aligned}
& B_{\eta^{\wedge}\langle\alpha\rangle}=\{\rho: \rho \text { is a finite sequence, of length } \geq 3+(n-\ell g(\eta)) \\
& \left.\qquad \operatorname{rang} \rho \subseteq D_{\eta^{\wedge}\langle\alpha\rangle} \cup \alpha \cup\{\eta\} \text { but } \operatorname{rang}(\rho) \nsubseteq \alpha\right\} .
\end{aligned}
$$

Let

$$
R=\left\{(\ell, m, \eta): \eta \in S_{i}, \ell g(\eta)=m, \ell \leq \ell g(\eta) \text { and } \lambda(\eta, S)=\operatorname{cf}[\eta(\ell)]>\kappa\right\}
$$

For $(\ell, m, \eta) \in R$ clearly $\left\langle\cup\left\{t_{v}^{\ell}: \eta \triangleleft v \in S_{f}\right.\right.$ and $\left.\left.v(m)<\alpha\right\}: \alpha<\lambda(\eta, S)\right\rangle$ is an increasing continuous sequence of subsets of B, each of cardinality $<\lambda(\eta, S)$. But $\left\langle B_{(\eta \mid \ell) \backslash\langle\zeta(\eta(\ell), i)\rangle}: i<\lambda(\eta, S)\right\rangle$ is an increasing continuous sequence of sets with union $B_{\eta\{(\ell+1)}$ (remember $\langle\zeta(\eta(\ell), i): i<\lambda(\eta, S)\rangle$ is an increasing continuous sequence of ordinals with limit $\eta(\ell)$ which has cofinality $\lambda(\eta, S)$). Hence

$$
\begin{aligned}
& E_{\eta, \ell}=:\{i<\lambda(\eta, S): i \text { is a limit ordinal such that } \\
& \qquad \begin{aligned}
\bigcup\left\{s_{v}^{\ell}:\right. & \left.\eta \triangleleft v \in S_{f}\right\} \cap B_{\eta \mid(\ell)^{\wedge}\langle\zeta(\eta(\ell), i)\rangle} \\
& \left.=\bigcup\left\{s_{v}^{\ell}: \eta \triangleleft v \in S_{f} \text { and } \nu(m)<i\right\}\right\}
\end{aligned}
\end{aligned}
$$

is a club of $\lambda(\eta, S)$, so let $\varepsilon_{\eta, \ell}: \lambda(\eta, S) \rightarrow \lambda(\eta, S)$ be a strictly increasing continuous function with range $E_{\eta, \ell}$.

It is clear that $\left\langle B_{\eta}: \eta \in S_{c}\right\rangle$ is a disjoint λ-system (note $\left|B_{\eta^{\wedge}\langle i\rangle}\right|<\lambda(\eta, S)$ as $\lambda(\eta, S)$ is uncountable). Let $t_{\eta}^{\ell}=\{a(\eta, \ell, i): i<\omega\}$ (possibly with repetitions).

We define s_{η}^{ℓ} by cases:
(α) if there is m such that $\ell<m<\ell g(\eta),\left(\ell, m, \eta\lceil m) \in R\right.$ and $\lambda\left(\eta\lceil m, S)>\aleph_{0}\right.$ (there is at most one such m, and then $0 \leq \ell<m$, cf $(\eta(\ell))=\lambda(\eta \upharpoonright m, S)>$ \aleph_{0}) we let

$$
\begin{aligned}
\rho_{\eta}^{\ell} & =:\left\langle\zeta\left(n(\ell), \varepsilon_{\eta}, \ell(\eta(n))+1\right), \ell, m\right\rangle^{\wedge}(\eta \mid[\ell+1, n)), \\
t_{\eta}^{\ell} & =:\left\{\rho_{\eta}^{\ell \wedge}\langle a(\eta, \ell, j): j \leq m\rangle: m<\omega \text { and } m>0\right\}
\end{aligned}
$$

(β) $\left.\rho_{\eta}^{\ell}=\langle 0, \ell, n\rangle\right\rangle \eta \upharpoonright[\ell+1, n)$, if $\operatorname{cf}(\eta(\ell)) \leq \kappa$ we let

$$
\begin{aligned}
s_{\eta}^{\ell}=\left\{\rho_{\eta}^{\ell \wedge}\left\langle y_{0}, \ldots, y_{2 m-1}\right\rangle: m<\omega, m>0,\right. & \text { for each } k<m, \\
y_{2 k}=\min \left\{\zeta \in C_{\eta(\ell)}: a(\eta, \ell, 0), \ldots, a(\eta, \ell, k)\right. & \left.\in B_{\eta \mid \ell^{\wedge}(\zeta)}\right\} \\
\quad \text { and } y_{2 k+1} & =a(\eta, \ell, k)\} .
\end{aligned}
$$

Note that by clause (f) of 3.3, exactly one of those cases occurs.
Now $\left\langle B_{\eta}: \eta \in S_{c}\right\rangle$, s_{η}^{ℓ} (for $\eta \in S_{f}, \ell<\ell g(\eta)$) are as required in 3.6. The least trivial is (c). Suppose $I \subseteq S_{f},|I|<\lambda$, so $\left\{\bigcup_{\ell<n} t_{\eta}^{\ell}: \eta \in I\right\}$ has a transversal, so there is a one-to-one function $g, \operatorname{dom} g=I$ and $g(\eta) \in \bigcup_{\ell} t_{\eta}^{\ell}$. Let $g(\eta)=a(\eta, h(\eta), g(\eta))$. Now we define a function $g^{*}: \operatorname{dom} g^{*}=I, g^{*}(\eta)=$ $\rho_{\eta}^{\ell \wedge}\langle a(\eta, h(\eta), i): 0 \leq i \leq g(\eta)\rangle$. Clearly g^{*} is one-to-one, $g^{*}(\eta) \in \bigcup_{\ell<n} s_{\eta}^{\ell}$.

Let for $\eta \in S_{i},<_{\eta}$ be a well ordering of $\{\eta\} \cup D_{\eta^{*}\langle\lambda(\eta, S)\}}$ of order type $\lambda(\eta, S)$ such that η is first, and each $\{\eta\} \cup D_{\eta^{\imath}\langle\alpha\rangle}$ is an initial segment defined by α. Now $<_{\eta}^{*}$ will be $\rho_{1}<_{\eta}^{*} \rho_{2}$ if and only if $\left\langle\max _{<_{\eta}} \operatorname{rang} \rho_{1}\right\rangle^{\wedge} \rho_{1}<_{l x}\left\langle\max _{<\eta} \operatorname{rang} \rho_{2}\right\rangle^{\wedge} \rho_{2}<_{l x}$ is lexicographically according to $<_{\eta}$.

It is also obvious that (i) holds, except possibly the last phrase; but the correction needed is small so we finish.

Claim 3.8. Suppose $\left\langle B_{\eta}: \eta \in S_{c}\right\rangle$, $s_{\eta}^{\ell}\left(\eta \in S_{f}, \ell<\ell(\eta)\right.$ are as in Claims 3.6 and 3.7; we can omit $3.6(\mathrm{~h}))$. Then for any $\rho \in S_{i}, m=\ell(\rho)$, and $I \subseteq\{\eta \in$ $\left.S_{f}: \rho \leq \eta\right\}$ the following are equivalent:
(A) $\rho_{\rho, I}$ The family $\left\{\bigcup_{\ell \geq m} s_{\eta}^{\ell}: \eta \in I\right\}$ has a transversal.
$(\mathrm{B})_{\rho, I}$ There are a well ordering $<^{*}$ of I and $\left\{u_{\eta}: \eta \in I\right\}$ such that:
(i) For $\eta<^{*} v$ (both in $\left.I\right), u_{v} \cap\left(\bigcup_{\ell \leq m} s_{\eta}^{\ell}\right)=\emptyset$.
(ii) For every $\eta \in I$ for some $\ell, m \leq \ell<\ell(\eta), u_{\eta}$ is an end-segment of s_{η}^{ℓ}.
(iii) If $\xi<\min \{\eta(m): \eta \in I\}$ is given, we can demand that each u_{η} ($\eta \in I$) is disjoint to $B_{\rho^{\wedge}(\xi)}$.
$(\mathrm{C})_{\rho, I}$ There is no $\lambda(\rho, S)$-set S^{*} such that $\eta \in S_{f}^{*} \Longrightarrow \rho^{\wedge} \eta \in I$.
(D) $)_{\rho, I}$ Suppose $\xi<\min \{\eta(m): \eta \in I\}$, there are $u_{\eta}(\eta \in I)$ where
(i) the u_{η} are pairwise disjoint
(ii) u_{η} is an end segment of some $s_{\eta}^{\ell}, m \leq \ell<\ell(\eta)$
(iii) u_{η} is disjoint to $B_{\rho^{\wedge}\langle\zeta\rangle}$.

REFERENCES

[1] P. Eklof and A. Mekler, Categoricity results for $L_{\infty, \kappa}$-free algebras, Annals of Pure and Applied Logic, vol. 37, pp. 81-99.
[2] ——, Almost free modules; Set theoretic methods, North Holland Library, 1990.
[3] Alan H. Mekler and Saharon Shelah, When κ-free implies strongly κ-free, Abelian group theory (Oberwolfach 1985), Gordon and Breach, New York, 1987, pp. 137-148.
[4] ——, Almost free algebras, Israel Journal of Mathematics, vol. 89 (1995), pp. 237-259.
[5] Saharon Shelah, Incompactness in regular cardinals, Notre Dame Journal of Formal Logic, vol. 26 (1985), pp. 195-228.

INSTITUTE OF MATHEMATICS THE HEBREW UNIVERSITY JERUSALEM, ISRAEL
and
DEPARTMENT OF MATHEMATICS RUTGERS UNIVERSITY

NEW BRUNSWICK, NEW JERSEY 08903, USA

[^0]: ${ }^{1}$ We are interested mainly in the case $\kappa=\aleph_{0}$.

