ON TAYLOR'S PROBLEM

P. KOMJÁTH (Budapest)* and S. SHELAH (Jerusalem)**

By extending finite theorems Erdős and Rado proved that for every infinite cardinal κ there is a κ -chromatic triangle-free graph [3]. In later work they were able to add the condition that the graph itself be of cardinal κ [4]. The next stage, eliminating 4-circuits, turned out to be different, as it was shown by Erdős and Hajnal [1] that every uncountably chromatic graph contains a 4-circuit. In fact, every finite bipartite graph must be contained, but odd circuits can be omitted up to a certain length. This solved the problem "which finite graphs must be contained in every κ -chromatic graph" for every $\kappa > \omega$. The next result was given by Erdős, Hajnal, and Shelah [2], namely, every uncountably chromatic graph contains all odd circuits from some length onward. They, as well as Taylor, asked the following problem. If κ , λ are uncountable cardinals and X is a κ -chromatic graph, is there a λ -chromatic graph Y such that every finite subgraph of Y appears as a subgraph of X. In [2] the following much stronger conjecture was posed. If X is uncountably chromatic, then for some n it contains all finite subgraphs of the so-called *n*-shift graph. This conjecture was, however, disproved in [5].

Here we give some results on Taylor's conjecture when the additional hypotheses $|X| = \kappa$, $|Y| = \lambda$ are imposed.

We describe some (countably many) classes $\mathcal{K}^{n,e}$ of finite graphs and prove that if $\lambda^{\aleph_0} = \lambda$ then every λ^+ -chromatic graph of cardinal λ^+ contains, for some n, e, all members of $\mathcal{K}^{n,e}$ as subgraphs. On the other hand, it is consistent for every regular infinite cardinal κ that there is a κ^+ -chromatic graph on κ^+ that contains finite subgraphs only from $\mathcal{K}^{n,e}$. We get, therefore, some models of set theory, where the finite subraphs of graphs with $|X| = \operatorname{Chr}(X) = \kappa^+$ for regular uncountable cardinals κ are described.

We notice that in [6] all countable graphs are described which appear in every graph with uncountable coloring number.

NOTATION. \overline{x} will denote a finite string of ordinals. $\overline{x} < \overline{y}$ means that $\max(\overline{x}) < \min(\overline{y})$.

^{*} The first author acknowledges the support of the Hungarian OTKA grant 2117.

^{**} Publication No. 346 on the second author's list. His research was partially covered by the Israel Academy Basic Research Fund.

218

DEFINITION. Assume that $1 \leq n < \omega, e : \{1, 2, \ldots, 2n\} \rightarrow \{0, 1\}$ is a function with $|f^{-1}(0)| = n$. We are going to define the structures in $\mathcal{K}^{n,e}$ as follows. They will be of the form $H = (V, <, U, X, h_1, \ldots, h_n)$ where (V, <) is a finite linearly ordered set, $U \subseteq V$, X is a graph on $U, h_i : U \rightarrow V$ satisfy $h_1(x) < \cdots < h_n(x) = x$ for $x \in U$. The elements in $\mathcal{K}_0^{n,e}$ are those isomorphic to $(V, <, U, X, h_1, \ldots, h_n)$ where $V = \{1, 2, \ldots, n\}$, < is the natural ordering, $U = \{n\}, X = \emptyset, h_i(n) = i \ (1 \leq i \leq n).$

If $H = (V, <, U, X, h_1, \ldots, h_n)$ is a structure of the above form, and $x \in V$, we form the edgeless amalgamation $H' = H +_x H$ as follows. Put $H' = H +_x H = (V', <', U', X', h'_1, \ldots, h'_n)$ where (V', <') has the <'-ordered decomposition $V' = W \cup V_0 \cup V_1$ (i.e., $W < V_0 < V_1$). If we put $V'_i = W \cup V_i$ for i < 2 then the structures

$$(V'_i, <' | V'_i, U' \cap V'_i, h'_1 | V'_i, \dots, h'_n | V'_i)$$

are both isomorphic to H for i < 2 and $\min(V_i)$ corresponds to x under the isomorphisms.

If $H = (V, <, U, X, h_1, \ldots, h_n)$ is a structure of the above form, and $x \in U$, we also form the one-edge amalgamation $H' = H *_x H$ as follows. Enumerate in increasing order $e^{-1}(0)$ as $\{a_1, \ldots, a_n\}$ and $e^{-1}(1)$ as $\{b_1, \ldots, b_n\}$. Put $H' = (V', <', U', X', h'_1, \ldots, h'_n)$ where (V', <') has the ordered decomposition $V' = V_0 \cup V_1 \cup \cdots \cup V_{2n}$ (i.e., $V_0 < V_1 < \cdots < V_{2n}$); $H' | (V_0 \cup \bigcup \{V_i : e(i) = \varepsilon\})$ are isomorphic to H ($\varepsilon = 0, 1$) if x_0, x_1 are the points corresponding to x, then $h'_i(x_0) = \min(V_{a_i}), h'_i(x_1) = \min(V_{b_i})$, and the only extra edge in X' is $\{x_0, x_1\}$.

We then put

$$\mathcal{K}_{t+1}^{n,e} = \left\{ H +_x H : H = (V, <, U, \ldots) \in \mathcal{K}_t^{n,e}, x \in V \right\}$$
$$\cup \left\{ H *_y H : H = (V, <, U, \ldots) \in \mathcal{K}_t^{n,e}, y \in U \right\},$$

and finally $\mathcal{K}^{n,e} = \bigcup \{ \mathcal{K}^{n,e}_t : t < \omega \}.$

THEOREM 1. If $|G| = \operatorname{Chr}(G) = \lambda^+$, $\lambda^{\aleph_0} = \lambda$, then, for some n, e, G contains every graph in $\mathcal{K}^{n,e}$ as subgraph.

We start with some technical observations.

LEMMA 1. If $t_n : \lambda^+ \to \lambda^+$ are functions $(n < \omega)$, then there is a λ -coloring $F : \lambda^+ \to \lambda$ such that for $F(\alpha) = F(\beta)$, $i, j < \omega, \alpha < t_i(\beta) < t_j(\alpha)$ may not hold.

PROOF. As $\lambda^{\aleph_0} = \lambda$, it suffices to show this for two functions $t_0(\alpha)$, $t_1(\alpha)$, with $t_1(\alpha) > \alpha$. We prove the stronger statement that there is a function $F: \lambda^+ \to [\lambda]^{\lambda}$ such that if $\alpha < t_0(\beta) < t_1(\alpha)$ then $F(\alpha) \cap F(\beta) = \emptyset$. Let $\langle N_{\xi} : \xi < \lambda^+ \rangle$ be a continuous, increasing sequence of elementary submodels

of $\langle \lambda^+; \langle , t_0, t_1, \ldots \rangle$ with $\gamma_{\xi} = N_{\xi} \cap \lambda^+ \langle \lambda^+, C = \{\gamma_{\xi} : \xi < \lambda^+\}$ is closed, unbounded. We define $F | \gamma_{\xi}$ by transfinite recursion on ξ . If $F | \gamma_{\xi}$ is given, and β has $t_0(\beta) < \gamma_{\xi} \leq \beta < \gamma_{\xi+1}$, by elementarity $\tau = \sup \{ t_1(\alpha) : \alpha < t_0(\beta) \} < \gamma_{\xi}$, and there is a β' with $t_0(\beta') = t_0(\beta), \tau < \beta' < \gamma_{\xi}$. Put $H(\beta) = F(\beta')$, otherwise, i.e., when $\gamma_{\xi} \leq t_0(\beta)$, put $H(\beta) = \lambda$. To get $F | [\gamma_{\xi}, \gamma_{\xi+1})$, we disjointize $\{H(\beta) : \gamma_{\xi} \leq \beta < \gamma_{\xi+1}\}$, i.e., find $F(\beta) \subseteq H(\beta)$ of cardinal λ such that $F(\beta_0) \cap F(\beta_1) = \emptyset$ for $\beta_0 \neq \beta_1$. We show that this F works. Assume that $F(\alpha), F(\beta)$ are not disjoint. By induction we can assume that either α or β is between γ_{ξ} and $\gamma_{\xi+1}$. By the disjointization process some of them must be smaller than γ_{ξ} . If $\beta < \gamma_{\xi} \leq \alpha < \gamma_{\xi+1}$ then $t_0(\beta) < \gamma_{\xi}$ as N_{ξ} is an elementary submodel, so $t_0(\beta) < \alpha$. Assume now that $\alpha < \gamma_{\xi} \leq \beta < \gamma_{\xi+1}$. Our construction then selected a β' with $t_0(\beta') = t_0(\beta)$ and $F(\beta) \subseteq H(\beta) = F(\beta')$ which is, by the inductive hypothesis, disjoint from $F(\alpha)$.

LEMMA 2. If $C = \{\delta_{\xi} : \xi < \lambda^+\}$ is a club then there is a function $K : [\lambda^+]^{\aleph_0} \to \lambda$ such that if

$$K(A) = K(B), \quad A \cap [\delta_{\xi}, \delta_{\xi+1}) \neq \emptyset \quad and \quad B \cap [\delta_{\xi}, \delta_{\xi+1}) \neq \emptyset$$

for some $\xi < \lambda^+$ then $A \cap \delta_{\xi+1} = B \cap \delta_{\xi+1} =$ and so $A \cap B$ is an initial segment both in A and B.

PROOF. Fix for every $\beta < \lambda^+$ an into function $F_{\beta} : \beta \to \lambda$ such that for $\beta_0 < \beta_1 < \beta_2$, $F_{\beta_1}(\beta_0) \neq F_{\beta_2}(\beta_1)$ holds. This can be done by a straightforward inductive construction.

inductive construction. If $A \in [\lambda^+]^{\aleph_0}$ put $X(A) = \{\xi : A \cap [\delta_{\xi}, \delta_{\xi+1}) \neq \emptyset\}$. Let $\operatorname{tp}(X(A)) = \eta$. Enumerate X(A) as $\{\tau_{\theta}^A : \theta < \eta\}$. Let K(A) be a function with domain η , at $\theta < \eta$, if $\tau_{\theta}^A = \xi$, let

$$K(A)(\theta) = \left\langle \left\{ F_{\tau_{\theta}^{A}}(\tau_{\theta'}^{A}) : \theta' < \theta \right\}, \left\{ F_{\delta_{\xi+1}}(y) : y \in A \cap \delta_{\xi+1} \right\} \right\rangle.$$

Assume now that $K(A) = K(B), \xi \in X(A) \cap X(B)$. If $\xi = \tau_{\theta}^A = \tau_{\theta'}^B$ then $\theta = \theta'$ by the properties of F above. The second part of the definition of K(A) gives that $A \cap \delta_{\xi+1} = B \cap \delta_{\xi+1}$. \Box

PROOF OF THEOREM 1. We first show that one can assume that G is λ^+ -chromatic on every closed unbounded set.

LEMMA 3. There is a function $f : \lambda^+ \to \lambda^+$ such that if $C \subseteq \lambda^+$ is a closed unbounded set then $\bigcup \{ [\alpha, f(\alpha)] : \alpha \in C \}$ is λ^+ -chromatic.

PROOF. Assume that the statement of the Lemma fails. Put $f_0(\alpha) = \alpha$, for $n < \omega$ let C_n witness that $f_n : \lambda^+ \to \lambda^+$ is not good and $f_{n+1}(\alpha)$

= min $(C_n - (\alpha + 1))$. As, by assumption, $\bigcup \{ [\alpha, f_n(\alpha)] : \alpha \in C_n, n < \omega \}$ is $\leq \lambda$ -chromatic, there is a

$$\gamma \notin \bigcup \Big\{ [\alpha, f_n(\alpha)] : \alpha \in C_n, n < \omega \Big\}, \quad \gamma > \min \left(\bigcap \{ C_n : n < \omega \} \right).$$

Clearly, $\gamma \notin C_n$ $(n < \omega)$, and if now $\alpha_n = \max(\gamma \cap C_n)$, then $\alpha_n < \gamma$, and $\alpha_{n+1} < \alpha_n$ $(n < \omega)$, a contradiction. \Box

By slightly re-ordering λ^+ we can state Lemma 3 as follows. If $C \subseteq \lambda^+$ is a closed unbounded set, then $S(C) = \bigcup \{ [\lambda \alpha, \lambda(\alpha + 1)) : \alpha \in C \}$ is λ^+ chromatic. Put, for $\tau < \lambda$, $C \subseteq \lambda^+$ a club set, $S_{\tau}(C) = \bigcup \{\lambda \alpha + \tau : \alpha \in C\}$. If, for every $\tau < \lambda$ there is some closed unbounded C_{τ} such that $S_{\tau}(C_{\tau})$ is λ -chromatic, then for $C = \bigcap \{C_{\tau} : \tau < \lambda\}$, S(C) is the union of at most λ graphs, each $\leq \lambda$ -chromatic, a contradiction.

There is, therefore, a $\tau < \lambda$ such that $S_{\tau}(C)$ is λ^+ -chromatic whenever C is a closed unbounded set. Mapping $\lambda \alpha + \tau$ to α we get a graph on λ^+ , order-isomorphic to a subgraph of the original graph which is λ^+ -chromatic on every closed unbounded set. From now on we assume that our original graph G has this property.

We are going to build a model $M = \langle \lambda^+; \langle \lambda, G, \ldots \rangle$ by adding countably many new functions.

For *n*, *e* as in the Definition, φ a first order formula, let $G_{\varphi}^{n,e}$ be the following graph. The vertex set is $V_{\varphi} = \{\langle \overline{x}_0, \ldots, \overline{x}_n \rangle : \overline{x}_0 < \cdots < \overline{x}_n, M \models \varphi(\overline{x}_0, \ldots, \overline{x}_n) \}$ and $\langle \overline{x}_0, \ldots, \overline{x}_n \rangle$, $\langle \overline{y}_0, \ldots, \overline{y}_n \rangle$ are joined, if $\overline{x}_0 = \overline{y}_0$, $\{\overline{x}_1, \ldots, \overline{x}_n\}, \{\overline{y}_1, \ldots, \overline{y}_n\}$ interlace by *e*, and finally $\{\min(\overline{x}_n), \min(\overline{y}_n)\} \in G$. We introduce a new quantifier $Q^{n,e}$ with $Q^{n,e}\varphi$ meaning that the above graph, $G_{\varphi}^{n,e}$ is λ^+ -chromatic. If, however, $\operatorname{Chr}(G_{\varphi}^{n,e}) \leq \lambda$, we add a good λ -coloring to *M*. We also assume that *M* is endowed with Skolem functions.

LEMMA 4. There exist n, e and $\alpha_1 < \cdots < \alpha_n < \lambda^+$ such that $t(\alpha_i) < \alpha_{i+1}$ holds whenever $t : \lambda^+ \to \lambda^+$ is a function in M and, moreover if $\overline{x}_0 \subseteq \alpha_1, \ \overline{x}_i \subseteq [\alpha_i, \alpha_{i+1}) \ (1 \leq i < n), \ \overline{x}_n \subseteq [\alpha_n, \lambda^+), \ \min(\overline{x}_i) = \alpha_i, \ and \ \varphi \ is$ a formula, $\overline{M} \models \varphi(\overline{x}_0, \ldots, \overline{x}_n)$, then $M \models Q^{n,e}\varphi$.

PROOF. Assume that the statement of the lemma does not hold, i.e., for every $n, e, \alpha_1, \ldots, \alpha_n$ there exist $\overline{x}_0, \ldots, \overline{x}_n$ contradicting it.

Let, for $\alpha < \lambda^+$, $B_\alpha \subseteq \lambda^+$ be a countable set such that $\alpha \in B_\alpha$, and if $n, e, \alpha_1, \ldots, \alpha_n \in B_\alpha$ are given, then a counter-example as above is found with $\overline{x}_0, \ldots, \overline{x}_n \subseteq B_\alpha$. We require that B_α be Skolem-closed. Let B_α^+ be the ordinal closure of B_α , $B_\alpha^+ = \{\gamma(\alpha, \xi) : \xi \leq \xi_\alpha\}$ be the increasing enumeration, $\alpha = \gamma(\alpha, \tau_\alpha)$. Let $\{M_\xi : \xi < \lambda^+\}$ be a continuous, increasing chain of elementary submodels of M such that $\delta_\xi = M_\xi \cap \lambda^+ < \lambda^+$. Clearly, $C = \{\delta_\xi : \xi < \lambda^+\}$ is a closed, unbounded set. We take a coloring of the sets $\{B_\alpha^+ : \alpha < \lambda^+\}$ by λ colors that satisfies Lemma 2. Also, if α, β get the same color then the structures $(B_\alpha^+; B_\alpha, M)$ and $(B_\beta^+; B_\beta, M)$ are isomorphic

220

ON TAYLOR'S PROBLEM

and we also require that if $\overline{x}_0, \ldots, \overline{x}_n \subseteq B_\alpha$ and $\overline{y}_0, \ldots, \overline{y}_n \subseteq B_\beta$ are in the same positions, i.e., are mapped onto each other by the order isomorphism between B_α and B_β and $(\overline{x}_0, \ldots, \overline{x}_n)$ is colored by the λ -coloring of $G_{\varphi}^{\sigma, e}$, then $(\overline{y}_0, \ldots, \overline{y}_n)$ is also colored and gets the same color. All this is possible, as $\lambda^{\aleph_0} = \lambda$. We also assume that our coloring satisfies Lemma 1 with some functions $\{t_n : n < \omega\}$ for which $B_\alpha^+ = \{t_n(\alpha) : n < \omega\}$.

As G is λ^+ -chromatic on C, there are $\alpha < \beta$, both in C, joined in G, getting the same color. By our conditions, $B^+_{\alpha} \cap B^+_{\beta}$ is initial segment in both, and beyond that they do not even intersect into the same complementary interval of C. As our structures are isomorphic, this holds for B_{α} , B_{β} , as well.

We now let $B_{\alpha}^{+} = \bigcup \{B_{\alpha}^{+}(i) : i < i_{\alpha}\}, B_{\beta}^{+} = \bigcup \{B_{\beta}^{+}(i) : i < i_{\beta}\}$ be the ordered decompositions given by the following equivalence relations. For $x, y \in B_{\alpha}^{+}, x \leq y, x \sim y$ if either $[x, y] \cap B_{\beta}^{+} = \emptyset$ or $[x, y] \cap B_{\beta}^{+} \supseteq [x, y] \cap B_{\alpha}^{+}$. Similarly for B_{β}^{+} . By Lemma 2, $B_{\alpha}^{+} \cap B_{\beta}^{+} = B_{\alpha}^{+}(0) = B_{\beta}^{+}(0)$.

LEMMA 5. i_{α} , i_{β} are finite.

PROOF. Otherwise, as B^+_{α} , B^+_{β} are ordinal closed, $\gamma = \min(B^+_{\alpha}(\omega))$ = $\min(B^+_{\beta}(\omega))$ is in $B^+_{\alpha} \cap B^+_{\beta}$, so $\gamma \in B^+_{\alpha}(0)$, a contradiction. \Box

Enumerate

$$\left\{ \xi \leq \xi_{\alpha} : \text{ there is a } 0 < i < \omega \text{ such that either } \gamma(\alpha, \xi) = \min\left(B_{\alpha}^{+}(i)\right) \right\}$$
or $\gamma(\beta, \xi) = \min\left(B_{\beta}^{+}(i)\right) \left\} \cup \left\{\tau_{\alpha}\right\}$

as $\xi_1 < \xi_2 < \cdots < \xi_n$. By Lemma 1, if $\alpha < \beta$, $\alpha = \min(B_{\alpha}^+(i_{\alpha}-1))$, $\beta = \min(B_{\beta}^+(i_{\beta}-1))$, $B_{\alpha}^+(i_{\alpha}-1) < B_{\beta}^+(i_{\beta}-1)$. So $\xi_n = \tau_{\alpha}$. We let $\alpha_i = \gamma(\alpha, \xi_i)$, $\beta_i = \gamma(\beta, \xi_i)$. If $\alpha_i = \min(B_{\alpha}^+(j))$ then $\alpha_i \in B_{\alpha}$ and, by isomorphism, $\beta_i \in B_{\beta}$. We show that for every i < n, $t \in M$, $t(\alpha_i) < \alpha_{i+1}$ and $t(\beta_i) < \beta_{i+1}$. As $(B_{\alpha}^+; B_{\alpha}, M)$ and $(B_{\beta}^+; B_{\beta}, M)$ are isomorphic, for every i it suffices to show this either for α_i or for β_i . For i = n - 1 this follows from the fact that α (as well as β) is from C. If i < n then either α_{i-1} and α_i are separated by an element of B_{β}^+ or vice versa. Assume the former. Then, by Lemma 2, α_{i-1} and α_i are in different intervals of C so necessarily $t(\alpha_{i-1}) < \alpha_i$ holds.

Let e be the interlacing type of $\{\alpha_i : 1 \leq i \leq n\}$, $\{\beta_i : 1 \leq i \leq n\}$. By our indirect assumption, there are a formula φ , \overline{x}_i , \overline{y}_i $(0 \leq i \leq n)$ in the same position in B_{α} , B_{β} such that $\overline{x}_i \subseteq [\alpha_i, \alpha_{i+1})$, $\overline{y}_i \subseteq [\beta_i, \beta_{i+1})$ etc, and $M \models \varphi(\overline{x}_0, \ldots, \overline{x}_n) \land \varphi(\overline{y}_0, \ldots, \overline{y}_n)$ and $(\overline{x}_0, \ldots, \overline{x}_n)$, $(\overline{y}_0, \ldots, \overline{y}_n)$ are joined in $G_{\varphi}^{n,e}$, but they get the same color in the good coloring of $G_{\varphi}^{n,e}$, a contradiction which proves Lemma 4. \Box

Sh:346

Now fix $n, e, \text{ and } \alpha_1 < \cdots < \alpha_n < \lambda^+$ as in Lemma 4. We call a formula φ dense if there exist $\overline{x}_0 \subseteq \alpha_1, \ \overline{x}_i \subseteq [\alpha_i, \alpha_{i+1}) \ (1 \leq i < n), \ \overline{x}_n \subseteq [\alpha_n, \lambda^+), \min(\overline{x}_i) = \alpha_i$ such that $M \models \varphi(\overline{x}_0, \dots, \overline{x}_n)$. If $H = (V, <, U, X, \overline{h}_1, \dots, h_n) \in \mathcal{K}^{n,e}, V = \{0, 1, \dots, s\}, \text{ a } \varphi$ -rich copy of H is some string $(\overline{y}_0, \dots, \overline{y}_s)$ such that $\overline{y}_0 < \cdots < \overline{y}_s$, if $\{i, j\} \in X$ then $\{\min(\overline{y}_i), \min(\overline{y}_j)\} \in G$ and for every $v \in U, M \models \varphi(\overline{y}_0, \overline{y}_{h_1(v)}, \dots, \overline{y}_{h_n(v)})$.

LEMMA 5. For every $H \in \mathcal{K}^{n,e}$ if φ is dense there is a φ -rich copy of H in G.

LEMMA 6. For every $H = (V, <, U, X, h_1, ..., h_n) \in \mathcal{K}^{n,e}$, $q \in U$, if φ is dense, there is a φ -rich copy $(\overline{y}_0, \ldots, \overline{y}_s)$ of H such that $\min(\overline{y}_{h_i(q)}) = \alpha_i$ for $1 \leq i \leq n$.

We notice that Lemma 5 obviously concludes the proof of Theorem 1 and Lemma 6 clearly implies Lemma 5. Also, they trivially hold for $H \in \mathcal{K}_0^{n,e}$. We prove these two lemmas simultaneously.

CLAIM 1. If Lemma 5 holds for some H then Lemma 6 holds for H, as well.

PROOF. Assume that Lemma 5 holds for $H = (V, <, U, X, h_1, \ldots, h_n) \in \mathcal{K}^{n,e}$ and for any dense φ but Lemma 6 fails for a certain $q \in U$ and a dense φ . This statement can be written as a formula $\theta(\alpha_1, \ldots, \alpha_n)$. As φ is dense, $M \models \varphi(\overline{x}_0, \ldots, \overline{x}_n)$ for some appropriate strings, so also $M \models \psi(\overline{x}_0, \ldots, \overline{x}_n)$ where $\psi = \varphi \wedge \theta (\min(\overline{x}_1), \ldots, \min(\overline{x}_n))$. As ψ is dense, by Lemma 5 there is a ψ -rich copy $(\overline{y}_0, \ldots, \overline{y}_s)$ of H but then $M \models \theta (\min(\overline{y}_{h_1(q)}), \ldots, \min(\overline{y}_{h_n(q)}))$, a contradiction. \Box

CLAIM 2. If Lemma 6 holds for $H = (V, <, U, X, h_1, \ldots, h_n)$ and $x \in V$ then Lemma 5 holds for $H' = H +_x H$.

PROOF. Select $q \in U$ such that $x = h_i(q)$ for some $1 \leq i \leq n$. By Lemma 6, there is a φ -rich copy $(\overline{y}_0, \ldots, \overline{y}_s)$ of H such that $\min(\overline{y}_{h_i(q)}) = \alpha_i$ for $1 \leq i \leq n$. As $\alpha_i > t(\alpha_{i-1})$ holds for every function t in the skolemized structure M there are φ -rich copies of H which agree with this below x but their x elements are arbitrarily high. We can, therefore, get a φ -rich copy of H'. \Box

CLAIM 3. If Lemma 6 holds for $H = (V, <, U, X, h_1, \ldots, h_n)$ and $y \in U$ then Lemma 5 holds for $H' = H *_y H$.

PROOF. Let $(\overline{y}_0, \ldots, \overline{y}_s)$ be a φ -rich copy of H such that $\min(\overline{y}_{h_i(q)}) = \alpha_i$ for $1 \leq i \leq n$. The elements in the $(\overline{y}_0, \ldots, \overline{y}_s)$ string can be redistributed as $(\overline{x}_0, \ldots, \overline{x}_n)$ such that $\min(\overline{x}_i) = \alpha_i$ and then the fact that they form a φ -rich copy of H can be written as $M \models \psi(\overline{x}_0, \ldots, \overline{x}_n)$ for some formula ψ . As ψ is dense, by Lemma 4, $M \models Q^{n,e}\psi$ holds, so there are two strings, $(\overline{x}_0, \ldots, \overline{x}_n)$ and $(\overline{x}'_0, \ldots, \overline{x}'_n)$ both satisfying ψ , interlacing by e, and $\{\min(\overline{x}_n), \min(\overline{x}'_n)\} \in G$. This, however, gives a φ -rich copy of H'. \Box

222

THEOREM 2. If n, e are as in the Definition, λ is an infinite cardinal, $\lambda^{<\lambda} = \lambda$, then there exists a λ^+ -c.c., $< \lambda$ -closed poset $Q = Q_{n,e,\lambda}$ which adds a λ^+ -chromatic graph of cardinal λ^+ all whose finite subgraphs are subgraphs of some element of $\mathcal{K}^{n,e}$.

PROOF. Put $q = (V, U, X, h_1, \ldots, h_n) \in Q$ if $V \in [\lambda^+]^{<\lambda}$, $U \subseteq V$, $X \subseteq [V]^2$, every h_i is a function $U \to V$ with $h_1(x) < \cdots < h_n(x) = x$ for $x \in U$ and every finite substructure of (q, <) is a substructure of some element of $\mathcal{K}^{n,e}$. Order Q as follows. $q' = (V', U', X', h'_1, \ldots, h'_n) \leq q = (V, U, X, h_1, \ldots, h_n)$ iff $V' \supseteq V$, $U = U' \cap V$, $X = X' \cap [V]^2$, $h'_i \supseteq h_i$ $(1 \leq i \leq n)$. Clearly, (Q, \leq) is $< \lambda$ -closed.

LEMMA 7. (Q, \leq) is λ^+ -c.c.

PROOF. By the usual Δ -system arguments it suffices to show that if the conditions $q^i = (V \cup V^i, U^i, X^i, h_1^i, \ldots, h_n^i)$ are order isomorphic $(i < 2), V < V^0 < V^1$ then they are compatible. A finite subset of $V \cup V^0 \cup V^1$ can be included into some $s \cup s_0 \cup s_1$ where s_0 and s_1 are mapped onto each other by the isomorphism between q_0 and q_1 . By condition, $q|s \cup s_0$ is a substructure of some structure $H \in \mathcal{K}^{n,e}$. But then $q|s \cup s_0 \cup s_1$ is a substructure of an edgeless amalgamation of H. \Box

If $G \subseteq Q$ is generic then $Y = \bigcup \{X : (V, U, X, \ldots) \in G\}$ is a graph on a subset of λ^+ all whose finite subgraphs are subgraphs of some member of $\mathcal{K}^{n,e}$. The following lemma clearly concludes the proof of Theorem 2.

LEMMA 8. $\operatorname{Chr}(Y) = \lambda^+$.

PROOF. Assume, toward a contradiction, that 1 forces that $f: \lambda^+ \to \lambda$ is a good coloring of Y. Let $M_1 \prec M_2 \prec \cdots \prec M_n$ be elementary submodels of $\left(H\left(\left(2^{\lambda}\right)^+\right); Q, f, \ldots,\right)$ with $\lambda \subseteq M_0, [M_i]^{<\lambda} \subseteq M_i$. Put $\delta_i = M_i \cap \lambda^+ < \lambda^+$. Notice that $cf(\delta_i) = \lambda$. Let $p' = (V', U', X', h'_1, \ldots, h'_n)$ where $V = \{\delta_1, \ldots, \delta_n\}, U = \{\delta_n\}, X = \emptyset, h_i(\delta_n) = \delta_i$. Choose $p = (V, U, X, h_1, \ldots, h_n) \leq p'$ forcing $f(\delta_n) = \xi$ for some $\xi < \lambda$. Let $\psi_n(\pi, x_1, \ldots, x_n)$ be the following formula. π is an order isomorphism $V \to \lambda^+, \pi(\delta_i) = x_i$ and $\pi(p)$ forces that $f(x_n) = \xi$. Let $\delta_{n+1} = \lambda$. For $0 \leq i < n$ define $\psi_i(\pi, x_1, \ldots, x_i)$ meaning that $\pi : V \cap \delta_{i+1} \to \lambda^+$ is order preserving and there are arbitrarily large $x_{i+1} < \lambda^+$ and $\pi' \supseteq \pi$ such that $\psi_{i+1}(\pi', x_1, \ldots, x_{i+1})$ holds.

CLAIM 4. $\psi_i(\text{id} | V \cap \delta_{i+1}, \delta_1, \dots, \delta_i)$ for $0 \leq i \leq n$.

PROOF. This is obvious for i = n. If $\psi_i(\text{id} | V \cap \delta_{i+1}, \delta_1, \ldots, \delta_i)$ fails, then, by definition, there would be a bound for the possible x_{i+1} values for which $\psi_{i+1}(\pi', \delta_1, \ldots, \delta_i, x_{i+1})$ holds for some $\pi' \supseteq \text{id} | V \cap \delta_{i+1}$. But then this bound is smaller than δ_{i+1} so ψ_{i+1} fails, too. \Box

Returning to the proof of Lemma 8, we define the following function t. Let $\{a_1, \ldots, a_n\}, \{b_1, \ldots, b_n\}$ be as in the definition of the one-edge amal224

gamation. Put, for $1 \leq i \leq n$, t(i) = j iff $b_{j-1} < a_i < b_j$ where $b_0 = 0$, $b_{n+1} = 2n + 1$. Set $\pi_0 = \operatorname{id} |V \cap \delta_1$. We know that $\psi_0(\pi_0)$ holds. By induction on $1 \leq i \leq n$ select π_i in such a way that $\pi_{i+1} \supseteq \pi_i$, if we let $\pi_i(\delta_i) = \delta'_i$ then $\psi_i(\pi_i, \delta'_1, \ldots, \delta'_i)$ holds and $\sup(V \cap \delta_{t(i)}) < \delta'_i$ and $\operatorname{Ran}(\pi_i) < \delta_{t(i)}$. This is possible as M_1, \ldots, M_n are elementary submodels. Finally, $\pi_n(p)$ is a condition interlacing with p by e and it forces that $f(\delta'_n) = \xi$. Now if we take the union of them plus the edge $\{\delta_n, \delta'_n\}$ then an argument as in Lemma 7 shows that we get a condition which forces a contradiction. \Box

THEOREM 3. If GCH holds there is a cardinal, cofinality, and GCH preserving (class) notion of forcing in which for every n, e, and regular $\lambda \geq \omega$ there is a λ^+ -chromatic graph on λ^+ all whose finite subgraphs are subgraphs of some elements of $\mathcal{K}^{n,e}$.

PROOF. For $\lambda \geq \omega$ regular let Q_{λ} be the product of $Q_{n,e,\lambda}$ of Theorem 2 with finite supports if $\lambda = \omega$, and complete supports otherwise. Notice that Q_{λ} is a λ^+ -c.c. notion of forcing of cardinal λ^+ . For λ singular let Q_{λ} be the trivial forcing.

Our notion of forcing is the Easton-support limit of the Q_{λ} 's, i.e., $P_{\alpha+1} = P_{\alpha} \oplus Q_{\alpha}$ with Q_{α} defined in the ground model. For α limit, $p \in P_{\alpha}$ iff $p(\beta) \in Q_{\beta}$ for all $\beta < \alpha$, and $| \text{Dom}(p) \cap \kappa | < \kappa$ for $\kappa \leq \alpha$ regular.

Given n, e, and λ as in the statement of the Theorem, the extended model can be thought of as the generic extension of some model first with $Q_{n,e,\lambda}$ then with P_{λ} which is of cardinal λ so it cannot change the chromatic number of a graph from λ^+ to λ .

Assume that the cofinality of some ordinal α collapses to a regular λ . P splits as $P_{\lambda} \oplus Q_{\lambda} \oplus R$ where R is $\leq \lambda$ -closed, $|P_{\lambda}| \leq \lambda$ and Q_{λ} is λ^{+} -c.c., so in fact the λ^{+} -c.c. $P_{\lambda+1}$ changes the cofinality of α which is impossible. This also implies that no cardinals are collapsed.

If τ is regular, all subsets of τ are added by the τ^+ -c.c. $P_{\tau+1}$ of cardinal τ^+ so 2^{τ} remains τ^+ . If τ is singular we must bound $\tau^{cf(\tau)}$. The sets of size cf (τ) are added by $P_{cf(\tau)+1}$ so we can bound the new value of $\tau^{cf(\tau)}$ by $\tau^{cf(\tau)^+} = \tau^+$. \Box

References

- P. Erdős and A. Hajnal, On chromatic number of graphs and set-systems, Acta Math. Acad. Sci. Hungar., 17 (1966), 61-99.
- [2] P. Erdős, A. Hajnal and S. Shelah, On some general properties of chromatic number, in: Topics in Topology, Keszthely (Hungary), 1972, Coll. Math. Soc. J. Bolyai 8, pp. 243-255.
- [3] P. Erdős and R. Rado, Partition relations connected with the chromatic number of graphs, Journal of London Math. Soc., 34 (1959), 63-72.

- [4] P. Erdős and R. Rado, A construction of graphs without triangles having pre-assigned order and chromatic number, Journal of London Math. Soc., 35 (1960), 445– 448.
- [5] A. Hajnal and P. Komjáth, What must and what need not be contained in a graph of uncountable chromatic number?, *Combinatorica*, 4 (1984), 47-52.
- [6] P. Komjáth, The colouring number, Proc. London Math. Soc., 54 (1987), 1-14.
- [7] W. Taylor, Atomic compactness and elementary equivalence, Fund. Math., 71 (1971), 103-112.
- [8] W. Taylor, Problem 42, Comb. Structures and their applications, Proc. of the Calgary International Conference, 1969.

(Received February 11, 1994)

DEPARTMENT OF COMPUTER SCIENCE EÕTVÕS UNIVERSITY BUDAPEST, MÚZEUM KRT. 6-8 1088 HUNGARY

INSTITUTE OF MATHEMATICS HEBREW UNIVERSITY GIVAT RAM JERUSALEM ISRAEL