ON TAYLOR'S PROBLEM

P. KOMJÁTH (Budapest)* and S. SHELAH (Jerusalem)**

By extending finite theorems Erdös and Rado proved that for every infinite cardinal κ there is a κ-chromatic triangle-free graph [3]. In later work they were able to add the condition that the graph itself be of cardinal κ [4]. The next stage, eliminating 4 -circuits, turned out to be different, as it was shown by Erdős and Hajnal [1] that every uncountably chromatic graph contains a 4 -circuit. In fact, every finite bipartite graph must be contained, but odd circuits can be omitted up to a certain length. This solved the problem "which finite graphs must be contained in every κ-chromatic graph" for every $\kappa>\omega$. The next result was given by Erdös, Hajnal, and Shelah [2], namely, every uncountably chromatic graph contains all odd circuits from some length onward. They, as well as Taylor, asked the following problem. If κ, λ are uncountable cardinals and X is a κ-chromatic graph, is there a λ-chromatic graph Y such that every finite subgraph of Y appears as a subgraph of X. In [2] the following much stronger conjecture was posed. If X is uncountably chromatic, then for some n it contains all finite subgraphs of the so-called n-shift graph. This conjecture was, however, disproved in [5].

Here we give some results on Taylor's conjecture when the additional hypotheses $|X|=\kappa,|Y|=\lambda$ are imposed.

We describe some (countably many) classes $\mathcal{K}^{n, e}$ of finite graphs and prove that if $\lambda^{K_{0}}=\lambda$ then every λ^{+}-chromatic graph of cardinal λ^{+}contains, for some n, e, all members of $\mathcal{K}^{n, e}$ as subgraphs. On the other hand, it is consistent for every regular infinite cardinal κ that there is a κ^{+}-chromatic graph on κ^{+}that contains finite subgraphs only from $\mathcal{K}^{n, e}$. We get, therefore, some models of set theory, where the finite subraphs of graphs with $|X|=\operatorname{Chr}(X)=\kappa^{+}$for regular uncountable cardinals κ are described.

We notice that in [6] all countable graphs are described which appear in every graph with uncountable coloring number.

Notation. \bar{x} will denote a finite string of ordinals. $\bar{x}<\bar{y}$ means that $\max (\bar{x})<\min (\bar{y})$.

[^0]Definition. Assume that $1 \leqq n<\omega, e:\{1,2, \ldots, 2 n\} \rightarrow\{0,1\}$ is a function with $\left|f^{-1}(0)\right|=n$. We are going to define the structures in $\mathcal{K}^{n, e}$ as follows. They will be of the form $H=\left(V,<, U, X, h_{1}, \ldots, h_{n}\right)$ where $(V,<)$ is a finite linearly ordered set, $U \subseteq V, X$ is a graph on $U, h_{i}: U \rightarrow V$ satisfy $h_{1}(x)$ $<\cdots<h_{n}(x)=x$ for $x \in U$. The elements in $\mathcal{K}_{0}^{n, e}$ are those isomorphic to $\left(V,<, U, X, h_{1}, \ldots, h_{n}\right)$ where $V=\{1,2, \ldots, n\},<$ is the natural ordering, $U=\{n\}, X=\emptyset, h_{i}(n)=i(1 \leqq i \leqq n)$.

If $H=\left(V,<, U, X, h_{1}, \ldots, h_{n}\right)$ is a structure of the above form, and x $\in V$, we form the edgeless amalgamation $H^{\prime}=H+_{x} H$ as follows. Put H^{\prime} $=H+{ }_{x} H=\left(V^{\prime},<^{\prime}, U^{\prime}, X^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right)$ where $\left(V^{\prime},<^{\prime}\right)$ has the $<^{\prime}$-ordered decomposition $V^{\prime}=W \cup V_{0} \cup V_{1}$ (i.e., $W<V_{0}<V_{1}$). If we put $V_{i}^{\prime}=W \cup V_{i}$ for $i<2$ then the structures

$$
\left(V_{i}^{\prime},<^{\prime}\left|V_{i}^{\prime}, U^{\prime} \cap V_{i}^{\prime}, h_{1}^{\prime}\right| V_{i}^{\prime}, \ldots, h_{n}^{\prime} \mid V_{i}^{\prime}\right)
$$

are both isomorphic to H for $i<2$ and $\min \left(V_{i}\right)$ corresponds to x under the isomorphisms.

If $H=\left(V,<, U, X, h_{1}, \ldots, h_{n}\right)$ is a structure of the above form, and $x \in U$, we also form the one-edge amalgamation $H^{\prime}=H *_{x} H$ as follows. Enumerate in increasing order $e^{-1}(0)$ as $\left\{a_{1}, \ldots, a_{n}\right\}$ and $e^{-1}(1)$ as $\left\{b_{1}, \ldots, b_{n}\right\}$. Put $H^{\prime}=\left(V^{\prime},<^{\prime}, U^{\prime}, X^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right)$ where $\left(V^{\prime},<^{\prime}\right)$ has the ordered decomposition $V^{\prime}=V_{0} \cup V_{1} \cup \cdots \cup V_{2 n}$ (i.e., $\left.V_{0}<V_{1}<\cdots<V_{2 n}\right) ; H^{\prime} \mid\left(V_{0} \cup \bigcup\left\{V_{i}: e(i)=\varepsilon\right\}\right)$ are isomorphic to $H(\varepsilon=0,1)$ if x_{0}, x_{1} are the points corresponding to x, then $h_{i}^{\prime}\left(x_{0}\right)=\min \left(V_{a_{i}}\right), h_{i}^{\prime}\left(x_{1}\right)=\min \left(V_{b_{i}}\right)$, and the only extra edge in X^{\prime} is $\left\{x_{0}, x_{1}\right\}$.

We then put

$$
\begin{gathered}
\mathcal{K}_{t+1}^{n, e}=\left\{H+_{x} H: H=(V,<, U, \ldots) \in \mathcal{K}_{t}^{n, e}, x \in V\right\} \\
\cup\left\{H *_{y} H: H=(V,<, U, \ldots) \in \mathcal{K}_{t}^{n, e}, y \in U\right\}
\end{gathered}
$$

and finally $\mathcal{K}^{n, e}=\bigcup\left\{\mathcal{K}_{t}^{n, e}: t<\omega\right\}$.
Theorem 1. If $|G|=\operatorname{Chr}(G)=\lambda^{+}, \lambda^{\aleph_{0}}=\lambda$, then, for some n, e, G contains every graph in $\mathcal{K}^{n, e}$ as subgraph.

We start with some technical observations.
Lemma 1. If $t_{n}: \lambda^{+} \rightarrow \lambda^{+}$are functions $(n<\omega)$, then there is a λ coloring $F: \lambda^{+} \rightarrow \lambda$ such that for $F(\alpha)=F(\beta), i, j<\omega, \alpha<t_{i}(\beta)<t_{j}(\alpha)$ may not hold.

Proof. As $\lambda^{\aleph_{0}}=\lambda$, it suffices to show this for two functions $t_{0}(\alpha)$, $t_{1}(\alpha)$, with $t_{1}(\alpha)>\alpha$. We prove the stronger statement that there is a function $F: \lambda^{+} \rightarrow[\lambda]^{\lambda}$ such that if $\alpha<t_{0}(\beta)<t_{1}(\alpha)$ then $F(\alpha) \cap F(\beta)=\emptyset$. Let $\left\langle N_{\xi}: \xi<\lambda^{+}\right\rangle$be a continuous, increasing sequence of elementary submodels
of $\left\langle\lambda^{+} ;<, t_{0}, t_{1}, \ldots\right\rangle$ with $\gamma_{\xi}=N_{\xi} \cap \lambda^{+}<\lambda^{+} . C=\left\{\gamma_{\xi}: \xi<\lambda^{+}\right\}$is closed, unbounded. We define $F \mid \gamma_{\xi}$ by transfinite recursion on ξ. If $F \mid \gamma_{\xi}$ is given, and β has $t_{0}(\beta)<\gamma_{\xi} \leqq \beta<\gamma_{\xi+1}$, by elementarity $\tau=\sup \left\{t_{1}(\alpha): \alpha<t_{0}(\beta)\right\}<\gamma_{\xi}$, and there is a β^{\prime} with $t_{0}\left(\beta^{\prime}\right)=t_{0}(\beta), \tau<\beta^{\prime}<\gamma_{\xi}$. Put $H(\beta)=F\left(\beta^{\prime}\right)$, otherwise, i.e., when $\gamma_{\xi} \leqq t_{0}(\beta)$, put $H(\beta)=\lambda$. To get $F \mid\left[\gamma_{\xi}, \gamma_{\xi+1}\right)$, we disjointize $\left\{H(\beta): \gamma_{\xi} \leqq \beta<\gamma_{\xi+1}\right\}$, i.e., find $F(\beta) \subseteq H(\beta)$ of cardinal λ such that $F\left(\beta_{0}\right)$ $\cap F\left(\beta_{1}\right)=\emptyset$ for $\beta_{0} \neq \beta_{1}$. We show that this F works. Assume that $F(\alpha)$, $F(\beta)$ are not disjoint. By induction we can assume that either α or β is between γ_{ξ} and $\gamma_{\xi+1}$. By the disjointization process some of them must be smaller than γ_{ξ}. If $\beta<\gamma_{\xi} \leqq \alpha<\gamma_{\xi+1}$ then $t_{0}(\beta)<\gamma_{\xi}$ as N_{ξ} is an elementary submodel, so $t_{0}(\beta)<\alpha$. Assume now that $\alpha<\gamma_{\xi} \leqq \beta<\gamma_{\xi+1}$. Our construction then selected a β^{\prime} with $t_{0}\left(\beta^{\prime}\right)=t_{0}(\beta)$ and $F(\beta) \subseteq H(\beta)=F\left(\beta^{\prime}\right)$ which is, by the inductive hypothesis, disjoint from $F(\alpha)$.

Lemma 2. If $C=\left\{\delta_{\xi}: \xi<\lambda^{+}\right\}$is a club then there is a function K : $\left[\lambda^{+}\right]^{\aleph_{0}} \rightarrow \lambda$ such that if

$$
K(A)=K(B), \quad A \cap\left[\delta_{\xi}, \delta_{\xi+1}\right) \neq \emptyset \quad \text { and } \quad B \cap\left[\delta_{\xi}, \delta_{\xi+1}\right) \neq \emptyset
$$

for some $\xi<\lambda^{+}$then $A \cap \delta_{\xi+1}=B \cap \delta_{\xi+1}=$ and so $A \cap B$ is an initial segment both in A and B.

Proof. Fix for every $\beta<\lambda^{+}$an into function $F_{\beta}: \beta \rightarrow \lambda$ such that for β_{0} $<\beta_{1}<\beta_{2}, F_{\beta_{1}}\left(\beta_{0}\right) \neq F_{\beta_{2}}\left(\beta_{1}\right)$ holds. This can be done by a straightforward inductive construction.

If $A \in\left[\lambda^{+}\right]^{\aleph_{0}}$ put $X(A)=\left\{\xi: A \cap\left[\delta_{\xi}, \delta_{\xi+1}\right) \neq \emptyset\right\}$. Let $\operatorname{tp}(X(A))=\eta$. Enumerate $X(A)$ as $\left\{\tau_{\theta}^{A}: \theta<\eta\right\}$. Let $K(A)$ be a function with domain η, at $\theta<\eta$, if $\tau_{\theta}^{A}=\xi$, let

$$
K(A)(\theta)=\left\langle\left\{F_{\tau_{\theta}^{A}}\left(\tau_{\theta^{\prime}}^{A}\right): \theta^{\prime}<\theta\right\},\left\{F_{\delta_{\xi+1}}(y): y \in A \cap \delta_{\xi+1}\right\}\right\rangle
$$

Assume now that $K(A)=K(B), \xi \in X(A) \cap X(B)$. If $\xi=\tau_{\theta}^{A}=\tau_{\theta^{\prime}}^{B}$ then θ $=\theta^{\prime}$ by the properties of F above. The second part of the definition of $K(A)$ gives that $A \cap \delta_{\xi+1}=B \cap \delta_{\xi+1}$.

Proof of Theorem 1. We first show that one can assume that G is λ^{+}-chromatic on every closed unbounded set.

Lemma 3. There is a function $f: \lambda^{+} \rightarrow \lambda^{+}$such that if $C \subseteq \lambda^{+}$is a closed unbounded set then $\bigcup\{[\alpha, f(\alpha)]: \alpha \in C\}$ is λ^{+}-chromatic.

Proof. Assume that the statement of the Lemma fails. Put $f_{0}(\alpha)=\alpha$, for $n<\omega$ let C_{n} witness that $f_{n}: \lambda^{+} \rightarrow \lambda^{+}$is not good and $f_{n+1}(\alpha)$
$=\min \left(C_{n}-(\alpha+1)\right)$. As, by assumption, $\bigcup\left\{\left[\alpha, f_{n}(\alpha)\right]: \alpha \in C_{n}, n<\omega\right\}$ is $\leqq \lambda$-chromatic, there is a

$$
\gamma \notin \bigcup\left\{\left[\alpha, f_{n}(\alpha)\right]: \alpha \in C_{n}, n<\omega\right\}, \quad \gamma>\min \left(\bigcap\left\{C_{n}: n<\omega\right\}\right)
$$

Clearly, $\gamma \notin C_{n}(n<\omega)$, and if now $\alpha_{n}=\max \left(\gamma \cap C_{n}\right)$, then $\alpha_{n}<\gamma$, and $\alpha_{n+1}<\alpha_{n}(n<\omega)$, a contradiction.

By slightly re-ordering λ^{+}we can state Lemma 3 as follows. If $C \cong \lambda^{+}$ is a closed unbounded set, then $S(C)=\bigcup\{[\lambda \alpha, \lambda(\alpha+1)): \alpha \in C\}$ is λ^{+}. chromatic. Put, for $\tau<\lambda, C \subseteq \lambda^{+}$a club set, $S_{\tau}(C)=\bigcup\{\lambda \alpha+\tau: \alpha \in C\}$. If, for every $\tau<\lambda$ there is some closed unbounded C_{τ} such that $S_{\tau}\left(C_{\tau}\right)$ is λ-chromatic, then for $C=\bigcap\left\{C_{\tau}: \tau<\lambda\right\}, S(C)$ is the union of at most λ graphs, each $\leqq \lambda$-chromatic, a contradiction.

There is, therefore, a $\tau<\lambda$ such that $S_{\tau}(C)$ is λ^{+}-chromatic whenever C is a closed unbounded set. Mapping $\lambda \alpha+\tau$ to α we get a graph on λ^{+}, order-isomorphic to a subgraph of the original graph which is λ^{+}-chromatic on every closed unbounded set. From now on we assume that our original graph G has this property.

We are going to build a model $M=\left\langle\lambda^{+} ;\langle, \lambda, G, \ldots\rangle\right.$ by adding countably many new functions.

For n, e as in the Definition, φ a first order formula, let $G_{\varphi}^{n, e}$ be the following graph. The vertex set is $V_{\varphi}=\left\{\left\langle\bar{x}_{0}, \ldots, \bar{x}_{n}\right\rangle: \bar{x}_{0}<\cdots<\bar{x}_{n}\right.$, $\left.M \vDash \varphi\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)\right\}$ and $\left\langle\bar{x}_{0}, \ldots, \bar{x}_{n}\right\rangle,\left\langle\bar{y}_{0}, \ldots, \bar{y}_{n}\right\rangle$ are joined, if $\bar{x}_{0}=\bar{y}_{0}$, $\left\{\bar{x}_{1}, \ldots, \bar{x}_{n}\right\},\left\{\bar{y}_{1}, \ldots, \bar{y}_{n}\right\}$ interlace by e, and finally $\left\{\min \left(\bar{x}_{n}\right), \min \left(\bar{y}_{n}\right)\right\} \in G$. We introduce a new quantifier $Q^{n, e}$ with $Q^{n, e} \varphi$ meaning that the above graph, $G_{\varphi}^{n, e}$ is λ^{+}-chromatic. If, however, $\operatorname{Chr}\left(G_{\varphi}^{n, e}\right) \leqq \lambda$, we add a good λ-coloring to M. We also assume that M is endowed with Skolem functions.

Lemma 4. There exist n, e and $\alpha_{1}<\cdots<\alpha_{n}<\lambda^{+}$such that $t\left(\alpha_{i}\right)$ $<\alpha_{i+1}$ holds whenever $t: \lambda^{+} \rightarrow \lambda^{+}$is a function in M and, moreover if $\bar{x}_{0} \subseteq \alpha_{1}, \bar{x}_{i} \subseteq\left[\alpha_{i}, \alpha_{i+1}\right)(1 \leqq i<n), \bar{x}_{n} \subseteq\left[\alpha_{n}, \lambda^{+}\right), \min \left(\bar{x}_{i}\right)=\alpha_{i}$, and φ is a formula, $\bar{M} \mid=\varphi\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)$, then $M \mid=Q^{n, e} \varphi$.

Proof. Assume that the statement of the lemma does not hold, i.e., for every $n, e, \alpha_{1}, \ldots, \alpha_{n}$ there exist $\bar{x}_{0}, \ldots, \bar{x}_{n}$ contradicting it.

Let, for $\alpha<\lambda^{+}, B_{\alpha} \subseteq \lambda^{+}$be a countable set such that $\alpha \in B_{\alpha}$, and if $n, e, \alpha_{1}, \ldots, \alpha_{n} \in B_{\alpha}$ are given, then a counter-example as above is found with $\bar{x}_{0}, \ldots, \bar{x}_{n} \subseteq B_{\alpha}$. We require that B_{α} be Skolem-closed. Let B_{α}^{+}be the ordinal closure of $B_{\alpha}, B_{\alpha}^{+}=\left\{\gamma(\alpha, \xi): \xi \leqq \xi_{\alpha}\right\}$ be the increasing enumeration, $\alpha=\gamma\left(\alpha, \tau_{\alpha}\right)$. Let $\left\{M_{\xi}: \xi<\lambda^{+}\right\}$be a continuous, increasing chain of elementary submodels of M such that $\delta_{\xi}=M_{\xi} \cap \lambda^{+}<\lambda^{+}$. Clearly, C $=\left\{\delta_{\xi}: \xi<\lambda^{+}\right\}$is a closed, unbounded set. We take a coloring of the sets $\left\{B_{\alpha}^{+}: \alpha<\lambda^{+}\right\}$by λ colors that satisfies Lemma 2. Also, if α, β get the same color then the structures ($B_{\alpha}^{+} ; B_{\alpha}, M$) and ($B_{\beta}^{+} ; B_{\beta}, M$) are isomorphic
and we also require that if $\bar{x}_{0}, \ldots, \bar{x}_{n} \subseteq B_{\alpha}$ and $\bar{y}_{0}, \ldots, \bar{y}_{n} \subseteq B_{\beta}$ are in the same positions, i.e., are mapped onto each other by the order isomorphism between B_{α} and B_{β} and ($\bar{x}_{0}, \ldots, \bar{x}_{n}$) is colored by the λ-coloring of $G_{\varphi}^{n, e}$, then $\left(\bar{y}_{0}, \ldots, \bar{y}_{n}\right)$ is also colored and gets the same color. All this is possible, as $\lambda^{\aleph_{0}}=\lambda$. We also assume that our coloring satisfies Lemma 1 with some functions $\left\{t_{n}: n<\omega\right\}$ for which $B_{\alpha}^{+}=\left\{t_{n}(\alpha): n<\omega\right\}$.

As G is λ^{+}-chromatic on C, there are $\alpha<\beta$, both in C, joined in G, getting the same color. By our conditions, $B_{\alpha}^{+} \cap B_{\beta}^{+}$is initial segment in both, and beyond that they do not even intersect into the same complementary interval of C. As our structures are isomorphic, this holds for B_{α}, B_{β}, as well.

We now let $B_{\alpha}^{+}=\bigcup\left\{B_{\alpha}^{+}(i): i<i_{\alpha}\right\}, B_{\beta}^{+}=\bigcup\left\{B_{\beta}^{+}(i): i<i_{\beta}\right\}$ be the ordered decompositions given by the following equivalence relations. For x, $y \in B_{\alpha}^{+}, x \leqq y, x \sim y$ if either $[x, y] \cap B_{\beta}^{+}=\emptyset$ or $[x, y] \cap B_{\beta}^{+} \supseteqq[x, y] \cap B_{\alpha}^{+}$. Similarly for B_{β}^{+}. By Lemma 2, $B_{\alpha}^{+} \cap B_{\beta}^{+}=B_{\alpha}^{+}(0)=B_{\beta}^{+}(0)$.

Lemma 5. i_{α}, i_{β} are finite.
Proof. Otherwise, as $B_{\alpha}^{+}, B_{\beta}^{+}$are ordinal closed, $\gamma=\min \left(B_{\alpha}^{+}(\omega)\right)$ $=\min \left(B_{\beta}^{+}(\omega)\right)$ is in $B_{\alpha}^{+} \cap B_{\beta}^{+}$, so $\gamma \in B_{\alpha}^{+}(0)$, a contradiction.

Enumerate

$$
\begin{gathered}
\left\{\xi \leqq \xi_{\alpha}: \text { there is a } 0<i<\omega \text { such that either } \gamma(\alpha, \xi)=\min \left(B_{\alpha}^{+}(i)\right)\right. \\
\text { or } \left.\gamma(\beta, \xi)=\min \left(B_{\beta}^{+}(i)\right)\right\} \cup\left\{\tau_{\alpha}\right\}
\end{gathered}
$$

as $\xi_{1}<\xi_{2}<\cdots<\xi_{n}$. By Lemma 1 , if $\alpha<\beta, \alpha=\min \left(B_{\alpha}^{+}\left(i_{\alpha}-1\right)\right)$, $\beta=\min \left(B_{\beta}^{+}\left(i_{\beta}-1\right)\right), B_{\alpha}^{+}\left(i_{\alpha}-1\right)<B_{\beta}^{+}\left(i_{\beta}-1\right)$. So $\xi_{n}=\tau_{\alpha}$. We let α_{i} $=\gamma\left(\alpha, \xi_{i}\right), \beta_{i}=\gamma\left(\beta, \xi_{i}\right)$. If $\alpha_{i}=\min \left(B_{\alpha}^{+}(j)\right)$ then $\alpha_{i} \in B_{\alpha}$ and, by isomorphism, $\beta_{i} \in B_{\beta}$. We show that for every $i<n, t \in M, t\left(\alpha_{i}\right)<\alpha_{i+1}$ and $t\left(\beta_{i}\right)<\beta_{i+1}$. As $\left(B_{\alpha}^{+} ; B_{\alpha}, M\right)$ and $\left(B_{\beta}^{+} ; B_{\beta}, M\right)$ are isomorphic, for every i it suffices to show this either for α_{i} or for β_{i}. For $i=n-1$ this follows from the fact that α (as well as β) is from C. If $i<n$ then either α_{i-1} and α_{i} are separated by an element of B_{β}^{+}or vice versa. Assume the former. Then, by Lemma 2, α_{i-1} and α_{i} are in different intervals of C so necessarily $t\left(\alpha_{i-1}\right)<\alpha_{i}$ holds.

Let e be the interlacing type of $\left\{\alpha_{i}: 1 \leqq i \leqq n\right\},\left\{\beta_{i}: 1 \leqq i \leqq n\right\}$. By our indirect assumption, there are a formula $\varphi, \bar{x}_{i}, \bar{y}_{i}(0 \leqq i \leqq n)$ in the same position in B_{α}, B_{β} such that $\bar{x}_{i} \subseteq\left[\alpha_{i}, \alpha_{i+1}\right), \bar{y}_{i} \subseteq\left[\beta_{i}, \beta_{i+1}\right)$ etc, and $M \vDash \varphi\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right) \wedge \varphi\left(\bar{y}_{0}, \ldots, \bar{y}_{n}\right)$ and $\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right),\left(\bar{y}_{0}, \ldots, \bar{y}_{n}\right)$ are joined in $G_{\varphi}^{n, e}$, but they get the same color in the good coloring of $G_{\varphi}^{n, e}$, a contradiction which proves Lemma 4.

Now fix n, e, and $\alpha_{1}<\cdots<\alpha_{n}<\lambda^{+}$as in Lemma 4. We call a formula φ dense if there exist $\bar{x}_{0} \subseteq \alpha_{1}, \bar{x}_{i} \subseteq\left[\alpha_{i}, \alpha_{i+1}\right) \quad(1 \leqq i<n), \bar{x}_{n} \subseteq\left[\alpha_{n}, \lambda^{+}\right)$, $\min \left(\bar{x}_{i}\right)=\alpha_{i}$ such that $M \equiv \varphi\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)$. If $H=\left(V,<, U, X, \bar{h}_{1}, \ldots, h_{n}\right)$ $\in \mathcal{K}^{n, e}, V=\{0,1, \ldots, s\}$, a φ-rich copy of H is some string $\left(\bar{y}_{0}, \ldots, \bar{y}_{s}\right)$ such that $\bar{y}_{0}<\cdots<\bar{y}_{s}$, if $\{i, j\} \in X$ then $\left\{\min \left(\bar{y}_{i}\right), \min \left(\bar{y}_{j}\right)\right\} \in G$ and for every $v \in U, M \vDash \varphi\left(\bar{y}_{0}, \bar{y}_{h_{1}(v)}, \ldots, \bar{y}_{h_{n}(v)}\right)$.

Lemma 5. For every $H \in \mathcal{K}^{n, e}$ if φ is dense there is a φ-rich copy of H in G.

Lemma 6. For every $H=\left(V,<, U, X, h_{1}, \ldots, h_{n}\right) \in \mathcal{K}^{n, e}, q \in U$, if φ is dense, there is a φ-rich copy $\left(\bar{y}_{0}, \ldots, \bar{y}_{s}\right)$ of H such that $\min \left(\bar{y}_{h_{i}(q)}\right)=\alpha_{i}$ for $1 \leqq i \leqq n$.

We notice that Lemma 5 obviously concludes the proof of Theorem 1 and Lemma 6 clearly implies Lemma 5. Also, they trivially hold for $H \in \mathcal{K}_{0}^{n, e}$. We prove these two lemmas simultaneously.

Claim 1. If Lemma 5 holds for some H then Lemma 6 holds for H, as well.

Proof. Assume that Lemma 5 holds for $H=\left(V,<, U, X, h_{1}, \ldots, h_{n}\right)$ $\in \mathcal{K}^{n, e}$ and for any dense φ but Lemma 6 fails for a certain $q \in U$ and a dense φ. This statement can be written as a formula $\theta\left(\alpha_{1}, \ldots, \alpha_{n}\right)$. As φ is dense, $M \vDash \varphi\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)$ for some appropriate strings, so also $M \vDash \psi\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)$ where $\psi=\varphi \wedge \theta\left(\min \left(\bar{x}_{1}\right), \ldots, \min \left(\bar{x}_{n}\right)\right)$. As ψ is dense, by Lemma 5 there is a ψ-rich copy $\left(\bar{y}_{0}, \ldots, \bar{y}_{s}\right)$ of H but then $M \models \theta\left(\min \left(\bar{y}_{h_{1}(q)}\right), \ldots, \min \left(\bar{y}_{h_{n}(q)}\right)\right)$, a contradiction.

Claim 2. If Lemma 6 holds for $H=\left(V,<, U, X, h_{1}, \ldots, h_{n}\right)$ and $x \in V$ then Lemma 5 holds for $H^{\prime}=H+{ }_{x} H$.

Proof. Select $q \in U$ such that $x=h_{i}(q)$ for some $1 \leqq i \leqq n$. By Lemma 6 , there is a φ-rich copy $\left(\bar{y}_{0}, \ldots, \bar{y}_{s}\right)$ of H such that $\min \left(\bar{y}_{h_{i}(q)}\right)=\alpha_{i}$ for $1 \leqq i \leqq n$. As $\alpha_{i}>t\left(\alpha_{i-1}\right)$ holds for every function t in the skolemized structure \bar{M} there are φ-rich copies of H which agree with this below x but their x elements are arbitrarily high. We can, therefore, get a φ-rich copy of H^{\prime}.

Claim 3. If Lemma 6 holds for $H=\left(V,<, U, X, h_{1}, \ldots, h_{n}\right)$ and $y \in U$ then Lemma 5 holds for $H^{\prime}=H *_{y} H$.

Proof. Let $\left(\bar{y}_{0}, \ldots, \bar{y}_{s}\right)$ be a φ-rich copy of H such that $\min \left(\bar{y}_{h_{i}(q)}\right)=\alpha_{i}$ for $1 \leqq i \leqq n$. The elements in the ($\bar{y}_{0}, \ldots, \bar{y}_{s}$) string can be redistributed as $\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)$ such that $\min \left(\bar{x}_{i}\right)=\alpha_{i}$ and then the fact that they form a φ-rich copy of H can be written as $M=\psi\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)$ for some formula ψ. As ψ is dense, by Lemma $4, M \vDash Q^{n, e} \psi$ holds, so there are two strings, $\left(\bar{x}_{0}, \ldots, \bar{x}_{n}\right)$ and $\left(\bar{x}_{0}^{\prime}, \ldots, \bar{x}_{n}^{\prime}\right)$ both satisfying ψ, interlacing by e, and $\left\{\min \left(\bar{x}_{n}\right), \min \left(\bar{x}_{n}^{\prime}\right)\right\}$ $\in G$. This, however, gives a φ-rich copy of H^{\prime}.

Theorem 2. If n, e are as in the Definition, λ is an infinite cardinal, $\lambda^{<\lambda}=\lambda$, then there exists a λ^{+}-c.c., $<\lambda$-closed poset $Q=Q_{n, e, \lambda}$ which adds a λ^{+}-chromatic graph of cardinal λ^{+}all whose finite subgraphs are subgraphs of some element of $\mathcal{K}^{n, \epsilon}$.

Proof. Put $q=\left(V, U, X, h_{1}, \ldots, h_{n}\right) \in Q$ if $V \in\left[\lambda^{+}\right]^{<\lambda}, U \subseteq V, X$ $\subseteq[V]^{2}$, every h_{i} is a function $U \rightarrow V$ with $h_{1}(x)<\cdots<h_{n}(x)=x$ for $\bar{x} \in U$ and every finite substructure of $(q,<)$ is a substructure of some element of $\mathcal{K}^{n, e}$. Order Q as follows. $q^{\prime}=\left(V^{\prime}, U^{\prime}, X^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right) \leqq q$ $=\left(V, U, X, h_{1}, \ldots, h_{n}\right)$ iff $V^{\prime} \supseteqq V, \quad U=U^{\prime} \cap V, \quad X=X^{\prime} \cap[V]^{2}, \quad h_{i}^{\prime} \supseteqq h_{i}$ $(1 \leqq i \leqq n)$. Clearly, (Q, \leqq) is $<\lambda$-closed.

Lemma 7. (Q, \leqq) is λ^{+}c.c.
Proof. By the usual Δ-system arguments it suffices to show that if the conditions $q^{i}=\left(V \cup V^{i}, U^{i}, X^{i}, h_{1}^{i}, \ldots, h_{n}^{i}\right)$ are order isomorphic $(i<2), V$ $<V^{0}<V^{1}$ then they are compatible. A finite subset of $V \cup V^{0} \cup V^{1}$ can be included into some $s \cup s_{0} \cup s_{1}$ where s_{0} and s_{1} are mapped onto each other by the isomorphism between q_{0} and q_{1}. By condition, $q \mid s \cup s_{0}$ is a substructure of some structure $H \in \mathcal{K}^{n, e}$. But then $q \mid s \cup s_{0} \cup s_{1}$ is a substructure of an edgeless amalgamation of H.

If $G \subseteq Q$ is generic then $Y=\bigcup\{X:(V, U, X, \ldots) \in G\}$ is a graph on a subset of λ^{+}all whose finite subgraphs are subgraphs of some member of $\mathcal{K}^{n, e}$. The following lemma clearly concludes the proof of Theorem 2 .

Lemma 8. $\operatorname{Chr}(Y)=\lambda^{+}$.

Proof. Assume, toward a contradiction, that 1 forces that $f: \lambda^{+} \rightarrow \lambda$ is a good coloring of Y. Let $M_{1} \prec M_{2} \prec \cdots \prec M_{n}$ be elementary submodels of $\left(H\left(\left(2^{\lambda}\right)^{+}\right) ; Q, f, \ldots,\right)$ with $\lambda \subseteq M_{0},\left[M_{i}\right]^{<\lambda} \subseteq M_{i}$. Put $\delta_{i}=M_{i} \cap \lambda^{+}$ $<\lambda^{+}$. Notice that $\operatorname{cf}\left(\delta_{i}\right)=\lambda$. Lèt $p^{\prime}=\left(V^{\prime}, U^{\prime}, X^{\prime}, h_{1}^{\prime}, \ldots, h_{n}^{\prime}\right)$ where V $=\left\{\delta_{1}, \ldots, \delta_{n}\right\}, U=\left\{\delta_{n}\right\}, X=\emptyset, h_{i}\left(\delta_{n}\right)=\delta_{i}$. Choose $p=\left(V, U, X, h_{1}, \ldots, h_{n}\right)$ $\leqq p^{\prime}$ forcing $f\left(\delta_{n}\right)=\xi$ for some $\xi<\lambda$. Let $\psi_{n}\left(\pi, x_{1}, \ldots, x_{n}\right)$ be the following formula. π is an order isomorphism $V \rightarrow \lambda^{+}, \pi\left(\delta_{i}\right)=x_{i}$ and $\pi(p)$ forces that $f\left(x_{n}\right)=\xi$. Let $\delta_{n+1}=\lambda$. For $0 \leqq i<n$ define $\psi_{i}\left(\pi, x_{1}, \ldots, x_{i}\right)$ meaning that $\pi: V \cap \delta_{i+1} \rightarrow \lambda^{+}$is order preserving and there are arbitrarily large $x_{i+1}<\lambda^{+}$and $\pi^{\prime} \supseteqq \pi$ such that $\psi_{i+1}\left(\pi^{\prime}, x_{1}, \ldots, x_{i+1}\right)$ holds.

Claim 4. $\psi_{i}\left(\operatorname{id} \mid V \cap \delta_{i+1}, \delta_{1}, \ldots, \delta_{i}\right)$ for $0 \leqq i \leqq n$.
Proof. This is obvious for $i=n$. If $\psi_{i}\left(\mathrm{id} \mid V \cap \delta_{i+1}, \delta_{1}, \ldots, \delta_{i}\right)$ fails, then, by definition, there would be a bound for the possible x_{i+1} values for which $\psi_{i+1}\left(\pi^{\prime}, \delta_{1}, \ldots, \delta_{i}, x_{i+1}\right)$ holds for some $\pi^{\prime} \supseteqq \mathrm{id} \mid V \cap \delta_{i+1}$. But then this bound is smaller than δ_{i+1} so ψ_{i+1} fails, too.

Returning to the proof of Lemma 8 , we define the following function t. Let $\left\{a_{1}, \ldots, a_{n}\right\},\left\{b_{1}, \ldots, b_{n}\right\}$ be as in the definition of the one-edge amal-
gamation. Put, for $1 \leqq i \leqq n, t(i)=j$ iff $b_{j-1}<a_{i}<b_{j}$ where $b_{0}=0, b_{n+1}$ $=2 n+1$. Set $\pi_{0}=\mathrm{id} \mid V \cap \delta_{1}$. We know that $\psi_{0}\left(\pi_{0}\right)$ holds. By induction on $1 \leqq i \leqq n$ select π_{i} in such a way that $\pi_{i+1} \supseteqq \pi_{i}$, if we let $\pi_{i}\left(\delta_{i}\right)=\delta_{i}^{\prime}$ then $\psi_{i}\left(\pi_{i}, \delta_{1}^{\prime}, \ldots, \delta_{i}^{\prime}\right)$ holds and $\sup \left(V \cap \delta_{t(i)}\right)<\delta_{i}^{\prime}$ and $\operatorname{Ran}\left(\pi_{i}\right)<\delta_{t(i)}$. This is possible as M_{1}, \ldots, M_{n} are elementary submodels. Finally, $\pi_{n}(p)$ is a condition interlacing with p by e and it forces that $f\left(\delta_{n}^{\prime}\right)=\xi$. Now if we take the union of them plus the edge $\left\{\delta_{n}, \delta_{n}^{\prime}\right\}$ then an argument as in Lemma 7 shows that we get a condition which forces a contradiction.

THEOREM 3. If GCH holds there is a cardinal, cofinality, and GCH preserving (class) notion of forcing in which for every n, e, and regular $\lambda \geqq \omega$ there is a λ^{+}-chromatic graph on λ^{+}all whose finite subgraphs are subgraphs of some elements of $\mathcal{K}^{n, e}$.

Proof. For $\lambda \geqq \omega$ regular let Q_{λ} be the product of $Q_{n, e, \lambda}$ of Theorem 2 with finite supports if $\lambda=\omega$, and complete supports otherwise. Notice that Q_{λ} is a λ^{+}-c.c. notion of forcing of cardinal λ^{+}. For λ singular let Q_{λ} be the trivial forcing.

Our notion of forcing is the Easton-support limit of the Q_{λ} 's, i.e., $P_{\alpha+1}=P_{\alpha} \oplus Q_{\alpha}$ with Q_{α} defined in the ground model. For α limit, $p \in P_{\alpha}$ iff $p(\beta) \in Q_{\beta}$ for all $\beta<\alpha$, and $|\operatorname{Dom}(p) \cap \kappa|<\kappa$ for $\kappa \leqq \alpha$ regular.

Given n, e, and λ as in the statement of the Theorem, the extended model can be thought of as the generic extension of some model first with $Q_{n, e, \lambda}$ then with P_{λ} which is of cardinal λ so it cannot change the chromatic number of a graph from λ^{+}to λ.

Assume that the cofinality of some ordinal α collapses to a regular $\lambda . P$ splits as $P_{\lambda} \oplus Q_{\lambda} \oplus R$ where R is $\leqq \lambda$-closed, $\left|P_{\lambda}\right| \leqq \lambda$ and Q_{λ}.is λ^{+}-c.c., so in fact the λ^{+}-c.c. $P_{\lambda+1}$ changes the cofinality of α which is impossible. This also implies that no cardinals are collapsed.

If τ is regular, all subsets of τ are added by the τ^{+}-c.c. $P_{\tau+1}$ of cardinal τ^{+}so 2^{τ} remains τ^{+}. If τ is singular we must bound $\tau^{\mathrm{cf}(\tau)}$. The sets of size $\mathrm{cf}(\tau)$ are added by $P_{\mathrm{cf}(\tau)+1}$ so we can bound the new value of $\tau^{\mathrm{cf}(\tau)}$ by $\tau^{\mathrm{cf}(\tau)^{+}}=\tau^{+}$.

References

[1] P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar., 17 (1966), 61-99.
[2] P. Erdös, A. Hajnal and S. Shelah, On some general properties of chromatic number, in: Topics in Topology, Keszthely (Hungary), 1972, Coll. Math. Soc. J. Bolyai 8, pp. 243-255.
[3] P. Erdős and R. Rado, Partition relations connected with the chromatic number of graphs, Journal of London Math. Soc., 34 (1959), 63-72.
[4] P. Erdős and R. Rado, A construction of graphs without triangles having pre-assigned order and chromatic number, Journal of London Math. Soc., 35 (1960), 445448.
[5] A. Hajnal and P. Komjáth, What must and what need not be contained in a graph of uncountable chromatic number?, Combinatorica, 4 (1984), 47-52.
[6] P. Komjáth, The colouring number, Proc. London Math. Soc., 54 (1987), 1-14.
[7] W. Taylor, Atomic compactness and elementary equivalence, Fund. Math., 71 (1971), 103-112.
[8] W. Taylor, Problem 42, Comb. Structures and their applications, Proc. of the Calgary International Conference, 1969.
(Received February 11, 1994)
DEPARTMENT OF COMPUTER SCIENCE
EÖTVÖS UNIVERSITY
BUDAPEST, MÚZEUM KRT. 6-8
1088 HUNGARY
INSTITUTE OF MATHEMATICS
hebrew university
gIVAT RAM
JERUSALEM
ISRAEL

[^0]: * The first author acknowledges the support of the Hungarian OTKA grant 2117.
 ** Publication No. 346 on the second author's list. His research was partially covered by the Israel Academy Basic Research Fund.

