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ON CRAWLEY MODULES

Rüdiger Göbel
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Saharon Shelah
Institute of Mathematics, Hebrew University, Jerusalem, Israel and Rutgers
University, New Brunswick, New Jersey, USA

This continues recent work in an article by Corner et al. (2004). A particular question
was left open: Is it possible to carry over the results concerning the undecidability
of torsion-free Crawley groups to modules over the ring of p-adic integers? We will
confirm this and also strengthen one of the results in Corner et al. (2004) by replacing
the hypothesis of ♦ by CH . For details see the introduction.

Key Words: Criteria for freeness; Torsion-free modules over the p-adic integers; Undecidability.

Mathematics Subject Classification: 20K40; 03E50; 13C10.

1. INTRODUCTION

This note is an extension of the recent work in Corner et al. (2004). Let R
be a principal ideal domain with quotient field Q. In this article, we will consider
torsion-free R-modules. Crawley p-groups were investigated intensively in the last
two decades of the last century. Megibben (1983) showed that, parallel to Whitehead
groups, the existence of ‘proper’ Crawley groups (those which are not direct sums
of cyclics) is undecidable (see also Shelah, 1974). Further fundamental results
for Crawley p-groups were derived in two adjoint articles by Mekler and Shelah
(1986a,b). Parallel to the case of Abelian Crawley p-groups we can define Crawley
modules in the torsion-free case as outlined in Corner et al. (2004).

Definition 1.1. An R-module G is a Crawley module if for any pair M�N of pure
and dense submodules of corank 1 there is an automorphism � ∈ AutR G with
M� = N .

The hypothesis on M is equivalent to say that G/M � Q.
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4212 GÖBEL AND SHELAH

An old theorem of Jeno Erdös (see the early edition of Corner et al., 2004;
Fuchs, 1958) can be reformulated to give a first result on torsion-free Crawley
modules.

Theorem 1.2. Free R-modules are Crawley modules.

Moreover, the problem whether ℵ1-free Crawley groups (R = �) are free is
undecidable. This follows from the main results of Corner et al. (2004):

Theorem 1.3. Let R be a principal ideal domain and � a regular cardinal > �R�.
(i) (Assume ♦��E� for all stationary sets E ⊆ �.) Any �-free R-Crawley module of

cardinality � is free.
(ii) (Assume ZFC+MA.) If �R� < 2ℵ0 , then any ℵ1-separable, ℵ1-coseparable

R-module of rank ℵ1 is a Crawley module. Thus there are non-free Crawley R-
modules of rank ℵ1 if R is not a field and ℵ1 < 2ℵ0 .

We just note that any strongly ℵ1-free R-module of cardinality ℵ1 satisfies the
hypothesis in Theorem 1.3(ii), thus is a Crawley module. The existence of non-free
but strongly ℵ1-free R-modules of cardinality ℵ1 under (ZFC + MA + ℵ1 < 2ℵ0 )
is well-known, see Eklof and Mekler (1990) or directly Shelah (1974). We want to
replace ♦��E� for � = ℵ1 in Theorem 1.3 by 2ℵ0 < 2ℵ1 and add �R� ≤ 2ℵ0 in (i) and
in (ii), respectively; see the results in the appropriate sections. The idea of the proof
of the second assertion may also be useful for other applications. In particular, we
will derive the following new

Corollary 1.4. Let R = Jp be the ring of p-adic integers.

(i) If 2ℵ0 < 2ℵ1 , then any reduced, torsion-free Crawley R-module of rank at most ℵ1 is
free.

(ii) (ZFC+MA + ℵ1 < 2ℵ0) There are non-free, torsion-free, reduced Crawley
R-modules of rank ℵ1.

2. THE CONSTRUCTION USING THE WEAK DIAMOND

The notion of the weak diamond principle ��� which is equivalent to 2ℵ0 < 2ℵ1

(a weak form of the special continuum hypothesis) comes from Devlin and Shelah
(1978); it is stated in Eklof and Mekler (1990, pp. 147–152).

���S� � Let S be a stationary subset of an uncountable, regular cardinal �
(thus cf � = �) and let D = 	f ∈ 
2 � 
 < �� (where 2 = 	0� 1�). Then S has the weak
diamond property ���S� if the following holds.

For any (coloring) function c � D −→ 2 = 	0� 1�, there is a weak diamond
function � ∈ �2 (for c) such that for all f � � −→ 2 the set 	
 ∈ S � �f � 
�c = 
�� is
stationary in �.

Here we will use a stronger version, which is still equivalent to the weak
diamond property.

Lemma 2.1. Let S be a stationary subset of an uncountable, regular cardinal �. Then
S has the weak diamond property ���S� if and only if the following holds for the
cardinal � =� 2<� and the set D = 	f ∈ 
� � 
 < ��.
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ON CRAWLEY MODULES 4213

If c � D −→ 2 is a coloring of D, then for every function f � � −→ �, there is a
weak diamond sequence � ∈ �2 (depending on c) such that 	
 ∈ S � �f � 
�c = 
�� is
stationary in �.

Proof. This is a special case of Shelah (1997, Appendix, Theorem 1.10, see
Section 3). �

We have a particular case for � = ℵ1.
If S is a stationary subset of ℵ1, � =� 2ℵ0 < 2ℵ1 and c � 	f ∈
 � � 
 < �1� → 2,

then there is � � �1 −→ 2 such that for all f � �1 −→ � the set 	
 ∈ S � �f � 
�c =

�� ⊆ �1 is stationary.

We derive from ���S� a lemma which can be applied immediately for Crawley
modules.

Lemma 2.2. Let S be a stationary subset of a regular, uncountable cardinal � such
that ���S� holds. Suppose that A is a set of cardinality �A� = 2<� and for any � ∈ �2
there are a cub C� of � and a function �� � � −→ A, then we can find 
 ∈ � and �0�
�1 ∈ �2 �i = 0� 1� such that the following holds.

(i) �0 � 
 = �1 � 
;
(ii) 
�0 = 0 and 
�1 = 1;
(iii) ��0

� 
 = ��1
� 
;

(iv) 
 ∈ C�0
.

Proof. Let � = 2<� and choose a one to one (coding) function g � A× 	0� 1� −→ �.
This is used to define for each � ∈ �2 a function f� � � −→ � by

�i��� i��g = if� for every i ∈ ��

In order to apply ���S� we also define a coloring c � D −→ 2, where
D = 	f � 
 −→ �� 
 ∈ ��. If f � 
 −→ � is in D, then define

fc =


1 if there is � ∈ �2 such that f� � 
 = f� 
 ∈ C� and 
� = 0

0 otherwise.
(2.1)

If � is as in the first line of (2.1) we call � a witness for f . Now let � ∈ �2 be a
weak diamond function for c given by ���S�. Hence S1 = 	
 ∈ S � �f� � 
�c = 
�� is
a stationary subset of � and since C� is a cub, also S2 = S1 ∩ C� is stationary in �.
Hence clearly S2 
= ∅ and there is some 
 ∈ S2.

We first claim that

if 
 ∈ S2 and � is a weak diamond function, then 
� = 1� (2.2)

From 
 ∈ S2 follows �f� � 
�c = 
� and 
 ∈ C�, moreover f� extends f� � 
. If
also 
� = 0, then �f� � 
�c = 0 by the last observation but also �f� � 
�c = 1 by (2.1),
which is a contradiction and necessarily 
� = 1.

We now choose �1 = � for such a 
 and by the last claim follows 
� = 1. Now
the first line of (2.1) gives us a witness �0 for f�1 � 
. By the first line of (2.1) follows

�0 = 0 and 
 ∈ C�0

. Hence (ii) and (iv) are shown.
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4214 GÖBEL AND SHELAH

Then f�0 � 
 = f�1 � 
, hence �i��0
� i�0�g = �i��1

� i�1�g for all i < 
. We apply
g−1 to get ��0

� 
 = ��1
� 
 and �0 � 
 = �1 � 
. Thus (i) and (iii) follow as well. �

We now return to Crawley modules. If � is a regular cardinal, then any �-free
R-module of rank � has a well defined �-invariant which is an equivalence class of
a subset E of � (i.e., E ≡ E′ ⇐⇒ E ∩ C = E′ ∩ C for some cub C in �), see Eklof
and Mekler (1990, p. 86).

Here we want to show the following

Theorem 2.3. Let R be a principal ideal domain and let G be an ℵ1-free R-module of
rank ℵ1 with �-invariant ��E� coming from a stationary set E ⊆ ℵ1. If the weak diamond
holds for E, then G is not a Crawley module. Thus, assuming 2ℵ0 < 2ℵ1 , an ℵ1-free
R-module of rank ℵ1 is Crawley if and only if it is free.

Proof. Let G = ⋃

∈ℵ1

G
 be an ℵ1-filtration of G with G
 pure in G of countable
rank for each 
 ∈ �1. Then

E = 	
 ∈ �1�G/G
 is not ℵ1-free��

If E is not stationary, then G is free and the claim follows from Erdös’s
Theorem 1.2. We may assume for contradiction that E is stationary and a set of
limit ordinals without restrictions. If 
 ∈ E, then G
+1/G
 is countable and not free.
By Stein’s theorem (see Fuchs, 1970, 1973) we can decompose G
+1/G
 into a direct
sum of a free module and a complement different from 0 with trivial dual (having
no proper homomorphisms into R). We can absorb the free summand into the next
G
+2 and thus assume that it is 0. Hence G
+1/G
 
= 0 and �G
+1/G
�

∗ = 0 (G
+1/G


is not free of minimal rank n
 ≤ �). There is a free R-module X′ ⊆ G
+1/G
 such
that X′

∗ = G
+1/G
. Its preimage X ⊆ G
+1 is of the form

X = ⊕
m<n


Rx
m ⊆ G
+1 with G
+1 = �G
 ⊕ X�∗ and �G
+1/G
�
∗ = �X′

∗�
∗ = 0�

(2.3)

We choose one of these pure and dense maximal submodules M ⊆ G of
corank 1 and create a large family of its relatives.

By the definition of M , we can find z ∈ G\M such that G = �M�Rz�∗.
Moreover (changing the filtration) we may assume that z ∈ G0. By induction on

∈�1, we determine for each �∈ 
2 an epimorphism

�� � G
 −→ Q�

If 
 = 0, then � = �� is the empty map, we send z to 1 ∈ Q. We also assume
that G0 has infinite rank and map infinitely many free generators of G0 onto �.
By injectivity, this map extends further to an epimorphism ��� � G0 −→ Q. If � � �
is an initial segment, then we want �� ⊆ ��. Suppose that �� is constructed for all
� ∈ 
2. We distinguish three cases. If 
 is a limit ordinal, and � ∈ 
2, then let �� =⋃

�<
 �� � �. If � ∈ �1\E and 
 = � + 1 , then we assume that � takes only one value
at 
, say 
� = 0. Now any � ∈ �2 has a unique extension � = �∧�0� ∈ 
2. Since G� is
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ON CRAWLEY MODULES 4215

a summand of G
 with free complement, we can extend �� arbitrarily to �� � G
 −→
Q. Finally, we assume that � ∈ E and select the elements x�m �m ≤ n�� by the choice
of X in (2.3). If � ∈ �2 and �� � G� −→ Q is given, then we want to choose ��∧�0�
and ��∧�1� such that

x�m��∧�1� − x�m��∧�0� = 1 for all m ≤ n�� (2.4)

Using (2.3), write G
 = G� ⊕ X for X = ⊕
m≤n�

Rx�m and we can extend ��

to both of �′
�� �

′′
� ∈ Hom�G� ⊕ X�Q� with x�m�

′
� = 0 and x�m�

′′
� = 1 for all m ≤ n�.

These maps can be extended further to ��∧�0�� ��∧�1� ∈ Hom�G
�Q� by injectivity.
We have x�m��∧�0� = 0 and x�m��∧�1� = 1 for all m ≤ n� and in particular (2.4) holds.

This finishes the inductive construction. If � ∈ �12 (with � ��1\E the zero
map), then we obtain the relatives of M :

�� =
⋃

∈�1

�� � 
 and N� = Ker���

Hence G/Ker�� � Q and 	N� � � ∈ �12� is a family of pure and dense
submodules of corank 1.

We claim that there is � ∈ �12 such that no � ∈ AutR G satisfies M� = N�.
From this, the Theorem follows.

Assume for contradiction that for any � ∈ �12 there is �� ∈ AutR G with
M�� = N�. Now we specify the choice of the cubs C� ⊆ � for Lemma 2.2. By the
usual back and forth argument, we may assume that G
�� = G
 for all 
 ∈ C�. By
the weak diamond and Lemma 2.2, there are some �0� �1 ∈ �12 and 
 ∈ �1 such that

(i) 
 is the branch point of �0 and �1, �0 � 
 = �1 � 
 = � but 
�0 
= 
�1,
(ii) 
�0 = 0 and 
�1 = 1,
(iii) ��0

�G
 = ��1
�G
,

(iv) 
 ∈ C�0
�

If we put � = ��1
−��0

, then � ∈ EndG induces � � G/G
 −→ G. But necessarily

 ∈ E, hence �G
+1/G
�

∗ = 0 by (2.3). On the other hand, G is ℵ1-free and �G
+1/G
�
is countable, hence G
+1� = 0. It follows that

��1
�G
+1 = ��0

�G
+1� (2.5)

Since 
�0 = 0 by (ii), we have �0 = �∧�0� and x
0��∧�0� = 0 by definition of the
extension map. But ��∧�0� ⊆ ��0

and so x
0��0
= 0. We derive x
0 ∈ N�0

.
By the choice of C�0

, it will follow y∗��0
∈ G
+1. Note that �−1

�0
leaves

G
 invariant and thus also maps G
+1 into itself because G/G
+1 is ℵ1-free
but �G
+1/G
�

∗ = 0 by (2.3). (We say that G
+1 is the Chase radical of G
over G
.) From y∗��0

∈ G
+1 and (2.5) also follows x
0 = y∗��0
. But now

x
0 = y∗��1
∈ G
+1 ∩ N�1

=Ker��∧�1�, so x
0��∧�1� = 0. Hence x
0��∧�0� − x
0��∧�1� = 0,
which contradicts (2.4). �

The proof immediately gives a stronger result.
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4216 GÖBEL AND SHELAH

If M ⊆ G is a pure and dense submodule of corank 1, we denote by �M� =
M AutR G the orbit of M under the action of the automorphism group.

Corollary 2.4. (ZFC+ 2ℵ0 < 2ℵ1 ): If G is a module as in Theorem 2.3 which is not
free and of cardinality ℵ1, then G has ℵ1 distinct orbits of pure, dense submodules of
corank 1.

Proof. Partition E into ℵ1 stationary sets. �

3. CRAWLEY MODULES UNDER MARTIN’S AXIOM

The proof of our next theorem is inspired by the Löwenheim-Skolem
argument. We first state and prove an observation mentioned by Brendan
Goldsmith. This will be used to reduce the theorem to a result in Corner et al.
(2004).

Observation 3.1. Every subring of a principal ideal domain R is a subring of
principal ideal domain contained in R and of the same cardinality.

Proof. Let R1 ⊆ R be the given rings, let Q be the field of fractions of R1, and set
R2 = R ∩Q, which is a subring of R of cardinality �R1� containing R1. We will show
that R2 is a principal ideal domain. If I is an ideal of R2, then IR is an ideal of
R and so IR = aR for some a ∈ R. However, a ∈ IR and so a = ir for some i ∈ I�
r ∈ R. Now, if x is an arbitrary element of I , then x = arx for some rx ∈ R and so
x = irrx = itx say where tx = rrx ∈ R. However, tx = x/i ∈ K ∩ R = R2. So x = itx is
a product of an element in I and in R2. Since x was arbitrary in I , we have I ⊆ iR2,
and since the reverse inclusion is trivial, we deduce that I = iR2 is principal. �

Theorem 3.2. (ZFC + MA) Let R be a principal ideal domain. Any strongly ℵ1-free
R-module of rank ℵ1 is a Crawley module.

Proof. Let N1� N2 ⊆ G be two pure and dense submodules of corank 1 of
the strongly ℵ1-free R-module G of rank ℵ1. Moreover let �i � G −→ Q be the
canonical epimorphisms with kernel Ker�i = Ni �i = 1� 2�. Choose an ℵ1-filtration
G = ⋃


∈�1
G
 and let Ni
 = Ni ∩G
 be the induced ℵ1-filtration on Ni �i = 1� 2�. We

can assume that there are zi ∈ G0 with zi�i = 1 ∈ Q for i = 1� 2. Moreover, let each
G0� Ni0 have infinite rank (w.l.o.g.). Also choose an R-basis for each G
�Ni
, thus

G
 =
⊕
n∈�

Rx0
n� Ni
 =
⊕
n∈�

Rxi
n for i = 1� 2�

If 
 < � ∈ �1� n ∈ �, then

xi
n =
∑
m∈�

ai

�nmx

i
�m for some ai


�nm ∈ R�

Since zi ∈ G0, also zi =
∑

m∈� bimx
0
0m for some bim ∈ R. Now we can choose a

subring R′ of R of cardinality ℵ1 containing all these coefficients ai

�nm� b

i
m.
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ON CRAWLEY MODULES 4217

Let

G′

 =

⊕
n∈�

R′x0
n� N ′
i
 =

⊕
n∈�

R′xi
n for i = 1� 2

be the corresponding free R′-module. We have ℵ1-filtrations G
′ = ⋃


∈�1
G′


 and N ′
i =⋃


∈�1
N ′

i
; this uses that R′ is sufficiently saturated! Moreover, passing from G to
G′ it is easy to see that also G′ is a strongly ℵ1-free R′-module. Also zi ∈ G′

0 and
�′
i = �i �G

′ is an R′-homomorphism G′ −→ Q.
By another back and forth argument, using that �i � G −→ Q are

epimorphisms (so enlarging R′) we may assume that �′
i maps G′ onto the quotient

field Q′ of R′. By Observation 3.1 we also assume that R′ is a principal ideal domain.
Thus G′/N ′

i � Q′ for i = 1� 2, and we can apply Theorem 1.3(ii). The R′-module G′

is a Crawley R′-module and there is �′ ∈ AutR′ G′ with N ′
1�

′ = N ′
2.

Finally we extend �′ (uniquely) to � ∈ AutR G such that N1� = N2:
There is a cub C ⊆ �1 such that �′


 = �′ �G′

 ∈ AutR′ G′


 for all 
 ∈ C;
moreover �′ = ⋃


∈C �′

 and G′ = ⋃


∈C G′

. These R′-automorphisms �′


 act on the
free R′-module G′


 =
⊕

n∈� R
′x0
n; they extend naturally to R-automorphisms �
 of

the free R-module G
 =
⊕

n∈� Rx
0

n by tensoring with R. Clearly � = ⋃


∈C �
 and
N1� = N2.

(This also shows that G is ℵ1-presented, i.e., it can be expressed as the quotient
of two free R-modules of rank ℵ1.) �

If R is a principal ideal domain with quotient field Q countably generated
over R, then there is a multiplicatively closed subset � of R\	0� such that �−1R =
Q. We may assume that 1 ∈ � and choose an enumeration 	si � i ∈ �� = � with
s0 = 1. Moreover qn =

∏
i≤n si. In particular 0 = ⋂

i∈� Rqi, so R is an �-ring; see
Göbel and Trlifaj (2004), also Corner and Göbel (1985). Examples are the principal
ideal domains of p-adic integers Jp with � = 	pn � n ∈ �� and counter examples are
polynomial rings ��X� over � in sets X of uncountably many, commuting variables.
If R is such an �-ring, then we can construct Griffith’s strongly ℵ1-free R-module
of rank ℵ1: Let F = ⊕

i∈�1
Rei be the free R-module of rank ℵ1 and F̂ its �-adic

completion; note that the �-topology on F is Hausdorff by the above. Let E ⊆ �1

be a stationary subset of limit ordinals and choose for any limit ordinal 
 ∈ �1 a
ladder, i.e., a strictly increasing sequence of successor ordinals 
n �n ∈ �� with limit

. We consider the elements

vk
 =
∑
n≥k

�qnq
−1
k �e
n ∈ F̂

and let

G = �F�Rvk
 � 
 ∈ E� k ∈ ��

which is a pure submodule of F̂ ∩∏
i∈�1

Rei. It is easy to check, that G is strongly
ℵ1-free with �-invariant ��E� 
= 0, hence not free. Thus the next corollary follows
from Theorem 3.2.
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4218 GÖBEL AND SHELAH

Corollary 3.3. �ZFC +MA + ℵ1 < 2ℵ0) If R is a principal ideal domain with
quotient field Q 
= R countably generated over R, then there are ℵ1-free but not free
Crawley R-modules of rank ℵ1.

Corollary 1.4 immediately follows from Corollary 3.3 and Theorem 3.1.
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