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THE JOURNAL OF SYMBOLIC LOGIC 

Volume 61, Number 4, Dec. 1996 

IF THERE IS AN EXACTLY A-FREE ABELIAN GROUP 
THEN THERE IS AN EXACTLY A-SEPARABLE ONE IN X 

SAHARON SHELAH 

Abstract. We give a solution stated in the title to problem 3 of part 1 of the problems listed in the book 

of Eklof and Mekler [2], p. 453. There, in pp. 241-242, this is discussed and proved in some cases. The 

existence of strongly A-free ones was proved earlier by the criteria in [5] and [3]. We can apply a similar 

proof to a large class of other varieties in particular to the variety of (non-commutative) groups. 

§0. Introduction. 

CONVENTION. In §0 and §1, "group" here means "abelian group", and "free" 
means in this variety. 

We assume there is a A-free, non-free (abelian) group of cardinality X. We shall 
prove that there is a A-separable non-free abelian group of cardinality X, a priori 
a stronger statement. We rely on the characterization of X as in the hypothesis, 
from [5]: the existence of 

S, ((s!j:e<n):q€Sf), (l(k):k) 

as there (see appendix; i.e., §3 here). Mekler and Shelah [3] dealt with a similar 
weaker problem in a parallel way: if there is a 1-free not free abelian group of 
cardinality X then there is a strongly 1-free one. In Eklof and Mekler [2], the present 
problem was raised, discussed and sufficient conditions were given, depending on 
the form of S, see [2], p. 242, the problem in [2], p. 453. The direct sufficient 
condition is that for every S" C Sf of cardinality X there is a well ordering <* such 
that for each tj e Sf, \Je<n sl

n is almost disjoint to 

U { L k : v < * * a n d v e s ] . 

In particular from the assumption for X, the conclusion for X+ (i.e., the existence of 
such S) was gotten. However, not all cases were covered by this. Our approach is 
more algebraic. In §2 we deal with generalizations to other varieties and in §3 we 
present relevant material from [5] (on 1-systems) to make the paper self-contained. 
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1262 SAHARON SHELAH 

EXPLANATION OF THE PROOF OF THE MAIN THEOREM. It may be helpful to read this 
explanation if you are lost or stuck during the proof but it assumes some notations 
from the proof. We construct G that is freely generated by x[a] (for a e \J„€Sc Bn) 
and yn<m (for rj e Sf and m < co) except the equations 

(*)r,,m 2yn,m+l = yn,m + ^ { * [ « £ „ ] : £ < « } . 

Let G = G/o, I0 = I():x-
Let a < k and we want to show that if a. < X and (a) £ S then GQ}CI (which is 

essentially the subgroup generated by the yn<m and x[a^m] satisfying //(0) < a) is a 
free direct summand of G = G ^ . 

We do not see combinatorially why this holds, so we find I\ D IQ a, Ix e K+ 

such that 

(**) r\ e S/\ Sf[Ii] => I ) Sy is almost disjoint to Y[I\]. 

So let g/0j/, be the natural homomorphism from G/0 to G/,; well, why does it work? 
by (**). 

Also #/„,/, is the identity on G^Q and G7l /G^;Q is = G/2 where h = I\\ I(),a, but 
h e K+ so GIJGQI01 is free hence G(),a is a direct summand of G/,, so there is a 
projection / from G/, onto Gj{) a so / o g/o a is a projection from G onto G/() a and 
we can complete the proof. 

To accomplish (**) we need good control over how, e.g., s* (t](0) > a) inter­
sect B(a), and this is the information we put in the appendix on the A-system (really 
old [5] is okay, but we retain the appendix to ease reading). 

DEFINITION 0.1. For S a set of variables, T a set of equations in some variables 
(maybe outside S) let G(S, T) be the (abelian) group freely generated by S, except 
the equations in T\E, i.e., the equations from T mentioning only variables from 3. 

OBSERVATION 0.2. 

(1) A sufficient condition (assuming S C 3 ' sets of variables) for 

(*) G(S',r) is a free extension of G(3, T) (i.e., the mapping 
induced by ids from G(S, T) into G(S', T), which is always 
a homomorphism, is an embedding, and G(3', T) divided by 
the range of this mapping is a free group), 

is 

(**) there is an increasing continuous sequence (3f : ( < £*), 
So = 3, Sf. = 3' , and G(3f+i,r) is a free extension 
ofG(3c,r). 

(2) Another sufficient condition for (*) of 0.2, is that by change of the variables 
in 3 ' \ 3, the set of equations T \E' is only T ["3. 
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A-FREE, A-SEPARABLE 1263 

§ 1. Proving A-separability. Here we prove the main theorem; the reader is advised 
to look at 3.6 and 3.7 at least during reading the beginning of the proof, and also 
to look again at the explanation in §0 of the proof when arriving to read the middle 
of the proof. 

DEFINITION 1.1. A group G is A-separable if: 

H C G, Rk(H) < X => H is included in a free direct summand of G. 

(Remember: for an uncountable group H, its rank, Rk(H), is equal to its cardinal­
ity, \H |.) 

MAIN THEOREM 1.2. If there is a X-free non X+-free [abelian) group {X > Ko, 
X necessarily regular) then there is a X-free, X-separable, not X+-free group. 

PROOF. The hypothesis of the theorem on the existence of such groups is analyzed 
in detail in [5] (most relevant are [5], 3.6 and 3.7), and in particular, it implies the 
existence of 

n, S, X{t],S), (B.-.neSc), (s^:Tj£Sf,l<n) 

with the properties as in [5], 3.6 and 3.7 presented in 3.6 and 3.7 of the appendix 
here, and let (al

nm : m < co) list s* in increasing order for the order of B ^ y ^ ^ 
(see clause (i) of 3.7) and without loss of generality we have in addition 

(*) for n G Sf, £<n, we have anAm =: min{/? : a\m G B^^y<p> } < 
X(n \£, S) is non-decreasing in m, 

and we call its limit P*{n,£) (so ^ C Bintey{/s,in/)) and/3*(n,£) < n(£)). 

(**) if p G St, v < p, k — £g(v) and cf (p{k)) = X(p, S) then 
(a) for p < X{p,S) we have sup{ p*{n,k) : p'(B) < n e Sf } 

is < p(k) 
(b) the sequence (xmn{ fi*(n,k) : /?"(/?) < r\ G Sf } : P < 

X(p, S)) is strictly increasing with limit p{k). 

(See appendix, clauses ( / ) ( a ) , (/)(/?) and (g) of 3.6.) Let 

K = \ I : J C Sc and [n ^ v &tj € I & v G / = » -.(>/ < v)] 

and W(B) €l&a<p=> n"{a) G / ] | , 

K+= j / G JC : / ^ 0 and 7f(a) G / = > \J [ti~(B)$I]\. 

For / G K let 
J[I] ='• {n £ Si : for some a, tj"(a) El}, 

so for rj e / [ / ] there is a unique <*/[//] < X(n, S) such that [//"(a) G / «=> a < 

ai [n]], note: 
I EK+,tj£ J[I] = » ar[n) < X(tj, S). 
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1264 SAHARON SHELAH 

For / G K let 

Sf[I] =:{n £ Sf : for somek, r]\k £ / }; 

note that the k is unique and it I ^ {()}, then k > 0, so we choose to write 
/t = fc/(^) + l (so for / = {()}, k,{ri) = -\). Also let 

^[^] —: M{ &v '• for some r\ £ / we have 77 < v G Sc }. 

For 77 G 5 / let wj (rj) = { £ < n : for every m < co, a1 £ F[7] } (equivalently: 
for infinitely many m < co, a^m £ Y[I]). 

For every I £ K we define a group G/, it is freely generated by 

E/ =: { y^m :m<co and tj £ Sf[I]}l){ x[a]: a G Y[I]} 

except the equations (we call this set T/): 

(*)/ for r\ £ Sf[I] and m < co, the equation ^ defined as: 

(*)", 2^ ,«+i = JV» + £ { * K m l : ̂  < " and ^ m G Y[/] }. 

Note that lX e ^ , and let G = G ^ ; this abelian group is the example as in [5], 
Lemma 5.3, in particular G is not free. Let <ix be lexicographic order of S; clearly 
it is a well ordering. 

FACT A. If I £ K+ then G7 is free. 

PROOF. We can find functions £ and m, where for i] G S/[I] we have £{rj) £ 
{A:/(7),... ,w — 1} and w(/7) < co and we can find a list (17̂  : £ < £*) of 5"/[7] such 
that: 

(*) {a^m : m £ [m{r/c),co) } is disjoint to {a^m : a^m £ Y[I], m < 
co, e <[,,£. <n} and {tj £ Sf[I] : tj <ex v } is an initial segment of 
(ift : C < C*} for each v G / [ / ] . 

[Why? for each v e / [ / ] well order {tj £ Sf[I] : v <t]} by [5], 3.10 (and 3.6 
clause (c) and the definition of K+), say by <*, then order the blocks by <ex.] 
Without loss of generality m{r\) is minimal such that (*) holds. 

For £ < £* let H( be the subgroup of Gj generated by 

3c = {x[ai,m] • £ < C, m < co, £ £ [k(ri),n)}\j{yri^m :e<^,m<co}. 

L e t # c . + 1 = Gj. 
Now (iff : £ < £ * + 1) is increasing continuous, Ho = {0}, i/f.+i — Gj and 

H(+\/H( is free. Why? we use 0.2(1), so it is enough to prove G(Ef+i,r/) is a 
free extension of G(Ef,r7) for each ( < £*. For £ = £*, we just add variables 
({x[a] : a £ E/ \ Ej . }) but no equations. For C, < £*, we can "forget" j , ? m 

for m < m(?7f) and replace/omit x[a,?4 ] for m £ [m(t]^),co), so G(Ef+i,r7) is 
freely generated over G(E(, T/) by 

{y^,m • m > m{ift) } U { x[a] : x[a] G Ec+j \ Ec \{x[af,(% ] : m > w ( ^ ) } }. H 
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A-FREE,/l-SEPARABLE 1265 

NOTATION B. Let lnja =: {rf(fi) : fi < a } (for rj e S,-). Let G7,„ =: G/J!Q SO: 

G() ^ is the group G (which we shall prove exemplifies the conclusion of 1.2) and 
J[I(),x] = {()}• 

DEFINITION C. 

(1) /, < h (from K) if S/[/i] C ^ [ / 2 ] and (V? e 5/(/1))[A:/l(7) > kh{r,)]. 
This implies F[/i ] C Y[I2] and there is a clear relation between TIi and T/2: 
each equation (p = </J™ in T/, "appears" in T/-, as y/ = f^, but ^ is 
with more x[a^m]'s (for same old Y\ but new £'s which appear "because" of 
some v e Sf [I2] \ Sf [I\]) and Tj2 has members (not related to any equation 
from r7 l ) involving a new tj. Another way to state this relation is 

(V>/€/ i )pv€/2) [v<j7] . 

(2) I\ <d h if I\ < h and J[I\] is a <<»x-initial segment of J[I2]. 

FACT D. 

(1) < and <d are partial orders {ofK). 
(2) If/ G A" \ {{()}} then I = \J,&mIn 

(3) If/, < J2 then Y[I{] is a subset of Y[I2]. 

PROOF. Check. -\ 

DEFINITION E. Assume I\ <d I2 (both in K), let hiuh be the homomorphism 
from G/, into G/2 defined by /i(x[a]) = x[a], h{ynm) = ynm for x[a] G r [ / i ] , 

FACT F. ///; ,/2 is really a homomorphism. 

PROOF. Look at the relevant equations. -\ 

FACT G. If h <d h are from K+ and (V?) [>/ € /[Ji] => ^{ah (7)} <£ S] then 
(a) Gh/hiuh(GIx) is free and 
(/?) /;/,,/., is one-to-one. 
(y) rang(A/,,/2) = (^ , m ,x[a] : a G F[/i], 77 G Sf\I{\ andm < ») G , 2 (i.e., the 

subgroup generated by this set) 
so we look at hIui2 as the identity. 

PROOF. Like the proof of Fact A. H 

CONCLUSION H. If I\ <d I2 (so are from K) then hhtIl is an embedding. 

PROOF. As a direct limit of ones satisfying the assumptions of Fact G. H 

FACT I. 

(a) G = G(U) = G ( M = \Ja<x G()iQ (increasing continuous) 
(/?) for a < X the group G^Q is free. 

PROOF. For clause (a) as 

r(u) = U (rK >v» *KJ:«/(°) < a ». 
a<A 

using Fact H (see Fact G last line). For clause (/?) see Fact A. H 
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1266 SAHARON SHELAH 

DEFINITION J. For I\ < 4 (in K), satisfying (S>/,;/2 below, let g/2,/, be the homo-
morphism from G/2 into G/, defined by: 

(i) if a G Y[h] thengl2jl(x[a]) = x[a] 
(ii) if a G F[/2] \ Y[h] then g/2)/l (*[«]) = 0 

(iii) if t\ e Sy[/i] then g/2>/l ( j 7 

(iv) if rj e S/l/2] \ «Sy[4] and { a ^ : k e [w,ca) and ̂  > kl2[r/] (equivalently 
al

nk e Y[I2]) } is disjoint to Y[h] then ghJx (j,,m) = 0 
(this is enough for defining gi2tIl) where 

®h,h for >7 e -S/[4] \ S/ [4] , \Jee[k,2(,),«) ^ i s almost disjoint 
to 7[/i] (i.e., has finite intersection). 

FACT K. Assume I\ < 4 are in K. Then 
(a) g/2;/l really defines a homomorphism which is onto (when I\ < 4 and 

®IUI2 holds) 
(/?) Kernel(g/2)/l) is the subgroup of Gh generated by the set of x[a]'s and y^,m's 

which by Definition J are sent by g/2i/, to 0. 

PROOF. Check the equations. H 

MAIN FACT L. lia < Aand(a) £ SthenGo aisadirectsummandof G = G^Qy. 

PROOF. We can define by induction on k a number Ik < n: £o = 0, if £k is defined 
and < n, let 4+i be the unique £ such that 4 < £ < " and rj £ Sf => cf (r/(£k)) = 
X{r\ \£, S) (exists by 3.3(f), all rj e Sf behave the same by 3.6(a) (and see 3.2(6)(d)), 
note: if rj e Sf =>• cf (7(4)) = ^0 then 4+1 = "• Clearly if 4 is defined and < n 
then 4 < 4+1 < "• So for some k*, 4 * = "• 

We shall define by induction on k < k* the following Jk and, when k < k*, 
( a , : >/ G 4 } such that: 

(0) 4 C S n ^ 
(1) a , < A(>7, 51) and ̂ "(a,) ^ S for 7 G 4 
(2) ; w = { i : i £ 5 n 4 + ' l and 7 f4 € 4 but 7 (4 ) > <*„r4 } 
(3) if ij e .4+1, fc + 1 < £(*), a £ [a,,J.(^,S)) and ^"(a) < v G Sy then 

s . ' n ^ t t ' K n ) i s finite 

(4) J0 = {()},a{)=a. 
For A: = 0 use clause (4). For k +1 we define 4+1 by clause (2), now if k +1 < A:* 

for 77 G 4+1 we have to find a,, to satisfy clauses (1) and (3), this is possible by 
(*) and (**) in the beginning of the proof of theorem 1.2. 

Let 

/„ = {</?) : / ?< A}, 

I\ = {rj~(fi) : for some k < k* we have rj e 4 and /? < a , }, 

7 2 = / 1 \ { ( / ? ) : / ? < a 0 } , 

/3 = { < / ? > : / K a = a ( > } . 

Note that by the inductive choice of the Tit's: 

((g)) if 7 G Sy \ S/[I]] then { a£m : £ < n and m < co } has a finite inter­
section with r [ 4 ] . 
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A-FREE, A-SEPARABLE 1267 

(Use (3) noting that if n e Sf \ Sf[I\] then t]{&k) > ar,\ek for every k < k* such that 
n\(-k eJk.) 

Note also that: I0 eK,Ix£ K+, I2 € K+, I3 G K+. Also h <d h and h <d I0 

and h < h < h (see Definition C(l)} and GI(S = G. 
Note that g/0,/, is well denned (see Definition J and Fact K). [Why? We have 

to check ®IUI0 as defined there, but (g> above says this.] Note also that gf,j2 is 
well denned (again we have to check <B>/2)/, as denned in Definition J, but for rj € 
S/(I]) \ Sf{I2) by their definitions, //(0) < CIQ SO easily \Je<n s* is disjoint to the 

required set). Look at the sequence G — G/0 - ^ G/, -^£ G/2. 
We know that G/2 is free (by Fact Aas /2 € K+), gIui2 is a homomorphism 

from G/, onto Gj2 (see above, by Fact K, clause (a) and ® above) hence Ker(g/l/2) is 
a direct summand of G/,, so there is a projection g* of G/, onto Ker(g/1;/2). Also 
hh,iu hj,j0 are embeddings (by conclusion H) as h <d I\, h <d h, (check or 
see above). Also h^iG^) = Ker(g/,,/2) (compare Fact G clause (y) and Fact K 
clause (/?))• Hence hj}ja o A"^ o g* o ghh is a projection from G = GQ — G/0 

onto rang(/!/3]/0); i.e., essentially G()Q. This finishes the proof of the main fact, 
hence the proof of Theorem 1.2. H 

[Question: here we can increase a,; can we make it exact? (See appendix 3.6).] 

CLAIM 1.3. We can strengthen the conclusion of 1.2 to: for any given stationary 
W C A we can demand: there is a X-free non-free group G with set of elements X such 
that 

{d e W : G\8 is a subgroup of G and is a free direct summand ofG} 

is a stationary subset ofX. 

PROOF. In the proof of 1.2; 
(A) for any W0 C {a < X : (a) £ S} stationary subset of X, we can replace S 

by { n : n e S and £g{n) > 0 = » 77(0) e W0} 
(B) assuming that the set of members of G is X then {5 < X : 5 is the set of 

elements of GQJ } is a club of A. 
Together with Main Fact L and Fact I, we are done. H 

DISCUSSION 1.4. We can rephrase the proof of 1.1 combinatorially; i.e., explicitly 
write a set of generators X such that G = Ga © {X)G, but we do not think it is 
clearer. To some extent this is done in Fact A of the proof of 2.2. 

§2. The general case: for a variety. We note here that a parallel theorem holds for 
any suitable variety considering two variants of A-separable (see Definition 2.1 (2) 
and Definition 2.4). We do the general case in less detail. 

DEFINITION 2.1. 
(1) T is a variety if T is a theory (in a vocabulary T) all of whose axioms 

are equations or just have the form Vx\, ..., x„<p, ip an atomic formula. 
Without loss of generality every member of x (function symbol or predicate) 
appears in some axiom of T. 

(2) A model M of T is called 1-separable if for every ACM, \A\ < X, we can 
represent M as a free product M\ * M2 such that A C M\ and M\ is free. 
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1268 SAHARONSHELAH 

(3) T has the nth h-construction principle if we can find N, b^m (for £ < n, 
m <co) and Nm (for m e "co) such that: 

(i) AT a model of T of cardinality < | T \ + N0 

(ii) TV is free, moreover, for each £* < n and m* < co we can complete 

{ btj,, : I <n,m <co and [£ — £* = > m < m*]} 

to a free basis of N, call the set of additional elements Q>m 

(iii) (a) ifm' = {m'e:£<n)€ "co (for i = 1, 2) and wi1 < th2 (i.e., 
(W < n){m\ < mj)) then A7^ C N„i C AT, 

(A) **,m e N{mk.k<n) <$=* m>mi and 
(7) A7^ is the free product A7* * ({ b^m : £ < n, m < me })#. 

(iv) for no free model F of T, is N * F/(bettn : £ < n, m < co)N free 
(equivalently N * F has a free basis extending {bem : £ < n, m < 
co}). 

REMARK 2.1 A. On the «th construction principle see Eklof and Mekler [1] and 
then Mekler and Shelah [4], The difference (between the «th construction principle 
and the «th h-construction principle) is clause (iii), it is not clarified here if it adds 
anything. In all cases the hope is that the analysis of [5], §3, and §4 exhausts 
the reasons of the existence of the desired complicated object in X, and the crucial 
parameter of the system S (see beginning of the proof of 1.2 or §3) is n = n{S). So 
the hope is that for each T, the class of cardinals X where we have an example is, for 
some a* < co 

£«* = { X : there are n, S, (X(t], S) :tj e St), (Bn:tj € Sc) 

(s* : w e Sf, £ < n ) as in 3.6, 3.7 and n < a* j . 

Usually we deal with varieties with countable vocabulary. 

THEOREM 2.2. Assume there is a X-free not X+-free abelian group exemplified by 
n, S, (s* : £ < n andn £ Sf) as in the proof of 1.2 and the variety T has the nth h-
construction principle and \T\ < X. Then T has a X-separable model of cardinality X 
which is not free. 

CONCLUSION 2.2A. If there is a A-free not A+-free abelian group then for the 
variety of groups (not the abelian one) there is a 1-free, 1-separable group G of 
cardinality X which is not free. (I.e., G is a non-free group of cardinality X, G can 
be represented as \Ja<x Ga, Ga increasing continuously of cardinality < X, each Ga 

free and G is the free product (for the variety of groups) of Ga+\ and some Ha+\ 
for each a < X.) 

PROOF OF 2.2A. We should just check the condition of 2.1(3) which is straight as 
in [5]. [I.e., let N be the group freely generated by 

{be,m '• £ S [1,«) andm < co}U {ym : m < co}, 

let: 

(a) b0,o=:yo 
(b) 6o,m+i is the product blm+lb2,m+i • • •b„-.l>m+iym(y0,m+])2 

Sh:521



A-FREE, A-SEPARABLE 1269 

(c) Q,m = { yk : k e [m, co) } 

(d) for m G "co clearly 

{ bt,m : £ G [1, n) and m < co } U { 60>„ : " < w0 } U C0jmo 

is a free basis of N and let JV„ be the subgroup of N generated by 

{be,m '• 1 < £ < n andm G [rri(,co) } U {ym : m G [mo,co) }. 

Now check.] H 
PROOF OF 2.2. Let {N,b^m,Nm : £ < n, m < co andm G "co) exemplify the 

nth h -construction principle. We choose n,S,... as in the proof of 1.2. 
Let M be freely generated by x[a] (for a G U«esf ^ / ) a n ^ ->V ^OT *l e ^ / anc* 

c £ N) except that: 

(i) >V = x[a] if c = £•*,„, and a = a*>m 

(ii) y>{ynfix,... ,yn,Ck) whenever N (= 'V(ci> •••>Q:)" and y? is a r-atomic for­
mula. 

F A C T A . For a < I such that (a) ^ S we can find Fo, Y\, Y2, So, S\, S2 such 
that: 

(a) S2 = Sf, Y2 = U,6 S c B, 

(b) S0 = {// G Sf : f/(0) < a } and F0 = IK ^ : ? ^ s c and^(O) < a } 
(c) So C Si C S2 and F0 C Fi C Y2 and Fi is downward closed (remember 

Y2 is a tree, see 3.6) so a^m £ Y\&.m\ <m =>• a£m] G Fi 
(d) for 7 G S2 \ Si the set {ae

nm : £ < n, m < co } n Fi isfinite 
(e) there is a list ( ^ : ( < (*) of Si \ S 0 without repetitions and (£(() : ( < £*) 

such that 0 <£(0 <n and (m(£) : £ < C*), ™(C) < co such that: 

(a) { aĵ fj, : w G [m(C)> co) } is disjoint to 

F0 U { a^m :£<n, e<C,m<co} 

08) {ae^:m<co}C Yx. 

PROOF. Included in the proof of Theorem 1.2. H 
REMARK B. We can add 

(f) Si is S/[/i] from the proof of Theorem 1.2 so for some function k from 
Si \ S0 to n — {0 , . . . ,« — 1} we have 

Fi = F0 U {a^m :ri eSu m<coaadt e [k(t]),n) } . 

FACT C. Under the conclusion of Fact A, letting 

M0=:{{x[a]:a G F 0 }U{j„ , c : r\ G S0, c£N})M 

we have: MQ is free and for some M2, M — Mo * M2. 

PROOF. Clearly MQ is free (for T) as in the proof of Fact A in the proof of 1.2. 
The new point is to find M2. 

For each £ < n, m < co, let Q,m C N be such that Q,m U { c^lj/ni : £\ ^ £, m\ < 
co or £1 = ^, wi < m } is a free basis of JV with no repetitions. 

We let M2 be the submodel of M generated by: 
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(A) ym<c if £ < £* and c G Q(£),m(c) 
(B) x[a^m] if £ < £*, «^>m e 7i \ Fo and for no e < £* do we have 

almG{a^:ke[m(e),co)} 

(C) x[«] i faG r 2 \ y i 
(D) yt,tCitr]GS2\Sl, ceN{ where mt{ri) = min{ w : a^m <£ Y\ }. 

Now 

(*)i M = (M0,M2). 

First we prove by induction on £ < £* that { x[a*(m] : £ < n and m < co } C 
(Mo,M2) and {^{)C : c € iV} C (Mo, M2). Arriving to £ we split the proof to 
cases. 

CASE 1. a^ m G y„. 

Then x[a^m] G F0 C M0 C (M0,M2). 

CASE 2. a^ m G Yi \ 70 and for some e < £, a£>m G { a ^ : k G M E ) , GO) }. 

We use the induction hypothesis on e. 

CASE 3. a£_m G 7i \ 70 and € / *(f) V [£ = £{C)&m < m(£)] and for no e < £, 

do we have a^ m 

Nowe < £* implies a* £ { a ^ : k 6 [/w(e), oo) }• [Why? If £ < £ this is assumed 
in the case, if e = £ this followed by £ ^ £(£), and if £ G (£,£*) this follows by 
clause (e)(a) (with e's here standing for £, e there). Hence the assumption of 
clause (B) holds.] 

By clause (B), x[a^m] € M2 C (M0, M2). 

CASE 4. a^eY^Y^ 

By clause (C), x\a^m\ G M2 C (M0,M2). 

CASE 5. No previous cases. 

By the earlier cases £ = £(0 and 

{ *[«£«•] = '1* < ». ™i* < « and [^ = * ( 0 = * mf < m(£)] } C (M0, M2). 

Let J V ' = : { c £ J V : yni.tC e (Mo, M2) }, so by the previous sentence 

{ bium : £\ < n, mi < co and £\ = £(£) = > wi < m(£) } C W, 

and by clause (A) also Q({),m(f) C JV' hence (see clause (ii) in Definition 2.1) clearly 
N' = N, so x[a*lm] G {M0, Mi) and j„{,c G (Mo,M2). 

We have proved { x[a] : a G 7i \ F0 } C { x[a^m] : ^ < n, m < co, £ < £* } C 
(Mo,M2). As {x[a] : a G l o } C Mo C (Mo, M2) and by clause (C) we have 
{ x[a]: a G Y2 \ Yr } C (M0, M2) we conclude { x[a] : a G F2 } C (M0, M2). 
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Also we have proved { yni.tC : c G N, £ < C* } Q (Mo, M2) (this was done during 
the proof of case 5) so { yn>c : n G S\ \ So and c G N } C (Mo, M2). Also for n G 
S2\SU letting N» = {c e N : J V G (M0,M2)}, m^ = min{W : a<m £ r , } 
we have: by clause (D), N^mi-I<n) C JV, and {a*m : ^ < n, w < co} C 72 so 
6€,m G A™ hence A" = JV so { yn>c : n £ S2\SU c e N} C {M0, M2). Lastly if 
n G So we have { ̂  : c £ J V } C M o C (Mo, M2}. 

Together {^>c : ?/ G 52 and c G A7"} C (Mo,M2); and also we note above 
{ x[a] : a G K2 } C (Mo, M2); we can conclude M = (Mo, M2), i.e., (*)i. 

So to finish the proof we need 

(*)2 M = Mo * M2 

(i.e., they generate M freely). 
Look at the equations in the definition of M and together with the proof of (*)i 

rewrite them in terms of the generators of Mo and of M2. The equations either 
trivialized or "speak" on generators of Mo only or "speak" on generators of M2 

only. H 

Note that as the variety of abelian groups is very nice, e.g., a subgroup of a free 
abelian group is free, distinct definitions for general varieties become identified for 
it; so Theorem 1.2 has various generalizations and Theorem 2.2 is not the unique 
one. Another generalization is presented below. 

THEOREM2.3. Assume X is as in 1.2 with n, S, {s% : t < n, n € Sf) such that 
T has the nth construction principle {i.e., in Definition 2.1 we omit clause (iii), but 
demanding each Q_„ is infinite; this holds without loss of generality by clause (iv) 
of Definition 2.1). Then there is a model M of T, not free of cardinality X, but is 
X-proj-separable, where: 

DEFINITION 2.4. For a variety T and a model M of T and cardinality X we say 
M is A-proj-separable, if for every A C M, \A\ < X, there is a free M' C M 
including A and a projection h from M onto M' . 

PROOF OF 2.3. We define M, x[a], y^yC as in the proof of 2.2. For every £(*) < n 
and m(*) < co, m{*) > 0 there is a homomorphism g (̂*)jm(*) from N onto (b^n : 
£ < n, m < co and [£ = £{*) =£• m < m{*)])N which is the identity on (b^m : 
£ < n, m < co and [£ = £{*) = » m < m{*)])N (maps the members of Q(,)>m(») 
onto {^(*),o}-) Let T be the set of equations which we make the generators satisfy. 
We choose F0, Y\, F2, So, Si, S2 as in Fact A from the proof of 2.2 and without 
loss of generality { < C ==• /n(f) > 0. Let { nc : f G [£*, C**) } list S2 \ Si. 

For each n^ G S2 \ Si we can choose (remember clause (c) of Fact A from 2.1) 

£(£) = 4 * - i , m{C) = min{ w : 0 < m < co and a*$ £ Yx }. 

Let Mi be the model of T generated by 

s i = { xlaim] •£<n,n£Sx,m<a>} U {y^ : c G N, n G Si } 

freely except 
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H = J J V = x[a] : c = bijn, a = a£m and w G Si > 

u { v G w - - - > > v J : # \=f(ci,---,ck), ^ a T-atomicformula}. 

Let M2~ be the model of T generated by (note: I\, Jk are from the proof of 1.2) 

E-T =: J x[a] :ae Y2 but if a G fi^W^))' ^ M = ek'-i 

and ( | e 4 . - i C / [ / i ] then a is in the first level 

(i.e., like a *0*) or a G -#,,-("„} (a^ fr°m the choice of/i 

freely except the equations 

I T = Ti = J j ^ = x[a] : c = Z>^m, a = ae
n>m, n G Su £ < n, 

m < to and x[a] G E ~̂ > 

[~){(f(yfi,c1,---,yr,,ck) -N \=(p[a,...,ck], 

<p a jf-atomic formula, n G Si \. 

(Note that if « G /*_! and « <3 v G Sy then cf (v(4*-i)) = No)-
ClearlyM0 C Mi C M~ C M. 
We define a homomorphism h2 from M into M2~: «2 CM2

- is the identity, and 
for w = rj^ G S2 \ S] and c e N we let: 

^2(^,C)=7^( 0„ ,K ) (C) . 

Note: h2(x[a^m]) = x[a* m] when ^ ^ £(£) V m < m(£) by the tree structure 
of U^e5e ^7»the cases of the definition of «2 are compatible and the equations are 
preserved. So h2 is a homomorphism and even a projection from M onto M2~. 

Trivially, we can find a projection h\ from M2~" onto Mi. 
Next note that M\ is a free extension of M0 (a free basis is 

{ ym<c : c e Q(o,m(c) a n d C < C } 

U { x[a]: a G Fi \ 7o and for no C < C* is 

« e { a g i : m € [m (e),fl>)}}.) 

So we can find a projection Ao from Mi onto Mo. So h$oh\ o h2 is a projection 
as required. H 

CLAIM 2.5. Theorems 2.2 a«rf 2.3 can Z>e strengthened as in 1.3. 

DISCUSSION 2.6. Implicit in the proof of 2.3 is an alternative criterion sufficient 
for the conclusion of 2.2. 
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§3. Appendix: characterizing the existence in A of an almost free abelian group. 
To make the main theorem 1.2 more easily read we present part of [5], more exactly 
a variant to [5], 3.6 and 3.7, p. 212. Numbers are as in [5]. 

DEFINITION 3.1. 

(1) For a regular uncountable cardinal X (> No) we call S a A-set if: 
(a) S is a set of strictly decreasing sequences of ordinals < A. 
(b) S is closed under initial segments and is nonempty. 
(c) For n e S if we let W(n,S) =: {i : n'{i) G S} and X(n,S) =: 

sup W(n,S) then whenever W (n, S) is not empty, X(n, S) is a regular 
uncountable cardinal and W(n, S) is a stationary subset of X(n, S). 
Also X{(), S) = X (and by clause (a) we know X(n~(a), S) < \a\). 

(2) For a A-set S, let Sf (= set of final elements of S) be { n G S : (Vz')>f (z) i 
S } and S1,- (= set of initial elements of S) be S \ Sf so (Sf = {n e S : 
A07,S) = O}). 

We sometimes allow X = 0. Then the only A-set is {()}. 
(3) For A-sets Sl, S2 we say S1 < S2 (51 a sub-A-set of S2) if S"1 C S2 and 

A(7,5') = A(/7,52) for every rj e Sl (so S/ = S1 n 5?). Clearly < is 
transitive. 

NOTATION. In this section S1 will be used to denote A-sets. 

REMARK 3.1 A. Many of the properties below hold also if we waive the "decreas­
ing" demand in clause (a) (usually still ask X(ri~(i), S) < X(rj, S)) but not all, and 
for what we want to analyze we can get such S, so we have concentrated on this 
family of sets. 

CLAIM 3.2. 

(1) If S is a X-set, X(rj,S) > nfor every rj e St (holds always for K = Ho) and 
G is a function from Sf to K then for some Sl < S we have: G is constant 
on Sl

f. 
(2) IfS is a X-set and n G St, then SM — { v : rfv G S} is a X(rj, S)-set, and 

X(v, S^) = X(n"v, S) for every v G 
(3) If S is a X-set, K a regular cardinal, (Vn G S)(X(tj,S) / K) and G is a 

function from S to K then for some Sl < S and y < K for every n G Sl we 
have G(rj) < y. 

(A) If X > Ko is regular, W C X stationary, for S G W, Ss is a Xs-set for 
some Xs<SorSs = {{}} then S -.{{)} U { ((5}> : n G Ss, 5 e W } is a X-
setandX({Syrj,S) = X(n,Ss)forS eW,n€Ss andSt = {{)}u[jd€W Sf. 

(5) If S is a X-set, F a function with domain S \ {()}, F(n"(a)) < 1 + a then 
F is essentially constant for some S] < S which means F \{n G Sl : £g(n) = 
m } is constant for each m. 

(6) For any X-set S there is a X-set Sx < S such that: 
(a) all n e Sf have the same length n 
(b) for each £ < n either 

(i) every n(£) (n G Sf) is an inaccessible cardinal (not necessarily 
strong limit), or 

(ii) every n(£) (n G Sf) is a singular limit ordinal, 
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(c) for each £ < n, either 
(i) X(t]\(£ + l),S) = n(£) for every n G Sf or 

(ii) X(n\(£ + l),S) = 4 + 1 for every n G Sf (for afixedX^1). 
(d) The truth value of "cf(n(£)) = X(n \m, S)" is the same for all n G Sf 

[for constant £, m <n). 

PROOF. Straightforward, e.g., for (5). At first glance we get only: if p G S, 
then F \{ p"(a) : a G W(p, S) } is constant (by Fodor's lemma and the demand 
"W(p, S) is a stationary subset of X(p, S)"). However, as every n G S is (strictly) 
decreasing sequence of ordinals we can iterate this (simpler if we first apply part (6) 
clause (a)). H 

CLAIM 3.3. Suppose P is a family of sets which exemplify the failure ofPT{X, K+) 

(where X > n), i.e., a e P = \a\ < K, P has no transversal (= one-to-one choice 
function) but every P' C P of cardinality < X has a transversal. Then there is a X-set S 
and function F with domain Sf such that: 

(a) For each n G Sf, F(n) is a subfamily ofP of power < K. 
(b) For n € St we have X(n, S) > K. 
(c) For tj G m>(X + I), let F0(n) =: \J{F(z) : x <lx n andx G Sf } , where 

<ex is the lexicographic order, Fl(n) =: |J{ F(T) :n <T £ Sf} and 

F2(n) =: ( J { A : A G F0{^(X(n, S))) } \ \J{ A : A G F°(n) }. 

Note that for n e S we have FQ(^{X{n, S))) = F°{n) U Fl(n). 
(d) (a) Forn£Sf, Fl(n)/F°{n) is not free, [that is Fl(rj) has no one-to-one 

choice function with range disjoint to \J{ A : A G F°(n) }). 
0?) For n e Si, Fl{tl)/F°(*l) is X(n,S)-free not free and \Fl(rj)\ = 

X(t], S) (this follows as \{ T : n < x G S }| = X(n, S)). 
(e) Ifn"(a) G S then a is a limit ordinal, cf(a) < X(n~(a),S) + K < \a\ and 

if P < X(n, S) is an inaccessible cardinal (> N0) then fi n W(r\, S) is not a 
stationary subset of p. 

(f) Ifn'(a) <v£Sf and cf (a) > K then for some natural number k we have 
7~(a) < v \k and X(v \k, S) = cf (a) (so if a is an inaccessible cardinal then 
k = £g(n)). 

PROOF. See [5]. H 

REMARK. Note clause (f), it is crucial; without it we won't be able to prove the 
desired conclusion. 

DEFINITION 3.4. 

(1) A A-system is (Bn : n G Sc) where: 
(a) S is a A-set, and we let Sc —: { n'(i) : n G St and / < X(rj, S) } 
(b) Bq-y) C Bf(j) when n G St and i < j < X(n, S) 
(c) If S is a limit ordinal < X(n, S) then Bn~^) = \J{ B^^ : i <S} 
(d) \B^i)\<X(f],S)fori<X(n,S). 

(2) The A-system (Bn : n G Sc) is called disjoint if the sets { Bn~^(n,s)) '• 1 e $̂  } 
(see (3) below) are pairwise disjoint. 

(3) We le t5 m = :5 \{ ( )} , 5,.w,>s)>=:tf,*=:U{*,-(,•> : « < A(i7„S) }for^ G 5,, 
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CLAIM 3.5. Suppose X is a regular uncountable cardinal, {Bn : n £ Sc) a X-system, 
and for n £ Sf, sv C U*<&(») Bn^g+ly Then {s^ :rj £ Sf} has no transversal. 

PROOF. Straightforward (or see [5]). H 

CLAIM 3.6. Suppose PT{X, K+) fails {see 3.3).' Then there is a disjoint X-system 
{Bn : n £ Sc) and sets s^ {for n £ Sf and £ < £g{n)), and Cg {for 8 < X a limit 
ordinal) anden,e {for n £ S and£ < £g{n)) such that: 

(a) S satisfies the conclusion of Claims 3.2(6), 3.3(e) and 3.3(f), in particular 
n £Sf=^lg{n) = «. 

(b) stCB„mi), 0 < |s*| < «. 
(c) For every I C Sf\ if \I\ < X then {\Je s% : n £ I } has a transversal {as 

an indexed set). Moreover, for every p£SjifIC{v:p<v£Sf} and 
\I\ < X{p, S) then the family { [_}l>ig(„\ s* :n £ I } has a transversal. 

(d) Ifsl
n n 5v

m ^ 0 then 
{a) £ = m and the sequences n, v are different only at the £thplace, i.e., 

p=:n\£ = v\£andn\[£ + \,n) = v\[£ + \,n) and 
{P) X{n \i, S) = X{v \i, S) when £ + 1 < i < n and 
(y) either X{n\{£ + l),S) = n{£) and X{v\{£ + \),S) = v{£) are both 

inaccessible cardinals or X{rj \{£ + 1), S) = X(y \{£ + 1), S). 
(e) For n"(8) £ S we have 

(a) Cg is a closed unbounded subset of 8, Cg = {C{8, i) '• i < cf(<5) }, 
C{8, i) increasing continuously with i. 

(/?) In addition ifv = n\£, v £ St, n £ Sh X{n,S) = cf[v(^)] > H0 then 
en,i is a strictly increasing function from X{v, S) to X{v, S). 

(y) in clause (/?) if 8 =: n{£) is an inaccessible cardinal {hence necessarily 
£g{rj) = £ + 1) then 0 = W{v, S) n { ({8, i) : i belong to the range 

ofenji }• 
(f) {a) If £ < m < n, n £ Sf, cf[n{£)] = X{n\m,S) > K then sl

n C 
B(r,\t)~(z+\) \B(ti\e)~{Q whereC = ({n{£),en,e{n{m)) + 2); i.e., £ is the 
(e,(^(w)) + 2)th member of C^y Moreover if's* n s* ^ 0, n ^ v 
thenC{n{£),n{m))=C{v{£),v{m)). 

{P)If£<m<n= £g{n), n £ Sf, cf[n{£)] = X{n\m,S) < K then 
4 C B^t+x) \B^r{c) where £ = t(n(£),n{m)); i.e., ( is the 
{n{m) + l)thmemberofC^t+x) andt, <*{£)=$• \s*\B{riiey{i)| = «. 
Moreover ifs* n s i ^ 0, n ^ v then((n{£),n{m)) = C,{v{£),v{m)). 

(g) If I < £g{n), n £ Sf, cf[i/(*)] < K then for no f < n{£) is s* C Bntr{Q. 
(h) For some well ordering <* of B* {n £ St) ifn"{i) <v£ Sf, then [cf (/) > 

K =>• sv has order type K] and [cf(r') < K =4- Sy has order type K X 
(cf |s*|)]. {This is not really used.) 

PROOF. Straightforward and in the most important case see 3.7's proof. H 

REMARK. In the proof we get that each s% has order type co. 

CLAIM 3.7. Suppose in Claim 3.6 that K = Ho. Then we can add 

'We are interested mainly in the case K = KQ. 
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(i) for n G Sit Bn has the structure of a tree with co levels (e.g., is a family 
of finite sequences, closed under initial segments except that () ^ Bn), and 
n < v G Sf implies s^ = { a£m : m < co} is a branch (of order type < co) 
(a branch is a maximal linearly ordered subset), and for m < £, and k < co, 
the kth element ofs™, together with v \£ determines the kth element of sf,. 
Also if £ < m < n = £g(r\), n G Sf, cf[n(£)] = k(n\m) = H0 then 
{min{ £ : in s^ n B^ \e)~{t) mere are at ^east k elements } : k <co) is strictly 
increasing with limit n(£). 

PROOF OF 3.7. Without loss of generality let P exemplify PT(k, K) fails, so there 
are S, (a A-set) and F, F°, Fx, F2 as in Claim 3.3. As we can shrink S, we 
can assume that it satisfies the conclusion of 3.2(6). Without loss of generality 
n € Sf => £g(n) — n. Choose Q , £(<J, /) as required in clause (e) (for subclauses 
(c), (a) and (/?) totally straight and for subclause (c)(y) we use clause (e) of 3.3). 
For n G Si, a < k(n, S), we let 

D,-<°) =•• U< p2^(P) ••$<<*, r,'{B) G S } 

so (Dn : n 6 Si) is a disjoint A-system, without loss of generality disjoint to S. 
For n G Sf and £ = 0 , . . . ,n — 1, we define 

t(
n=:D„mi)n{J{A:AeF(r,)}. 

For n G Si and a < k(n, S) we let 

Bri~{a) = \ P '• P is a finite sequence, of length > 3 + (n — £g(n)), 

rang/? C D^a) U a U {n} but rang(/?) £ a j . 

Let 

R= l(£,m,n):n£Si, £g(n) = m,£ < £g(n) and k(n,S) = d[n(£)] > K }. 

For (£, m,n) G R clearly ( | J{ tl
v : n < v G Sf and v(m) < a } : a < A(77,5) ) is 

an increasing continuous sequence of subsets of B, each of cardinality < k(n, S). 
But (^fo^ncO/W.')) • ' < ^(l> ^)) *s a n increasing continuous sequence of sets with 
union Bn^e+^ (remember (C(n(£),i) : i < k(n,S)) is an increasing continuous 
sequence of ordinals with limit n(£) which has cofinality k(n, S)). Hence 

En# =: < i < k(n, S) : i is a limit ordinal such that 

\J{4--tl<vZSf}nBnm.mt)j)) 

= \^j{ 4 '•n <v e sfand v(w) < ' } r 

is a club of 2(77, S1), so let sn,t: k(n, S) —> A(J/, 5) be a strictly increasing continuous 
function with range Enji. 

It is clear that (Bn : n G Sc) is a disjoint A-system (note )#,,-(,•) | < k(n,S) as 
A(>7,5) is uncountable). Let tl — {a(n,£, i) : i < co} (possibly with repetitions). 
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We define s* by cases: 

(a) if there is m such that £ < m < £g(tj), (£, m, n \m) G R and A (77 \m, S) > Ho 
(there is at most one such m, and then 0 < £ < m, cf(r/(£)) = X{r\ \m, S) > 
Ho) we let 

pi =: {an(£),e„£(tlW) + lU,m)'(f,\[£ + \,n)), 

*!,='• {Pei(<*(l>t,j) • J <m) • m<coandm>0} 

(fi) p* = (0,£,nyri\[£ + l,n),ifcf(ti(£)) < « w e l e t 

s* — I pe
n"(yo, •••, yim-\) '• m < co, m > 0, for each k < m, 

ylk = min{ £ G C^e) : a{r\,£,0),... ,a(tj,£,k) G 5 , r r < 0 } 

andj2A:+i =a{ri,£,k) j . 

Note that by clause (f) of 3.3, exactly one of those cases occurs. 

Now (By : rj e Sc), s% (for 77 G 5 / , ^ < £g(rj)) are as required in 3.6. The 
least trivial is (c). Suppose / c Sf, \I\ < A, so { \St<n t* : tj €. I } has a transver­
sal, so there is a one-to-one function g, domg = / and g(n) G \}tt^. Let 
g{rj) = a(n,h(n),g(n)). Now we define a function g*\ domg* = / , g*{n) — 
p\"{ a(tj,h(n), /) : 0 < 7 < g{ri)). Clearly g* is one-to-one, g*(n) G \Je<„ s*. 

Let for rj e Sit <n be a well ordering of {77} U D^^s)) of order type 1(7, S) 
such that 77 is first, and each {77} U Af <a) is an initial segment defined by a. Now 
<* will be p\ <* p2 if and only if (max<, rang/>i)>i </* (max<, rang/>2)>2 </* is 
lexicographically according to <n. 

It is also obvious that (i) holds, except possibly the last phrase; but the correction 
needed is small so we finish. H 

CLAIM 3.8. Suppose {B^ : 77 G Sc), s% (77 G Sf, £ < £{rj) are as in Claims 
3.6 and 3.7; we can omit 3.6(h)). Then for any p G Sj, m = £{p), and I C {77 G 
Sf '• P <?]} the following are equivalent: 

{A)pj The family { \Je>m s% : 77 G / } has a transversal. 
(B)pj There are a well ordering <* of I and { un : 77 G / } such that: 

(i) For 77 <* v {both in I),uvr\ {\Je<m s*) = 0. 

(ii) For every n G I for some £, m < £ < £{n), un is an end-segment of s%. 
(iii) If £, < min{ 77(77?) : 77 G / } is given, we can demand that each un 

(77 G I) is disjoint to Bp~^y 
{C)pj There is no X{p, S)-set S* such that 77 G SJ- = > p~n G / . 
(D)pj Suppose it, < min{ rj(m) : n £ I } , there are un (77 G / ) where 

(i) ?Jze w, are pairwise disjoint 
(ii) w, is fl77 end segment of some st

rj,m<£< £(rj) 
(iii) un is disjoint to Bp~^. 
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