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O N  T A Y L O R ' S  P R O B L E M  
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By extending finite theorems Erd6s and Rado proved that  for every in- 
finite cardinal n there is a n-chromatic triangle-free graph [3]. In later work 
they were able to add the condition that  the graph itself be of cardinal s; [4]. 
The next stage, eliminating 4-circuits, turned out to be different, as it was 
shown by Erd6s and Hajnal [1] that  every uncountably chromatic graph con- 
tains a 4-circuit. In fact, every finite biparti te graph must be contained, but 
odd circuits can be omit ted up to a certain length. This solved the prob- 
lem "which finite graphs must  be contained in every n-chromatic graph" for 
every t~ > co. The next result was given by Erd6s, Hajnal, and Shelah [2], 
namely, every uncountably chromatic graph contains all odd circuits from 
some length onward. They, as well as Taylor, asked the following problem. 
If ~, A are uncountable  cardinals and X is a n-chromatic graph, is there a 
A-chromatic graph Y such that  every finite subgraph of Y appears as a sub- 
graph of X.  In [2] the following much stronger conjecture was posed. If X 
is uncountably  chromatic,  then for some n it contains all finite subgraphs of 
the so-called n-shift graph. This conjecture was, however, disproved in [5]. 

Here we give some results on Taylor's conjecture when the additional 
hypotheses IXI = ~, IY] = A are imposed. 

We describe some (countably many) classes /C ~'~ of finite graphs and 
prove tha t  if I s° = A then every A+-chromatic graph of cardinal A + con- 
tains, for some n, e, all members of/C ~'~ as subgraphs. On the other hand, it 
is consistent for every regular infinite cardinal n that  there is a n+-chromatic  
graph on n+ that  contains finite subgraphs only from ~ , e .  We get, there- 
fore, some models of set theory, where the finite subraphs of graphs with 
IX] = Chr (X)  = ~+ for regular uncountable cardinals n are described. 

We notice tha t  in [6] all countable graphs are described which appear in 
every graph with uncountable coloring number. 

NOTATION. X- will denote a finite string of ordinals. 5 < ~ means that  
max (~) < min (~). 
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~18 P. KOMJ,~_TH and S. SHELAH 

DEFINITION. Assume that  1 __< n < a;,e : { 1 , 2 , . . . , 2 n }  ~ {0,1}is  afunc-  
tion with [ / - 1 ( 0 ) 1  = n. We are going to define the structures in/C ~,~ as fol- 
lows. They will be of the form H = ( V , < , U , X ,  h l , . . .  ,h~) where ( V , < ) i s  a 
finite linearly ordered set, U C V, X is a graph on U, h~ : U ---, V satisfy h~(x) 
< . . .  < h~(x) = x for x • U. The elements in /Co '¢ are those isomorphic to 
( V , < , U , X ,  h l , . . . , h ~ )  where V = { 1 , 2 , . . . , n } ,  < is the natural  ordering, 
U = { n } , X = 0 ,  h i ( n ) = i ( l _ < i _ < n ) .  

If H = (V, <,  U,X,  h i , . . .  ,hn) is a s tructure of the above form, and x 
• V, we form the edgeless amalgamation H '  = H +~ H as follows. Pu t  H '  
= H +~ H = (V',  <',  U ' , X ' ,  h~ , . . .  ,h~) where (V',  <')  has the <'-ordered de- 
composition V'  = W U Vo U V1 (i.e., W < V0 < V1). If we put V~! = W U 
for i < 2 then the structures 

V I <1 U I i t i . i t ( Iv ', n V ,hilV , . ,h lV ) 

are both isomorphic to H for i < 2 and min ( ~ )  corresponds to x under the 
isomorphisms. 

If H = (V, <,  U, X,  h i , . . . ,  h~) is a s tructure of the above form, and x • U, 
we also form the one-edge amalgamation H '  = H .x H as follows. Enumer- 
ate in increasing order e - l ( 0 )  as { a l , . . . , a ~ }  and e-1(1)  as {b l , . . . , b~} .  Pu t  
H'  = (V',  <', U', X ' ,  h~ , . . . ,  h~) where (V',  < ' )  has the ordered decomposition 
V ' =  VoUV1 U-- .UV2~ (i.e., Yo < V1 < ' ' '  < Y2n); H'] (Vo u U{t~ : e(i) = e}) 
are isomorphic to H (E = O, 1) if Xo, Xl are the points corresponding to x, 
then h~(xo) = min (V~,), h~(xl) = min (Vb,), and the only extra  edge in X ~ is 
{xo, xi}. 

We then put 

n~e ~t+ l  { H  +x H :  H = (V, < , U , . . . )  • /C~'~,x  • V} 

• /C ~'~ U } ,  U { H , y H : H = ( V , < , U , . . ) •  t , y •  

a n d  f i n a l l y  n'o = U{ C;"e : t < 

THEOREM 1. / f  IG[ = Chr (G) = A +, A ~° = A, then, for some n, e, G 
contains every graph in 1C ~,~ as subgraph. 

~Ve start  with some technical observations. 

LEMMA 1. I f  tn : A + ~ A + are functions (n < co), then there is a A- 
coloring F :  A + ~ A such that for F(a)  = F(/3), i, j < w, a < ti(/~) < tj(o~) 
may not hold. 

PROOF. As A ~° = A, it suffices to show this for two functions to(a), 
t l ( a ) ,  with t l (a)  > a. We prove the stronger s ta tement  that  there is a func- 
tion F :  A + ~ [A] ~ such that  if a < t0(/3) < t l ( a )  then F(a)  N F(•) = 0. Let 
(N~ : ~ < A +} be a continuous, increasing sequence of elementary submodels 
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ON TAYLOR'S PROBLEM 219 

of (,~+; <,to , t~ , . . . )  with 7~ = N~ C? ,~+ < ,~+. C = {7~ : ~ < "~+} is closed, un- 
bounded.  We define Fl'y~ by transfinite recursion on (. If FIT ~ is given, and ,2 
has to(3) < 7~ _-< 3 < 7~+1, by elementarity r = sup {tl((~) : c~ < t0(fl)} < 7~, 
and there is a 3' with t0(3') = to(fl), r < 3' < 7~. Put  H(3) = F(3'),  other- 
wise, i.e., when 3~¢ __< to(3), put H(3) = A. To get FI[7~,~/~+I), we disjointize 
{ H ( 3 )  : 7~ --< 3 < 7¢+~}, i.e., find F(3) ~= H(3) of cardinal ,~ such that  F(flo) 

F(3~) = 0 for 3o ¢ fl~- We show that  this F works. Assume that F(c~), 
F(3) are not disjoint. By induction we can assume that  either c~ or 3 is 
between 7~ and 7~+1. By the disjointization process some of them must be 
smaller than 7~. If 3 < 7~ =< c~ < 7~+~ then to(3) < 7~ as N~ is an elementary 
-submodel, so to(3) < c~. Assume now that  c~ < ~/~ < 3 < ?¢+~. Our construc- 
tion then selected a 3'  with to(3') = to(3) and F(3) ~= H(3)  = F(3') which 
is, by the inductive hypothesis,  disjoint from F(c 0. [] 

LEMMA 2. If C = {6( : ~ < A +} is a club then there is a function K : 

[A+] s° ~ A such that if 

K ( A ) = K ( B ) ,  AR[(~,(~,~+I)¢O and Bn[6~,6,1+1)-~0 

for some { < )~+ then A R (~+1  = B O (~{+1 = and so A 0 B is an initial seg- 
ment both in A and B.  

PROOF. Fix for every/3 < ,~+ an into function F2 : 3 ~ A such that for 3o 
< 31 < 32, F~1(3o) # E52(31) holds. This can be done by a straightforward 
inductive construction.  

If A • [ , ~ + ] s °  put  X ( A ) = { ~ : A n [ 5 4 , 6 ~ + I ) ¢ O } .  Let t p ( X ( A ) )  =~.  
Enumerate  X ( A )  as { r e :  0 < rl}. Let K(A)  be a function with domain 7/, 
at 0 < r / , i f r 0  A = ~ , l e t  

: < { 0' < 0}, { • A n }. 

Assume now that  I((A) = K(B) ,  ~ e X (A)  A X(B) .  If ( = T0 A = ro B , then 0 
= 0 t by the properties of F above. The second part  of the definition of K(A)  
gives that  A R 6~+1 = B V1 6~+1. [] 

PROOF OF THEOREM 1. We first show that one can assume that G is 
A+-chromatic on every closed unbounded set. 

LEMMA 3. There is a function f : A  + --+A + such that if C C= A+ is a 
closed unbounded set then U { [ a ,  f (c0]  : a  • C} is A+-chromatic. 

PROOF. Assume that  the s ta tement  of the Lemma fails. Put  fo(a)  = a,  
for n < co let Cn witness that  f ~ : A + - +  A + is not good and fn+ l ( a )  
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220 P. KOMJ. /~TH and  S. S H E L A H  

= min (Cn - (a  + 1)). As, by assumption, U { [ a , f ~ ( a ) ]  : a  E C,~,n < o3} 
is _<_ A-chromatic, there is a 

Clearly, 7 ¢ Cn (n < w), and if now an = max (7 r-I C~), then a~ < % and 
an+l  < an (n < ~), a contradiction. [] 

By slightly re-ordering A + we can state Lemma 3 as follows. If C ~ A + 
is a closed unbounded set, then S ( C ) =  U {  [Aa, A(a + 1)) : a  E C} is A +- 
chromatic. Put ,  for r < A, C __C A + a club set, S ; ( C )  = U { A a  + r : ~ E C} .  
If, for every r < A there is some closed unbounded C~- such that  S~(C.~) is 
A-chromatic, then for C = A{C,  : r  < A}, S ( C )  is the union of at most A 
graphs, each =< A-chromatic, a contradiction. 

There  is, therefore, a v < A such that  S , ( C )  is A+-chromatic whenever 
C is a closed unbounded set. Mapping Aa + v to a we get a graph on A +, 
order-isomorphic to a subgraph of the original graph which is A+-chromatic 
on every closed unbounded set. From now on we assume that  our original 
graph G has this property. 

We are going to build a model M = (A+; <, A,G, . . . )  by adding countably 
many new functions. 

For n, e as in the Definition, c 2 a first order formula, let G~ '~ be 
the following graph. The vertex set is V~ = { (g0, . . .  ,~,~) : .T0 < .." < gn, 

M ~ P ( g 0 , . . . , g ~ ) }  and (g0 , . . . , g~ ) ,  {Y0,...,Yn} are joined, if x 0 = Y 0 ,  
{ g l , . . .  ,Y,~}, {Yl, . . .  ,Yn} interlace by e, and finally {min (5,~),min(~n)} E G. 
We introduce a new quantifier Q~'¢ with Q'~,¢~ meaning that  the above graph, 
G~o '~ is A+-chromatic. If, however, Chr (G~, '¢) __< A, we add a good A-coloring 
to M. We also assume that  M is endowed with Skolem functions. 

LEMMA 4. There exist n, e and al  < . . .  < a~ < A + such that t(ai) 
< ai+l holds whenever  t : A + ~ A + is a funct ion in M and, moreover i f  
~0 _-__ a l ,  xi = [ a i , a i+ l )  (1 =< i < n), -2n C__ [o~,~,A+), min (~i) = ai,  and ~p is 
a formula,  M 1= ~ ( g 0 , . . . , g ~ ) ,  then M I = Q ~ ' ~ .  

PROOF. Assume that  the statement of the lemma does not hold, i.e., for 
every n, e, a l , . . . ,  an there exist g0 , . . .  ,g~ contradicting it. 

Let, for a < A +, Ba C A + be a countable set such that  a E Bc~, and if 
n, e, a l , . . . , a n  E B~ are given, then a counter-example as above is found 
with x 0 , . . . , x n  = B~. We require that  Bo. be Skolem-closed. Let B + be 
the ordinal closure of B~, B + = {'7(a, ~) :  ~ < ~ }  be the increasing enumer- 
ation, a = 1 ' (a , r~) .  Let {M~ : ~ < a +} be a continuous, increasing chain 
of e lementary  submode]s of M such that  5~ = M~ n A + < A +. Clearly, C 
= {5~ : ~ < A +} is a closed, unbounded set. We take a coloring of the sets 
{B + : a  < A +} by A colors that  satisfies Lemma 2. Also, if a,  /3 get the 
same color then the structures (B+;B~,,  M )  and (B~-; BZ, M)  are isomorphic 
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and we also require tha t  if g 0 , - . - , g ~  C B~ and Y 0 , - - - , G  __C HZ are in the  
same positions, i.e., are m a p p e d  onto  each other  by the order i somorphism n,~ 
between B~ and B~ and ( g 0 , . - . , g ~ )  is colored by the A-coloring of G~, , 
then (Y0,-.. ,Yn) is also colored and gets the same color. All this is possible, 
as )~0 = )~. We also assume tha t  our  coloring satisfies Lemma 1 with some 
functions { t ~ : n  < a;} for which B + = {t~(c~) : n < a~}. 

As G is )~+-chromatic on C, there are ~ </3 ,  both  in C, joined in G, get- 
t ing the same color. By our conditions,  B + n B~- is initial segment in both,  
and beyond tha t  they do not even intersect into the same complementary  
interval of C. As our s t ructures  are isomorphic,  this holds for B~, B~, as 
well ,  

We now let B + = U { B + ( i ) :  i < i~}, B~ = U{B~-( i ) :  i < i~} be the  or- 
dered decomposit ions given by the following equivalence relations. For x, 
y • B  +, x_<_y, x ~ , , y i f e i t h e r  [x ,y ]nB~-  =@ or [x ,y ]nB~-  = [ x , y ] n B  +. 

Similarly for B~-. By L e m m a  2, B + N B~- = B+(0)  = B~(0) .  

LEMMA 5. ia, i n are finite. 

PROOF. Otherwise, as B +, B~ are ordinal closed, -~= min(B+(a ; ) )  

= min(B~(a~))  is in B + 0 B~-, so 3' q B+(0) ,  a contradict ion.  [] 

Enumera te  

{~ =< ~ :  there is a 0 < i < w such tha t  eitl~er 7(c~,~) = m i n ( B + ( i ) )  

as { 1 < ~  < ' " < ~ n .  By Lemma  1, if a < / 3 ,  a = m i n ( B + ( i ~ - l ) ) ,  
/ 3 = m i n ( B ~ ( i ¢ - l ) ) ,  B + ( i ~ - I ) < B ~ ( i z - 1 ) .  So ( ~ = v s .  We let ai 

= 7 (a ,~ ' ) ,  fli = 7(fl,~i)- If ai  = min (B+( j ) )  then ai 6 Ba and,  by isomor- 
phism, / 3 i c B z .  We show tha t  for every i <  n, t 6  M, t ( a i ) < c ~ i + l  and 
t(/~i) </3i+1. a s  (B+;  B~, M)  and (B~;  BZ, M)  are isomorphic,  for every 
i it suffices to show this either for ai  or for /3i- For i = n - 1 this follows 
from the fact tha t  c~ (as well as/3) is f rom C. If i < n then either c~i-1 and 
ai are separated by an element of B~- or vice versa. Assume the former.  
Then,  by Lemma 2, cri-1 and c~i are in different intervals of C so necessarily 
t ( a i - 1 )  < a i  holds. 

Let e be the interlacing type  of {c~- : 1 _< i _< n}, {/3;: 1 _< i _< n}. By 
our indirect assumpt ion,  there are a formula ~, xi, Yi (0 < i <_ n) in the 
same position in B~, BZ such tha t  gi __C [ai, a i+l ) ,  Yi C [fli, fli+~) etc, and 
M ~ 9~(g0,...  ,gn)  A c2(~0,.. .  ,~n) and ( g 0 , . . - , g ~ ) ,  (Y0,-.- ,Y~) are joined 

G~ , a contra  in G~ , but  they get the  same color in the good coloring of ~'~ 
diction which proves L e m m a  4. [] 
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Now fix n, e, and o/1 < " ' "  < an < )~+ a s  in Lemma 4. We call a formula 
c~ dense if there exist go C_C_C= al ,  xi C= [ai, ai+l) (1 _<_ i < n), g~ = [as, ),+), 
m i n ( g i ) = a i  such that  M ~ c 2 ( T o , . . . , g n  ). I f H = ( V , < , U , X ,  h l , . . . , h n )  
E /C n'~, V = { 0 , 1 , . . . , s } ,  a p-rich copy of  H is some string (Yo,. . . ,Ys) such 
that  Yo < " "  < Ys, if { i , j }  E X then { mAn (~i) ,min (y/)} • G and for every 

v • u, M ~ ~(Yo,Yhl(~),. . . ,~(~)). 

LEMMA 5. For every H • ]C n'e if  ~ is dense there is a p-rich copy of H 
in G. 

LEMMA 6. For every H = (V, < , U , X ,  h l , . . . , h n )  • ]C n'~, q •  U, if p is 
dense, there is a p-rich copy (Yo,. .. ,Y~) of H such that mAn (Yh,(q)) = ai for 
l < i < n .  

We notice that  Lemma 5 obviously concludes the proof of Theorem 1 and 
Lemma 6 clearly implies Lemma 5. Also, they trivially hold for H • ]C 0 . 
We prove these two lemmas simultaneously. 

CLAIM 1. I f  Lemma 5 holds for some H then Lemma 6 holds for H, as 
well. 

PROOF. Assume that  Lemma 5 holds for H = (V, <,  U, X, h i , . . . ,  An) 
E ~n,~ and for any dense ~ but Lemma 6 fails for a certain q • U and a dense 
p. This s ta tement  can be wri t ten as a formula 0 ( a l , . . .  , an) .  As ~ is dense, 
M ~ F (¥0 , - - - , gn )  for some appropriate strings, so also M ~ ¢ (T0 , . . .  ,T~) 
where ¢ = ~ A 0 ( m i n ( g l ) , . . . , m i n ( T n ) ) .  As ~ is dense, by Lemma 5 there is 

a ~-rich copy (Y0,. . . ,  Y~) of H but then M ~ 0 ( mAn (Yhl (q)),- • -, mAn (Yh~(q))), 
a contradiction. [] 

CLAIM 2. If Lemma 6 holds for H = (V, <, U ,X ,  h l , . . . ,  An) and x • V 
then Lemma 5 holds for H ~ = H +x H.  

PROOF. Select q E U such that  x = hi(q) for some 1 _< i _< n. By Lemma 
6, there is a p-rich copy (Yo,...,Y~) of H such that  min(Yhdq) ) = ai for 
1 _4 i ~ n. As ai > t (ai-1)  holds for every function t in the skolemized struc- 
ture M there are p-rich copies of H which agree with this below x but their 
x elements are arbitrarily high. We can, therefore, get a p-rich copy of Hq 
[] 

CLAIM 3. I f  Lemma 6 holds for H = ( V , < , U , X ,  h l , . . . , h ~ )  and y E U 
then Lemma 5 holds for H ~ = H *y H.  

PROOF. Let (Y0,-.-,Y~) be a p-rich copy of H such that  man (Yh,(q)) = ~i 
for 1 _< i <_ n. The elements in the (Y0,..-,Ys) string can be redistributed as 
( T o , . . . . , ~ )  such tha t  mAn (Ti) = ai and then the fact tha t  they form a p-rich 
copy of H can be writ ten as M ~ ¢ ( T 0 , . . . , ~ )  for some formula ~. As ~b is 
dense, by Lemma 4, M ~ Q ~ ' ~  holds, so there are two strings, (T0, . . .  ,Tn) 

.. , ~) both ~,  a n d ( ~ ,  . ~ satisfying interlacing by e, and { m i n ( T n ) , m i n ( ~ ) }  
E G. This, however, gives a q~-rich copy of HC [] 
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THEOREM 2. If n, e are as in the Definition, A is an infinite cardinal, 
A <~ = A, then there exists a A+-c.c., < A-closed poset Q = Qn,eA which adds 
a A+-chromatic graph of cardinal A + all whose finite subgraphs are subgraphs 
of some element of IC n,~. 

PROOF. Put  q = (V, U,X,  h l , . . . , h n )  E Q if V E [A+] <~, U = V, X 
C[V]  2, every hi is a function U ~ V  with h l ( x ) < . . . < h n ( x ) = x  for 
x E U and every finite substructure of (q, <)  is a substructure of some 
element of /C n,e Order Q as follows, ql (W, frt y1  /~i = • = , , o l , . . . ,  < q 

= ( V , U , X ,  h l , . . . , h n )  iff V'D=V, U = U ' M V ,  X = X ' N [ V ]  2, h ~ h i  
(1 < i < n). Clearly, (Q, <)  is < A-closed. 

LEMMA 7. (Q,<) is A+-c.c. 

PROOf. By the usual A-system arguments  it suffices to show that  if the 
conditions q~ = (V U V i, U i, X i, h ~ , . . . ,  h~) are order isomorphic (i < 2), V 
< V ° < V 1 then they  are compatible. A finite subset of V U V ° U V 1 can be 
included into some s U So Usa where So and sl are mapped onto each other by 
the isomorphism between q0 and qa. By condition, qis U So is a substructure 
of some structure / / E / C  n'~. But then qIs U So U Sl is a substructure of an 
edgeless amalgamat ion of H.  [] 

If G = Q is generic then Y = U { X :  (V, U, X , . . . )  E G} is a graph on a 
subset of A+ all whose finite subgraphs are subgraphs of some member  of 
]C n'~. The following lemma clearly concludes the proof of Theorem 2. 

LEMMA 8. C h r ( Y ) = A + .  

PROOF. Assume, toward a contradiction, that  1 forces that  f : A+ --+ A 
is a good coloring of Y. Let M1 -~ M2 -< - . .  -~ Mn be elementary submod- 
els of ( H ( ( 2 ~ )  +) ; Q , f , . . . , )  with A = M0, [214/] <~ ~ Mi. Put  51 = iv//N A+ 
< A +. Notice that  cf(~fi) = A. L~t p' = (V', ~rr',,~u',,ol,..~'., h ' )  where V 
= { 5 , , . . . , ~ } ,  U = {6~}, X = O, hi(ha) = 5i. Choosep = (V,U,X,  h l , . . . , hn )  
< p' forcing f(hn) = ~ for some ~ < A. Let e n ( ~ r , x l , . . . ,  Xn) be the follow- 
mg formula. ~r is an order isomorphism V ~ A +, 7r(hi) = xi and ~-(p) forces 
that  f (xn)  = ~. Let (~n+l = A- For 0 < i < n define ¢ i ( ~ , X l , . . . , x i )  mean- 
ing that  ~ : V M 5i+l ~ A + is order preserving and there are arbitrarily large 
Xi+l < A+ and 7r' ~ ~r such that  ¢i+1(~-', X l , . . . ,  xi+l) holds. 

CLAIM 4 .  ~ i ( i d i V  M~hi+t,Ol,. . . ,(hi) for  0 <_ i <_ n. 

PROOF. This is obvious for i = n. If ~i(id IV M ~i+1,5~,...  ,(5i) fails, then, 
by definition, there would be a bound for the possible Xi+l values for which 
~i+~ (7c', ~1,.. . ,  5i, Xi+l) holds for some M ~ id I V M 5i+~. But then this bound 
is smaller than  (~i+1 SO ~iA-1 fails, too. [] 

Returning to the proof of Lemma 8, we define the following function t. 
Let { a ~ , . . . , a n } ,  {b l , . . . , bn}  be as in the definition of the one-edge amal- 
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gamation.  Put ,  for 1 < i < n, t(i) = j iff bj -1  < ai < bj where b0 = 0, bn+a 
= 2n + 1. Set ~0 = id ]V n 51. We know that  ~0(~0) holds. By induction on 
1 < i < n select ~ri in such a way that  ~ri+l __D ~ri, if we let ~ri(~i) = 5~ then 
¢i(~ri, 5~ , . . . ,  ~ )  holds and sup (V  N 5t(i)) < 5~ and Ran (~i) < St(i). This is 
possible as M 1 , . . . ,  M~ are elementary submodels. Finally, ~r~(p) is u condi- 
tion interlacing with p by e and it forces that  f(5~) = ~. Now if we take the 
union of them plus the edge {hn, 6~n} then an argument  as in Lemma 7 shows 
that  we get a condition which forces a contradiction. [] 

THEOREM 3. I f  GCH holds there is a cardinal, cofinality, and GCH pre- 
serving (class) notion of forcing in which for every n, e, and regular A > w 
there is a A +-chromatic graph on A + all whose finite subgraphs are subgraphs 
of some elements of IC n,e. 

PROOF. For A > w regular let Q~ be the product of Qn,e,~ of Theorem 2 
with finite supports if A = w, and complete supports otherwise. Notice that  
Q~ is a A+-c.c. notion of forcing of cardinal A +. For A singular let Q~ be the 
trivial forcing. 

Our notion of forcing is the Easton-support  limit of the Q~'s, i.e., 
P~+I = P~ ® Q~ with Q~ defined in the ground model. For a limit, p E P~ iff 
p(/~) E Qf~ for all/3 < a,  and I Dom(p)n  < ~ for < ~ regular. 

Given n, e, and A as in the s ta tement  of the Theorem, the extended 
model can be thought  of as the generic extension of some model first with 
Qn,~,:~ then with P~ which is of cardinal A so it cannot change the chromatic 
number  of a graph from A + to A. 

Assume that  the cofinality of some ordinal a collapses to a regular A. P 
splits as P~ ® Q~ ® R where R is __< A-closed, IP~I < A and Q~.is A+-c.c., so 
in fact the A+-c.c. P~+I changes the cofinality of a which is impossible. This 
also implies tha t  no cardinals are collapsed. 

If r is regular, all subsets of v are added by the r+-c.c. Pr+I of cardinal 
v + so 2 ¢ remains v +. If ~- is singular we must bound 7 "cf(~-). The sets of 
size cf (v) are added by Pcf(~)+l so we can bound the new value of v of(C) by 
Tcf(r)  + = 7-+. []  
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